1
|
Turner KL, Brockway DF, Hossain MS, Griffith KR, Greenawalt DI, Zhang Q, Gheres KW, Crowley NA, Drew PJ. Type-I nNOS neurons orchestrate cortical neural activity and vasomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634042. [PMID: 39896560 PMCID: PMC11785022 DOI: 10.1101/2025.01.21.634042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
It is unknown how the brain orchestrates coordination of global neural and vascular dynamics. We sought to uncover the role of a sparse but unusual population of genetically-distinct interneurons known as type-I nNOS neurons, using a novel pharmacological strategic to unilaterally ablate these neurons from the somatosensory cortex of mice. Region-specific ablation produced changes in both neural activity and vascular dynamics, decreased power in the delta-band of the local field potential, reduced sustained vascular responses to prolonged sensory stimulation, and abolished the post-stimulus undershoot in cerebral blood volume. Coherence between the left and right somatosensory cortex gamma-band power envelope and blood volume at ultra-low frequencies was decreased, suggesting type-1 nNOS neurons integrate long-range coordination of brain signals. Lastly, we observed decreases in the amplitude of resting-state blood volume oscillations and decreased vasomotion following the ablation of type-I nNOS neurons. This demonstrates that a small population of nNOS-positive neurons are indispensable for regulating both neural and vascular dynamics in the whole brain and implicates disruption of these neurons in diseases ranging from neurodegeneration to sleep disturbances.
Collapse
Affiliation(s)
- Kevin L. Turner
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Dakota F. Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Md Shakhawat Hossain
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Keith R. Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Denver I. Greenawalt
- Graduate Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| | - Kyle W. Gheres
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Nicole A. Crowley
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Patrick J. Drew
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
2
|
Eyre B, Shaw K, Drew D, Rayson A, Shabir O, Lee L, Francis S, Berwick J, Howarth C. Characterizing vascular function in mouse models of Alzheimer's disease, atherosclerosis, and mixed Alzheimer's and atherosclerosis. NEUROPHOTONICS 2025; 12:S14610. [PMID: 40405889 PMCID: PMC12094910 DOI: 10.1117/1.nph.12.s1.s14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 05/26/2025]
Abstract
Significance Alzheimer's disease does not occur in isolation, and there are many comorbidities associated with the disease, especially diseases of the vasculature. Atherosclerosis is a known risk factor for the subsequent development of Alzheimer's disease; therefore, understanding how both diseases interact will provide a greater understanding of co-morbid disease progression and aid the development of potential new treatments. Aim We characterize hemodynamic responses and cognitive performance in APP/PS1 Alzheimer's mice, atherosclerosis mice, and a mixed disease group (APP/PS1 and atherosclerosis) between the ages of 9 and 12 months. Approach Whisker-evoked hemodynamic responses and recognition memory were assessed in awake mice, immunohistochemistry to assess amyloid pathology, and histology to characterize atherosclerotic plaque load. Results We observed hemodynamic deficits in atherosclerosis mice (versus Alzheimer's, mixed disease, or wild-type mice), with reduced short-duration stimulus-evoked hemodynamic responses occurring when there was no concurrent locomotion during the stimulation period. Mixed Alzheimer's and atherosclerosis models did not show differences in amyloid beta coverage in the cortex or hippocampus or atherosclerotic plaque burden in the aortic arch vs relevant Alzheimer's or atherosclerosis controls. Consistent with the subtle vascular deficits and no pathology differences, we also observed no difference in performance on the object recognition task across groups. Conclusions These results emphasize the importance of experimental design for characterizing vascular function across disease groups, as locomotion and stimulus duration impacted the ability to detect differences between groups. Although atherosclerosis did reduce hemodynamic responses, these were recovered in the presence of co-occurring Alzheimer's disease, which may provide targets for future studies to explore the potentially contrasting vasodilatory mechanisms these diseases impact.
Collapse
Affiliation(s)
- Beth Eyre
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Boston, Massachusetts, United States
| | - Kira Shaw
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Dave Drew
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Alexandra Rayson
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- University of Sheffield, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Osman Shabir
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- University of Sheffield, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Llywelyn Lee
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Sheila Francis
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- University of Sheffield, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Jason Berwick
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Clare Howarth
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| |
Collapse
|
3
|
Hou Y, Ye W, Tang Z, Li F. Anesthetics in pathological cerebrovascular conditions. J Cereb Blood Flow Metab 2025; 45:32-47. [PMID: 39450477 PMCID: PMC11563546 DOI: 10.1177/0271678x241295857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The increasing prevalence of pathological cerebrovascular conditions, including stroke, hypertensive encephalopathy, and chronic disorders, underscores the importance of anesthetic considerations for affected patients. Preserving cerebral oxygenation and blood flow during anesthesia is paramount to prevent neurological deterioration. Furthermore, protecting vulnerable neurons from damage is crucial for optimal outcomes. Recent research suggests that anesthetic agents may provide a potentially therapeutic approach for managing pathological cerebrovascular conditions. Anesthetics target neural mechanisms underlying cerebrovascular dysfunction, thereby modulating neuroinflammation, protecting neurons against ischemic injury, and improving cerebral hemodynamics. However, optimal strategies regarding mechanisms, dosage, and indications remain uncertain. This review aims to clarify the physiological effects, mechanisms of action, and reported neuroprotective benefits of anesthetics in patients with various pathological cerebrovascular conditions. Investigating anesthetic effects in cerebrovascular disease holds promise for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuhui Hou
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Ye
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ziyuan Tang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Yang L, Zhao W, Kan Y, Ren C, Ji X. From Mechanisms to Medicine: Neurovascular Coupling in the Diagnosis and Treatment of Cerebrovascular Disorders: A Narrative Review. Cells 2024; 14:16. [PMID: 39791717 PMCID: PMC11719775 DOI: 10.3390/cells14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear. However, the complexity of the underlying mechanism remains unclear. This review discusses basic and clinical experimental evidence on how neural activity sensitively communicates with the vasculature to cause spatial changes in blood flow in cerebrovascular diseases. A deeper understanding of how neurovascular unit-related cells participate in NVC regulation is necessary to better understand blood flow and nerve activity recovery in cerebrovascular diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
| | - Yuan Kan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Y.); (W.Z.); (Y.K.)
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
5
|
Silvestro M, Esposito F, De Rosa AP, Orologio I, Trojsi F, Tartaglione L, García-Polo P, Tedeschi G, Tessitore A, Cirillo M, Russo A. Reduced neurovascular coupling of the visual network in migraine patients with aura as revealed with arterial spin labeling MRI: is there a demand-supply mismatch behind the scenes? J Headache Pain 2024; 25:180. [PMID: 39407094 PMCID: PMC11481770 DOI: 10.1186/s10194-024-01885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Although neuroimaging investigations have consistently demonstrated that "hyperresponsive" and "hyperconnected" visual cortices may represent the functional substrate of cortical spreading depolarization in patients with migraine with aura, the mechanisms which underpin the brain "tendency" to ignite the cortical spreading depolarization and, consequently, aura phenomenon are still matter of debate. Considering that triggers able to induce aura phenomenon constrain brain to increase global (such as physical activity, stressors and sleep abnormalities) or local (such as bright light visual stimulations) energy demand, a vascular supply unable to satisfy the increased energy requirement could be hypothesized in these patients. METHODS Twenty-three patients with migraine with aura, 25 patients with migraine without aura and 20 healthy controls underwent a 3-Tesla MRI study. Cerebral blood flow and local functional connectivity (regional homogeneity) maps were obtained and registered to the MNI space where 100 cortical regions were derived using a functional local-global normative parcellation. A surrogate estimate of the regional neurovascular coupling for each subject was obtained at each parcel from the correlation coefficient between the z-scored ReHo map and the z-scored cerebral blood flow maps. RESULTS A significantly higher regional cerebral blood flow across the visual cortex of both hemispheres (i.e. fusiform and lingual gyri) was detected in migraine with aura patients when compared to patients with migraine without aura (p < 0.05, corrected for multiple comparisons). Concomitantly, a significantly reduced neurovascular coupling (p < 0.05, false discovery rate corrected) in the primary visual cortex parcel (VIS-4) of the large-scale visual network was observed in the left hemisphere of patients with migraine with aura (0.23±0.03), compared to both patients with migraine without aura (0.32±0.05) and healthy controls (0.29±0.05). CONCLUSIONS Visual cortex neurovascular "decoupling" might represent the "link" between the exposure to trigger factors and aura phenomenon ignition. While physiological vascular oversupply may compensate neurovascular demand-supply at rest, it becomes inadequate in case of increased energy demand (e.g. when patients face with trigger factors) paving the way to the aura phenomenon ignition in patients with migraine with aura. Whether preventive treatments may exert their therapeutic activity on migraine with aura restoring the energy demands and cerebral blood flow trade-off within the visual network should be further investigated.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pasquale De Rosa
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Trojsi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Tartaglione
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
6
|
Allboani A, Kar S, Kavdia M. Computational modeling of neuronal nitric oxide synthase biochemical pathway: A mechanistic analysis of tetrahydrobiopterin and oxidative stress. Free Radic Biol Med 2024; 222:625-637. [PMID: 39004235 DOI: 10.1016/j.freeradbiomed.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Neuronal cell dysfunction plays an important role in neurodegenerative diseases. Oxidative stress can disrupt the redox balance within neuronal cells and may cause neuronal nitric oxide synthase (nNOS) to uncouple, contributing to the neurodegenerative processes. Experimental studies and clinical trials using nNOS cofactor tetrahydrobiopterin (BH4) and antioxidants in neuronal cell dysfunction have shown inconsistent results. A better mechanistic understanding of complex interactions of nNOS activity and oxidative stress in neuronal cell dysfunction is needed. In this study, we developed a computational model of neuronal cell using nNOS biochemical pathways to explore several key mechanisms that are known to influence neuronal cell redox homeostasis. We studied the effects of oxidative stress and BH4 synthesis on nNOS nitric oxide production and biopterin ratio (BH4/total biopterin). Results showed that nNOS remained coupled and maintained nitric oxide production for oxidative stress levels less than 230 nM/s. The results showed that neuronal oxidative stress above 230 nM/s increased the degree of nNOS uncoupling and introduced instability in the nitric oxide production. The nitric oxide production did not change irrespective of initial biopterin ratio of 0.05-0.99 for a given oxidative stress. Oxidative stress resulted in significant reduction in BH4 levels even when nitric oxide production was not affected. Enhancing BH4 synthesis or supplementation improved nNOS coupling, however the degree of improvement was determined by the levels of oxidative stress and BH4 synthesis. The results of our mechanistic analysis indicate that there is a potential for significant improvement in neuronal dysfunction by simultaneously increasing BH4 levels and reducing cellular oxidative stress.
Collapse
Affiliation(s)
- Amnah Allboani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Jacob M, Ford J, Deacon T. Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI. Front Hum Neurosci 2023; 17:976036. [PMID: 37113322 PMCID: PMC10126302 DOI: 10.3389/fnhum.2023.976036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a living organ with distinct metabolic constraints. However, these constraints are typically considered as secondary or supportive of information processing which is primarily performed by neurons. The default operational definition of neural information processing is that (1) it is ultimately encoded as a change in individual neuronal firing rate as this correlates with the presentation of a peripheral stimulus, motor action or cognitive task. Two additional assumptions are associated with this default interpretation: (2) that the incessant background firing activity against which changes in activity are measured plays no role in assigning significance to the extrinsically evoked change in neural firing, and (3) that the metabolic energy that sustains this background activity and which correlates with differences in neuronal firing rate is merely a response to an evoked change in neuronal activity. These assumptions underlie the design, implementation, and interpretation of neuroimaging studies, particularly fMRI, which relies on changes in blood oxygen as an indirect measure of neural activity. In this article we reconsider all three of these assumptions in light of recent evidence. We suggest that by combining EEG with fMRI, new experimental work can reconcile emerging controversies in neurovascular coupling and the significance of ongoing, background activity during resting-state paradigms. A new conceptual framework for neuroimaging paradigms is developed to investigate how ongoing neural activity is "entangled" with metabolism. That is, in addition to being recruited to support locally evoked neuronal activity (the traditional hemodynamic response), changes in metabolic support may be independently "invoked" by non-local brain regions, yielding flexible neurovascular coupling dynamics that inform the cognitive context. This framework demonstrates how multimodal neuroimaging is necessary to probe the neurometabolic foundations of cognition, with implications for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael Jacob
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith Ford
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terrence Deacon
- Department of Anthropology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
10
|
Calis D, Hess M, Marchetta P, Singer W, Modro J, Nelissen E, Prickaerts J, Sandner P, Lukowski R, Ruth P, Knipper M, Rüttiger L. Acute deletion of the central MR/GR steroid receptor correlates with changes in LTP, auditory neural gain, and GC-A cGMP signaling. Front Mol Neurosci 2023; 16:1017761. [PMID: 36873102 PMCID: PMC9983609 DOI: 10.3389/fnmol.2023.1017761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
The complex mechanism by which stress can affect sensory processes such as hearing is still poorly understood. In a previous study, the mineralocorticoid (MR) and/or glucocorticoid receptor (GR) were deleted in frontal brain regions but not cochlear regions using a CaMKIIα-based tamoxifen-inducible Cre ERT2/loxP approach. These mice exhibit either a diminished (MRTMXcKO) or disinhibited (GRTMXcKO) auditory nerve activity. In the present study, we observed that mice differentially were (MRTMXcKO) or were not (GRTMXcKO) able to compensate for altered auditory nerve activity in the central auditory pathway. As previous findings demonstrated a link between central auditory compensation and memory-dependent adaptation processes, we analyzed hippocampal paired-pulse facilitation (PPF) and long-term potentiation (LTP). To determine which molecular mechanisms may impact differences in synaptic plasticity, we analyzed Arc/Arg3.1, known to control AMPA receptor trafficking, as well as regulators of tissue perfusion and energy consumption (NO-GC and GC-A). We observed that the changes in PPF of MRTMXcKOs mirrored the changes in their auditory nerve activity, whereas changes in the LTP of MRTMXcKOs and GRTMXcKOs mirrored instead the changes in their central compensation capacity. Enhanced GR expression levels in MRTMXcKOs suggest that MRs typically suppress GR expression. We observed that hippocampal LTP, GC-A mRNA expression levels, and ABR wave IV/I ratio were all enhanced in animals with elevated GR (MRTMXcKOs) but were all lower or not mobilized in animals with impaired GR expression levels (GRTMXcKOs and MRGRTMXcKOs). This suggests that GC-A may link LTP and auditory neural gain through GR-dependent processes. In addition, enhanced NO-GC expression levels in MR, GR, and MRGRTMXcKOs suggest that both receptors suppress NO-GC; on the other hand, elevated Arc/Arg3.1 levels in MRTMXcKOs and MRGRTMXcKOs but not GRTMXcKOs suggest that MR suppresses Arc/Arg3.1 expression levels. Conclusively, MR through GR inhibition may define the threshold for hemodynamic responses for LTP and auditory neural gain associated with GC-A.
Collapse
Affiliation(s)
- Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Julian Modro
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Peter Sandner
- Bayer Health Care Pharmaceuticals, Global Drug Discovery Pharma Research Centre Wuppertal, Wuppertal, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Drew PJ. Neurovascular coupling: motive unknown. Trends Neurosci 2022; 45:809-819. [PMID: 35995628 PMCID: PMC9768528 DOI: 10.1016/j.tins.2022.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
In the brain, increases in neural activity drive changes in local blood flow via neurovascular coupling. The common explanation for increased blood flow (known as functional hyperemia) is that it supplies the metabolic needs of active neurons. However, there is a large body of evidence that is inconsistent with this idea. Baseline blood flow is adequate to supply oxygen needs even with elevated neural activity. Neurovascular coupling is irregular, absent, or inverted in many brain regions, behavioral states, and conditions. Increases in respiration can increase brain oxygenation without flow changes. Simulations show that given the architecture of the brain vasculature, areas of low blood flow are inescapable and cannot be removed by functional hyperemia. As discussed in this article, potential alternative functions of neurovascular coupling include supplying oxygen for neuromodulator synthesis, brain temperature regulation, signaling to neurons, stabilizing and optimizing the cerebral vascular structure, accommodating the non-Newtonian nature of blood, and driving the production and circulation of cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Patrick J Drew
- Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery, Biology, and Biomedical Engineering, The Pennsylvania State University, W-317 Millennium Science Complex, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Liu Y, Hua Y, Park K, Volkow ND, Pan Y, Du C. Cocaine's cerebrovascular vasoconstriction is associated with astrocytic Ca 2+ increase in mice. Commun Biol 2022; 5:936. [PMID: 36097038 PMCID: PMC9468035 DOI: 10.1038/s42003-022-03877-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human and animal studies have reported widespread reductions in cerebral blood flow associated with chronic cocaine exposures. However, the molecular and cellular mechanisms underlying cerebral blood flow reductions are not well understood. Here, by combining a multimodal imaging platform with a genetically encoded calcium indicator, we simultaneously measured the effects of acute cocaine on neuronal and astrocytic activity, tissue oxygenation, hemodynamics and vascular diameter changes in the mouse cerebral cortex. Our results showed that cocaine constricted blood vessels (measured by vessel diameter Φ changes), decreasing cerebral total blood volume (HbT) and temporally reducing tissue oxygenation. Cellular imaging showed that the mean astrocytic Ca2+ dependent fluorescence [Formula: see text] increase in response to cocaine was weaker but longer lasting than the mean neuronal Ca2+ dependent fluorescence [Formula: see text] changes. Interestingly, while cocaine-induced [Formula: see text] increase was temporally correlated with tissue oxygenation change, the [Formula: see text] elevation after cocaine was in temporal correspondence with the long-lasting decrease in arterial blood volumes. To determine whether the temporal association between astrocytic activation and cocaine induced vasoconstriction reflected a causal association we inhibited astrocytic Ca2+ using GFAP-DREADD(Gi). Inhibition of astrocytes attenuated the vasoconstriction resulting from cocaine, providing evidence that astrocytes play a critical role in cocaine's vasoconstrictive effects in the brain. These results indicate that neurons and astrocytes play different roles in mediating neurovascular coupling in response to cocaine. Our findings implicate neuronal activation as the main driver of the short-lasting reduction in tissue oxygenation and astrocyte long-lasting activation as the driver of the persistent vasoconstriction with cocaine. Understanding the cellular and vascular interaction induced by cocaine will be helpful for future putative treatments to reduce cerebrovascular pathology from cocaine use.
Collapse
Affiliation(s)
- Yanzuo Liu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nora D Volkow
- National Institute on Drug Abuse, Bethesda, MD, 20852, USA.
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
13
|
Dearing C, Handa RJ, Myers B. Sex differences in autonomic responses to stress: implications for cardiometabolic physiology. Am J Physiol Endocrinol Metab 2022; 323:E281-E289. [PMID: 35793480 PMCID: PMC9448273 DOI: 10.1152/ajpendo.00058.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic stress is a significant risk factor for negative health outcomes. Furthermore, imbalance of autonomic nervous system control leads to dysregulation of physiological responses to stress and contributes to the pathogenesis of cardiometabolic and psychiatric disorders. However, research on autonomic stress responses has historically focused on males, despite evidence that females are disproportionality affected by stress-related disorders. Accordingly, this mini-review focuses on the influence of biological sex on autonomic responses to stress in humans and rodent models. The reviewed literature points to sex differences in the consequences of chronic stress, including cardiovascular and metabolic disease. We also explore basic rodent studies of sex-specific autonomic responses to stress with a focus on sex hormones and hypothalamic-pituitary-adrenal axis regulation of cardiovascular and metabolic physiology. Ultimately, emerging evidence of sex differences in autonomic-endocrine integration highlights the importance of sex-specific studies to understand and treat cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Carley Dearing
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
14
|
Savitska D, Hess M, Calis D, Marchetta P, Harasztosi C, Fink S, Eckert P, Ruth P, Rüttiger L, Knipper M, Singer W. Stress Affects Central Compensation of Neural Responses to Cochlear Synaptopathy in a cGMP-Dependent Way. Front Neurosci 2022; 16:864706. [PMID: 35968392 PMCID: PMC9372611 DOI: 10.3389/fnins.2022.864706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
In light of the increasing evidence supporting a link between hearing loss and dementia, it is critical to gain a better understanding of the nature of this relationship. We have previously observed that following cochlear synaptopathy, the temporal auditory processing (e.g., auditory steady state responses, ASSRs), is sustained when reduced auditory input is centrally compensated. This central compensation process was linked to elevated hippocampal long-term potentiation (LTP). We further observed that, independently of age, central responsiveness to cochlear synaptopathy can differ, resulting in either a low or high capacity to compensate for the reduced auditory input. Lower central compensation resulted in poorer temporal auditory processing, reduced hippocampal LTP, and decreased recruitment of activity-dependent brain-derived neurotrophic factor (BDNF) expression in hippocampal regions (low compensators). Higher central compensation capacity resulted in better temporal auditory processing, higher LTP responses, and increased activity-dependent BDNF expression in hippocampal regions. Here, we aimed to identify modifying factors that are potentially responsible for these different central responses. Strikingly, a poorer central compensation capacity was linked to lower corticosterone levels in comparison to those of high compensators. High compensators responded to repeated placebo injections with elevated blood corticosterone levels, reduced auditory brainstem response (ABR) wave I amplitude, reduced inner hair cell (IHC) ribbon number, diminished temporal processing, reduced LTP responses, and decreased activity-dependent hippocampal BDNF expression. In contrast, the same stress exposure through injection did not elevate blood corticosterone levels in low compensators, nor did it reduce IHC ribbons, ABR wave I amplitude, ASSR, LTP, or BDNF expression as seen in high compensators. Interestingly, in high compensators, the stress-induced responses, such as a decline in ABR wave I amplitude, ASSR, LTP, and BDNF could be restored through the "memory-enhancing" drug phosphodiesterase 9A inhibitor (PDE9i). In contrast, the same treatment did not improve these aspects in low compensators. Thus, central compensation of age-dependent cochlear synaptopathy is a glucocorticoid and cyclic guanosine-monophosphate (cGMP)-dependent neuronal mechanism that fails upon a blunted stress response.
Collapse
Affiliation(s)
- Daria Savitska
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Csaba Harasztosi
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
16
|
Staehr C, Bouzinova EV, Wiborg O, Matchkov VV. Stress adaptation in rats associate with reduced expression of cerebrovascular K v7.4 channels and biphasic neurovascular responses. Stress 2022; 25:227-234. [PMID: 35666099 DOI: 10.1080/10253890.2022.2077099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Neurovascular coupling ensures rapid and precise delivery of O2 and nutrients to active brain regions. Chronic stress is known to disturb neurovascular signaling with grave effects on brain integrity. We hypothesized that stress-induced neurovascular disturbances depend on stress susceptibility. Wistar male rats were exposed to 8 weeks of chronic mild stress. Stressed rats with anhedonia-like behavior and with preserved hedonic state were identified from voluntary sucrose consumption. In brain slices from nonstressed, anhedonic, and hedonic rats, neurons and astrocytes showed similar intracellular Ca2+ responses to neuronal excitation. Parenchymal arterioles in brain slices from nonstressed, anhedonic, and hedonic rats showed vasodilation in response to neuronal excitation. This vasodilation was dependent on inward rectifying K+ channel (Kir2) activation. In hedonic rats, this vasodilation was transient and followed by vasoconstriction insensitive to Kir2 channel inhibition with 100 µM BaCl2. Isolated arteries from hedonic rats showed increased contractility. Elevation of bath K+ relaxed isolated middle cerebral arteries in a concentration-dependent and Kir2-dependent manner. The vasorelaxation to 20-24 mM K+ was reduced in arteries from hedonic rats. The expression of voltage-gated K+ channels, Kv7.4, was reduced in the cerebral arteries from hedonic rats, whereas the expression of arterial inward-rectifying K+ channels, Kir2.1 was similar to that of nonstressed and anhedonic rats. We propose that preserved hedonic state is associated with increased arterial contractility caused by reduced hyperpolarizing contribution of Kv7.4 channels leading to biphasic cerebrovascular responses to neuronal excitation. These findings reveal a novel potential coping mechanism associated with altered neurovascular signaling.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Elena V Bouzinova
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Ove Wiborg
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
17
|
Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice. Neuroimage 2021; 245:118740. [PMID: 34808365 DOI: 10.1016/j.neuroimage.2021.118740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Social isolation (SI) leads to various mental health disorders. Despite abundant studies on behavioral and neurobiological changes induced by post-weaning SI, the characterization of its imaging correlates, such as resting-state functional connectivity (RSFC), is critically lacking. In addition, the effects of resocialization after isolation remain unclear. Therefore, this study aimed to explore the effects of 1) SI on cortical functional connectivity and 2) subsequent resocialization on behavior and functional connectivity. METHODS Behavioral tests were conducted to validate the post-weaning SI mouse model, which is isolated during the juvenile period. Wide-field optical mapping was performed to observe both neuronal and hemodynamic signals in the cortex under anesthesia. Using seed-based and graph theoretical analyses, RSFC was analyzed. SI mice were then resocialized and the array of behavior and imaging tests was conducted. RESULTS Behaviorally, SI mice showed elevated anxiety, social preference, and aggression. RSFC analyses using the seed-based approach revealed decreased cortical functional connectivity in SI mice, especially in the frontal region. Graph network analyses demonstrated significant reduction in network segregation measures. After resocialization, mice exhibited recovered anxiogenic and aggressive behavior, but RSFC data did not show significant changes. CONCLUSIONS We observed an overall decrease in functional connectivity in SI mice. Moreover, resocialization restored the disruptions in behavioral patterns but functional connectivity was not recovered. To our knowledge, this is the first study to report that, despite the recovering tendencies of behavior in resocialized mice, similar changes in RSFC were not observed. This suggests that disruptions in functional connectivity caused by social isolation remain as long-term sequelae.
Collapse
|
18
|
Rezaei Z, Jafari Z, Afrashteh N, Torabi R, Singh S, Kolb BE, Davidsen J, Mohajerani MH. Prenatal stress dysregulates resting-state functional connectivity and sensory motifs. Neurobiol Stress 2021; 15:100345. [PMID: 34124321 PMCID: PMC8173309 DOI: 10.1016/j.ynstr.2021.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PS) can impact fetal brain structure and function and contribute to higher vulnerability to neurodevelopmental and neuropsychiatric disorders. To understand how PS alters evoked and spontaneous neocortical activity and intrinsic brain functional connectivity, mesoscale voltage imaging was performed in adult C57BL/6NJ mice that had been exposed to auditory stress on gestational days 12-16, the age at which neocortex is developing. PS mice had a four-fold higher basal corticosterone level and reduced amplitude of cortical sensory-evoked responses to visual, auditory, whisker, forelimb, and hindlimb stimuli. Relative to control animals, PS led to a general reduction of resting-state functional connectivity, as well as reduced inter-modular connectivity, enhanced intra-modular connectivity, and altered frequency of auditory and forelimb spontaneous sensory motifs. These resting-state changes resulted in a cortical connectivity pattern featuring disjoint but tight modules and a decline in network efficiency. The findings demonstrate that cortical connectivity is sensitive to PS and exposed offspring may be at risk for adult stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Navvab Afrashteh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Reza Torabi
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Bryan E. Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
19
|
Mester JR, Bazzigaluppi P, Dorr A, Beckett T, Burke M, McLaurin J, Sled JG, Stefanovic B. Attenuation of tonic inhibition prevents chronic neurovascular impairments in a Thy1-ChR2 mouse model of repeated, mild traumatic brain injury. Am J Cancer Res 2021; 11:7685-7699. [PMID: 34335958 PMCID: PMC8315057 DOI: 10.7150/thno.60190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Mild traumatic brain injury (mTBI), the most common type of brain trauma, frequently leads to chronic cognitive and neurobehavioral deficits. Intervening effectively is impeded by our poor understanding of its pathophysiological sequelae. Methods: To elucidate the long-term neurovascular sequelae of mTBI, we combined optogenetics, two-photon fluorescence microscopy, and intracortical electrophysiological recordings in mice to selectively stimulate peri-contusional neurons weeks following repeated closed-head injury and probe individual vessel's function and local neuronal reactivity. Results: Compared to sham-operated animals, mTBI mice showed doubled cortical venular speeds (115 ± 25%) and strongly elevated cortical venular reactivity (53 ± 17%). Concomitantly, the pericontusional neurons exhibited attenuated spontaneous activity (-57 ± 79%) and decreased reactivity (-47 ± 28%). Post-mortem immunofluorescence revealed signs of peri-contusional senescence and DNA damage, in the absence of neuronal loss or gliosis. Alteration of neuronal and vascular functioning was largely prevented by chronic, low dose, systemic administration of a GABA-A receptor inverse agonist (L-655,708), commencing 3 days following the third impact. Conclusions: Our findings indicate that repeated mTBI leads to dramatic changes in the neurovascular unit function and that attenuation of tonic inhibition can prevent these alterations. The sustained disruption of the neurovascular function may underlie the concussed brain's long-term susceptibility to injury, and calls for development of better functional assays as well as of neurovascularly targeted interventions.
Collapse
|
20
|
Lim HK, You N, Bae S, Kang BM, Shon YM, Kim SG, Suh M. Differential contribution of excitatory and inhibitory neurons in shaping neurovascular coupling in different epileptic neural states. J Cereb Blood Flow Metab 2021; 41:1145-1161. [PMID: 32669018 PMCID: PMC8054729 DOI: 10.1177/0271678x20934071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the neurovascular coupling (NVC) underlying hemodynamic changes in epilepsy is crucial to properly interpreting functional brain imaging signals associated with epileptic events. However, how excitatory and inhibitory neurons affect vascular responses in different epileptic states remains unknown. We conducted real-time in vivo measurements of cerebral blood flow (CBF), vessel diameter, and excitatory and inhibitory neuronal calcium signals during recurrent focal seizures. During preictal states, decreases in CBF and arteriole diameter were closely related to decreased γ-band local field potential (LFP) power, which was linked to relatively elevated excitatory and reduced inhibitory neuronal activity levels. Notably, this preictal condition was followed by a strengthened ictal event. In particular, the preictal inhibitory activity level was positively correlated with coherent oscillating activity specific to inhibitory neurons. In contrast, ictal states were characterized by elevated synchrony in excitatory neurons. Given these findings, we suggest that excitatory and inhibitory neurons differentially contribute to shaping the ictal and preictal neural states, respectively. Moreover, the preictal vascular activity, alongside with the γ-band, may reflect the relative levels of excitatory and inhibitory neuronal activity, and upcoming ictal activity. Our findings provide useful insights into how perfusion signals of different epileptic states are related in terms of NVC.
Collapse
Affiliation(s)
- Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Nayeon You
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
21
|
Cho I, Kim JM, Kim EJ, Kim SY, Kam EH, Cheong E, Suh M, Koo BN. Orthopedic surgery-induced cognitive dysfunction is mediated by CX3CL1/R1 signaling. J Neuroinflammation 2021; 18:93. [PMID: 33858422 PMCID: PMC8048361 DOI: 10.1186/s12974-021-02150-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Postoperative pain is a common phenomenon after surgery and is closely associated with the development of postoperative cognitive dysfunction (POCD). Persistent pain and systemic inflammation caused by surgery have been suggested as key factors for the development of POCD. Fractalkine (CX3CL1) and its receptor, the CX3C chemokine receptor 1 (CX3CR1), are known to play a key role in pain and inflammation signaling pathways. Recent studies have shown that the regulation of CX3CR1/L1 signaling influences the development of various diseases including neuronal diseases. We determined whether CX3CR1/L1 signaling is a putative therapeutic target for POCD in a mouse model. Methods Adult (9–11 weeks) male mice were treated with neutralizing antibody to block CX3CR1/L1 signaling both before and after surgery. Inflammatory and behavioral responses including pain were assessed postoperatively. Also, CX3CR1 mRNA level was assessed. Hippocampal astrocyte activation, Mao B expression, and GABA expression were assessed at 2 days after surgery following neutralizing antibody administration. Results The behavioral response indicated cognitive dysfunction and development of pain in the surgery group compared with the control group. Also, increased levels of pro-inflammatory cytokines and CX3CR1 mRNA were observed in the surgery group. In addition, increased levels of GABA and increased Mao B expression were observed in reactive astrocytes in the surgery group; these responses were attenuated by neutralizing antibody administration. Conclusions Increased CX3CR1 after surgery is both necessary and sufficient to induce cognitive dysfunction. CX3CR1 could be an important target for therapeutic strategies to prevent the development of POCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02150-x.
Collapse
Affiliation(s)
- Inja Cho
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Min Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minah Suh
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeong gi-do, 16419, Republic of Korea.,Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Marchetta P, Rüttiger L, Hobbs AJ, Singer W, Knipper M. The role of cGMP signalling in auditory processing in health and disease. Br J Pharmacol 2021; 179:2378-2393. [PMID: 33768519 DOI: 10.1111/bph.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
cGMP is generated by the cGMP-forming guanylyl cyclases (GCs), the intracellular nitric oxide (NO)-sensitive (soluble) guanylyl cyclase (sGC) and transmembrane GC (e.g. GC-A and GC-B). In summarizing the particular role of cGMP signalling for hearing, we show that GC generally do not interfere significantly with basic hearing function but rather sustain a healthy state for proper temporal coding, fast discrimination and adjustments during injury. sGC is critical for the integrity of the first synapse in the ascending auditory pathway, the inner hair cell synapse. GC-A promotes hair cell stability under stressful conditions such as acoustic trauma or ageing. GC-B plays a role in the development of efferent feed-back and gain control. Regarding the crucial role hearing has for language development, speech discrimination and cognitive brain functions, differential pharmaceutical targeting of GCs offers therapeutic promise for the restoration of hearing.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Wang Y, Yin XY, He X, Zhou CM, Shen JC, Tong JH. Parvalbumin interneuron-mediated neural disruption in an animal model of postintensive care syndrome: prevention by fluoxetine. Aging (Albany NY) 2021; 13:8720-8736. [PMID: 33619236 PMCID: PMC8034944 DOI: 10.18632/aging.202684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Postintensive care syndrome (PICS) is defined as a new or worsening impairment in cognition, mental health, and physical function after critical illness and persisting beyond hospitalization, which is associated with reduced quality of life and increased mortality. Recently, we have developed a clinically relevant animal model of PICS based on two-hit hypothesis. However, the underlying mechanism remains unclear. Accumulating evidence has demonstrated that hippocampal GABAergic interneuron dysfunction is implicated in various mood disorders induced by stress. Thus, this study investigated the role of hippocampal GABAergic interneurons and relevant neural activities in an animal model of PICS. In addition, we tested whether fluoxetine treatment early following combined stress can prevent these anatomical and behavioral pathologies. In the present study, we confirmed our previous study that this PICS model displayed reproducible anxiety- and depression like behavior and cognitive impairments, which resembles clinical features of human PICS. This behavioral state is accompanied by hippocampal neuroinflammation, reduced parvalbumin (PV) expression, and decreased theta and gamma power. Importantly, chronic fluoxetine treatment reversed most of these abnormities. In summary, our study provides additional evidence that PV interneuron-mediated hippocampal network activity disruption might play a key role in the pathology of PICS, while fluoxetine offers protection via modulation of the hippocampal PV interneuron and relevant network activities.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-yu Yin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xue He
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chen-mao Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-chun Shen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-hua Tong
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Howarth C, Mishra A, Hall CN. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190630. [PMID: 33190598 PMCID: PMC7116385 DOI: 10.1098/rstb.2019.0630] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain-local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons-contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
25
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
26
|
Excitation-Inhibition Imbalance Leads to Alteration of Neuronal Coherence and Neurovascular Coupling under Acute Stress. J Neurosci 2020; 40:9148-9162. [PMID: 33087471 PMCID: PMC7673010 DOI: 10.1523/jneurosci.1553-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023] Open
Abstract
A single stressful event can cause morphologic and functional changes in neurons and even malfunction of vascular systems, which can lead to acute stress disorder or post-traumatic stress disorder. However, there is a lack of evidence regarding how acute stress impacts neuronal activity, the concurrent vascular response, and the relationship between these two factors, which is defined as neurovascular coupling. Here, using in vivo two-photon imaging, we found that NMDA-evoked calcium transients of excitatory neurons were impaired and that vasodilation of penetrating arterioles was concomitantly disrupted in acutely stressed male mice. Furthermore, acute stress altered the relationship between excitatory neuronal calcium coherence and vascular responses. By measuring NMDA-evoked excitatory and inhibitory neuronal calcium activity in acute brain slices, we confirmed that neuronal coherence both between excitatory neurons and between excitatory and inhibitory neurons was reduced by acute stress but restored by blockade of glucocorticoid receptor signaling. Furthermore, the ratio of sEPSCs to sIPSCs was altered by acute stress, suggesting that the excitation-inhibition balance was disrupted by acute stress. In summary, in vivo, ex vivo, and whole-cell recording studies demonstrate that acute stress modifies excitatory-inhibitory neuronal coherence, disrupts the excitation-inhibition balance, and causes consequent neurovascular coupling changes, providing critical insights into the neural mechanism of stress-induced disorders. SIGNIFICANCE STATEMENT Acute stress can cause pathologic conditions, such as acute stress disorder and post-traumatic stress disorder, by affecting the functions of neurons and blood vessels. However, investigations into the impacts of acute stress on neurovascular coupling, the tight connection between local neural activity and subsequent blood flow changes, are lacking. Through investigations at the in vivo, ex vivo, and whole-cell recording levels, we found that acute stress alters the NMDA-evoked vascular response, impairs the function and coherence of excitatory and inhibitory neurons, and disrupts the excitatory and inhibitory balance. These novel findings provide insights into the relevance of the excitatory-inhibitory balance, neuronal coherence, and neurovascular coupling to stress-induced disorders.
Collapse
|
27
|
Echagarruga CT, Gheres KW, Norwood JN, Drew PJ. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. eLife 2020; 9:e60533. [PMID: 33016877 PMCID: PMC7556878 DOI: 10.7554/elife.60533] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cortical neural activity is coupled to local arterial diameter and blood flow. However, which neurons control the dynamics of cerebral arteries is not well understood. We dissected the cellular mechanisms controlling the basal diameter and evoked dilation in cortical arteries in awake, head-fixed mice. Locomotion drove robust arterial dilation, increases in gamma band power in the local field potential (LFP), and increases calcium signals in pyramidal and neuronal nitric oxide synthase (nNOS)-expressing neurons. Chemogenetic or pharmocological modulation of overall neural activity up or down caused corresponding increases or decreases in basal arterial diameter. Modulation of pyramidal neuron activity alone had little effect on basal or evoked arterial dilation, despite pronounced changes in the LFP. Modulation of the activity of nNOS-expressing neurons drove changes in the basal and evoked arterial diameter without corresponding changes in population neural activity.
Collapse
Affiliation(s)
| | - Kyle W Gheres
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Jordan N Norwood
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Patrick J Drew
- Bioengineering Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Departments of Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
28
|
Cellular mechanisms and molecular signaling pathways in stress-induced anxiety, depression, and blood-brain barrier inflammation and leakage. Inflammopharmacology 2020; 28:643-665. [PMID: 32333258 DOI: 10.1007/s10787-020-00712-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Depression and anxiety are comorbid conditions in many neurological or psychopathological disorders. Stress is an underlying event that triggers development of anxiety and depressive-like behaviors. Recent experimental data indicate that anxiety and depressive-like behaviors occurring as a result of stressful situations can cause blood-brain barrier (BBB) dysfunction, which is characterized by inflammation and leakage. However, the underlying mechanisms are not completely understood. This paper sought to review recent experimental preclinical and clinical data that suggest possible molecular mechanisms involved in development of stress-induced anxiety and depression with associated BBB inflammation and leakage. Critical therapeutic targets and potential pharmacological candidates for treatment of stress-induced anxiety and depression with associated BBB dysfunctions are also discussed.
Collapse
|