1
|
Ogienko AA, Andreyeva EN, Yarinich LA, Pindyurin AV, Battulina NV, Omelina ES. Expression Pattern of the AB1-Gal4 Driver in Drosophila Third-Instar Larvae. Int J Mol Sci 2025; 26:3923. [PMID: 40362166 PMCID: PMC12071433 DOI: 10.3390/ijms26093923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Drosophila has provided a highly attractive model system for studying various tissue- and stage-specific processes as well as their pathologies, including a range of human diseases. The existence of a large number of diverse Gal4 drivers to precisely control the expression patterns of UAS transgenes simplifies such studies. However, the choice of driver is always critical, as its possible ectopic expression in non-target cells and tissues can directly impact the results. Therefore, it is very important to thoroughly characterize both the molecular nature and expression pattern of each Gal4 driver line. Here, we aim to fill such gaps regarding the AB1-Gal4 driver, which is typically used to express UAS transgenes in larval salivary glands. In this fly line, the P{GawB} enhancer trap construct encoding the Gal4 protein resides within overlapping evolutionary conserved spastin (spas) and Mitochondrial Rho (Miro) genes. Both these genes are expressed in a number of tissues, including the central nervous system (CNS), and their human orthologs are associated with neurodegenerative diseases. Consistently, we demonstrate that, in third-instar larvae, the expression pattern of AB1-Gal4 is also not restricted to salivary glands. We detect its activity in a subset of Elav-positive neurons in the CNS, including motor neurons, as well as in specific photoreceptor cells in eye discs.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Choi GE, Park JY, Park MR, Chae CW, Jung YH, Lim JR, Yoon JH, Cho JH, Han HJ. Restoration of Miro1's N-terminal GTPase function alleviates prenatal stress-induced mitochondrial fission via Drp1 modulation. Cell Commun Signal 2025; 23:166. [PMID: 40176126 PMCID: PMC11967123 DOI: 10.1186/s12964-025-02172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Prenatal stress exposure irreversibly impairs mitochondrial dynamics, including mitochondrial trafficking and morphology in offspring, leading to neurodevelopmental and neuropsychiatric disorders in adulthood. Thus, understanding the molecular mechanism controlling mitochondrial dynamics in differentiating neurons is crucial to prevent the prenatal stress-induced impairments in behavior. We investigated the interplay between mitochondrial transport and fusion/fission in differentiating neurons exposed to prenatal stress, leading to ensuing behavior impairments, and then tried to identify the primary regulator that modulates both phenomena. METHODS We used primary hippocampal neurons of mice exposed to prenatal stress and human induced-pluripotent stem cell (hiPSC)-derived neurons, for investigating the impact of glucocorticoid on mitochondrial dynamics during differentiation. For constructing mouse models, we used AAV vectors into mouse pups exposed to prenatal stress to regulate protein expressions in hippocampal regions. RESULTS We first observed that prenatal exposure to glucocorticoids induced motility arrest and fragmentation of mitochondria in differentiating neurons derived from mouse fetuses (E18) and human induced pluripotent stem cells (hiPSCs). Further, glucocorticoid exposure during neurogenesis selectively downregulated Miro1 and increased Drp1 phosphorylation (Ser616). MIRO1 overexpression restored mitochondrial motility and increased intramitochondrial calcium influx through ER-mitochondria contact (ERMC) formation. Furthermore, we determined that the N-terminal GTPase domain of Miro1 plays a critical role in ERMC formation, which then decreased Drp1 phosphorylation (Ser616). Similarly, prenatal corticosterone exposure led to impaired neuropsychiatric and cognitive function in the offspring by affecting mitochondrial distribution and synaptogenesis, rescued by Miro1WT, but not N-terminal GTPase active form Miro1P26V, expression. CONCLUSION Prenatal glucocorticoid-mediated Miro1 downregulation contributes to dysfunction in mitochondrial dynamics through Drp1 phosphorylation (Ser616) in differentiating neurons.
Collapse
Affiliation(s)
- Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Mo Ran Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Chang Woo Chae
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, South Korea
| | - Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Endoni BT, Koval OM, Allamargot C, Kortlever T, Qian L, Sadoski RJ, Juhr D, Grumbach IM. MIRO1 Is Required for Dynamic Increases in Mitochondria-ER Contact Sites and Mitochondrial ATP During the Cell Cycle. Cells 2025; 14:482. [PMID: 40214436 PMCID: PMC11988184 DOI: 10.3390/cells14070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Mitochondria-ER contact sites (MERCS) are vital for mitochondrial dynamics, lipid exchange, Ca2+ homeostasis, and energy metabolism. We examined whether mitochondrial metabolism changes during the cell cycle depend on MERCS dynamics and are regulated by the outer mitochondrial protein mitochondrial rho GTPase 1 (MIRO1). Wound healing was assessed in mice with fibroblast-specific deletion of MIRO1. Wild-type and MIRO1-/- fibroblasts and vascular smooth muscle cells were evaluated for proliferation, cell cycle progression, number of MERCS, distance, and protein composition throughout the cell cycle. Restoration of MIRO1 mutants was used to test the role of MIRO1 domains; Ca2+ transients and mitochondrial metabolism were evaluated using biochemical, immunodetection, and fluorescence techniques. MERCS increased in number during G1/S compared with during G0, which was accompanied by a notable rise in protein-protein interactions involving VDAC1 and IP3R as well as GRP75 and MIRO1 by proximity-ligation assays. Split-GFP ER/mitochondrial contacts of 40 nm also increased. Mitochondrial Ca2+ concentration ([Ca2+]), membrane potential, and ATP levels correlated with the formation of MERCS during the cell cycle. MIRO1 deficiency blocked G1/S progression and the cell-cycle-dependent formation of MERCS and altered ER Ca2+ release and mitochondrial Ca2+ uptake. MIRO1 mutants lacking the Ca2+-sensitive EF hands or the transmembrane domain did not rescue cell proliferation or the formation of MERCS. MIRO1 controls an increase in the number of MERCS during cell cycle progression and increases mitochondrial [Ca2+], driving metabolic activity and proliferation through its EF hands.
Collapse
Affiliation(s)
- Benney T. Endoni
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (B.T.E.); (O.M.K.); (T.K.); (L.Q.); (R.J.S.); (D.J.)
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Olha M. Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (B.T.E.); (O.M.K.); (T.K.); (L.Q.); (R.J.S.); (D.J.)
| | - Chantal Allamargot
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242, USA;
| | - Tara Kortlever
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (B.T.E.); (O.M.K.); (T.K.); (L.Q.); (R.J.S.); (D.J.)
| | - Lan Qian
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (B.T.E.); (O.M.K.); (T.K.); (L.Q.); (R.J.S.); (D.J.)
| | - Riley J. Sadoski
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (B.T.E.); (O.M.K.); (T.K.); (L.Q.); (R.J.S.); (D.J.)
| | - Denise Juhr
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (B.T.E.); (O.M.K.); (T.K.); (L.Q.); (R.J.S.); (D.J.)
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (B.T.E.); (O.M.K.); (T.K.); (L.Q.); (R.J.S.); (D.J.)
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
4
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Li Y, Yang Z, Zhang S, Li J. Miro-mediated mitochondrial transport: A new dimension for disease-related abnormal cell metabolism? Biochem Biophys Res Commun 2024; 705:149737. [PMID: 38430606 DOI: 10.1016/j.bbrc.2024.149737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria are versatile and highly dynamic organelles found in eukaryotic cells that play important roles in a variety of cellular processes. The importance of mitochondrial transport in cell metabolism, including variations in mitochondrial distribution within cells and intercellular transfer, has grown in recent years. Several studies have demonstrated that abnormal mitochondrial transport represents an early pathogenic alteration in a variety of illnesses, emphasizing its significance in disease development and progression. Mitochondrial Rho GTPase (Miro) is a protein found on the outer mitochondrial membrane that is required for cytoskeleton-dependent mitochondrial transport, mitochondrial dynamics (fusion and fission), and mitochondrial Ca2+ homeostasis. Miro, as a critical regulator of mitochondrial transport, has yet to be thoroughly investigated in illness. This review focuses on recent developments in recognizing Miro as a crucial molecule in controlling mitochondrial transport and investigates its roles in diverse illnesses. It also intends to shed light on the possibilities of targeting Miro as a therapeutic method for a variety of diseases.
Collapse
Affiliation(s)
- Yanxing Li
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Zhen Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Shumei Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jianjun Li
- Department of Cardiology, Jincheng People's Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi, People's Republic of China.
| |
Collapse
|
6
|
Baltrusaitis EE, Ravitch EE, Fenton AR, Perez TA, Holzbaur ELF, Dominguez R. Interaction between the mitochondrial adaptor MIRO and the motor adaptor TRAK. J Biol Chem 2023; 299:105441. [PMID: 37949220 PMCID: PMC10746525 DOI: 10.1016/j.jbc.2023.105441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
MIRO (mitochondrial Rho GTPase) consists of two GTPase domains flanking two Ca2+-binding EF-hand domains. A C-terminal transmembrane helix anchors MIRO to the outer mitochondrial membrane, where it functions as a general adaptor for the recruitment of cytoskeletal proteins that control mitochondrial dynamics. One protein recruited by MIRO is TRAK (trafficking kinesin-binding protein), which in turn recruits the microtubule-based motors kinesin-1 and dynein-dynactin. The mechanism by which MIRO interacts with TRAK is not well understood. Here, we map and quantitatively characterize the interaction of human MIRO1 and TRAK1 and test its potential regulation by Ca2+ and/or GTP binding. TRAK1 binds MIRO1 with low micromolar affinity. The interaction was mapped to a fragment comprising MIRO1's EF-hands and C-terminal GTPase domain and to a conserved sequence motif within TRAK1 residues 394 to 431, immediately C-terminal to the Spindly motif. This sequence is sufficient for MIRO1 binding in vitro and is necessary for MIRO1-dependent localization of TRAK1 to mitochondria in cells. MIRO1's EF-hands bind Ca2+ with dissociation constants (KD) of 3.9 μM and 300 nM. This suggests that under cellular conditions one EF-hand may be constitutively bound to Ca2+ whereas the other EF-hand binds Ca2+ in a regulated manner, depending on its local concentration. Yet, the MIRO1-TRAK1 interaction is independent of Ca2+ binding to the EF-hands and of the nucleotide state (GDP or GTP) of the C-terminal GTPase. The interaction is also independent of TRAK1 dimerization, such that a TRAK1 dimer can be expected to bind two MIRO1 molecules on the mitochondrial surface.
Collapse
Affiliation(s)
- Elana E Baltrusaitis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erika E Ravitch
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam R Fenton
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Tania A Perez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Mattedi F, Lloyd-Morris E, Hirth F, Vagnoni A. Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila. PLoS Biol 2023; 21:e3002273. [PMID: 37590319 PMCID: PMC10465005 DOI: 10.1371/journal.pbio.3002273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Miro GTPases control mitochondrial morphology, calcium homeostasis, and regulate mitochondrial distribution by mediating their attachment to the kinesin and dynein motor complex. It is not clear, however, how Miro proteins spatially and temporally integrate their function as acute disruption of protein function has not been performed. To address this issue, we have developed an optogenetic loss of function "Split-Miro" allele for precise control of Miro-dependent mitochondrial functions in Drosophila. Rapid optogenetic cleavage of Split-Miro leads to a striking rearrangement of the mitochondrial network, which is mediated by mitochondrial interaction with the microtubules. Unexpectedly, this treatment did not impact the ability of mitochondria to buffer calcium or their association with the endoplasmic reticulum. While Split-Miro overexpression is sufficient to augment mitochondrial motility, sustained photocleavage shows that Split-Miro is surprisingly dispensable to maintain elevated mitochondrial processivity. In adult fly neurons in vivo, Split-Miro photocleavage affects both mitochondrial trafficking and neuronal activity. Furthermore, functional replacement of endogenous Miro with Split-Miro identifies its essential role in the regulation of locomotor activity in adult flies, demonstrating the feasibility of tuning animal behaviour by real-time loss of protein function.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Canty JT, Hensley A, Aslan M, Jack A, Yildiz A. TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport. Nat Commun 2023; 14:1376. [PMID: 36914620 PMCID: PMC10011603 DOI: 10.1038/s41467-023-36945-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1's direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, 94080, South San Francisco, CA, USA.
| | - Andrew Hensley
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Merve Aslan
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Amanda Jack
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Davis K, Basu H, Izquierdo-Villalba I, Shurberg E, Schwarz TL. Miro GTPase domains regulate the assembly of the mitochondrial motor-adaptor complex. Life Sci Alliance 2023; 6:6/1/e202201406. [PMID: 36302649 PMCID: PMC9615026 DOI: 10.26508/lsa.202201406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial transport relies on a motor-adaptor complex containing Miro1, a mitochondrial outer membrane protein with two GTPase domains, and TRAK1/2, kinesin-1, and dynein. Using a peroxisome-directed Miro1, we quantified the ability of GTPase mutations to influence the peroxisomal recruitment of complex components. Miro1 whose N-GTPase is locked in the GDP state does not recruit TRAK1/2, kinesin, or P135 to peroxisomes, whereas the GTP state does. Similarly, the expression of the MiroGAP VopE dislodges TRAK1 from mitochondria. Miro1 C-GTPase mutations have little influence on complex recruitment. Although Miro2 is thought to support mitochondrial motility, peroxisome-directed Miro2 did not recruit the other complex components regardless of the state of its GTPase domains. Neurons expressing peroxisomal Miro1 with the GTP-state form of the N-GTPase had markedly increased peroxisomal transport to growth cones, whereas the GDP-state caused their retention in the soma. Thus, the N-GTPase domain of Miro1 is critical for regulating Miro1's interaction with the other components of the motor-adaptor complex and thereby for regulating mitochondrial motility.
Collapse
Affiliation(s)
- Kayla Davis
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Himanish Basu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Ismael Izquierdo-Villalba
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ethan Shurberg
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Thomas L Schwarz
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA .,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Panda SP, Prasanth D, Gorla US, Dewanjee S. Interlinked role of ASN, TDP-43 and Miro1 with parkinopathy: Focus on targeted approach against neuropathy in parkinsonism. Ageing Res Rev 2023; 83:101783. [PMID: 36371014 DOI: 10.1016/j.arr.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Parkinsonism is a complex neurodegenerative disease that is difficult to differentiate because of its idiopathic and unknown origins. The hereditary parkinsonism known as autosomal recessive-juvenile parkinsonism (AR-JP) is marked by tremors, dyskinesias, dystonic characteristics, and manifestations that improve sleep but do not include dementia. This was caused by deletions and point mutations in PARK2 (chromosome 6q25.2-27). Diminished or unusual sensations (paresthesias), loss of neuron strength both in the CNS and peripheral nerves, and lack of motor coordination are the hallmarks of neuropathy in parkinsonism. The incidence of parkinsonism during oxidative stress and ageing is associated with parkinopathy. Parkinopathy is hypothesized to be triggered by mutation of the parkin (PRKN) gene and loss of normal physiological functions of PRKN proteins, which triggers their pathogenic aggregation due to conformational changes. Two important genes that control mitochondrial health are PRKN and phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1 (PINK1). Overexpression of TAR DNA-binding protein-43 (TDP-43) increases the aggregation of insoluble PRKN proteins in OMM. Foreign α-synuclein (ASN) promotes parkinopathy via S-nitrosylation and hence has a neurotoxic effect on dopaminergic nerves. Miro1 (Miro GTPase1), a member of the RAS superfamily, is expressed in nerve cells. Due to PINK1/PRKN and Miro1's functional relationship, an excess of mitochondrial calcium culminates in the destruction of dopaminergic neurons. An interlinked understanding of TDP-43, PINK1/PRKN, ASN, and Miro1 signalling in the communication among astrocytes, microglia, neurons, and immune cells within the brain explored the pathway of neuronal death and shed light on novel strategies for the diagnosis and treatment of parkinsonism.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, India.
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
12
|
Lee IW, Adhikari D, Carroll J. Miro1 depletion disrupts spatial distribution of mitochondria and leads to oocyte maturation defects. Front Cell Dev Biol 2022; 10:986454. [PMID: 36325364 PMCID: PMC9619047 DOI: 10.3389/fcell.2022.986454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo regulated microtubule- and actin-mediated trafficking to meet local energy and metabolic needs. Mitochondrial trafficking may be particularly critical in large cells such as eggs and early embryos where spindle formation and polar body extrusion occur in specific regions of the cytoplasm. To investigate the role of mitochondrial distribution in oocytes we have targeted the mitochondrial membrane protein, MIRO1, which couples mitochondria to the motor protein-TRAK complex. Oocyte-specific deletion of MIRO1 leads to the formation of large aggregates of mitochondria in perinuclear and cortical compartments. Mitochondria remain capable of long-range trafficking during maturation, indicating redundancy in the mechanisms coupling mitochondria to motor proteins. Polar body extrusion in the absence of MIRO1 was reduced by approximately 20%. In MIRO1-deleted zygotes, mitochondria showed increased accumulation around the pronuclei but this did not affect mitochondrial distribution to daughter blastomeres. In vitro development of parthenogenetic embryos was also reduced, although no differences were found in the fertility of oocyte-specific Miro1 KO mice. These findings demonstrate MIRO1 acts as a mitochondrial adaptor, setting mitochondrial distribution in oocytes and early embryos, and disrupting this process compromises in vitro oocyte maturation and embryo development.
Collapse
Affiliation(s)
| | | | - John Carroll
- *Correspondence: Deepak Adhikari, ; John Carroll,
| |
Collapse
|
13
|
Smith CE, Jones DNM. NMR resonance assignment of the N-terminal GTPase domain of human Miro2 Bound to GTP. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:349-355. [PMID: 36050579 PMCID: PMC9510121 DOI: 10.1007/s12104-022-10103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 05/21/2023]
Abstract
Miro2 and Miro1 are mitochondrial-associated proteins critical for regulating mitochondrial movement within the cell. Both Miro1 and Miro2 have roles in promoting neuron function, but recently Miro2 has been shown to have additional roles in response to nutrient starvation in tumor cells. Miro1 and 2 consist of two small GTPase domains flanking a pair of EF-hands. The N-terminal GTPase (nGTPase) domain is responsible for initiating mitochondrial trafficking and interactions with GCN1 in prostate cancer. The crystal structure of Miro1 nGTPase bound to GTP has been solved. However, no structural data is available for the nGTPase domain of Miro2. To better understand the similarities and differences in the functions of Miro1 and Miro2, we have initiated structural studies of Miro2. Here we report the backbone NMR chemical shift assignments of a 22 KDa construct of the nGTPase domain of Miro2 bound to GTP that includes residues 1-180 of the full-length protein. We affirm that the overall secondary structure of this complex closely resembles that of Miro1 nGTPase bound to GTP. Minor variations in the overall structures can be attributed to crystal packing interactions in the structure of Miro1. These NMR studies will form the foundation for future work identifying the specific interaction sites between Miro2 and its cellular binding partners.
Collapse
Affiliation(s)
- Cassandra E Smith
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David N M Jones
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Ashraf GM, Chatzichronis S, Alexiou A, Firdousi G, Kamal MA, Ganash M. Dietary Alterations in Impaired Mitochondrial Dynamics Due to Neurodegeneration. Front Aging Neurosci 2022; 14:893018. [PMID: 35898328 PMCID: PMC9310440 DOI: 10.3389/fnagi.2022.893018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease is still an incurable disease with significant social and economic impact globally. Nevertheless, newly FDA-approved drugs and non-pharmacological techniques may offer efficient disease treatments. Furthermore, it is widely accepted that early diagnosis or even prognosis of Alzheimer's disease using advanced computational tools could offer a compelling alternative way of management. In addition, several studies have presented an insight into the role of mitochondrial dynamics in Alzheimer's development. In combination with diverse dietary and obesity-related diseases, mitochondrial bioenergetics may be linked to neurodegeneration. Considering the probabilistic expectations of Alzheimer's disease development or progression due to specific risk factors or biomarkers, we designed a Bayesian model to formulate the impact of diet-induced obesity with an impaired mitochondrial function and altered behavior. The applied probabilities are based on clinical trials globally and are continuously subject to updating and redefinition. The proposed multiparametric model combines various data types based on uniform probabilities. The program simulates all the variables with a uniform distribution in a sample of 1000 patients. First, the program initializes the variable age (30-95) and the four different diet types ("HFO_diet," "Starvation," "HL_diet," "CR") along with the factors that are related to prodromal or mixed AD (ATP, MFN1, MFN2, DRP1, FIS1, Diabetes, Oxidative_Stress, Hypertension, Obesity, Depression, and Physical_activity). Besides the known proteins related to mitochondrial dynamics, our model includes risk factors like Age, Hypertension, Oxidative Stress, Obesity, Depression, and Physical Activity, which are associated with Prodromal Alzheimer's. The outcome is the disease progression probability corresponding to a random individual ID related to diet choices and mitochondrial dynamics parameters. The proposed model and the programming code are adjustable to different parameters and values. The program is coded and executed in Python and is fully and freely available for research purposes and testing the correlation between diet type and Alzheimer's disease progression regarding various risk factors and biomarkers.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stylianos Chatzichronis
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med Austria, Wien, Austria
| | - Gazala Firdousi
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Steady-State Levels of Miro1 Linked to Phosphorylation at Serine 156 and Mitochondrial Respiration in Dopaminergic Neurons. Cells 2022; 11:cells11081269. [PMID: 35455950 PMCID: PMC9032684 DOI: 10.3390/cells11081269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Miro1 has emerged as an interesting target to study Parkinson’s disease-relevant pathways since it is a target of PINK1 and Parkin. Miro1 is a mitochondrial GTPase with the primary function of facilitating mitochondrial movement, and its knockout in mice is postnatally lethal. Here, we investigated the effect of the artificial RHOT1/Miro1 S156A mutation since it is a putative PINK1 phosphorylation site shown to be involved in Miro1 degradation and mitochondrial arrest during mitophagy. We gene-edited a homozygous phospho-null Miro1 S156A mutation in induced pluripotent stem cells to study the mutation in human dopaminergic neurons. This mutation causes a significant depletion of Miro1 steady-state protein levels and impairs further Miro1 degradation upon CCCP-induced mitophagy. However, mitochondrial mass measured by Tom20 protein levels, as well as mitochondrial area, are not affected in Miro1 S156A neurons. The mitochondria are slightly lengthened, which is in line with their increased turnover. Under basal conditions, we found no discernable effect of the mutation on mitochondrial movement in neurites. Interestingly, the S156A mutation leads to a significant reduction of mitochondrial oxygen consumption, which is accompanied by a depletion of OXPHOS complexes III and V. These effects are not mirrored by Miro1 knockdown in neuroblastoma cells, but they are observed upon differentiation. Undifferentiated Miro1 S156A neural precursor cells do not have decreased Miro1 levels nor OXPHOS complexes, suggesting that the effect of the mutation is tied to development. In mature dopaminergic neurons, the inhibition of Miro1 Ser156 phosphorylation elicits a mild loss of mitochondrial quality involving reduced mitochondrial membrane potential, which is sufficient to induce compensatory events involving OXPHOS. We suggest that the mechanism governing Miro1 steady-state levels depends on differentiation state and metabolic demand, thus underscoring the importance of this pathway in the pathobiology of Parkinson’s disease.
Collapse
|
16
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat Commun 2021; 12:4578. [PMID: 34321481 PMCID: PMC8319186 DOI: 10.1038/s41467-021-24862-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/01/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondria are transported along microtubules by opposing kinesin and dynein motors. Kinesin-1 and dynein-dynactin are linked to mitochondria by TRAK proteins, but it is unclear how TRAKs coordinate these motors. We used single-molecule imaging of cell lysates to show that TRAK2 robustly activates kinesin-1 for transport toward the microtubule plus-end. TRAK2 is also a novel dynein activating adaptor that utilizes a conserved coiled-coil motif to interact with dynein to promote motility toward the microtubule minus-end. However, dynein-mediated TRAK2 transport is minimal unless the dynein-binding protein LIS1 is present at a sufficient level. Using co-immunoprecipitation and co-localization experiments, we demonstrate that TRAK2 forms a complex containing both kinesin-1 and dynein-dynactin. These motors are functionally linked by TRAK2 as knockdown of either kinesin-1 or dynein-dynactin reduces the initiation of TRAK2 transport toward either microtubule end. We propose that TRAK2 coordinates kinesin-1 and dynein-dynactin as an interdependent motor complex, providing integrated control of opposing motors for the proper transport of mitochondria.
Collapse
Affiliation(s)
- Adam R Fenton
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas A Jongens
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Abstract
Mitochondria are multifunctional organelles that not only produce energy for the cell, but are also important for cell signalling, apoptosis and many biosynthetic pathways. In most cell types, they form highly dynamic networks that are constantly remodelled through fission and fusion events, repositioned by motor-dependent transport and degraded when they become dysfunctional. Motor proteins and their tracks are key regulators of mitochondrial homeostasis, and in this Review, we discuss the diverse functions of the three classes of motor proteins associated with mitochondria - the actin-based myosins, as well as the microtubule-based kinesins and dynein. In addition, Miro and TRAK proteins act as adaptors that link kinesin-1 and dynein, as well as myosin of class XIX (MYO19), to mitochondria and coordinate microtubule- and actin-based motor activities. Here, we highlight the roles of motor proteins and motor-linked track dynamics in the transporting and docking of mitochondria, and emphasize their adaptations in specialized cells. Finally, we discuss how motor-cargo complexes mediate changes in mitochondrial morphology through fission and fusion, and how they modulate the turnover of damaged organelles via quality control pathways, such as mitophagy. Understanding the importance of motor proteins for mitochondrial homeostasis will help to elucidate the molecular basis of a number of human diseases.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
19
|
Panchal K, Tiwari AK. Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 2021; 56:118-135. [PMID: 33127590 DOI: 10.1016/j.mito.2020.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Miro (mitochondrial Rho GTPases) a mitochondrial outer membrane protein, plays a vital role in the microtubule-based mitochondrial axonal transport, mitochondrial dynamics (fusion and fission) and Mito-Ca2+ homeostasis. It forms a major protein complex with Milton (an adaptor protein), kinesin and dynein (motor proteins), and facilitates bidirectional mitochondrial axonal transport such as anterograde and retrograde transport. By forming this protein complex, Miro facilitates the mitochondrial axonal transport and fulfills the neuronal energy demand, maintain the mitochondrial homeostasis and neuronal survival. It has been demonstrated that altered mitochondrial biogenesis, improper mitochondrial axonal transport, and mitochondrial dynamics are the early pathologies associated with most of the neurodegenerative diseases (NDs). Being the sole mitochondrial outer membrane protein associated with mitochondrial axonal transport-related processes, Miro proteins can be one of the key players in various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). Thus, in the current review, we have discussed the evolutionarily conserved Miro proteins and its role in the pathogenesis of the various NDs. From this, we indicated that Miro proteins may act as a potential target for a novel therapeutic intervention for the treatment of various NDs.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
20
|
Smith KP, Focia PJ, Chakravarthy S, Landahl EC, Klosowiak JL, Rice SE, Freymann DM. Insight into human Miro1/2 domain organization based on the structure of its N-terminal GTPase. J Struct Biol 2020; 212:107656. [PMID: 33132189 PMCID: PMC7744357 DOI: 10.1016/j.jsb.2020.107656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023]
Abstract
Dysfunction in mitochondrial dynamics is believed to contribute to a host of neurological disorders and has recently been implicated in cancer metastasis. The outer mitochondrial membrane adapter protein Miro functions in the regulation of mitochondrial mobility and degradation, however, the structural basis for its roles in mitochondrial regulation remain unknown. Here, we report a 1.7Å crystal structure of N-terminal GTPase domain (nGTPase) of human Miro1 bound unexpectedly to GTP, thereby revealing a non-catalytic configuration of the putative GTPase active site. We identify two conserved surfaces of the nGTPase, the "SELFYY" and "ITIP" motifs, that are potentially positioned to mediate dimerization or interaction with binding partners. Additionally, we report small angle X-ray scattering (SAXS) data obtained from the intact soluble HsMiro1 and its paralog HsMiro2. Taken together, the data allow modeling of a crescent-shaped assembly of the soluble domain of HsMiro1/2. PDB RSEFERENCE: Crystal structure of the human Miro1 N-terminal GTPase bound to GTP, 6D71.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | - Pamela J Focia
- Department of Biochemistry & Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory, Bldg. 435B/Sector 18, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Eric C Landahl
- Department of Physics, DePaul University, Chicago, IL 60614, USA
| | - Julian L Klosowiak
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Sarah E Rice
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Douglas M Freymann
- Department of Biochemistry & Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
22
|
Grossmann D, Berenguer-Escuder C, Chemla A, Arena G, Krüger R. The Emerging Role of RHOT1/Miro1 in the Pathogenesis of Parkinson's Disease. Front Neurol 2020; 11:587. [PMID: 33041957 PMCID: PMC7523470 DOI: 10.3389/fneur.2020.00587] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
The expected increase in prevalence of Parkinson's disease (PD) as the most common neurodegenerative movement disorder over the next years underscores the need for a better understanding of the underlying molecular pathogenesis. Here, first insights provided by genetics over the last two decades, such as dysfunction of molecular and organellar quality control, are described. The mechanisms involved relate to impaired intracellular calcium homeostasis and mitochondrial dynamics, which are tightly linked to the cross talk between the endoplasmic reticulum (ER) and mitochondria. A number of proteins related to monogenic forms of PD have been mapped to these pathways, i.e., PINK1, Parkin, LRRK2, and α-synuclein. Recently, Miro1 was identified as an important player, as several studies linked Miro1 to mitochondrial quality control by PINK1/Parkin-mediated mitophagy and mitochondrial transport. Moreover, Miro1 is an important regulator of mitochondria-ER contact sites (MERCs), where it acts as a sensor for cytosolic calcium levels. The involvement of Miro1 in the pathogenesis of PD was recently confirmed by genetic evidence based on the first PD patients with heterozygous mutations in RHOT1/Miro1. Patient-based cellular models from RHOT1/Miro1 mutation carriers showed impaired calcium homeostasis, structural alterations of MERCs, and increased mitochondrial clearance. To account for the emerging role of Miro1, we present a comprehensive overview focusing on the role of this protein in PD-related neurodegeneration and highlighting new developments in our understanding of Miro1, which provide new avenues for neuroprotective therapies for PD patients.
Collapse
Affiliation(s)
- Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Section for Translational Neurodegeneration "Albrecht Kossel", Department of Neurology, Universitätsmedizin Rostock, Rostock, Germany
| | - Clara Berenguer-Escuder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Axel Chemla
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| |
Collapse
|
23
|
Bocanegra JL, Adikes R, Quintero OA. Myosin XIX. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:439-451. [PMID: 32451871 DOI: 10.1007/978-3-030-38062-5_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The birth of widely available genomic databases at the turn of the millennium led to the identification of many previously unknown myosin genes and identification of novel classes of myosin, including MYO19. Further sequence analysis has revealed the unique evolutionary history of class XIX myosins. MYO19 is found in species ranging from vertebrates to some unicellular organisms, while it has been lost from some lineages containing traditional experimental model organisms. Unique sequences in the motor domain suggest class-specific mechanochemistry that may relate to its cellular function as a mitochondria-associated motor. Work over the past 10 years has demonstrated that MYO19 is an actin-activated ATPase capable of actin-based transport, and investigation of some of the conserved differences within the motor domain indicate their importance in MYO19 motor activity. The cargo-binding MyMOMA tail domain contains two distinct mechanisms of interaction with mitochondrial outer membrane components, and perturbation of MYO19 expression leads to alterations in mitochondrial movement and dynamics that impact cell function. This chapter summarizes the current state of the field and highlights potential new directions of inquiry.
Collapse
Affiliation(s)
| | - Rebecca Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Omar A Quintero
- Department of Biology, University of Richmond, Richmond, VA, USA.
| |
Collapse
|
24
|
Bharat V, Wang X. Precision Neurology for Parkinson's Disease: Coupling Miro1-Based Diagnosis With Drug Discovery. Mov Disord 2020; 35:1502-1508. [PMID: 32710675 DOI: 10.1002/mds.28194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/27/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating movement disorder, significantly afflicting the aging population. Efforts to develop an effective treatment have been challenged by the lack of understanding of the pathological mechanisms underlying neurodegeneration. We have shown that Miro1, an outer mitochondrial membrane protein, situates at the intersection of the complex genetic and functional network of PD. Removing Miro1 from the surface of damaged mitochondria is a prerequisite for mitochondrial clearance via mitophagy. Parkinson's proteins PINK1, Parkin, and LRRK2 are the molecular helpers to remove Miro1 from dysfunctional mitochondria destined for mitophagy. We have found a delay in clearing Miro1 and initiating mitophagy in postmortem brains and induced pluripotent stem cell-derived neurons from PD patients harboring mutations in LRRK2, PINK1, or Parkin, or from sporadic PD patients with no known mutations. In addition, we have shown that reducing Miro1 by both genetic and pharmacological approaches can correct this Miro1 phenotype and rescue Parkinson's-relevant phenotypes in human neurons and fly PD models. These results suggest that the Miro1 defect may be a common denominator for PD, and compounds that reduce Miro1 promise a new class of drugs to battle PD. We propose to couple this Miro1 phenotype with Miro1-based drug discovery in future therapeutic studies, which could significantly improve the success of clinical trials. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
25
|
Norkett R, Lesept F, Kittler JT. DISC1 Regulates Mitochondrial Trafficking in a Miro1-GTP-Dependent Manner. Front Cell Dev Biol 2020; 8:449. [PMID: 32637409 PMCID: PMC7317294 DOI: 10.3389/fcell.2020.00449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
The disrupted in schizophrenia 1 (DISC1) protein is implicated in major mental illnesses including schizophrenia and bipolar disorder. A key feature of psychiatric disease is aberrant synaptic communication. Correct synaptic transmission is dependent on spatiotemporally regulated energy provision and calcium buffering. This can be achieved by precise distribution of mitochondria throughout the elaborate architecture of the neuron. Central to this process is the calcium sensor and GTPase Miro1, which allows mitochondrial trafficking by molecular motors. While the role of Miro1-calcium binding in mitochondrial transport is well described, far less is known regarding the functions of the two GTPase domains. Here, we investigate the effects of a psychiatric disease-associated mutation in DISC1 on mitochondrial trafficking. We show that this DISC1 mutation impairs Miro1’s ability to transport mitochondria. We also demonstrate the necessity of the first Miro1 GTPase domain in determining direction of mitochondrial transport and the involvement of DISC1 in this process. Finally, we describe the effects of mutant DISC1 on positioning of mitochondria at synapses.
Collapse
Affiliation(s)
- Rosalind Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Flavie Lesept
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Eberhardt EL, Ludlam AV, Tan Z, Cianfrocco MA. Miro: A molecular switch at the center of mitochondrial regulation. Protein Sci 2020; 29:1269-1284. [PMID: 32056317 PMCID: PMC7255519 DOI: 10.1002/pro.3839] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro's function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro's structure, function, and activity while highlighting key questions that remain unanswered.
Collapse
Affiliation(s)
- Emily L. Eberhardt
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMichigan
| | - Anthony V. Ludlam
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Zhenyu Tan
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
- Biophysics ProgramUniversity of MichiganAnn ArborMichigan
| | - Michael A. Cianfrocco
- Life Sciences Institute, Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
27
|
TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca 2. Nat Commun 2020; 11:2679. [PMID: 32471994 PMCID: PMC7260201 DOI: 10.1038/s41467-020-16411-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
The cation channel transient receptor potential vanilloid 4 (TRPV4) is one of the few identified ion channels that can directly cause inherited neurodegeneration syndromes, but the molecular mechanisms are unknown. Here, we show that in vivo expression of a neuropathy-causing TRPV4 mutant (TRPV4R269C) causes dose-dependent neuronal dysfunction and axonal degeneration, which are rescued by genetic or pharmacological blockade of TRPV4 channel activity. TRPV4R269C triggers increased intracellular Ca2+ through a Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated mechanism, and CaMKII inhibition prevents both increased intracellular Ca2+ and neurotoxicity in Drosophila and cultured primary mouse neurons. Importantly, TRPV4 activity impairs axonal mitochondrial transport, and TRPV4-mediated neurotoxicity is modulated by the Ca2+-binding mitochondrial GTPase Miro. Our data highlight an integral role for CaMKII in neuronal TRPV4-associated Ca2+ responses, the importance of tightly regulated Ca2+ dynamics for mitochondrial axonal transport, and the therapeutic promise of TRPV4 antagonists for patients with TRPV4-related neurodegenerative diseases. Mutations in the TRPV4 channel cause inherited neurodegeneration syndromes, but the molecular mechanisms are unknown. Here the authors reveal that TRPV4 activation causes dose-dependent, CaMKII-mediated neuronal dysfunction and axonal degeneration via disruption of mitochondrial axonal transport.
Collapse
|
28
|
Bocanegra JL, Fujita BM, Melton NR, Cowan JM, Schinski EL, Tamir TY, Major MB, Quintero OA. The MyMOMA domain of MYO19 encodes for distinct Miro-dependent and Miro-independent mechanisms of interaction with mitochondrial membranes. Cytoskeleton (Hoboken) 2020; 77:149-166. [PMID: 31479585 PMCID: PMC8556674 DOI: 10.1002/cm.21560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 08/19/2023]
Abstract
MYO19 interacts with mitochondria through a C-terminal membrane association domain (MyMOMA). Specific mechanisms for localization of MYO19 to mitochondria are poorly understood. Using promiscuous biotinylation data in combination with existing affinity-capture databases, we have identified a number of putative MYO19-interacting proteins. We chose to explore the interaction between MYO19 and the mitochondrial GTPase Miro2 by expressing mchr-Miro2 in combination with GFP-tagged fragments of the MyMOMA domain and assaying for recruitment of MYO19-GFP to mitochondria. Coexpression of MYO19898-970 -GFP with mchr-Miro2 enhanced MYO19898-970 -GFP localization to mitochondria. Mislocalizing Miro2 to filopodial tips or the cytosolic face of the nuclear envelope did not recruit MYO19898-970 -GFP to either location. To address the kinetics of the Miro2/MYO19 interaction, we used FRAP analysis and permeabilization-activated reduction in fluorescence analysis. MyMOMA constructs containing a putative membrane-insertion motif but lacking the Miro2-interacting region displayed slow exchange kinetics. MYO19898-970 -GFP, which does not include the membrane-insertion motif, displayed rapid exchange kinetics, suggesting that MYO19 interacting with Miro2 has higher mobility than MYO19 inserted into the mitochondrial outer membrane. Mutation of well-conserved, charged residues within MYO19 or within the switch I and II regions of Miro2 abolished the enhancement of MYO19898-970 -GFP localization in cells ectopically expressing mchr-Miro2. Additionally, expressing mutant versions of Miro2 thought to represent particular nucleotide states indicated that the enhancement of MYO19898-970 -GFP localization is dependent on Miro2 nucleotide state. Taken together, these data suggest that membrane-inserted MYO19 is part of a larger complex, and that Miro2 plays a role in integration of actin- and microtubule-based mitochondrial activities.
Collapse
Affiliation(s)
| | | | | | - James M. Cowan
- Department of Biology, University of Richmond, Richmond, Virginia
| | | | - Tigist Y. Tamir
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Michael B. Major
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Omar A. Quintero
- Department of Biology, University of Richmond, Richmond, Virginia
| |
Collapse
|
29
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
30
|
Kalinski AL, Kar AN, Craver J, Tosolini AP, Sleigh JN, Lee SJ, Hawthorne A, Brito-Vargas P, Miller-Randolph S, Passino R, Shi L, Wong VSC, Picci C, Smith DS, Willis DE, Havton LA, Schiavo G, Giger RJ, Langley B, Twiss JL. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol 2019; 218:1871-1890. [PMID: 31068376 PMCID: PMC6548128 DOI: 10.1083/jcb.201702187] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/15/2018] [Accepted: 04/15/2019] [Indexed: 02/08/2023] Open
Abstract
Inhibition of histone deacetylase 6 (HDAC6) was shown to support axon growth on the nonpermissive substrates myelin-associated glycoprotein (MAG) and chondroitin sulfate proteoglycans (CSPGs). Though HDAC6 deacetylates α-tubulin, we find that another HDAC6 substrate contributes to this axon growth failure. HDAC6 is known to impact transport of mitochondria, and we show that mitochondria accumulate in distal axons after HDAC6 inhibition. Miro and Milton proteins link mitochondria to motor proteins for axon transport. Exposing neurons to MAG and CSPGs decreases acetylation of Miro1 on Lysine 105 (K105) and decreases axonal mitochondrial transport. HDAC6 inhibition increases acetylated Miro1 in axons, and acetyl-mimetic Miro1 K105Q prevents CSPG-dependent decreases in mitochondrial transport and axon growth. MAG- and CSPG-dependent deacetylation of Miro1 requires RhoA/ROCK activation and downstream intracellular Ca2+ increase, and Miro1 K105Q prevents the decrease in axonal mitochondria seen with activated RhoA and elevated Ca2+ These data point to HDAC6-dependent deacetylation of Miro1 as a mediator of axon growth inhibition through decreased mitochondrial transport.
Collapse
Affiliation(s)
- Ashley L Kalinski
- Department of Biology, Drexel University, Philadelphia, PA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | - John Craver
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | - Andrew P Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | - Paul Brito-Vargas
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Liang Shi
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | | | - Deanna S Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | - Leif A Havton
- Departments of Neurology and Neurobiology, University of California, Los Angeles, Los Angeles, CA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, UK
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| |
Collapse
|
31
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
32
|
Peters DT, Kay L, Eswaran J, Lakey JH, Soundararajan M. Human Miro Proteins Act as NTP Hydrolases through a Novel, Non-Canonical Catalytic Mechanism. Int J Mol Sci 2018; 19:ijms19123839. [PMID: 30513825 PMCID: PMC6321465 DOI: 10.3390/ijms19123839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023] Open
Abstract
Mitochondria are highly dynamic organelles that play a central role in multiple cellular processes, including energy metabolism, calcium homeostasis and apoptosis. Miro proteins (Miros) are “atypical” Ras superfamily GTPases that display unique domain architecture and subcellular localisation regulating mitochondrial transport, autophagy and calcium sensing. Here, we present systematic catalytic domain characterisation and structural analyses of human Miros. Despite lacking key conserved catalytic residues (equivalent to Ras Y32, T35, G60 and Q61), the Miro N-terminal GTPase domains display GTPase activity. Surprisingly, the C-terminal GTPase domains previously assumed to be “relic” domains were also active. Moreover, Miros show substrate promiscuity and function as NTPases. Molecular docking and structural analyses of Miros revealed unusual features in the Switch I and II regions, facilitating promiscuous substrate binding and suggesting the usage of a novel hydrolytic mechanism. The key substitution in position 13 in the Miros leads us to suggest the existence of an “internal arginine finger”, allowing an unusual catalytic mechanism that does not require GAP protein. Together, the data presented here indicate novel catalytic functions of human Miro atypical GTPases through altered catalytic mechanisms.
Collapse
Affiliation(s)
- Daniel T Peters
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Laura Kay
- Department of Applied Sciences Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Jeyanthy Eswaran
- Northern Institute for Cancer Research, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU, UK.
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Meera Soundararajan
- Department of Applied Sciences Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
33
|
Heo K, Lim SM, Nahm M, Kim YE, Oh KW, Park HT, Ki CS, Kim SH, Lee S. A De Novo RAPGEF2 Variant Identified in a Sporadic Amyotrophic Lateral Sclerosis Patient Impairs Microtubule Stability and Axonal Mitochondria Distribution. Exp Neurobiol 2018; 27:550-563. [PMID: 30636905 PMCID: PMC6318558 DOI: 10.5607/en.2018.27.6.550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is frequently linked to microtubule abnormalities and mitochondrial trafficking defects. Whole exome sequencing (WES) of patient-parent trios has proven to be an efficient strategy for identifying rare de novo genetic variants responsible for sporadic ALS (sALS). Using a trio-WES approach, we identified a de novo RAPGEF2 variant (c.4069G>A, p.E1357K) in a patient with early-onset sALS. To assess the pathogenic effects of this variant, we have used patient-derived skin fibroblasts and motor neuron-specific overexpression of the RAPGEF2-E1357K mutant protein in Drosophila. Patient fibroblasts display reduced microtubule stability and defective microtubule network morphology. The intracellular distribution, ultrastructure, and function of mitochondria are also impaired in patient cells. Overexpression of the RAPGEF2 mutant in Drosophila motor neurons reduces the stability of axonal microtubules and disrupts the distribution of mitochondria to distal axons and neuromuscular junction (NMJ) synapses. We also show that the recruitment of the pro-apoptotic protein BCL2-associated X (BAX) to mitochondria is significantly increased in patient fibroblasts compared with control cells. Finally, increasing microtubule stability through pharmacological inhibition of histone deacetylase 6 (HDAC6) rescues defects in the intracellular distribution of mitochondria and BAX. Overall, our data suggest that the RAPGEF2 variant identified in this study can drive ALS-related pathogenic effects through microtubule dysregulation.
Collapse
Affiliation(s)
- Keunjung Heo
- Department of Brain and Cognitive Sciences and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Minyeop Nahm
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hwan Tae Park
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Korea
| | | | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
34
|
Safiulina D, Kuum M, Choubey V, Gogichaishvili N, Liiv J, Hickey MA, Cagalinec M, Mandel M, Zeb A, Liiv M, Kaasik A. Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J 2018; 38:embj.201899384. [PMID: 30504269 PMCID: PMC6331716 DOI: 10.15252/embj.201899384] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
The Parkinson's disease‐associated protein kinase PINK1 and ubiquitin ligase Parkin coordinate the ubiquitination of mitochondrial proteins, which marks mitochondria for degradation. Miro1, an atypical GTPase involved in mitochondrial trafficking, is one of the substrates tagged by Parkin after mitochondrial damage. Here, we demonstrate that a small pool of Parkin interacts with Miro1 before mitochondrial damage occurs. This interaction does not require PINK1, does not involve ubiquitination of Miro1 and also does not disturb Miro1 function. However, following mitochondrial damage and PINK1 accumulation, this initial pool of Parkin becomes activated, leading to the ubiquitination and degradation of Miro1. Knockdown of Miro proteins reduces Parkin translocation to mitochondria and suppresses mitophagic removal of mitochondria. Moreover, we demonstrate that Miro1 EF‐hand domains control Miro1's ubiquitination and Parkin recruitment to damaged mitochondria, and they protect neurons from glutamate‐induced mitophagy. Together, our results suggest that Miro1 functions as a calcium‐sensitive docking site for Parkin on mitochondria.
Collapse
Affiliation(s)
- Dzhamilja Safiulina
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Malle Kuum
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nana Gogichaishvili
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Joanna Liiv
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Miriam A Hickey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michal Cagalinec
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Merle Mandel
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Akbar Zeb
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mailis Liiv
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
35
|
Role of Mitochondrial Dysfunction in Degenerative Brain Diseases, an Overview. Brain Sci 2018; 8:brainsci8100178. [PMID: 30241333 PMCID: PMC6210937 DOI: 10.3390/brainsci8100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
|
36
|
Identification of Proteins Required for Precise Positioning of Apc2 in Dendrites. G3-GENES GENOMES GENETICS 2018; 8:1841-1853. [PMID: 29602811 PMCID: PMC5940173 DOI: 10.1534/g3.118.200205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In Drosophila neurons, uniform minus-end-out polarity in dendrites is maintained in part by kinesin-2-mediated steering of growing microtubules at branch points. Apc links the kinesin motor to growing microtubule plus ends and Apc2 recruits Apc to branch points where it functions. Because Apc2 acts to concentrate other steering proteins to branch points, we wished to understand how Apc2 is targeted. From an initial broad candidate RNAi screen, we found Miro (a mitochondrial transport protein), Ank2, Axin, spastin and Rac1 were required to position Apc2-GFP at dendrite branch points. YFP-Ank2-L8, Axin-GFP and mitochondria also localized to branch points suggesting the screen identified relevant proteins. By performing secondary screens, we found that energy production by mitochondria was key for Apc2-GFP positioning and spastin acted upstream of mitochondria. Ank2 seems to act independently from other players, except its membrane partner, Neuroglian (Nrg). Rac1 likely acts through Arp2/3 to generate branched actin to help recruit Apc2-GFP. Axin can function in a variety of wnt signaling pathways, one of which includes heterotrimeric G proteins and Frizzleds. Knockdown of Gαs, Gαo, Fz and Fz2, reduced targeting of Apc2 and Axin to branch points. Overall our data suggest that mitochondrial energy production, Nrg/Ank2, branched actin generated by Arp2/3 and Fz/G proteins/Axin function as four modules that control localization of the microtubule regulator Apc2 to its site of action in dendrite branch points.
Collapse
|
37
|
López-Doménech G, Covill-Cooke C, Ivankovic D, Halff EF, Sheehan DF, Norkett R, Birsa N, Kittler JT. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J 2018; 37:321-336. [PMID: 29311115 PMCID: PMC5793800 DOI: 10.15252/embj.201696380] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 11/28/2022] Open
Abstract
In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho-GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double-knockout mouse embryos and single- and double-knockout embryonic fibroblasts, we demonstrate the essential and non-redundant roles of Miro proteins for embryonic development and subcellular mitochondrial distribution. Unexpectedly, the TRAK1 and TRAK2 motor protein adaptors can still localise to the outer mitochondrial membrane to drive anterograde mitochondrial motility in Miro1/2 double-knockout cells. In contrast, we show that TRAK2-mediated retrograde mitochondrial transport is Miro1-dependent. Interestingly, we find that Miro is critical for recruiting and stabilising the mitochondrial myosin Myo19 on the mitochondria for coupling mitochondria to the actin cytoskeleton. Moreover, Miro depletion during PINK1/Parkin-dependent mitophagy can also drive a loss of mitochondrial Myo19 upon mitochondrial damage. Finally, aberrant positioning of mitochondria in Miro1/2 double-knockout cells leads to disruption of correct mitochondrial segregation during mitosis. Thus, Miro proteins can fine-tune actin- and tubulin-dependent mitochondrial motility and positioning, to regulate key cellular functions such as cell proliferation.
Collapse
Affiliation(s)
| | - Christian Covill-Cooke
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Davor Ivankovic
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Els F Halff
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - David F Sheehan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Rosalind Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicol Birsa
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
38
|
Melkov A, Abdu U. Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 2018; 75:163-176. [PMID: 28702760 PMCID: PMC11105322 DOI: 10.1007/s00018-017-2590-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel.
| |
Collapse
|
39
|
Oeding SJ, Majstrowicz K, Hu XP, Schwarz V, Freitag A, Honnert U, Nikolaus P, Bähler M. Identification of Miro as a mitochondrial receptor for myosin XIX. J Cell Sci 2018; 131:jcs.219469. [DOI: 10.1242/jcs.219469] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial distribution in cells is critical for cellular function and proper inheritance during cell division. In mammalian cells, mitochondria are transported predominantly along microtubules by kinesin and dynein motors that bind indirectly via TRAK1/2 to outer mitochondrial membrane proteins Miro1/2. Here, using proximity labeling, we identified Miro1/2 as potential binding partners of myosin XIX (Myo19). Interaction studies show that Miro1 binds directly to a C-terminal fragment of the Myo19 tail region and that Miro recruits the Myo19 tail in vivo. This recruitment is regulated by the nucleotide-state of the N-terminal Rho-like GTPase domain of Miro. Notably, Myo19 protein stability in cells depends on its association with Miro. Downregulation of Miro or overexpression of the adapter proteins TRAK1 and TRAK2 caused a reduction in Myo19 protein levels. Finally, Myo19 regulates the subcellular distribution of mitochondria. Downregulation, as well as overexpression, of Myo19 induces perinuclear collapse of mitochondria, phenocopying the loss of kinesin KIF5, dynein or their mitochondrial receptor Miro. These results suggest that Miro coordinates microtubule- and actin-based mitochondrial movement.
Collapse
Affiliation(s)
- Stefanie J. Oeding
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Katarzyna Majstrowicz
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Xiao-Ping Hu
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Vera Schwarz
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Angelika Freitag
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Ulrike Honnert
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Petra Nikolaus
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| |
Collapse
|
40
|
Okumoto K, Ono T, Toyama R, Shimomura A, Nagata A, Fujiki Y. New splicing variants of mitochondrial Rho GTPase-1 (Miro1) transport peroxisomes. J Cell Biol 2017; 217:619-633. [PMID: 29222186 PMCID: PMC5800816 DOI: 10.1083/jcb.201708122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
The mechanisms underlying microtubule-dependent long-distance movement of peroxisomes in mammalian cells are unclear. Okumoto et al. identify splicing variants of human mitochondrial Rho GTPase-1 (Miro1) that localize to peroxisomes and that link these organelles to microtubule-dependent transport complexes including TRAK2. Microtubule-dependent long-distance movement of peroxisomes occurs in mammalian cells. However, its molecular mechanisms remain undefined. In this study, we identified three distinct splicing variants of human mitochondrial Rho GTPase-1 (Miro1), each containing amino acid sequence insertions 1 (named Miro1-var2), 2 (Miro1-var3), and both 1 and 2 (Miro1-var4), respectively, at upstream of the transmembrane domain. Miro1-var4 and Miro1-var2 are localized to peroxisomes in a manner dependent on the insertion 1 that is recognized by the cytosolic receptor Pex19p. Exogenous expression of Miro1-var4 induces accumulation of peroxisomes at the cell periphery and augments long-range movement of peroxisomes along microtubules. Depletion of all Miro1 variants by knocking down MIRO1 suppresses the long-distance movement of peroxisomes. Such abrogated movement is restored by reexpression of peroxisomal Miro1 variants. Collectively, our findings identify for the first time peroxisome-localized Miro1 variants as adapter proteins that link peroxisomes to the microtubule-dependent transport complexes including TRAK2 in the intracellular translocation of peroxisomes in mammalian cells.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuaki Ono
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Toyama
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Shimomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Nagata
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Misgeld T, Schwarz TL. Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture. Neuron 2017; 96:651-666. [PMID: 29096078 DOI: 10.1016/j.neuron.2017.09.055] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
Abstract
Neurons have more extended and complex shapes than other cells and consequently face a greater challenge in distributing and maintaining mitochondria throughout their arbors. Neurons can last a lifetime, but proteins turn over rapidly. Mitochondria, therefore, need constant rejuvenation no matter how far they are from the soma. Axonal transport of mitochondria and mitochondrial fission and fusion contribute to this rejuvenation, but local protein synthesis is also likely. Maintenance of a healthy mitochondrial population also requires the clearance of damaged proteins and organelles. This involves degradation of individual proteins, sequestration in mitochondria-derived vesicles, organelle degradation by mitophagy and macroautophagy, and in some cases transfer to glial cells. Both long-range transport and local processing are thus at work in achieving neuronal mitostasis-the maintenance of an appropriately distributed pool of healthy mitochondria for the duration of a neuron's life. Accordingly, defects in the processes that support mitostasis are significant contributors to neurodegenerative disorders.
Collapse
Affiliation(s)
- Thomas Misgeld
- Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany; Center of Integrated Protein Science, Munich, Germany.
| | - Thomas L Schwarz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA.
| |
Collapse
|
42
|
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc 2017; 93:933-949. [PMID: 29068134 PMCID: PMC6446723 DOI: 10.1111/brv.12378] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non-neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.
Collapse
Affiliation(s)
- Gursimran Chandhok
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Brent Neumann
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
43
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
44
|
Abstract
Mitochondria have a pivotal role in the maintenance of cell homeostasis and survival. Mitochondria are involved in processes such as ATP production, reactive oxygen species production, apoptosis induction, calcium homeostasis and protein degradation. Thus, mechanisms that regulate the intrinsic quality of mitochondria have a crucial role in dictating overall cell fate. The importance of these well-regulated mechanisms is highlighted in disease scenarios such as neurodegeneration, cancer and neuromuscular atrophy. How mitochondria senses and regulates their intrinsic quality control, and consequently cell survival, is still not fully understood. In this review, we discuss the pathways that are at present considered as state-of-the-art for mitochondria quality control regulation, and highlight a mitochondrial protein-PINK1-that has revealed to act as a mitochondrial gatekeeper able to sense the presence of healthy or damaged mitochondria.
Collapse
Affiliation(s)
- Elvira P Leites
- iMM Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Vanessa A Morais
- iMM Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
45
|
Suárez-Rivero JM, Villanueva-Paz M, de la Cruz-Ojeda P, de la Mata M, Cotán D, Oropesa-Ávila M, de Lavera I, Álvarez-Córdoba M, Luzón-Hidalgo R, Sánchez-Alcázar JA. Mitochondrial Dynamics in Mitochondrial Diseases. Diseases 2016; 5:diseases5010001. [PMID: 28933354 PMCID: PMC5456341 DOI: 10.3390/diseases5010001] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Patricia de la Cruz-Ojeda
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Isabel de Lavera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
46
|
Vimar Is a Novel Regulator of Mitochondrial Fission through Miro. PLoS Genet 2016; 12:e1006359. [PMID: 27716788 PMCID: PMC5065127 DOI: 10.1371/journal.pgen.1006359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF). However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF) vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF) Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro’s effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson’s disease (PD), caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional. Mitochondrial dynamics including fusion, fission and transport are essential for energy supply in eukaryotic cells; and defects in mitochondrial dynamics often result in premature aging and diseases such as Parkinson's disease (PD). In mitochondrial transport machinery, the Miro/Milton complex loads mitochondria onto microtubule through kinesin motor proteins; and regulates mitochondrial fusion and fission through unknown mechanisms. As a small GTPase, the exchange of GTP/GDP in Miro requires a specific guanine nucleotide exchange factor (GEF). However, the GEF for Miro has not been identified. In this study, we identified Vimar as a new regulator of mitochondrial dynamics in Drosophila. We found that loss of vimar promoted mitochondrial shortening; and this function was mediated through Miro. As a GEF, Vimar partially localized on mitochondria and could physically interact with Miro. In the pathophysiological conditions, including a Pink1 mutant to model PD and a calcium-overload induced stress to model neuronal necrosis in Drosophila, loss of vimar suppressed both aberrant mitochondrial fusion and fragmentation in PD and necrosis, respectively. As the mammalian homolog of Vimar, RAP1GDS1 function was similar to Vimar. Therefore, Vimar/ RAP1GDS1 may be a great drug target to deal with diseases caused by defective mitochondrial dynamics.
Collapse
|
47
|
Griggs RB, Yermakov LM, Susuki K. Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 2016; 116:77-87. [PMID: 27717670 DOI: 10.1016/j.neures.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria. Disruption of excitable domains and altered distribution of functional elements in CNS axons is associated with demyelinating diseases such as multiple sclerosis, and is likely a mechanism common to other neurological disorders. This review will provide a brief overview of the molecular structure of the AIS and nodes of Ranvier, as well as the distribution of mitochondria in myelinated axons. In addition, this review highlights important structural and functional changes within myelinated CNS axons that are associated with neurological dysfunction.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|
48
|
Smit-Rigter L, Rajendran R, Silva CAP, Spierenburg L, Groeneweg F, Ruimschotel EM, van Versendaal D, van der Togt C, Eysel UT, Heimel JA, Lohmann C, Levelt CN. Mitochondrial Dynamics in Visual Cortex Are Limited In Vivo and Not Affected by Axonal Structural Plasticity. Curr Biol 2016; 26:2609-2616. [PMID: 27641766 DOI: 10.1016/j.cub.2016.07.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
Abstract
Mitochondria buffer intracellular Ca2+ and provide energy [1]. Because synaptic structures with high Ca2+ buffering [2-4] or energy demand [5] are often localized far away from the soma, mitochondria are actively transported to these sites [6-11]. Also, the removal and degradation of mitochondria are tightly regulated [9, 12, 13], because dysfunctional mitochondria are a source of reactive oxygen species, which can damage the cell [14]. Deficits in mitochondrial trafficking have been proposed to contribute to the pathogenesis of Parkinson's disease, schizophrenia, amyotrophic lateral sclerosis, optic atrophy, and Alzheimer's disease [13, 15-19]. In neuronal cultures, about a third of mitochondria are motile, whereas the majority remains stationary for several days [8, 20]. Activity-dependent mechanisms cause mitochondria to stop at synaptic sites [7, 8, 20, 21], which affects synapse function and maintenance. Reducing mitochondrial content in dendrites decreases spine density [22, 23], whereas increasing mitochondrial content or activity increases it [7]. These bidirectional interactions between synaptic activity and mitochondrial trafficking suggest that mitochondria may regulate synaptic plasticity. Here we investigated the dynamics of mitochondria in relation to axonal boutons of neocortical pyramidal neurons for the first time in vivo. We find that under these circumstances practically all mitochondria are stationary, both during development and in adulthood. In adult visual cortex, mitochondria are preferentially localized at putative boutons, where they remain for several days. Retinal-lesion-induced cortical plasticity increases turnover of putative boutons but leaves mitochondrial turnover unaffected. We conclude that in visual cortex in vivo, mitochondria are less dynamic than in vitro, and that structural plasticity does not affect mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura Smit-Rigter
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Rajeev Rajendran
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Catia A P Silva
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Liselot Spierenburg
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Femke Groeneweg
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Emma M Ruimschotel
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Danielle van Versendaal
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Chris van der Togt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Ulf T Eysel
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - J Alexander Heimel
- Department of Cortical Structure and Function, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, de Boelelaan 1085, 1081 HV, the Netherlands.
| |
Collapse
|
49
|
Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Sci Rep 2016; 6:33019. [PMID: 27605430 PMCID: PMC5015425 DOI: 10.1038/srep33019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific proteins for modification remain largely unexplored. Here, we show that the C-terminal GTPase (cGTPase) of the Parkin primary substrate human Miro is necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both human Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. We also provide evidence that Parkin substrate recognition is functionally separate from substrate modification. Finally, we show that prioritization for modification of a specific lysine sidechain of the cGTPase (K572) within human Miro1 is dependent on both its location and chemical microenvironment. Activation of Parkin by phosphorylation or by binding of pUb is required for prioritization of K572 for modification, suggesting that Parkin activation and acquisition of substrate specificity are coupled.
Collapse
|
50
|
Devine MJ, Birsa N, Kittler JT. Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis 2016; 90:27-34. [DOI: 10.1016/j.nbd.2015.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/17/2015] [Indexed: 01/18/2023] Open
|