1
|
Lai ESK, Uesaka N, Miyazaki T, Hashimoto K, Watanabe M, Kano M. Reduced GABAergic inhibition and impaired synapse elimination by neuroligin-2 deletion from Purkinje cells of the developing cerebellum. Front Neural Circuits 2025; 19:1530141. [PMID: 40160866 PMCID: PMC11949940 DOI: 10.3389/fncir.2025.1530141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed around birth. This process is known as synapse elimination and requires a proper balance of excitation and inhibition. Neuroligin-2 (NL2) is a postsynaptic cell adhesion molecule required for the formation, maintenance, and function of inhibitory synapses. However, how NL2 regulates synapse elimination during postnatal development is largely unknown. Here we report that the deletion of NL2 from Purkinje cells (PCs) in the cerebellum impairs the developmental elimination of redundant climbing fiber (CF) to PC synapses. In global NL2-knockout (KO) mice, GABAergic inhibition to PCs was attenuated and CF synapse elimination was impaired after postnatal day 10 (P10). These phenotypes were restored by the expression of NL2 into PCs of NL2-KO mice. Moreover, microRNA-mediated knockdown of NL2 specifically from PCs during development caused attenuated inhibition and impaired CF synapse elimination. In PCs innervated by "strong" and "weak" CFs, calcium transients elicited by "weak" CFs were enhanced in NL2-deficient PCs, suggesting that excess calcium signaling permits the survival of redundant "weak" CF synapses. We conclude that NL2 is crucial for maintaining inhibitory synaptic function and properly eliminating redundant CF synapses during postnatal development.
Collapse
Affiliation(s)
- Esther Suk King Lai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
MacLeod CM, Yousufzai FAK, Spencer LT, Kim S, Rivera-Rosario LA, Barrera ZD, Walsh L, Krummenacher C, Carone B, Soto I. Trehalose enhances mitochondria deficits in human NPC1 mutant fibroblasts but disrupts mouse Purkinje cell dendritic growth ex vivo. PLoS One 2023; 18:e0294312. [PMID: 38033125 PMCID: PMC10688965 DOI: 10.1371/journal.pone.0294312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
Lysosomes play important roles in catabolism, nutrient sensing, metabolic signaling, and homeostasis. NPC1 deficiency disrupts lysosomal function by inducing cholesterol accumulation that leads to early neurodegeneration in Niemann-Pick type C (NPC) disease. Mitochondria pathology and deficits in NPC1 deficient cells are associated with impaired lysosomal proteolysis and metabolic signaling. It is thought that activation of the transcription factor TFEB, an inducer of lysosome biogenesis, restores lysosomal-autophagy activity in lysosomal storage disorders. Here, we investigated the effect of trehalose, a TFEB activator, in the mitochondria pathology of NPC1 mutant fibroblasts in vitro and in mouse developmental Purkinje cells ex vivo. We found that in NPC1 mutant fibroblasts, serum starvation or/and trehalose treatment, both activators of TFEB, reversed mitochondria fragmentation to a more tubular mitochondrion. Trehalose treatment also decreased the accumulation of Filipin+ cholesterol in NPC1 mutant fibroblasts. However, trehalose treatment in cerebellar organotypic slices (COSCs) from wild-type and Npc1nmf164 mice caused mitochondria fragmentation and lack of dendritic growth and degeneration in developmental Purkinje cells. Our data suggest, that although trehalose successfully restores mitochondria length and decreases cholesterol accumulation in NPC1 mutant fibroblasts, in COSCs, Purkinje cells mitochondria and dendritic growth are negatively affected possibly through the overactivation of the TFEB-lysosomal-autophagy pathway.
Collapse
Affiliation(s)
- Collin M. MacLeod
- Department of Biology, Providence College, Providence, RI, United States of America
| | - Fawad A. K. Yousufzai
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Liam T. Spencer
- Department of Biology, Providence College, Providence, RI, United States of America
| | - Sarah Kim
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | | | - Zerian D. Barrera
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Lindsay Walsh
- Department of Biology, Providence College, Providence, RI, United States of America
| | - Claude Krummenacher
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Benjamin Carone
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Ileana Soto
- Department of Biology, Providence College, Providence, RI, United States of America
| |
Collapse
|
3
|
Okuno Y, Sakoori K, Matsuyama K, Yamasaki M, Watanabe M, Hashimoto K, Watanabe T, Kano M. PTPδ is a presynaptic organizer for the formation and maintenance of climbing fiber to Purkinje cell synapses in the developing cerebellum. Front Mol Neurosci 2023; 16:1206245. [PMID: 37426069 PMCID: PMC10323364 DOI: 10.3389/fnmol.2023.1206245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Functionally mature neural circuits are shaped during postnatal development by eliminating redundant synapses formed during the perinatal period. In the cerebellum of neonatal rodents, each Purkinje cell (PC) receives synaptic inputs from multiple (more than 4) climbing fibers (CFs). During the first 3 postnatal weeks, synaptic inputs from a single CF become markedly larger and those from the other CFs are eliminated in each PC, leading to mono-innervation of each PC by a strong CF in adulthood. While molecules involved in the strengthening and elimination of CF synapses during postnatal development are being elucidated, much less is known about the molecular mechanisms underlying CF synapse formation during the early postnatal period. Here, we show experimental evidence that suggests that a synapse organizer, PTPδ, is required for early postnatal CF synapse formation and the subsequent establishment of CF to PC synaptic wiring. We showed that PTPδ was localized at CF-PC synapses from postnatal day 0 (P0) irrespective of the expression of Aldolase C (Aldoc), a major marker of PC that distinguishes the cerebellar compartments. We found that the extension of a single strong CF along PC dendrites (CF translocation) was impaired in global PTPδ knockout (KO) mice from P12 to P29-31 predominantly in PCs that did not express Aldoc [Aldoc (-) PCs]. We also demonstrated via morphological and electrophysiological analyses that the number of CFs innervating individual PCs in PTPδ KO mice were fewer than in wild-type (WT) mice from P3 to P13 with a significant decrease in the strength of CF synaptic inputs in cerebellar anterior lobules where most PCs are Aldoc (-). Furthermore, CF-specific PTPδ-knockdown (KD) caused a reduction in the number of CFs innervating PCs with decreased CF synaptic inputs at P10-13 in anterior lobules. We found a mild impairment of motor performance in adult PTPδ KO mice. These results indicate that PTPδ acts as a presynaptic organizer for CF-PC formation and is required for normal CF-PC synaptic transmission, CF translocation, and presumably CF synapse maintenance predominantly in Aldoc (-) PCs. Furthermore, this study suggests that the impaired CF-PC synapse formation and development by the lack of PTPδ causes mild impairment of motor performance.
Collapse
Affiliation(s)
- Yuto Okuno
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Matsuyama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Kamikubo Y, Jin H, Zhou Y, Niisato K, Hashimoto Y, Takasugi N, Sakurai T. Ex vivo analysis platforms for monitoring amyloid precursor protein cleavage. Front Mol Neurosci 2023; 15:1068990. [PMID: 36683852 PMCID: PMC9852844 DOI: 10.3389/fnmol.2022.1068990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most common cause of dementia in the elderly. The presence of large numbers of senile plaques, neurofibrillary tangles, and cerebral atrophy is the characteristic feature of AD. Amyloid β peptide (Aβ), derived from the amyloid precursor protein (APP), is the main component of senile plaques. AD has been extensively studied using methods involving cell lines, primary cultures of neural cells, and animal models; however, discrepancies have been observed between these methods. Dissociated cultures lose the brain's tissue architecture, including neural circuits, glial cells, and extracellular matrix. Experiments with animal models are lengthy and require laborious monitoring of multiple parameters. Therefore, it is necessary to combine these experimental models to understand the pathology of AD. An experimental platform amenable to continuous observation and experimental manipulation is required to analyze long-term neuronal development, plasticity, and progressive neurodegenerative diseases. In the current study, we provide a practical method to slice and cultivate rodent hippocampus to investigate the cleavage of APP and secretion of Aβ in an ex vivo model. Furthermore, we provide basic information on Aβ secretion using slice cultures. Using our optimized method, dozens to hundreds of long-term stable slice cultures can be coordinated simultaneously. Our findings are valuable for analyses of AD mouse models and senile plaque formation culture models.
Collapse
|
5
|
Nagahama K, Fujino S, Watanabe T, Uesaka N, Kano M. Combining electrophysiology and optogenetics for functional screening of pyramidal neurons in the mouse prefrontal cortex. STAR Protoc 2021; 2:100469. [PMID: 33937875 PMCID: PMC8079664 DOI: 10.1016/j.xpro.2021.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Here, we present a comprehensive protocol to analyze the roles of disease-related genes in synaptic transmission. We have developed a pipeline of electrophysiological techniques and combined these with optogenetics in the medial prefrontal cortex of mice. This methodology provides a cost-effective, faster, and easier screening approach to elucidate functional aspects of single genes in several regions in the mouse brain such as a specific layer of the mPFC. For complete details on the use and execution of this protocol, please refer to Nagahama et al. (2020) and Sacai et al. (2020).
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuhei Fujino
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Nagahama K, Sakoori K, Watanabe T, Kishi Y, Kawaji K, Koebis M, Nakao K, Gotoh Y, Aiba A, Uesaka N, Kano M. Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Rep 2020; 32:108126. [PMID: 32937141 DOI: 10.1016/j.celrep.2020.108126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
SETD1A encodes a histone methyltransferase whose de novo mutations are identified in schizophrenia (SCZ) patients and confer a large increase in disease risk. Here, we generate Setd1a mutant mice carrying the frameshift mutation that closely mimics a loss-of-function variant of SCZ. Our Setd1a (+/-) mice display various behavioral abnormalities relevant to features of SCZ, impaired excitatory synaptic transmission in layer 2/3 (L2/3) pyramidal neurons of the medial prefrontal cortex (mPFC), and altered expression of diverse genes related to neurodevelopmental disorders and synaptic functions in the mPFC. RNAi-mediated Setd1a knockdown (KD) specifically in L2/3 pyramidal neurons of the mPFC only recapitulates impaired sociality among multiple behavioral abnormalities of Setd1a (+/-) mice. Optogenetics-assisted selective stimulation of presynaptic neurons combined with Setd1a KD reveals that Setd1a at postsynaptic site is essential for excitatory synaptic transmission. Our findings suggest that reduced SETD1A may attenuate excitatory synaptic function and contribute to the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keita Kawaji
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Rai Y, Watanabe T, Matsuyama K, Sakimura K, Uesaka N, Kano M. Phospholipase C β3 is Required for Climbing Fiber Synapse Elimination in Aldolase C-positive Compartments of the Developing Mouse Cerebellum. Neuroscience 2020; 462:36-43. [PMID: 32360594 DOI: 10.1016/j.neuroscience.2020.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
In the cerebellum of neonatal mice, multiple climbing fibers (CFs) form excitatory synapses on each Purkinje cell (PC). Only one CF is strengthened in each PC from postnatal day 3 (P3) to P7, whereas the other weaker CFs are eliminated progressively from ∼P7 to ∼P11 (early phase of CF elimination) and from ∼P12 to ∼P17 (late phase of CF elimination). Type 1 metabotropic glutamate receptor (mGluR1) triggers a canonical pathway in PCs for the late phase of CF elimination. Among downstream signaling molecules of mGluR1, phospholipase C β3 (PLCβ3) and β4 (PLCβ4) are expressed complementarily in PCs of aldolase C (Aldoc)-positive (+) and Aldoc-negative (-) cerebellar compartments, respectively. PLCβ4 is reported to mediate the late phase of CF elimination in the anterior half of the cerebellar vermis which corresponds to the Aldoc (-) region. However, roles of PLCβ3 and Aldoc in CF synapse elimination are unknown. Here, we investigated CF innervation of PCs in Aldoc-tdTomato knock-in mice that underwent lentivirus-mediated knockdown (KD) of PLCβ3 in PCs during postnatal development. By recording CF-mediated excitatory postsynaptic currents from PCs and immunostaining CF synaptic terminals, we found that significantly higher percentage of PCs with PLCβ3-KD remained multiply innervated by CFs in Aldoc (+) compartments after P12, which was accompanied by impaired elimination of somatic CF synapses and reduced dendritic CF translocation. In contrast, deletion of Aldoc had no effect on CF synapse elimination. These results suggest that PLCβ3 is required for the late phase of CF elimination in Aldoc (+) PCs.
Collapse
Affiliation(s)
- Yurie Rai
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Matsuyama
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Naofumi Uesaka
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Ruiz-Perera LM, Greiner JFW, Kaltschmidt C, Kaltschmidt B. A Matter of Choice: Inhibition of c-Rel Shifts Neuronal to Oligodendroglial Fate in Human Stem Cells. Cells 2020; 9:cells9041037. [PMID: 32331232 PMCID: PMC7226153 DOI: 10.3390/cells9041037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
The molecular mechanisms underlying fate decisions of human neural stem cells (hNSCs) between neurogenesis and gliogenesis are critical during neuronal development and neurodegenerative diseases. Despite its crucial role in the murine nervous system, the potential role of the transcription factor NF-κB in the neuronal development of hNSCs is poorly understood. Here, we analyzed NF-κB subunit distribution during glutamatergic differentiation of hNSCs originating from neural crest-derived stem cells. We observed several peaks of specific NF-κB subunits. The most prominent nuclear peak was shown by c-REL subunit during a period of 2–5 days after differentiation onset. Furthermore, c-REL inhibition with pentoxifylline (PTXF) resulted in a complete shift towards oligodendroglial fate, as demonstrated by the presence of OLIG2+/O4+-oligodendrocytes, which showed PDGFRα, NG2 and MBP at the transcript level. In addition c-REL impairment further produced a significant decrease in neuronal survival. Transplantation of PTXF-treated predifferentiated hNSCs into an ex vivo oxidative-stress-mediated demyelination model of mouse organotypic cerebellar slices further led to integration in the white matter and differentiation into MBP+ oligodendrocytes, validating their functionality and therapeutic potential. In summary, we present a human cellular model of neuronal differentiation exhibiting a novel essential function of NF-κB-c-REL in fate choice between neurogenesis and oligodendrogenesis which will potentially be relevant for multiple sclerosis and schizophrenia.
Collapse
Affiliation(s)
| | | | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (J.F.W.G.); (C.K.)
| | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany;
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (J.F.W.G.); (C.K.)
- Correspondence:
| |
Collapse
|
10
|
Uesaka N, Abe M, Konno K, Yamazaki M, Sakoori K, Watanabe T, Kao TH, Mikuni T, Watanabe M, Sakimura K, Kano M. Retrograde Signaling from Progranulin to Sort1 Counteracts Synapse Elimination in the Developing Cerebellum. Neuron 2018; 97:796-805.e5. [DOI: 10.1016/j.neuron.2018.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
11
|
Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, Tanimura A, Uesaka N, Watanabe M, Sakimura K, Kano M. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun 2017; 8:195. [PMID: 28775326 PMCID: PMC5543168 DOI: 10.1038/s41467-017-00260-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Elimination of early-formed redundant synapses during postnatal development is essential for functional neural circuit formation. Purkinje cells (PCs) in the neonatal cerebellum are innervated by multiple climbing fibers (CFs). A single CF is strengthened whereas the other CFs are eliminated in each PC dependent on postsynaptic activity in PC, but the underlying mechanisms are largely unknown. Here, we report that brain-derived neurotrophic factor (BDNF) from PC facilitates CF synapse elimination. By PC-specific deletion of BDNF combined with knockdown of BDNF receptors in CF, we show that BDNF acts retrogradely on TrkB in CFs, and facilitates elimination of CF synapses from PC somata during the third postnatal week. We also show that BDNF shares signaling pathway with metabotropic glutamate receptor 1, a key molecule that triggers a canonical pathway for CF synapse elimination. These results indicate that unlike other synapses, BDNF mediates punishment signal for synapse elimination in the developing cerebellum. During development, synapses are selectively strengthened or eliminated by activity-dependent competition. Here, the authors show that BDNF-TrkB retrograde signaling is a “punishment” signal that leads to elimination of climbing fiber-onto-Purkinje cell synapses in the developing cerebellum.
Collapse
Affiliation(s)
- Myeongjeong Choo
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Miyazaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Meiko Kawamura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takanobu Nakazawa
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Jianling Zhang
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Asami Tanimura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov 2017; 12:1011-1022. [PMID: 28712329 DOI: 10.1080/17460441.2017.1356285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Demyelinating disorders, characterized by a chronic or episodic destruction of the myelin sheath, are a leading cause of neurological disability in young adults in western countries. Studying the complex mechanisms involved in axon myelination, demyelination and remyelination requires an experimental model preserving the neuronal networks and neuro-glial interactions. Organotypic cerebellar slice cultures appear to be the best alternative to in vivo experiments and the most commonly used model for investigating etiology or novel therapeutic strategies in multiple sclerosis. Areas covered: This review gives an overview of slice culture techniques and focuses on the use of organotypic cerebellar slice cultures on semi-permeable membranes for studying many aspects of axon myelination and cerebellar functions. Expert opinion: Cerebellar slice cultures are probably the easiest way to faithfully reproduce all stages of axon myelination/demyelination/remyelination in a three-dimensional neuronal network. However, in the cerebellum, neurological disability in multiple sclerosis also results from channelopathies which induce changes in Purkinje cell excitability. Cerebellar cultures offer easy access to electrophysiological approaches which are largely untapped and we believe that these cultures might be of great interest when studying changes in neuronal excitability, axonal conduction or synaptic properties that likely occur during multiple sclerosis.
Collapse
Affiliation(s)
- Frédéric Doussau
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean-Luc Dupont
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Dorine Neel
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Aline Schneider
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Bernard Poulain
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean Louis Bossu
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
13
|
Araujo APB, Diniz LP, Eller CM, de Matos BG, Martinez R, Gomes FCA. Effects of Transforming Growth Factor Beta 1 in Cerebellar Development: Role in Synapse Formation. Front Cell Neurosci 2016; 10:104. [PMID: 27199658 PMCID: PMC4846658 DOI: 10.3389/fncel.2016.00104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 11/13/2022] Open
Abstract
Granule cells (GC) are the most numerous glutamatergic neurons in the cerebellar cortex and represent almost half of the neurons of the central nervous system. Despite recent advances, the mechanisms of how the glutamatergic synapses are formed in the cerebellum remain unclear. Among the TGF-β family, TGF-beta 1 (TGF-β1) has been described as a synaptogenic molecule in invertebrates and in the vertebrate peripheral nervous system. A recent paper from our group demonstrated that TGF-β1 increases the excitatory synapse formation in cortical neurons. Here, we investigated the role of TGF-β1 in glutamatergic cerebellar neurons. We showed that the expression profile of TGF-β1 and its receptor, TβRII, in the cerebellum is consistent with a role in synapse formation in vitro and in vivo. It is low in the early postnatal days (P1–P9), increases after postnatal day 12 (P12), and remains high until adulthood (P30). We also found that granule neurons express the TGF-β receptor mRNA and protein, suggesting that they may be responsive to the synaptogenic effect of TGF-β1. Treatment of granular cell cultures with TGF-β1 increased the number of glutamatergic excitatory synapses by 100%, as shown by immunocytochemistry assays for presynaptic (synaptophysin) and post-synaptic (PSD-95) proteins. This effect was dependent on TβRI activation because addition of a pharmacological inhibitor of TGF-β, SB-431542, impaired the formation of synapses between granular neurons. Together, these findings suggest that TGF-β1 has a specific key function in the cerebellum through regulation of excitatory synapse formation between granule neurons.
Collapse
Affiliation(s)
- Ana P B Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Luan P Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Cristiane M Eller
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Beatriz G de Matos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rodrigo Martinez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Faculdade de Medicina/Departamento de Cirurgia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Optimization of cerebellar purkinje neuron cultures and development of a plasmid-based method for purkinje neuron-specific, miRNA-mediated protein knockdown. Methods Cell Biol 2015; 131:177-97. [PMID: 26794514 DOI: 10.1016/bs.mcb.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a simple and efficient method to knock down proteins specifically in Purkinje neurons (PN) present in mixed mouse primary cerebellar cultures. This method utilizes the introduction via nucleofection of a plasmid encoding a specific miRNA downstream of the L7/Pcp2 promoter, which drives PN-specific expression. As proof-of-principle, we used this plasmid to knock down the motor protein myosin Va, which is required for the targeting of smooth endoplasmic reticulum (ER) into PN spines. Consistent with effective knockdown, transfected PNs robustly phenocopied PNs from dilute-lethal (myosin Va-null) mice with regard to the ER targeting defect. Importantly, our plasmid-based approach is less challenging technically and more specific to PNs than several alternative methods (e.g., biolistic- and lentiviral-based introduction of siRNAs). We also present a number of improvements for generating mixed cerebellar cultures that shorten the procedure and improve the total yield of PNs, and of transfected PNs, considerably. Finally, we present a method to rescue cerebellar cultures that develop large cell aggregates, a common problem that otherwise precludes the further use of the culture.
Collapse
|
15
|
The organotypic longitudinal spinal cord slice culture for stem cell study. Stem Cells Int 2015; 2015:471216. [PMID: 25802530 PMCID: PMC4329758 DOI: 10.1155/2015/471216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/05/2023] Open
Abstract
The objective of this paper is to describe in detail the method of organotypic longitudinal spinal cord slice culture and the scientific basis for its potential utility. The technique is based on the interface method, which was described previously and thereafter was modified in our laboratory. The most important advantage of the presented model is the preservation of the intrinsic spinal cord fiber tract and the ventrodorsal polarity of the spinal cord. All the processes occurring during axonal growth, regeneration, synapse formation, and myelination could be visualized while being cultured in vitro for up to 4-5 weeks after the slices had been isolated. Both pups and adult animals can undergo the same, equally efficient procedures when going by the protocol in question. The urgent need for an appropriate in vitro model for spinal cord regeneration results from a greater number of clinical trials concerning regenerative medicine in the spinal cord injury and from still insufficient knowledge of the molecular mechanisms involved in the neuroreparative processes. The detailed method of organotypic longitudinal spinal cord slice culture is accompanied by examples of its application to studying biological processes to which both the CNS inhabiting and grafted cells are subjected.
Collapse
|
16
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
17
|
|
18
|
Kawata S, Miyazaki T, Yamazaki M, Mikuni T, Yamasaki M, Hashimoto K, Watanabe M, Sakimura K, Kano M. Global scaling down of excitatory postsynaptic responses in cerebellar Purkinje cells impairs developmental synapse elimination. Cell Rep 2014; 8:1119-29. [PMID: 25127140 DOI: 10.1016/j.celrep.2014.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/08/2014] [Accepted: 07/11/2014] [Indexed: 12/16/2022] Open
Abstract
Synapse elimination is crucial for precise neural circuit formation during postnatal development. We examined how relative differences in synaptic strengths among competing inputs and/or absolute synaptic strengths contribute to climbing fiber (CF) to Purkinje cell (PC) synapse elimination in the cerebellum. We generated mice with PC-selective deletion of stargazin (TARP γ-2), the major AMPA receptor auxiliary subunit in PCs (γ-2 PC-KO mice). Whereas relative differences between "strong" and "weak" CF-mediated postsynaptic response are preserved, absolute strengths of CF inputs are scaled down globally in PCs of γ-2 PC-KO mice. Although the early phase of CF elimination is normal, dendritic translocation of the strongest CF and the late phase of CF elimination that requires Ca(2+)-dependent activation of Arc/Arg3.1 in PCs are both impaired in γ-2 PC-KO mice. We conclude that, although relative differences in CF synaptic inputs are initially essential, proper synaptic scaling is crucial for accomplishing CF synapse elimination.
Collapse
Affiliation(s)
- Shinya Kawata
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Miyazaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takayasu Mikuni
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
19
|
Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H, Hirai H, Aiba A, Watanabe M, Kano M. Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 2014; 344:1020-3. [PMID: 24831527 DOI: 10.1126/science.1252514] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neural circuits are shaped by elimination of early-formed redundant synapses during postnatal development. Retrograde signaling from postsynaptic cells regulates synapse elimination. In this work, we identified semaphorins, a family of versatile cell recognition molecules, as retrograde signals for elimination of redundant climbing fiber to Purkinje cell synapses in developing mouse cerebellum. Knockdown of Sema3A, a secreted semaphorin, in Purkinje cells or its receptor in climbing fibers accelerated synapse elimination during postnatal day 8 (P8) to P18. Conversely, knockdown of Sema7A, a membrane-anchored semaphorin, in Purkinje cells or either of its two receptors in climbing fibers impaired synapse elimination after P15. The effect of Sema7A involves signaling by metabotropic glutamate receptor 1, a canonical pathway for climbing fiber synapse elimination. These findings define how semaphorins retrogradely regulate multiple processes of synapse elimination.
Collapse
Affiliation(s)
- Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motokazu Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takayasu Mikuni
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takanobu Nakazawa
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, Bito H, Kano M. Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron 2013; 78:1024-35. [PMID: 23791196 PMCID: PMC3773328 DOI: 10.1016/j.neuron.2013.04.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2013] [Indexed: 11/30/2022]
Abstract
Neural circuits are shaped by activity-dependent elimination of redundant synapses during postnatal development. In many systems, postsynaptic activity is known to be crucial, but the precise mechanisms remain elusive. Here, we report that the immediate early gene Arc/Arg3.1 mediates elimination of surplus climbing fiber (CF) to Purkinje cell (PC) synapses in the developing cerebellum. CF synapse elimination was accelerated when activity of channelrhodopsin-2-expressing PCs was elevated by 2-day photostimulation. This acceleration was suppressed by PC-specific knockdown of either the P/Q-type voltage-dependent Ca(2+) channels (VDCCs) or Arc. PC-specific Arc knockdown had no appreciable effect until around postnatal day 11 but significantly impaired CF synapse elimination thereafter, leaving redundant CF terminals on PC somata. The effect of Arc knockdown was occluded by simultaneous knockdown of P/Q-type VDCCs in PCs. We conclude that Arc mediates the final stage of CF synapse elimination downstream of P/Q-type VDCCs by removing CF synapses from PC somata.
Collapse
Affiliation(s)
- Takayasu Mikuni
- Department of Neurophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Semple-Rowland SL, Berry J. Use of lentiviral vectors to deliver and express bicistronic transgenes in developing chicken embryos. Methods 2013; 66:466-73. [PMID: 23816789 DOI: 10.1016/j.ymeth.2013.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/16/2022] Open
Abstract
The abilities of lentiviral vectors to carry large transgenes (∼8kb) and to efficiently infect and integrate these genes into the genomes of both dividing and non-dividing cells make them ideal candidates for transport of genetic material into cells and tissues. Given the properties of these vectors, it is somewhat surprising that they have seen only limited use in studies of developing tissues and in particular of the developing nervous system. Over the past several years, we have taken advantage of the large capacity of these vectors to explore the expression characteristics of several dual promoter and 2A peptide bicistronic transgenes in developing chick neural retina, with the goal of identifying transgene designs that reliably express multiple proteins in infected cells. Here we summarize the activities of several of these transgenes in neural retina and provide detailed methodologies for packaging lentivirus and delivering the virus into the developing neural tubes of chicken embryos in ovo, procedures that have been optimized over the course of several years of use in our laboratory. Conditions to hatch injected embryos are also discussed. The chicken-specific techniques will be of highest interest to investigators using avian embryos, development and packaging of lentiviral vectors that reliably express multiple proteins in infected cells should be of interest to all investigators whose experiments demand manipulation and expression of multiple proteins in developing cells and tissues.
Collapse
Affiliation(s)
- Susan L Semple-Rowland
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| | - Jonathan Berry
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| |
Collapse
|
22
|
Synapse elimination in the developing cerebellum. Cell Mol Life Sci 2013; 70:4667-80. [PMID: 23811844 PMCID: PMC3830199 DOI: 10.1007/s00018-013-1405-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/01/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023]
Abstract
Neural circuits in neonatal animals contain numerous redundant synapses that are functionally immature. During the postnatal period, unnecessary synapses are eliminated while functionally important synapses become stronger and mature. The climbing fiber (CF) to the Purkinje cell (PC) synapse is a representative model for the analysis of postnatal refinement of neuronal circuits in the central nervous system. PCs are initially innervated by multiple CFs with similar strengths around postnatal day 3 (P3). Only a single CF is selectively strengthened during P3–P7 (functional differentiation), and the strengthened CF undergoes translocation from soma to dendrites of PCs from P9 on (dendritic translocation). Following the functional differentiation, supernumerary CF synapses on the soma are eliminated, which proceeds in two distinct phases: the early phase from P7 to around P11 and the late phase from around P12 to P17. Here, we review our current understanding of cellular and molecular mechanisms of CF synapse elimination in the developing cerebellum.
Collapse
|
23
|
Reeber SL, White JJ, George-Jones NA, Sillitoe RV. Architecture and development of olivocerebellar circuit topography. Front Neural Circuits 2013; 6:115. [PMID: 23293588 PMCID: PMC3534185 DOI: 10.3389/fncir.2012.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022] Open
Abstract
The cerebellum has a simple tri-laminar structure that is comprised of relatively few cell types. Yet, its internal micro-circuitry is anatomically, biochemically, and functionally complex. The most striking feature of cerebellar circuit complexity is its compartmentalized topography. Each cell type within the cerebellar cortex is organized into an exquisite map; molecular expression patterns, dendrite projections, and axon terminal fields divide the medial-lateral axis of the cerebellum into topographic sagittal zones. Here, we discuss the mechanisms that establish zones and highlight how gene expression and neural activity contribute to cerebellar pattern formation. We focus on the olivocerebellar system because its developmental mechanisms are becoming clear, its topographic termination patterns are very precise, and its contribution to zonal function is debated. This review deconstructs the architecture and development of the olivocerebellar pathway to provide an update on how brain circuit maps form and function.
Collapse
Affiliation(s)
- Stacey L Reeber
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA
| | | | | | | |
Collapse
|