1
|
Ebert S, Buffet T, Sermet BS, Marre O, Cessac B. Temporal pattern recognition in retinal ganglion cells is mediated by dynamical inhibitory synapses. Nat Commun 2024; 15:6118. [PMID: 39033142 PMCID: PMC11271269 DOI: 10.1038/s41467-024-50506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
A fundamental task for the brain is to generate predictions of future sensory inputs, and signal errors in these predictions. Many neurons have been shown to signal omitted stimuli during periodic stimulation, even in the retina. However, the mechanisms of this error signaling are unclear. Here we show that depressing inhibitory synapses shape the timing of the response to an omitted stimulus in the retina. While ganglion cells, the retinal output, responded to an omitted flash with a constant latency over many frequencies of the flash sequence, we found that this was not the case once inhibition was blocked. We built a simple circuit model and showed that depressing inhibitory synapses were a necessary component to reproduce our experimental findings. A new prediction of our model is that the accuracy of the constant latency requires a sufficient amount of flashes in the stimulus, which we could confirm experimentally. Depressing inhibitory synapses could thus be a key component to generate the predictive responses observed in the retina, and potentially in many brain areas.
Collapse
Affiliation(s)
- Simone Ebert
- INRIA Biovision Team, Université Côte d'Azur, Valbonne, France.
- Institute for Modeling in Neuroscience and Cognition (NeuroMod), Université Côte d'Azur, Nice, France.
- Sorbonne Université, INSERM, CNRS, Institut De La Vision, Paris, France.
| | - Thomas Buffet
- Sorbonne Université, INSERM, CNRS, Institut De La Vision, Paris, France
| | - B Semihcan Sermet
- Sorbonne Université, INSERM, CNRS, Institut De La Vision, Paris, France
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut De La Vision, Paris, France
| | - Bruno Cessac
- INRIA Biovision Team, Université Côte d'Azur, Valbonne, France
- Institute for Modeling in Neuroscience and Cognition (NeuroMod), Université Côte d'Azur, Nice, France
| |
Collapse
|
2
|
Investigation of Neuron Latency Modulated by Bilateral Inferior Collicular Interactions Using Whole-Cell Patch Clamp Recording in Brain Slices. Neural Plast 2021; 2021:8030870. [PMID: 34925502 PMCID: PMC8683196 DOI: 10.1155/2021/8030870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
As the final level of the binaural integration center in the subcortical nucleus, the inferior colliculus (IC) plays an essential role in receiving binaural information input. Previous studies have focused on how interactions between the bilateral IC affect the firing rate of IC neurons. However, little is known concerning how the interactions within the bilateral IC affect neuron latency. In this study, we explored the synaptic mechanism of the effect of bilateral IC interactions on the latency of IC neurons. We used whole-cell patch clamp recordings to assess synaptic responses in isolated brain slices of Kunming mice. The results demonstrated that the excitation-inhibition projection was the main projection between the bilateral IC. Also, the bilateral IC interactions could change the reaction latency of most neurons to different degrees. The variation in latency was related to the type of synaptic input and the relative intensity of the excitation and inhibition. Furthermore, the latency variation also was caused by the duration change of the first subthreshold depolarization firing response of the neurons. The distribution characteristics of the different types of synaptic input also differed. Excitatory-inhibitory neurons were widely distributed in the IC dorsal and central nuclei, while excitatory neurons were relatively concentrated in these two nuclei. Inhibitory neurons did not exhibit any apparent distribution trend due to the small number of assessed neurons. These results provided an experimental reference to reveal the modulatory functions of bilateral IC projections.
Collapse
|
3
|
Vanattou-Saïfoudine N, Han C, Krause R, Vasilaki E, von der Behrens W, Indiveri G. A robust model of Stimulus-Specific Adaptation validated on neuromorphic hardware. Sci Rep 2021; 11:17904. [PMID: 34504155 PMCID: PMC8429557 DOI: 10.1038/s41598-021-97217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Stimulus-Specific Adaptation (SSA) to repetitive stimulation is a phenomenon that has been observed across many different species and in several brain sensory areas. It has been proposed as a computational mechanism, responsible for separating behaviorally relevant information from the continuous stream of sensory information. Although SSA can be induced and measured reliably in a wide variety of conditions, the network details and intracellular mechanisms giving rise to SSA still remain unclear. Recent computational studies proposed that SSA could be associated with a fast and synchronous neuronal firing phenomenon called Population Spikes (PS). Here, we test this hypothesis using a mean-field rate model and corroborate it using a neuromorphic hardware. As the neuromorphic circuits used in this study operate in real-time with biologically realistic time constants, they can reproduce the same dynamics observed in biological systems, together with the exploration of different connectivity schemes, with complete control of the system parameter settings. Besides, the hardware permits the iteration of multiple experiments over many trials, for extended amounts of time and without losing the networks and individual neural processes being studied. Following this "neuromorphic engineering" approach, we therefore study the PS hypothesis in a biophysically inspired recurrent networks of spiking neurons and evaluate the role of different linear and non-linear dynamic computational primitives such as spike-frequency adaptation or short-term depression (STD). We compare both the theoretical mean-field model of SSA and PS to previously obtained experimental results in the area of novelty detection and observe its behavior on its neuromorphic physical equivalent model. We show how the approach proposed can be extended to other computational neuroscience modelling efforts for understanding high-level phenomena in mechanistic models.
Collapse
Affiliation(s)
- Natacha Vanattou-Saïfoudine
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
- Department of Computer Science, University of Sheffield, Sheffield, UK.
| | - Chao Han
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Renate Krause
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | | | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Li H, Wang J, Liu G, Xu J, Huang W, Song C, Wang D, Tao HW, Zhang LI, Liang F. Phasic Off responses of auditory cortex underlie perception of sound duration. Cell Rep 2021; 35:109003. [PMID: 33882311 PMCID: PMC8154544 DOI: 10.1016/j.celrep.2021.109003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
It has been proposed that sound information is separately streamed into onset and offset pathways for parallel processing. However, how offset responses contribute to auditory perception remains unclear. Here, loose-patch and whole-cell recordings in awake mouse primary auditory cortex (A1) reveal that a subset of pyramidal neurons exhibit a transient "Off" response, with its onset tightly time-locked to the sound termination and its frequency tuning similar to that of the transient "On" response. Both responses are characterized by excitation briefly followed by inhibition, with the latter mediated by parvalbumin (PV) inhibitory neurons. Optogenetically manipulating sound-evoked A1 responses at different temporal phases or artificially creating phantom sounds in A1 further reveals that the A1 phasic On and Off responses are critical for perceptual discrimination of sound duration. Our results suggest that perception of sound duration is dependent on precisely encoding its onset and offset timings by phasic On and Off responses.
Collapse
Affiliation(s)
- Haifu Li
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jian Wang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Guilong Liu
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jinfeng Xu
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Weilong Huang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Changbao Song
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Feixue Liang
- School of Biomedical Engineering, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China.
| |
Collapse
|
5
|
Susi G, Antón-Toro LF, Maestú F, Pereda E, Mirasso C. nMNSD-A Spiking Neuron-Based Classifier That Combines Weight-Adjustment and Delay-Shift. Front Neurosci 2021; 15:582608. [PMID: 33679293 PMCID: PMC7933525 DOI: 10.3389/fnins.2021.582608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 12/01/2022] Open
Abstract
The recent “multi-neuronal spike sequence detector” (MNSD) architecture integrates the weight- and delay-adjustment methods by combining heterosynaptic plasticity with the neurocomputational feature spike latency, representing a new opportunity to understand the mechanisms underlying biological learning. Unfortunately, the range of problems to which this topology can be applied is limited because of the low cardinality of the parallel spike trains that it can process, and the lack of a visualization mechanism to understand its internal operation. We present here the nMNSD structure, which is a generalization of the MNSD to any number of inputs. The mathematical framework of the structure is introduced, together with the “trapezoid method,” that is a reduced method to analyze the recognition mechanism operated by the nMNSD in response to a specific input parallel spike train. We apply the nMNSD to a classification problem previously faced with the classical MNSD from the same authors, showing the new possibilities the nMNSD opens, with associated improvement in classification performances. Finally, we benchmark the nMNSD on the classification of static inputs (MNIST database) obtaining state-of-the-art accuracies together with advantageous aspects in terms of time- and energy-efficiency if compared to similar classification methods.
Collapse
Affiliation(s)
- Gianluca Susi
- UPM-UCM Laboratory of Cognitive and Computational Neuroscience, Centro de Tecnologia Biomedica, Madrid, Spain.,Departamento de Psicología Experimental, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Department of Civil Engineering and Computer Science, University of Rome "Tor Vergata", Rome, Italy
| | - Luis F Antón-Toro
- UPM-UCM Laboratory of Cognitive and Computational Neuroscience, Centro de Tecnologia Biomedica, Madrid, Spain.,Departamento de Psicología Experimental, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestú
- UPM-UCM Laboratory of Cognitive and Computational Neuroscience, Centro de Tecnologia Biomedica, Madrid, Spain.,Departamento de Psicología Experimental, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,CIBER-BBN: Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Ernesto Pereda
- UPM-UCM Laboratory of Cognitive and Computational Neuroscience, Centro de Tecnologia Biomedica, Madrid, Spain.,Departamento de Ingeniería Industrial & IUNE & ITB. Universidad de La Laguna, Tenerife, Spain
| | - Claudio Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Palma de Mallorca, Spain
| |
Collapse
|
6
|
Macias S, Bakshi K, Garcia-Rosales F, Hechavarria JC, Smotherman M. Temporal coding of echo spectral shape in the bat auditory cortex. PLoS Biol 2020; 18:e3000831. [PMID: 33170833 PMCID: PMC7678962 DOI: 10.1371/journal.pbio.3000831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/20/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023] Open
Abstract
Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. However, the acoustic modulations required to do this are extremely brief, raising questions about how their auditory cortex encodes and processes such rapid and fine spectrotemporal details. Here, we tested the hypothesis that biosonar target shape representation in the primary auditory cortex (A1) is more reliably encoded by changes in spike timing (latency) than spike rates and that latency is sufficiently precise to support a synchronization-based ensemble representation of this critical auditory object feature space. To test this, we measured how the spatiotemporal activation patterns of A1 changed when naturalistic spectral notches were inserted into echo mimic stimuli. Neurons tuned to notch frequencies were predicted to exhibit longer latencies and lower mean firing rates due to lower signal amplitudes at their preferred frequencies, and both were found to occur. Comparative analyses confirmed that significantly more information was recoverable from changes in spike times relative to concurrent changes in spike rates. With this data, we reconstructed spatiotemporal activation maps of A1 and estimated the level of emerging neuronal spike synchrony between cortical neurons tuned to different frequencies. The results support existing computational models, indicating that spectral interference patterns may be efficiently encoded by a cascading tonotopic sequence of neural synchronization patterns within an ensemble of network activity that relates to the physical features of the reflecting object surface. Echolocating bats rely upon spectral interference patterns in echoes to reconstruct fine details of a reflecting object’s shape. This study shows that the latency shifts induced by spectral notch patterns can provide the foundation for an avalanche of neuronal synchrony that is sufficient to support encoding of auditory object shape features during active biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | | | - Julio C. Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M., Germany
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Li H, Liang F, Zhong W, Yan L, Mesik L, Xiao Z, Tao HW, Zhang LI. Synaptic Mechanisms for Bandwidth Tuning in Awake Mouse Primary Auditory Cortex. Cereb Cortex 2020; 29:2998-3009. [PMID: 30010857 DOI: 10.1093/cercor/bhy165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
Spatial size tuning in the visual cortex has been considered as an important neuronal functional property for sensory perception. However, an analogous mechanism in the auditory system has remained controversial. In the present study, cell-attached recordings in the primary auditory cortex (A1) of awake mice revealed that excitatory neurons can be categorized into three types according to their bandwidth tuning profiles in response to band-passed noise (BPN) stimuli: nonmonotonic (NM), flat, and monotonic, with the latter two considered as non-tuned for bandwidth. The prevalence of bandwidth-tuned (i.e., NM) neurons increases significantly from layer 4 to layer 2/3. With sequential cell-attached and whole-cell voltage-clamp recordings from the same neurons, we found that the bandwidth preference of excitatory neurons is largely determined by the excitatory synaptic input they receive, and that the bandwidth selectivity is further enhanced by flatly tuned inhibition observed in all cells. The latter can be attributed at least partially to the flat tuning of parvalbumin inhibitory neurons. The tuning of auditory cortical neurons for bandwidth of BPN may contribute to the processing of complex sounds.
Collapse
Affiliation(s)
- Haifu Li
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Feixue Liang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Medical Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wen Zhong
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linqing Yan
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucas Mesik
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Vickers E, Osypenko D, Clark C, Okur Z, Scheiffele P, Schneggenburger R. LTP of inhibition at PV interneuron output synapses requires developmental BMP signaling. Sci Rep 2020; 10:10047. [PMID: 32572071 PMCID: PMC7308402 DOI: 10.1038/s41598-020-66862-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Parvalbumin (PV)-expressing interneurons (PV-INs) mediate well-timed inhibition of cortical principal neurons, and plasticity of these interneurons is involved in map remodeling of primary sensory cortices during critical periods of development. To assess whether bone morphogenetic protein (BMP) signaling contributes to the developmental acquisition of the synapse- and plasticity properties of PV-INs, we investigated conditional/conventional double KO mice of BMP-receptor 1a (BMPR1a; targeted to PV-INs) and 1b (BMPR1a/1b (c)DKO mice). We report that spike-timing dependent LTP at the synapse between PV-INs and principal neurons of layer 4 in the auditory cortex was absent, concomitant with a decreased paired-pulse ratio (PPR). On the other hand, baseline synaptic transmission at this connection, and action potential (AP) firing rates of PV-INs were unchanged. To explore possible gene expression targets of BMP signaling, we measured the mRNA levels of the BDNF receptor TrkB and of P/Q-type Ca2+ channel α-subunits, but did not detect expression changes of the corresponding genes in PV-INs of BMPR1a/1b (c)DKO mice. Our study suggests that BMP-signaling in PV-INs during and shortly after the critical period is necessary for the expression of LTP at PV-IN output synapses, involving gene expression programs that need to be addressed in future work.
Collapse
Affiliation(s)
- Evan Vickers
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christopher Clark
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute for Regenerative Medicine, University of Zürich, 8952, Schlieren, Switzerland
| | - Zeynep Okur
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Zhu S, Allitt B, Samuel A, Lui L, Rosa MGP, Rajan R. Sensitivity to Vocalization Pitch in the Caudal Auditory Cortex of the Marmoset: Comparison of Core and Belt Areas. Front Syst Neurosci 2019; 13:5. [PMID: 30774587 PMCID: PMC6367263 DOI: 10.3389/fnsys.2019.00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Based on anatomical connectivity and basic response characteristics, primate auditory cortex is divided into a central core surrounded by belt and parabelt regions. The encoding of pitch, a prototypical element of sound identity, has been studied in primary auditory cortex (A1) but little is known about how it is encoded and represented beyond A1. The caudal auditory belt and parabelt cortical fields process spatial information but also contain information on non-spatial aspects of sounds. In this study, we examined neuronal responses in these areas to pitch-varied marmoset vocalizations, to derive the consequent representation of pitch in these regions and the potential underlying mechanisms, to compare to the encoding and representation of pitch of the same sounds in A1. With respect to response patterns to the vocalizations, neurons in caudal medial belt (CM) showed similar short-latency and short-duration response patterns to A1, but caudal lateral belt (CL) neurons at the same hierarchical level and caudal parabelt (CPB) neurons at a higher hierarchical level showed delayed or much delayed response onset and prolonged response durations. With respect to encoding of pitch, neurons in all cortical fields showed sensitivity to variations in the vocalization pitch either through modulation of spike-count or of first spike-latency. The utility of the encoding mechanism differed between fields: pitch sensitivity was reliably represented by spike-count variations in A1 and CM, while first spike-latency variation was better for encoding pitch in CL and CPB. In summary, our data show that (a) the traditionally-defined belt area CM is functionally very similar to A1 with respect to the representation and encoding of complex naturalistic sounds, (b) the CL belt area, at the same hierarchical level as CM, and the CPB area, at a higher hierarchical level, have very different response patterns and appear to use different pitch-encoding mechanisms, and (c) caudal auditory fields, proposed to be specialized for encoding spatial location, can also contain robust representations of sound identity.
Collapse
Affiliation(s)
- Shuyu Zhu
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| | - Benjamin Allitt
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Anil Samuel
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Leo Lui
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council, Centre of Excellence in Integrative Brain Function, Clayton, VIC, Australia
| |
Collapse
|
10
|
Cardin JA. Inhibitory Interneurons Regulate Temporal Precision and Correlations in Cortical Circuits. Trends Neurosci 2018; 41:689-700. [PMID: 30274604 PMCID: PMC6173199 DOI: 10.1016/j.tins.2018.07.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023]
Abstract
GABAergic interneurons, which are highly diverse, have long been thought to contribute to the timing of neural activity as well as to the generation and shaping of brain rhythms. GABAergic activity is crucial not only for entrainment of oscillatory activity across a neural population, but also for precise regulation of the timing of action potentials and the suppression of slow-timescale correlations. The diversity of inhibition provides the potential for flexible regulation of patterned activity, but also poses a challenge to identifying the elements of excitatory-inhibitory interactions underlying network engagement. This review highlights the key roles of inhibitory interneurons in spike correlations and brain rhythms, describes several scales on which GABAergic inhibition regulates timing in neural networks, and identifies potential consequences of inhibitory dysfunction.
Collapse
Affiliation(s)
- Jessica A Cardin
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Parvalbumin-Interneuron Output Synapses Show Spike-Timing-Dependent Plasticity that Contributes to Auditory Map Remodeling. Neuron 2018; 99:720-735.e6. [DOI: 10.1016/j.neuron.2018.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022]
|
12
|
Auditory midbrain coding of statistical learning that results from discontinuous sensory stimulation. PLoS Biol 2018; 16:e2005114. [PMID: 30048446 PMCID: PMC6065201 DOI: 10.1371/journal.pbio.2005114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
Detecting regular patterns in the environment, a process known as statistical
learning, is essential for survival. Neuronal adaptation is a key mechanism in
the detection of patterns that are continuously repeated across short (seconds
to minutes) temporal windows. Here, we found in mice that a subcortical
structure in the auditory midbrain was sensitive to patterns that were repeated
discontinuously, in a temporally sparse manner, across windows of minutes to
hours. Using a combination of behavioral, electrophysiological, and molecular
approaches, we found changes in neuronal response gain that varied in mechanism
with the degree of sound predictability and resulted in changes in frequency
coding. Analysis of population activity (structural tuning) revealed an increase
in frequency classification accuracy in the context of increased overlap in
responses across frequencies. The increase in accuracy and overlap was
paralleled at the behavioral level in an increase in generalization in the
absence of diminished discrimination. Gain modulation was accompanied by changes
in gene and protein expression, indicative of long-term plasticity.
Physiological changes were largely independent of corticofugal feedback, and no
changes were seen in upstream cochlear nucleus responses, suggesting a key role
of the auditory midbrain in sensory gating. Subsequent behavior demonstrated
learning of predictable and random patterns and their importance in auditory
conditioning. Using longer timescales than previously explored, the combined
data show that the auditory midbrain codes statistical learning of temporally
sparse patterns, a process that is critical for the detection of relevant
stimuli in the constant soundscape that the animal navigates through. Some things are learned simply because they are there and not because they are
relevant at that moment in time. This is particularly true of surrounding
sounds, which we process automatically and continuously, detecting their
repetitive patterns or singularities. Learning about rewards and punishment is
typically attributed to cortical structures in the brain and known to occur over
long time windows. Learning of surrounding regularities, on the other hand, is
attributed to subcortical structures and has been shown to occur in seconds. The
brain can, however, also detect the regularity in sounds that are
discontinuously repeated across intervals of minutes and hours. For example, we
learn to identify people by the sound of their steps through an unconscious
process involving repeated but isolated exposures to the coappearance of sound
and person. Here, we show that a subcortical structure, the auditory midbrain,
can code such temporally spread regularities. Neurons in the auditory midbrain
changed their response pattern in mice that heard a fixed tone whenever they
went into one room in the environment they lived in. Learning of temporally
spread sound patterns can, therefore, occur in subcortical structures.
Collapse
|
13
|
Peng K, Peng YJ, Wang J, Yang MJ, Fu ZY, Tang J, Chen QC. Latency modulation of collicular neurons induced by electric stimulation of the auditory cortex in Hipposideros pratti: In vivo intracellular recording. PLoS One 2017; 12:e0184097. [PMID: 28863144 PMCID: PMC5580910 DOI: 10.1371/journal.pone.0184097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
In the auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC), and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency). Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.
Collapse
Affiliation(s)
- Kang Peng
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Jie Peng
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jing Wang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Ming-Jian Yang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Zi-Ying Fu
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jia Tang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Qi-Cai Chen
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
14
|
Heald SLM, Van Hedger SC, Nusbaum HC. Perceptual Plasticity for Auditory Object Recognition. Front Psychol 2017; 8:781. [PMID: 28588524 PMCID: PMC5440584 DOI: 10.3389/fpsyg.2017.00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2017] [Indexed: 01/25/2023] Open
Abstract
In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as "noise" in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples of perceptual categories that are thought to be highly stable. This framework suggests that the process of auditory recognition cannot be divorced from the short-term context in which an auditory object is presented. Implications for auditory category acquisition and extant models of auditory perception, both cognitive and neural, are discussed.
Collapse
|
15
|
Zhou C, Tao C, Zhang G, Yan S, Wang L, Zhou Y, Xiong Y. Unbalanced synaptic inputs underlying multi-peaked frequency selectivity in rat auditory cortex. Eur J Neurosci 2017; 45:1078-1084. [PMID: 28231378 DOI: 10.1111/ejn.13548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Abstract
By measuring the frequency selectivity at different intensities in the primary auditory cortex of adult rats, we found that a small group of cortical neurons can exhibit relatively weak but robust selectivity at multiple frequencies that are different from the most preferred frequency. Both in vivo multi-unit recordings (26/93 recordings) and single-unit recordings (16/137 neurons) confirmed that the preferred frequencies are periodic and have an averaged bandwidth (BW) of 0.3-0.4 octaves, which leads to multi-peaked frequency selectivity. Interestingly, the averaged bandwidth of the ripple in the frequency response tuning curve was invariant with the sound intensity. An investigation of the synaptic currents in vivo also revealed similar multi-peaked frequency selectivity for both excitation and inhibition. While the excitatory and inhibitory inputs were relatively balanced for most frequencies, the ratio between excitation and inhibition at the peak and valley of each ripple was highly unbalanced. Since this multi-peaked frequency selectivity can be observed at the synaptic, single-cell, and population levels, our results reveal a potential mechanism underlying the multi-peaked pattern of frequency selectivity in the primary auditory cortex.
Collapse
Affiliation(s)
- Chang Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 GaoTanyan Street, Chongqing, 400038, China
| | - Can Tao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 GaoTanyan Street, Chongqing, 400038, China
| | - Guangwei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 GaoTanyan Street, Chongqing, 400038, China
| | - Sumei Yan
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 GaoTanyan Street, Chongqing, 400038, China
| | - Lijuan Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 GaoTanyan Street, Chongqing, 400038, China
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 GaoTanyan Street, Chongqing, 400038, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 GaoTanyan Street, Chongqing, 400038, China
| |
Collapse
|
16
|
Tao C, Zhang G, Zhou C, Wang L, Yan S, Zhou Y, Xiong Y. Bidirectional Shifting Effects of the Sound Intensity on the Best Frequency in the Rat Auditory Cortex. Sci Rep 2017; 7:44493. [PMID: 28290533 PMCID: PMC5349577 DOI: 10.1038/srep44493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/08/2017] [Indexed: 11/24/2022] Open
Abstract
Frequency and intensity are two independent attributes of sound stimuli. Psychoacoustic studies have found that the sound intensity can affect the perception of frequency; however, the underlying neuronal mechanism remains largely unknown. To investigate if and how the sound level affects the frequency coding for auditory cortical neurons, we recorded the activities of neuronal ensembles and single neurons, as well as the synaptic input evoked by pure tones of different frequency and intensity combinations, in layer 4 of the rat primary auditory cortex. We found that the best frequency (BF) shifted bidirectionally with the increases in intensity. Specifically, the BF of neurons with a low characteristic frequency (CF) shifted lower, whereas the BF of neurons with a higher CF shifted higher. Meanwhile, we found that these shifts in the BF can lead to the expansion of high- and low-frequency areas in the tonotopic map, increasing the evenness of the BF distribution at high intensities. Our results revealed that the frequency tuning can bidirectionally shift with an increase in the sound intensity at both the cellular and population level. This finding is consistent with the perceptual illusions observed in humans and could provide a potential mechanism for this psychoacoustic effect.
Collapse
Affiliation(s)
- Can Tao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Guangwei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Chang Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Lijuan Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Sumei Yan
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| |
Collapse
|
17
|
Yarden TS, Nelken I. Stimulus-specific adaptation in a recurrent network model of primary auditory cortex. PLoS Comput Biol 2017; 13:e1005437. [PMID: 28288158 PMCID: PMC5367837 DOI: 10.1371/journal.pcbi.1005437] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 03/27/2017] [Accepted: 03/02/2017] [Indexed: 12/02/2022] Open
Abstract
Stimulus-specific adaptation (SSA) occurs when neurons decrease their responses to frequently-presented (standard) stimuli but not, or not as much, to other, rare (deviant) stimuli. SSA is present in all mammalian species in which it has been tested as well as in birds. SSA confers short-term memory to neuronal responses, and may lie upstream of the generation of mismatch negativity (MMN), an important human event-related potential. Previously published models of SSA mostly rely on synaptic depression of the feedforward, thalamocortical input. Here we study SSA in a recurrent neural network model of primary auditory cortex. When the recurrent, intracortical synapses display synaptic depression, the network generates population spikes (PSs). SSA occurs in this network when deviants elicit a PS but standards do not, and we demarcate the regions in parameter space that allow SSA. While SSA based on PSs does not require feedforward depression, we identify feedforward depression as a mechanism for expanding the range of parameters that support SSA. We provide predictions for experiments that could help differentiate between SSA due to synaptic depression of feedforward connections and SSA due to synaptic depression of recurrent connections. Similar to experimental data, the magnitude of SSA in the model depends on the frequency difference between deviant and standard, probability of the deviant, inter-stimulus interval and input amplitude. In contrast to models based on feedforward depression, our model shows true deviance sensitivity as found in experiments.
Collapse
Affiliation(s)
- Tohar S. Yarden
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Israel Nelken
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
18
|
Engelmann J, Walther T, Grant K, Chicca E, Gómez-Sena L. Modeling latency code processing in the electric sense: from the biological template to its VLSI implementation. BIOINSPIRATION & BIOMIMETICS 2016; 11:055007. [PMID: 27623047 DOI: 10.1088/1748-3190/11/5/055007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the coding of sensory information under the temporal constraints of natural behavior is not yet well resolved. There is a growing consensus that spike timing or latency coding can maximally exploit the timing of neural events to make fast computing elements and that such mechanisms are essential to information processing functions in the brain. The electric sense of mormyrid fish provides a convenient biological model where this coding scheme can be studied. The sensory input is a physically ordered spatial pattern of current densities, which is coded in the precise timing of primary afferent spikes. The neural circuits of the processing pathway are well known and the system exhibits the best known illustration of corollary discharge, which provides the reference to decoding the sensory afferent latency pattern. A theoretical model has been constructed from available electrophysiological and neuroanatomical data to integrate the principal traits of the neural processing structure and to study sensory interaction with motor-command-driven corollary discharge signals. This has been used to explore neural coding strategies at successive stages in the network and to examine the simulated network capacity to reproduce output neuron responses. The model shows that the network has the ability to resolve primary afferent spike timing differences in the sub-millisecond range, and that this depends on the coincidence of sensory and corollary discharge-driven gating signals. In the integrative and output stages of the network, corollary discharge sets up a proactive background filter, providing temporally structured excitation and inhibition within the network whose balance is then modulated locally by sensory input. This complements the initial gating mechanism and contributes to amplification of the input pattern of latencies, conferring network hyperacuity. These mechanisms give the system a robust capacity to extract behaviorally meaningful features of the electric image with high sensitivity over a broad working range. Since the network largely depends on spike timing, we finally discuss its suitability for implementation in robotic applications based on neuromorphic hardware.
Collapse
Affiliation(s)
- Jacob Engelmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
19
|
Tao C, Zhang G, Zhou C, Wang L, Yan S, Zhang LI, Zhou Y, Xiong Y. Synaptic Basis for the Generation of Response Variation in Auditory Cortex. Sci Rep 2016; 6:31024. [PMID: 27484928 PMCID: PMC4971572 DOI: 10.1038/srep31024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/13/2016] [Indexed: 11/09/2022] Open
Abstract
Cortical neurons can exhibit significant variation in their responses to the same sensory stimuli, as reflected by the reliability and temporal precision of spikes. However the synaptic mechanism underlying response variation still remains unclear. Here, in vivo whole-cell patch-clamp recording of excitatory neurons revealed variation in the amplitudes as well as the temporal profiles of excitatory and inhibitory synaptic inputs evoked by the same sound stimuli in layer 4 of the rat primary auditory cortex. Synaptic inputs were reliably induced by repetitive stimulation, although with large variation in amplitude. The variation in the amplitude of excitation was much higher than that of inhibition. In addition, the temporal jitter of the synaptic onset latency was much smaller than the jitter of spike response. We further demonstrated that the amplitude variation of excitatory inputs can largely account for the spike variation, while the jitter in spike timing can be primarily attributed to the temporal variation of excitatory inputs. Furthermore, the spike reliability of excitatory but not inhibitory neurons is dependent on tone frequency. Our results thus revealed an inherent cortical synaptic contribution for the generation of variation in the spike responses of auditory cortical neurons.
Collapse
Affiliation(s)
- Can Tao
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Guangwei Zhang
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Chang Zhou
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Lijuan Wang
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Sumei Yan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Yi Zhou
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| | - Ying Xiong
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, 30 Gaotanyan St., Chongqing, 400038, China
| |
Collapse
|
20
|
Tomková M, Tomek J, Novák O, Zelenka O, Syka J, Brom C. Formation and disruption of tonotopy in a large-scale model of the auditory cortex. J Comput Neurosci 2015; 39:131-53. [PMID: 26344164 DOI: 10.1007/s10827-015-0568-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
There is ample experimental evidence describing changes of tonotopic organisation in the auditory cortex due to environmental factors. In order to uncover the underlying mechanisms, we designed a large-scale computational model of the auditory cortex. The model has up to 100 000 Izhikevich's spiking neurons of 17 different types, almost 21 million synapses, which are evolved according to Spike-Timing-Dependent Plasticity (STDP) and have an architecture akin to existing observations. Validation of the model revealed alternating synchronised/desynchronised states and different modes of oscillatory activity. We provide insight into these phenomena via analysing the activity of neuronal subtypes and testing different causal interventions into the simulation. Our model is able to produce experimental predictions on a cell type basis. To study the influence of environmental factors on the tonotopy, different types of auditory stimulations during the evolution of the network were modelled and compared. We found that strong white noise resulted in completely disrupted tonotopy, which is consistent with in vivo experimental observations. Stimulation with pure tones or spontaneous activity led to a similar degree of tonotopy as in the initial state of the network. Interestingly, weak white noise led to a substantial increase in tonotopy. As the STDP was the only mechanism of plasticity in our model, our results suggest that STDP is a sufficient condition for the emergence and disruption of tonotopy under various types of stimuli. The presented large-scale model of the auditory cortex and the core simulator, SUSNOIMAC, have been made publicly available.
Collapse
Affiliation(s)
- Markéta Tomková
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. .,Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK.
| | - Jakub Tomek
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic.,Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, UK
| | - Ondřej Novák
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Ondřej Zelenka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Cyril Brom
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
21
|
Noda T, Takahashi H. Anesthetic effects of isoflurane on the tonotopic map and neuronal population activity in the rat auditory cortex. Eur J Neurosci 2015; 42:2298-311. [PMID: 26118739 DOI: 10.1111/ejn.13007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/01/2022]
Abstract
Since its discovery nearly four decades ago, sequential microelectrode mapping using hundreds of recording sites has been able to reveal a precise tonotopic organization of the auditory cortex. Despite concerns regarding the effects that anesthesia might have on neuronal responses to tones, anesthesia was essential for these experiments because such dense mapping was elaborate and time-consuming. Here, taking an 'all-at-once' approach, we investigated how isoflurane modifies spatiotemporal activities by using a dense microelectrode array. The array covered the entire auditory cortex in rats, including the core and belt cortices. By comparing neuronal activity in the awake state with activity under isoflurane anesthesia, we made four observations. First, isoflurane anesthesia did not modify the tonotopic topography within the auditory cortex. Second, in terms of general response properties, isoflurane anesthesia decreased the number of active single units and increased their response onset latency. Third, in terms of tuning properties, isoflurane anesthesia shifted the response threshold without changing the shape of the frequency response area and decreased the response quality. Fourth, in terms of population activities, isoflurane anesthesia increased the noise correlations in discharges and phase synchrony in local field potential (LFP) oscillations, suggesting that the anesthesia made neuronal activities redundant at both single-unit and LFP levels. Thus, while isoflurane anesthesia had little effect on the tonotopic topography, its profound effects on neuronal activities decreased the encoding capacity of the auditory cortex.
Collapse
Affiliation(s)
- Takahiro Noda
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8904, Japan.,PRESTO, JST, Kawaguchi, Saitama, Japan
| |
Collapse
|
22
|
A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex. J Neurosci 2015; 34:13670-83. [PMID: 25297094 DOI: 10.1523/jneurosci.1516-14.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory information undergoes ordered and coordinated processing across cortical layers. Whereas cortical layer (L) 4 faithfully acquires thalamic information, the superficial layers appear well staged for more refined processing of L4-relayed signals to generate corticocortical outputs. However, the specific role of superficial layer processing and how it is specified by local synaptic circuits remains not well understood. Here, in the mouse primary auditory cortex, we showed that upper L2/3 circuits play a crucial role in refining functional selectivity of excitatory neurons by sharpening auditory tonal receptive fields and enhancing contrast of frequency representation. This refinement is mediated by synaptic inhibition being more broadly recruited than excitation, with the inhibition predominantly originating from interneurons in the same cortical layer. By comparing the onsets of synaptic inputs as well as of spiking responses of different types of neuron, we found that the broadly tuned, fast responding inhibition observed in excitatory cells can be primarily attributed to feedforward inhibition originating from parvalbumin (PV)-positive neurons, whereas somatostatin (SOM)-positive interneurons respond much later compared with the onset of inhibitory inputs to excitatory neurons. We propose that the feedforward circuit-mediated inhibition from PV neurons, which has an analogous function to lateral inhibition, enables upper L2/3 excitatory neurons to rapidly refine auditory representation.
Collapse
|
23
|
Tao C, Zhang G, Xiong Y, Zhou Y. Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience. Front Neural Circuits 2015; 9:23. [PMID: 26052270 PMCID: PMC4440909 DOI: 10.3389/fncir.2015.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.
Collapse
Affiliation(s)
- Can Tao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Guangwei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University Chongqing, China
| |
Collapse
|
24
|
Ji XY, Zingg B, Mesik L, Xiao Z, Zhang LI, Tao HW. Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex 2015; 26:2612-25. [PMID: 25979090 DOI: 10.1093/cercor/bhv099] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite many previous studies, the functional innervation pattern of thalamic axons and their target specificity remains to be investigated thoroughly. Here, in primary auditory cortical slices, we examined thalamic innervation patterns for excitatory and different types of inhibitory neurons across laminae, by optogenetically stimulating axons from the medial geniculate body. We found that excitatory cells and parvalbumin (PV)-expressing inhibitory neurons across layer 2/3 (L2/3) to L6 are directly innervated by thalamic projections, with the strongest innervation occurring in L4. The innervation of PV neurons is stronger than that of excitatory neurons in the same layer, with a relatively constant ratio between their innervation strengths across layers. For somatostatin and vasoactive intestinal peptide inhibitory neurons, essentially only L4 neurons were innervated by thalamic axons and the innervation was much weaker compared with excitatory and PV cells. In addition, more than half of inhibitory neurons in L1 were innervated, relatively strongly, by thalamic axons. Similar innervation patterns were also observed in the primary visual cortex. Thus, thalamic information can be processed independently and differentially by different cortical layers, in addition to the generally thought hierarchical processing starting from L4. This parallel processing is likely shaped by feedforward inhibition from PV neurons in each individual lamina, and may extend the computation power of sensory cortices.
Collapse
Affiliation(s)
- Xu-Ying Ji
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China Zilkha Neurogenetic Institute
| | - Brian Zingg
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lukas Mesik
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li I Zhang
- Zilkha Neurogenetic Institute Department of Biophysics and Physiology
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute Department of Cell and Neurobiology
| |
Collapse
|
25
|
Plasticity during motherhood: changes in excitatory and inhibitory layer 2/3 neurons in auditory cortex. J Neurosci 2015; 35:1806-15. [PMID: 25632153 DOI: 10.1523/jneurosci.1786-14.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maternal behavior can be triggered by auditory and olfactory cues originating from the newborn. Here we report how the transition to motherhood affects excitatory and inhibitory neurons in layer 2/3 (L2/3) of the mouse primary auditory cortex. We used in vivo two-photon targeted cell-attached recording to compare the response properties of parvalbumin-expressing neurons (PVNs) and pyramidal glutamatergic neurons (PyrNs). The transition to motherhood shifts the average best frequency of PVNs to higher frequency by a full octave, with no significant effect on average best frequency of PyrNs. The presence of pup odors significantly reduced the spontaneous and evoked activity of PVN. This reduction of feedforward inhibition coincides with a complimentary increase in spontaneous and evoked activity of PyrNs. The selective shift of PVN frequency tuning should render pup odor-induced disinhibition more effective for high-frequency stimuli, such as ultrasonic vocalizations. Indeed, pup odors increased neuronal responses of PyrNs to pup ultrasonic vocalizations. We conclude that plasticity in the mothers is mediated, at least in part, via modulation of the feedforward inhibition circuitry in the auditory cortex.
Collapse
|
26
|
Liang F, Bai L, Tao HW, Zhang LI, Xiao Z. Thresholding of auditory cortical representation by background noise. Front Neural Circuits 2014; 8:133. [PMID: 25426029 PMCID: PMC4226155 DOI: 10.3389/fncir.2014.00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/21/2014] [Indexed: 11/13/2022] Open
Abstract
It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity.
Collapse
Affiliation(s)
- Feixue Liang
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou Guangdong, China ; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Lin Bai
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou Guangdong, China ; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou Guangdong, China
| |
Collapse
|
27
|
Kanold PO, Nelken I, Polley DB. Local versus global scales of organization in auditory cortex. Trends Neurosci 2014; 37:502-10. [PMID: 25002236 DOI: 10.1016/j.tins.2014.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 11/24/2022]
Abstract
Topographic organization is a hallmark of sensory cortical organization. Topography is robust at spatial scales ranging from hundreds of microns to centimeters, but can dissolve at the level of neighboring neurons or subcellular compartments within a neuron. This dichotomous spatial organization is especially pronounced in the mouse auditory cortex, where an orderly tonotopic map can arise from heterogeneous frequency tuning between local neurons. Here, we address a debate surrounding the robustness of tonotopic organization in the auditory cortex that has persisted in some form for over 40 years. Drawing from various cortical areas, cortical layers, recording methodologies, and species, we describe how auditory cortical circuitry can simultaneously support a globally systematic, yet locally heterogeneous representation of this fundamental sound property.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Biology, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| | - Israel Nelken
- Department of Neurobiology, Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel.
| | - Daniel B Polley
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Abstract
Stimulus-specific adaptation (SSA) is the reduction in response to a common stimulus that does not generalize, or only partially generalizes, to rare stimuli. SSA is strong and widespread in primary auditory cortex (A1) of rats, but is weak or absent in the main input station to A1, the ventral division of the medial geniculate body. To study SSA in A1, we recorded neural activity in A1 intracellularly using sharp electrodes. We studied the responses to tone pips of the same frequency in different contexts: as Standard and Deviants in Oddball sequences; in equiprobable sequences; in sequences consisting of rare tone presentations; and in sequences composed of many different frequencies, each of which was rare. SSA was found both in subthreshold membrane potential fluctuations and in spiking responses of A1 neurons. SSA for changes in frequency was large at a frequency difference of 44% between Standard and Deviant, and clearly present with tones separated by as little as 4%, near the behavioral frequency difference limen in rats. When using equivalent measures, SSA in spiking responses was generally larger than the SSA at the level of the membrane potential. This effect can be traced to the nonlinearity of the transformation between membrane potential to spikes. Using the responses to the same tone in different contexts made it possible to demonstrate that cortical SSA could not be fully explained by adaptation in narrow frequency channels, even at the level of the membrane potential. We conclude that local processing significantly contributes to the generation of cortical SSA.
Collapse
|
29
|
Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat Neurosci 2014; 17:841-50. [PMID: 24747575 PMCID: PMC4108079 DOI: 10.1038/nn.3701] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/24/2014] [Indexed: 12/12/2022]
Abstract
Cortical sensory processing is modulated by behavioral and cognitive states. How
the modulation is achieved through impacting synaptic circuits remains largely unknown. In
awake mouse auditory cortex, we reported that sensory-evoked spike responses of layer 2/3
(L2/3) excitatory cells were scaled down with preserved sensory tuning when animals
transitioned from quiescence to active behaviors, while L4 and thalamic responses were
unchanged. Whole-cell voltage-clamp recordings further revealed that tone-evoked synaptic
excitation and inhibition exhibited a robust functional balance. Changes of behavioral
state caused scaling down of excitation and inhibition at an approximately equal level in
L2/3 cells, but no synaptic changes in L4 cells. This laminar-specific gain control could
be attributed to an enhancement of L1–mediated inhibitory tone, with L2/3
parvalbumin inhibitory neurons suppressed as well. Thus, L2/3 circuits can adjust the
salience of output in accordance with momentary behavioral demands while maintaining the
sensitivity and quality of sensory processing.
Collapse
|
30
|
Li LY, Xiong XR, Ibrahim LA, Yuan W, Tao HW, Zhang LI. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex. Cereb Cortex 2014; 25:1782-91. [PMID: 24425250 DOI: 10.1093/cercor/bht417] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites.
Collapse
Affiliation(s)
- Ling-Yun Li
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaorui R Xiong
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Leena A Ibrahim
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Yuan
- Zilkha Neurogenetic Institute Department of Otolaryngology of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute Department of Cell and Neurobiology
| | - Li I Zhang
- Zilkha Neurogenetic Institute Department of Physiology and Biophysics
| |
Collapse
|
31
|
Schreiner CE, Polley DB. Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol 2013; 24:143-56. [PMID: 24492090 DOI: 10.1016/j.conb.2013.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/11/2023]
Abstract
Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remain a key aspect in studying and interpreting the role of plasticity in hearing.
Collapse
Affiliation(s)
- Christoph E Schreiner
- Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Kral A, Heid S, Hubka P, Tillein J. Unilateral hearing during development: hemispheric specificity in plastic reorganizations. Front Syst Neurosci 2013; 7:93. [PMID: 24348345 PMCID: PMC3841817 DOI: 10.3389/fnsys.2013.00093] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023] Open
Abstract
The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved.
Collapse
Affiliation(s)
- Andrej Kral
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany
| | - Silvia Heid
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany ; Department of Physiology and Otolaryngology, J. W. Goethe University Frankfurt am Main, Germany
| | - Peter Hubka
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany
| | - Jochen Tillein
- Cluster of Excellence, Department of Experimental Otology, Institute of Audioneurotechnology, ENT Clinics, Hannover Medical School Hannover, Germany ; Department of Physiology and Otolaryngology, J. W. Goethe University Frankfurt am Main, Germany
| |
Collapse
|
33
|
Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection. Proc Natl Acad Sci U S A 2013; 110:E4668-77. [PMID: 24218574 DOI: 10.1073/pnas.1312518110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How low-level sensory areas help mediate the detection and discrimination advantages of integrating faces and voices is the subject of intense debate. To gain insights, we investigated the role of the auditory cortex in face/voice integration in macaque monkeys performing a vocal-detection task. Behaviorally, subjects were slower to detect vocalizations as the signal-to-noise ratio decreased, but seeing mouth movements associated with vocalizations sped up detection. Paralleling this behavioral relationship, as the signal to noise ratio decreased, the onset of spiking responses were delayed and magnitudes were decreased. However, when mouth motion accompanied the vocalization, these responses were uniformly faster. Conversely, and at odds with previous assumptions regarding the neural basis of face/voice integration, changes in the magnitude of neural responses were not related consistently to audiovisual behavior. Taken together, our data reveal that facilitation of spike latency is a means by which the auditory cortex partially mediates the reaction time benefits of combining faces and voices.
Collapse
|
34
|
Xiong XR, Liang F, Li H, Mesik L, Zhang KK, Polley DB, Tao HW, Xiao Z, Zhang LI. Interaural level difference-dependent gain control and synaptic scaling underlying binaural computation. Neuron 2013; 79:738-53. [PMID: 23972599 DOI: 10.1016/j.neuron.2013.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Binaural integration in the central nucleus of inferior colliculus (ICC) plays a critical role in sound localization. However, its arithmetic nature and underlying synaptic mechanisms remain unclear. Here, we showed in mouse ICC neurons that the contralateral dominance is created by a "push-pull"-like mechanism, with contralaterally dominant excitation and more bilaterally balanced inhibition. Importantly, binaural spiking response is generated apparently from an ipsilaterally mediated scaling of contralateral response, leaving frequency tuning unchanged. This scaling effect is attributed to a divisive attenuation of contralaterally evoked synaptic excitation onto ICC neurons with their inhibition largely unaffected. Thus, a gain control mediates the linear transformation from monaural to binaural spike responses. The gain value is modulated by interaural level difference (ILD) primarily through scaling excitation to different levels. The ILD-dependent synaptic scaling and gain adjustment allow ICC neurons to dynamically encode interaural sound localization cues while maintaining an invariant representation of other independent sound attributes.
Collapse
Affiliation(s)
- Xiaorui R Xiong
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li LY, Li YT, Zhou M, Tao HW, Zhang LI. Intracortical multiplication of thalamocortical signals in mouse auditory cortex. Nat Neurosci 2013; 16:1179-81. [PMID: 23933752 PMCID: PMC3844430 DOI: 10.1038/nn.3493] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/27/2013] [Indexed: 11/10/2022]
Abstract
Cortical processing of sensory information begins with the transformation of thalamically relayed signals. We optogenetically silenced intracortical circuits to isolate thalamic inputs to layer 4 neurons and found that intracortical excitation linearly amplified thalamocortical responses underlying frequency and direction selectivity, with spectral range and tuning preserved, and prolonged the response duration. This signal pre-amplification and prolongation enhanced the salience of thalamocortically relayed information and ensured its robust, faithful and more persistent representation.
Collapse
Affiliation(s)
- Ling-yun Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
36
|
Synaptic mechanisms underlying functional dichotomy between intrinsic-bursting and regular-spiking neurons in auditory cortical layer 5. J Neurosci 2013; 33:5326-39. [PMID: 23516297 DOI: 10.1523/jneurosci.4810-12.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Corticofugal projections from the primary auditory cortex (A1) have been shown to play a role in modulating subcortical processing. However, functional properties of the corticofugal neurons and their synaptic circuitry mechanisms remain unclear. In this study, we performed in vivo whole-cell recordings from layer 5 (L5) pyramidal neurons in the rat A1 and found two distinct neuronal classes according to their functional properties. Intrinsic-bursting (IB) neurons, the L5 corticofugal neurons, exhibited early and rather unselective spike responses to a wide range of frequencies. The exceptionally broad spectral tuning of IB neurons was attributable to their broad excitatory inputs with long temporal durations and inhibitory inputs being more narrowly tuned than excitatory inputs. This uncommon pattern of excitatory-inhibitory interplay was attributed initially to a broad thalamocortical convergence onto IB neurons, which also receive temporally prolonged intracortical excitatory input as well as feedforward inhibitory input at least partially from more narrowly tuned fast-spiking inhibitory neurons. In contrast, regular-spiking neurons, which are mainly corticocortical, exhibited sharp frequency tuning similar to L4 pyramidal cells, underlying which are well-matched purely intracortical excitation and inhibition. The functional dichotomy among L5 pyramidal neurons suggests two distinct processing streams. The spectrally and temporally broad synaptic integration in IB neurons may ensure robust feedback signals to facilitate subcortical function and plasticity in a general manner.
Collapse
|
37
|
Generation of intensity selectivity by differential synaptic tuning: fast-saturating excitation but slow-saturating inhibition. J Neurosci 2013; 32:18068-78. [PMID: 23238722 DOI: 10.1523/jneurosci.3647-12.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intensity defines one fundamental aspect of sensory information and is specifically represented in each sensory modality. Interestingly, only in the central auditory system are intensity-selective neurons evolved. These neurons are characterized by nonmonotonic response-level functions. The synaptic circuitry mechanisms underlying the generation of intensity selectivity from nonselective auditory nerve inputs remain largely unclear. Here, we performed in vivo whole-cell recordings from pyramidal neurons in the rat dorsal cochlear nucleus (DCN), where intensity selectivity first emerges along the auditory neuraxis. Our results revealed that intensity-selective cells received fast-saturating excitation but slow-saturating inhibition with intensity increments, whereas in intensity-nonselective cells excitation and inhibition were similarly slow-saturating. The differential intensity tuning profiles of the monotonic excitation and inhibition qualitatively determined the intensity selectivity of output responses. In addition, the selectivity was further strengthened by significantly lower excitation/inhibition ratios at high-intensity levels compared with intensity-nonselective neurons. Our results demonstrate that intensity selectivity in the DCN is generated by extracting the difference between tuning profiles of nonselective excitatory and inhibitory inputs, which we propose can be achieved through a differential circuit mediated by feedforward inhibition.
Collapse
|
38
|
Guo F, Intskirveli I, Blake DT, Metherate R. Tone-detection training enhances spectral integration mediated by intracortical pathways in primary auditory cortex. Neurobiol Learn Mem 2013; 101:75-84. [PMID: 23357284 DOI: 10.1016/j.nlm.2013.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Auditory-cued behavioral training can alter neural circuits in primary auditory cortex (A1), but the mechanisms and consequences of experience-dependent cortical plasticity are not fully understood. To address this issue, we trained adult rats to detect a 5 kHz target in order to receive a food reward. After 14 days training we identified three locations within A1: (i) the region representing the characteristic frequency (CF) 5 kHz, (ii) a nearby region with CF ∼10 kHz, and (iii) a more distant region with CF ∼20 kHz. In order to compare functional connectivity in A1 near to, vs. far from, the representation of the target frequency, we placed a 16-channel multiprobe in middle- (∼10 kHz) and high- (∼20 kHz) CF regions and obtained current-source density (CSD) profiles evoked by a range of tone stimuli (CF±1-3 octaves in quarter-octave steps). Our aim was to construct "CSD receptive fields" (CSD RFs) in order to determine the laminar and spectral profile of tone-evoked current sinks, and infer changes to thalamocortical and intracortical inputs. Behavioral training altered CSD RFs at the 10 kHz, but not 20 kHz, site relative to CSD RFs in untrained control animals. At the 10 kHz site, current sinks evoked by the target frequency were enhanced in layer 2/3, but the initial current sink in layer 4 was not altered. The results imply training-induced plasticity along intracortical pathways connecting the target representation with nearby cortical regions. Finally, we related behavioral performance (sensitivity index, d') to CSD responses in individual animals, and found a significant correlation between the development of d' over training and the amplitude of the target-evoked current sink in layer 2/3. The results suggest that plasticity along intracortical pathways is important for auditory learning.
Collapse
Affiliation(s)
- Fei Guo
- Department of Neurobiology and Behavior and Center for Hearing Research, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
39
|
Polley DB, Thompson JH, Guo W. Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development. Nat Commun 2013; 4:2547. [PMID: 24077484 PMCID: PMC4131765 DOI: 10.1038/ncomms3547] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/03/2013] [Indexed: 01/15/2023] Open
Abstract
Early binaural experience can recalibrate central auditory circuits that support spatial hearing. However, it is not known how binaural integration matures shortly after hearing onset or whether various developmental stages are differentially impacted by disruptions of normal binaural experience. Here we induce a brief, reversible unilateral conductive hearing loss (CHL) at several experimentally determined milestones in mouse primary auditory cortex (A1) development and characterize its effects ~1 week after normal hearing is restored. We find that CHL shapes A1 binaural selectivity during two early critical periods. CHL before P16 disrupts the normal coregistration of interaural frequency tuning, whereas CHL on P16, but not before or after, disrupts interaural level difference sensitivity contained in long-latency spikes. These data highlight an evolving plasticity in the developing auditory cortex that may relate to the aetiology of amblyaudia, a binaural hearing impairment associated with bouts of otitis media during human infancy.
Collapse
Affiliation(s)
- Daniel B. Polley
- Dept. of Otology and Laryngology, Harvard Medical School, Boston MA 02114 USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 MA
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston MA 02215
| | - John H. Thompson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 MA
| | - Wei Guo
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 MA
- Center for Computational Neuroscience and Neural Technology, Boston University, Boston MA 02215
| |
Collapse
|