1
|
Post-natal Deletion of Neuronal cAMP Responsive-Element Binding (CREB)-1 Promotes Pro-inflammatory Changes in the Mouse Hippocampus. Neurochem Res 2017; 42:2230-2245. [DOI: 10.1007/s11064-017-2233-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 12/19/2022]
|
2
|
Zhang J, Cai CY, Wu HY, Zhu LJ, Luo CX, Zhu DY. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors. Sci Rep 2016; 6:29551. [PMID: 27404655 PMCID: PMC4941576 DOI: 10.1038/srep29551] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/17/2016] [Indexed: 02/03/2023] Open
Abstract
Serotonin 1a-receptor (5-HT1aR) has been specifically implicated in the pathogenesis of anxiety. However, the mechanism underlying the role of 5-HT1aR in anxiety remains poorly understood. Here we show in mice that the transcription factor cAMP response element binding protein (CREB) in the hippocampus functions as an effector of 5-HT1aR in modulating anxiety-related behaviors. We generated recombinant lentivirus LV-CREB133-GFP expressing a dominant negative CREB which could not be phosphorylated at Ser133 to specifically reduce CREB activity, and LV-VP16-CREB-GFP expressing a constitutively active fusion protein VP16-CREB which could be phosphorylated by itself to specifically enhance CREB activity. LV-CREB133-GFP neutralized 5-HT1aR agonist-induced up-regulation of synapse density, spine density, dendrite complexity, neurogenesis, and the expression of synapsin and spinophilin, two well-characterized synaptic proteins, and abolished the anxiolytic effect of 5-HT1aR agonist; whereas LV-VP16-CREB-GFP rescued the 5-HT1aR antagonist-induced down-regulation of synapse density, spine density, dendrite complexity, neurogenesis and synapsin and spinophilin expression, and reversed the anxiogenic effect of 5-HT1aR antagonist. The deletion of neurogenesis by irradiation or the diminution of synaptogenesis by knockdown of synapsin expression abolished the anxiolytic effects of both CREB and 5-HT1aR activation. These findings suggest that CREB-mediated hippoacampus structural plasticity is crucial for the role of 5-HT1aR in modulating anxiety-related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Li-Juan Zhu
- Institute of Neuroscience, Soochow University, Su zhou, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 210029, China.,The key laboratory of human functional genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
3
|
Vogt MA, Inta D, Luoni A, Elkin H, Pfeiffer N, Riva MA, Gass P. Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits. Front Behav Neurosci 2014; 8:407. [PMID: 25505876 PMCID: PMC4245921 DOI: 10.3389/fnbeh.2014.00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/10/2014] [Indexed: 12/13/2022] Open
Abstract
The cyclic AMP (cAMP)-response element binding protein (CREB) is an activity-dependent transcription factor playing a role in synaptic plasticity, learning and memory, and emotional behavior. However, the impact of Creb ablation on rodent behavior is vague as e.g., memory performance of different Creb mutant mice depends on the specific type of mutation per se but additionally on the background and learning protocol differences. Here we present the first targeted ablation of CREB induced during adulthood selectively in principal forebrain neurons in a pure background strain of C57BL/6 mice. All hippocampal principal neurons exhibited lack of CREB expression. Mutant mice showed a severe anxiety phenotype in the openfield and novel object exploration test as well as in the Dark-Light Box Test, but unaltered hippocampus-dependent long-term memory in the Morris water maze and in context dependent fear conditioning. On the molecular level, CREB ablation led to CREM up regulation in the hippocampus and frontal cortex which may at least in part compensate for the loss of CREB. BDNF, a postulated CREB target gene, was down regulated in the frontal lobe but not in the hippocampus; neurogenesis remained unaltered. Our data indicate that in the adult mouse forebrain the late onset of CREB ablation can, in case of memory functionality, be compensated for and is not essential for memory consolidation and retrieval during adulthood. In contrast, the presence of CREB protein during adulthood seems to be pivotal for the regulation of emotional behavior.
Collapse
Affiliation(s)
- Miriam A Vogt
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences University of Milan, Milan, Italy
| | - Hasan Elkin
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences University of Milan, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University Mannheim, Germany
| |
Collapse
|
4
|
Subbanna S, Nagre NN, Umapathy NS, Pace BS, Basavarajappa BS. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int J Neuropsychopharmacol 2014; 18:pyu028. [PMID: 25609594 PMCID: PMC4376538 DOI: 10.1093/ijnp/pyu028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood. METHODS In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder. RESULTS We found that ethanol treatment of P7 mice enhances acetylation of H4 on lysine 8 (H4K8ace) at CB1R exon1, CB1R binding as well as the CB1R agonist-stimulated GTPγS binding in the hippocampus and neocortex, two brain regions that are vulnerable to ethanol at P7 and are important for memory formation and storage, respectively. We also found that ethanol inhibits cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation and activity-regulated cytoskeleton-associated protein (Arc) expression in neonatal and adult mice. The blockade or genetic deletion of CB1Rs prior to ethanol treatment at P7 rescued CREB phosphorylation and Arc expression. CB1R knockout mice exhibited neither ethanol-induced neurodegeneration nor inhibition of CREB phosphorylation or Arc expression. However, both neonatal and adult mice did exhibit enhanced CREB phosphorylation and Arc protein expression. P7 ethanol-treated adult mice exhibited impaired spatial and social recognition memory, which were prevented by the pharmacological blockade or deletion of CB1Rs at P7. CONCLUSIONS Together, these findings suggest that P7 ethanol treatment induces CB1R expression through epigenetic modification of the CB1R gene, and that the enhanced CB1R function induces pCREB, Arc, spatial, and social memory deficits in adult mice.
Collapse
MESH Headings
- AIDS-Related Complex/metabolism
- Acetylation/drug effects
- Age Factors
- Animals
- Animals, Newborn/metabolism
- Animals, Newborn/psychology
- CREB-Binding Protein/metabolism
- Central Nervous System Depressants/toxicity
- Epigenesis, Genetic/drug effects
- Ethanol/toxicity
- Exons/drug effects
- Female
- Gene Expression Regulation/drug effects
- Hippocampus/drug effects
- Hippocampus/metabolism
- Histones/genetics
- Male
- Memory Disorders/chemically induced
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neocortex/drug effects
- Neocortex/metabolism
- Neurodegenerative Diseases/chemically induced
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/psychology
- Phosphorylation/drug effects
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Social Behavior
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Nagaraja N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Nagavedi S Umapathy
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Betty S Pace
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa)
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Drs Subbanna, Nagre, and Basavarajappa); Vascular Biology Center, Georgia Regents University, Augusta, GA (Dr Umapathy); Department of Pediatrics, Georgia Regents University, Augusta, GA (Dr Pace); New York State Psychiatric Institute, New York, NY (Dr Basavarajappa); Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY (Dr Basavarajappa).
| |
Collapse
|
5
|
Nonaka M, Kim R, Fukushima H, Sasaki K, Suzuki K, Okamura M, Ishii Y, Kawashima T, Kamijo S, Takemoto-Kimura S, Okuno H, Kida S, Bito H. Region-Specific Activation of CRTC1-CREB Signaling Mediates Long-Term Fear Memory. Neuron 2014; 84:92-106. [DOI: 10.1016/j.neuron.2014.08.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 11/29/2022]
|
6
|
Nonaka M, Kim R, Sharry S, Matsushima A, Takemoto-Kimura S, Bito H. Towards a better understanding of cognitive behaviors regulated by gene expression downstream of activity-dependent transcription factors. Neurobiol Learn Mem 2014; 115:21-9. [PMID: 25173698 DOI: 10.1016/j.nlm.2014.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
In the field of molecular and cellular neuroscience, it is not a trivial task to see the forest for the trees, where numerous, and seemingly independent, molecules often work in concert to control critical steps of synaptic plasticity and signalling. Here, we will first summarize our current knowledge on essential activity-dependent transcription factors (TFs) such as CREB, MEF2, Npas4 and SRF, then examine how various transcription cofactors (TcoFs) also contribute to defining the transcriptional outputs during learning and memory. This review finally attempts a provisory synthesis that sheds new light on some of the emerging principles of neuronal circuit dynamics driven by activity-regulated gene transcription to help better understand the intricate relationship between activity-dependent gene expression and cognitive behavior.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
| | - Ryang Kim
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST-Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Stuart Sharry
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayano Matsushima
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST-Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST-Japan Science and Technology Agency, Tokyo 102-0076, Japan.
| |
Collapse
|
7
|
Nonaka M, Fujii H, Kim R, Kawashima T, Okuno H, Bito H. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130150. [PMID: 24298152 DOI: 10.1098/rstb.2013.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected 'inverse' synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, , Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Kim R, Okuno H, Bito H. Deciphering the molecular rules governing synaptic targeting of the memory-related protein Arc. Commun Integr Biol 2013; 5:496-8. [PMID: 23739267 PMCID: PMC3502215 DOI: 10.4161/cib.20853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neurons express new gene transcripts and proteins upon receiving synaptic inputs, and these events are essential for achieving proper neuronal wiring, adequate synaptic plasticity, and updatable memory. However, the biological impact of new gene expression on input-specific synaptic potentiation remains largely elusive, in part because the cell biological and biochemical mechanisms for synaptic targeting of newly synthesized proteins has remained obscure. A new study investigating the targeting of the memory related protein Arc from the soma to the synapses teases apart a novel “inverse” synaptic tagging mechanism that enables Arc to specifically target the un-potentiated synapses, thereby helping to maintain the contrast of synaptic weight between strengthened and weak synapses.
Collapse
Affiliation(s)
- Ryang Kim
- Department of Neurochemistry; The University of Tokyo Graduate School of Medicine; Bunkyo-ku, Tokyo Japan
| | | | | |
Collapse
|
9
|
Chen Y, Shin BC, Thamotharan S, Devaskar SU. Creb1-Mecp2-(m)CpG complex transactivates postnatal murine neuronal glucose transporter isoform 3 expression. Endocrinology 2013; 154:1598-611. [PMID: 23493374 PMCID: PMC3602632 DOI: 10.1210/en.2012-2076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The murine neuronal facilitative glucose transporter isoform 3 (Glut3) is developmentally regulated, peaking in expression at postnatal day (PN)14. In the present study, we characterized a canonical CpG island spanning the 5'-flanking region of the glut3 gene. Methylation-specific PCR and bisulfite sequencing identified methylation of this CpG ((m)CpG) island of the glut3 gene, frequency of methylation increasing 2.5-fold with a 1.6-fold increase in DNA methyl transferase 3a concentrations noted with advancing postnatal age (PN14 vs PN3). 5'-flanking region of glut3-luciferase reporter transient transfection in HT22 hippocampal neurons demonstrated that (m)CpGs inhibit glut3 transcription. Contrary to this biological function, glut3 expression rises synchronously with (m)CpGs in PN14 vs PN3 neurons. Chromatin immunoprecipitation (IP) revealed that methyl-CpG binding protein 2 (Mecp2) bound the glut3-(m)CpGs. Depending on association with specific coregulators, Mecp2, a dual regulator of gene transcription, may repress or activate a downstream gene. Sequential chromatin IP uncovered the glut3-(m)CpGs to bind Mecp2 exponentially upon recruitment of Creb1 rather than histone deacetylase 1. Co-IP and coimmunolocalization confirmed that Creb1 associated with Mecp2 and cotransfection with glut3-(m)CpG in HT22 cells enhanced glut3 transcription. Separate 5-aza-2'-deoxycytidine pretreatment or in combination with trichostatin A reduced (m)CpG and specific small interference RNAs targeting Mecp2 and Creb1 separately or together depleting Mecp2 and/or Creb1 binding of glut3-(m)CpGs reduced glut3 expression in HT22 cells. We conclude that Glut3 is a methylation-sensitive neuronal gene that recruits Mecp2. Recruitment of Creb1-Mecp2 by glut3-(m)CpG contributes towards transactivation, formulating an escape from (m)CpG-induced gene suppression, and thereby promoting developmental neuronal glut3 gene transcription and expression.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine University of California LosAngeles, Los Angeles, California 90095-1752, USA
| | | | | | | |
Collapse
|
10
|
Bellenchi GC, Volpicelli F, Piscopo V, Perrone-Capano C, di Porzio U. Adult neural stem cells: an endogenous tool to repair brain injury? J Neurochem 2012; 124:159-67. [PMID: 23134340 DOI: 10.1111/jnc.12084] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/05/2012] [Accepted: 10/22/2012] [Indexed: 12/26/2022]
Abstract
Research on stem cells has developed as one of the most promising areas of neurobiology. In the beginning of the 1990s, neurogenesis in the adult brain was indisputably accepted, eliciting great research efforts. Neural stem cells in the adult mammalian brain are located in the 'neurogenic' areas of the subventricular and subgranular zones. Nevertheless, many reports indicate that they subsist in other regions of the adult brain. Adult neural stem cells have arisen considerable interest as these studies can be useful to develop new methods to replace damaged neurons and treat severe neurological diseases such as neurodegeneration, stroke or spinal cord lesions. In particular, a promising field is aimed at stimulating or trigger a self-repair system in the diseased brain driven by its own stem cell population. Here, we will revise the latest findings on the characterization of active and quiescent adult neural stem cells in the main regions of neurogenesis and the factors necessary to maintain their active and resting states, stimulate migration and homing in diseased areas, hoping to outline the emerging knowledge for the promotion of regeneration in the brain based on endogenous stem cells.
Collapse
Affiliation(s)
- Gian Carlo Bellenchi
- Laboratory of Developmental Neurobiology, Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Italy
| | | | | | | | | |
Collapse
|
11
|
Neuroplasticity: An Appreciation From Synapse to System. Arch Phys Med Rehabil 2012; 93:1846-55. [DOI: 10.1016/j.apmr.2012.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/21/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022]
|
12
|
Inoue M, Yagishita-Kyo N, Nonaka M, Kawashima T, Okuno H, Bito H. Synaptic activity-responsive element (SARE): A unique genomic structure with an unusual sensitivity to neuronal activity. Commun Integr Biol 2011; 3:443-6. [PMID: 21057636 DOI: 10.4161/cib.3.5.12287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 11/19/2022] Open
Abstract
Formation of a new memory requires plasticity at the synaptic level. However, it has also been shown that the consolidation and the maintenance of such a new memory involve processes that necessitate active mRNA at the nucleus of the cell. How can robust changes in synaptic efficacy specifically drive new transcription and translation of new gene transcripts, and thus transform an otherwise transient plasticity into a long-lasting and stable one? In this article, we highlight the conceptual advance that was gained by the discovery of a potent Synaptic Activity-Responsive Element (SARE) found ∼7 kb upstream of the transcription initiation site of the neuronal immediate early gene Arc. The unique genomic structure of SARE, which contained adjacent and cooperative binding sites for three major activity-dependent transcription factors within a 100-bp locus, was associated with an unusual responsiveness to neuronal stimuli. Taken together, these findings shed light on a new class of transcriptional sensor with enhanced sensitivity to synaptic activity.
Collapse
Affiliation(s)
- Masatoshi Inoue
- Department of Neurochemistry; University of Tokyo Graduate School of Medicine; Bunkyo-ku, Tokyo Japan
| | | | | | | | | | | |
Collapse
|
13
|
Zhang C, Wu H, Zhu X, Wang Y, Guo J. Role of transcription factors in neurogenesis after cerebral ischemia. Rev Neurosci 2011; 22:457-65. [PMID: 21692687 DOI: 10.1515/rns.2011.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies have revealed that the adult mammalian brain has the capacity to regenerate some neurons after cerebral ischemia. And this perspective on neurogenesis adds to the conceptual framework for strategies for the repair of ischemia-induced brain injury, that is, if the effect of ischemia-induced neurogenesis is enhanced, then the recovery of brain function after stroke can be promoted. Neurogenesis is a multistep process that requires the proliferation of neural stem/progenitor cells, migration and that new cells differentiate, survive and integrate into existing neural networks. For that to occur, the same concerted action of various factors is needed, especially transcription factors which regulate the expression of many moleculars and interact with them to promote neurogenesis. This review article gives a brief overview of some transcription factors (NF-κB, Hes, STAT3, AP-1, CREB, HIF1, Pax6, Tcf/Lef, Gli, Sox2, Olig2, Dlx2, TLX, Bmi-1) in ischemia-induced neurogenesis.
Collapse
Affiliation(s)
- Cuiling Zhang
- Laboratory Center for Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
14
|
Phu DT, Wallbach M, Depatie C, Fu A, Screaton RA, Oetjen E. Regulation of the CREB coactivator TORC by the dual leucine zipper kinase at different levels. Cell Signal 2011; 23:344-53. [DOI: 10.1016/j.cellsig.2010.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 10/25/2022]
|
15
|
Uebi T, Tamura M, Horike N, Hashimoto YK, Takemori H. Phosphorylation of the CREB-specific coactivator TORC2 at Ser(307) regulates its intracellular localization in COS-7 cells and in the mouse liver. Am J Physiol Endocrinol Metab 2010; 299:E413-25. [PMID: 20551288 DOI: 10.1152/ajpendo.00525.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The CREB-specific coactivator TORC2 (also known as CRTC2) upregulates gluconeogenic gene expression in the liver. Salt-inducible kinase (SIK) family enzymes inactivate TORC2 through phosphorylation and localize it in the cytoplasm. Ser(171) and Ser(275) were found to be phosphorylated in pancreatic beta-cells. Calcineurin (Cn) is proposed as the Ser(275) phosphatase, because its inhibitor cyclosporin A (CsA) stabilizes phospho-Ser(275) and retains TORC2 in the cytoplasm. Because the regulation of dephosphorylation at Ser(171) has not been fully clarified, we performed experiments with a range of doses of okadaic acid (OA), an inhibitor of PP2A/PP1, and with overexpression of various phosphatases and found that PP1 functions as an activator for TORC2, whereas PP2A acts as an inhibitor. In further studies using TORC2 mutants, we detected a disassociation between the intracellular distribution and the transcription activity of TORC2. Additional mutant analyses suggested the presence of a third phosphorylation site, Ser(307). The Ser(307)-disrupted TORC2 was constitutively localized in the nucleus, but its coactivator activity was normally suppressed by SIK1 in COS-7 cells. CsA, but not OA, stabilized the phosphogroup at Ser(307), suggesting that differential dephosphorylation at Ser(171) and Ser(307) cooperatively regulate TORC2 activity and that the nuclear localization of TORC2 is insufficient to function as a coactivator. Because the COS-7 cell line may not possess signaling cascades for gluconeogenic programs, we next examined the importance of Ser(307) and Ser(171) for TORC2's function in mouse liver. Levels of phosphorylation at Ser(171) and Ser(307) changed in response to fasting or fed conditions and insulin resistance of the mouse liver, which were modified by treatment with CsA/OA and by overexpression of PP1/PP2A/Cn. These results suggest that multiple phosphorylation sites and their phosphatases may play important roles in regulating TORC2/CREB-mediated gluconeogenic programs in the liver.
Collapse
Affiliation(s)
- Tatsuya Uebi
- National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | |
Collapse
|