1
|
Mostafa M, Disouky A, Lazarov O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer's disease. Neurotherapeutics 2025; 22:e00580. [PMID: 40180804 PMCID: PMC12047516 DOI: 10.1016/j.neurot.2025.e00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline. The hippocampal formation is the most vulnerable brain area in Alzheimer's disease. Neurons in layer II of the entorhinal cortex and the CA1 region of the hippocampus are lost at early stages of the disease. A unique feature of the hippocampus is the formation of new neurons that incorporate in the dentate gyrus of the hippocampus. New neurons form synapses with neurons in layer II of the entorhinal cortex and with the CA3 region. Immature and new neurons are characterized by high level of plasticity. They play important roles in learning and memory. Hippocampal neurogenesis is impaired early in mouse models of Alzheimer's disease and in human patients. In fact, neurogenesis is compromised in mild cognitive impairment (MCI), suggesting that rescuing neurogenesis may restore hippocampal plasticity and attenuate neuronal vulnerability and memory loss. This review will discuss the current understanding of therapies that target neurogenesis or modulate it, for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mostafa Mostafa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Ulku I, Leung R, Herre F, Walther L, Shobo A, Saftig P, Hancock MA, Liebsch F, Multhaup G. Inhibition of BACE1 affected both its Aβ producing and degrading activities and increased Aβ42 and Aβ40 levels at high-level BACE1 expression. J Biol Chem 2024; 300:107510. [PMID: 38944120 PMCID: PMC11324814 DOI: 10.1016/j.jbc.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the predominant β-secretase, cleaving the amyloid precursor protein (APP) via the amyloidogenic pathway. In addition, BACE1 as an amyloid degrading enzyme (ADE), cleaves Aβ to produce the C-terminally truncated non-toxic Aβ fragment Aβ34 which is an indicator of amyloid clearance. Here, we analyzed the effects of BACE1 inhibitors on its opposing enzymatic functions, i.e., amyloidogenic (Aβ producing) and amyloidolytic (Aβ degrading) activities, using cell culture models with varying BACE1/APP ratios. Under high-level BACE1 expression, low-dose inhibition unexpectedly yielded a two-fold increase in Aβ42 and Aβ40 levels. The concomitant decrease in Aβ34 and secreted APPβ levels suggested that the elevated Aβ42 and Aβ40 levels were due to the attenuated Aβ degrading activity of BACE1. Notably, the amyloidolytic activity of BACE1 was impeded at lower BACE1 inhibitor concentrations compared to its amyloidogenic activity, thereby suggesting that the Aβ degrading activity of BACE1 was more sensitive to inhibition than its Aβ producing activity. Under endogenous BACE1 and APP levels, "low-dose" BACE1 inhibition affected both the Aβ producing and degrading activities of BACE1, i.e., significantly increased Aβ42/Aβ40 ratio and decreased Aβ34 levels, respectively. Further, we incubated recombinant BACE1 with synthetic Aβ peptides and found that BACE1 has a higher affinity for Aβ substrates over APP. In summary, our results suggest that stimulating BACE1's ADE activity and halting Aβ production without decreasing Aβ clearance could still be a promising therapeutic approach with new, yet to be developed, BACE1 modulators.
Collapse
Affiliation(s)
- Irem Ulku
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Rocher Leung
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Fritz Herre
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Lina Walther
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Paul Saftig
- Biochemisches Institut, CAU Kiel, Kiel, Germany
| | - Mark A Hancock
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Filip Liebsch
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Abdallah AE. Review on anti-alzheimer drug development: approaches, challenges and perspectives. RSC Adv 2024; 14:11057-11088. [PMID: 38586442 PMCID: PMC10995770 DOI: 10.1039/d3ra08333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Alzheimer is an irreversible progressive neurodegenerative disease that causes failure of cerebral neurons and disability of the affected person to practice normal daily life activities. There is no concrete evidence to identify the exact reason behind the disease, so several relevant hypotheses emerged, highlighting many possible therapeutic targets, such as acetylcholinesterase, cholinergic receptors, N-methyl d-aspartate receptors, phosphodiesterase, amyloid β protein, protein phosphatase 2A, glycogen synthase kinase-3 beta, β-secretase, γ-secretase, α-secretase, serotonergic receptors, glutaminyl cyclase, tumor necrosis factor-α, γ-aminobutyric acid receptors, and mitochondria. All of these targets have been involved in the design of new potential drugs. An extensive number of these drugs have been studied in clinical trials. However, only galantamine, donepezil, and rivastigmine (ChEIs), memantine (NMDA antagonist), and aducanumab and lecanemab (selective anti-Aβ monoclonal antibodies) have been approved for AD treatment. Many drugs failed in the clinical trials to such an extent that questions have been posed about the significance of some of the aforementioned targets. On the contrary, the data of other drugs were promising and shed light on the significance of their targets for the development of new potent anti-alzheimer drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University 11884 Cairo Egypt
| |
Collapse
|
4
|
Morgan DG, Lamb BT. Transgenic amyloid precursor protein mouse models of amyloidosis. Incomplete models for Alzheimer's disease but effective predictors of anti-amyloid therapies. Alzheimers Dement 2024; 20:1459-1464. [PMID: 38085800 PMCID: PMC10916971 DOI: 10.1002/alz.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Amyloid precursor protein (APP) transgenic mice are models of Alzheimer's disease (AD) amyloidosis, not all of AD. Diffuse, compacted, and vascular deposits in APP mice mimic those found in AD cases. METHODS Most interventional studies in APP mice start treatment early in the process of amyloid deposition, consistent with a prevention treatment regimen. Most clinical trials treat patients with established amyloid deposits in a therapeutic treatment regimen. RESULTS The first treatment to reduce amyloid and cognitive impairment in mice was immunotherapy. The APP mouse models not only predicted efficacy, but presaged the vascular leakage called ARIA. The recent immunotherapy clinical trials that removed amyloid and slowed cognitive decline confirms the utility of these early APP models when used in therapeutic designs. DISCUSSION New mouse models of AD pathologies will add to the research armamentarium, but the early models have accurately predicted responses to amyloid therapies in humans.
Collapse
Affiliation(s)
- David G. Morgan
- Department of Translational Neuroscience, and Alzheimer's AllianceCollege of Human MedicineMichigan State UniversityGrand RapidsMichiganUSA
| | - Bruce T. Lamb
- Department of Medical and Molecular GeneticsStark Neurosciences Research InstituteIndianapolisIndianaUSA
| |
Collapse
|
5
|
Coimbra JRM, Resende R, Custódio JBA, Salvador JAR, Santos AE. BACE1 Inhibitors for Alzheimer's Disease: Current Challenges and Future Perspectives. J Alzheimers Dis 2024; 101:S53-S78. [PMID: 38943390 DOI: 10.3233/jad-240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Disease-modifying therapies (DMT) for Alzheimer's disease (AD) are highly longed-for. In this quest, anti-amyloid therapies take center stage supported by genetic facts that highlight an imbalance between production and clearance of amyloid-β peptide (Aβ) in AD patients. Indeed, evidence from basic research, human genetic and biomarker studies, suggests the accumulation of Aβ as a driver of AD pathogenesis and progression. The aspartic protease β-site AβPP cleaving enzyme (BACE1) is the initiator for Aβ production. Underpinning a critical role for BACE1 in AD pathophysiology are the elevated BACE1 concentration and activity observed in the brain and body fluids of AD patients. Therefore, BACE1 is a prime drug target for reducing Aβ levels in early AD. Small-molecule BACE1 inhibitors have been extensively developed for the last 20 years. However, clinical trials with these molecules have been discontinued for futility or safety reasons. Most of the observed adverse side effects were due to other aspartic proteases cross-inhibition, including the homologue BACE2, and to mechanism-based toxicity since BACE1 has substrates with important roles for synaptic plasticity and synaptic homeostasis besides amyloid-β protein precursor (AβPP). Despite these setbacks, BACE1 persists as a well-validated therapeutic target for which a specific inhibitor with high substrate selectivity may yet to be found. In this review we provide an overview of the evolution in BACE1 inhibitors design pinpointing the molecules that reached advanced phases of clinical trials and the liabilities that precluded adequate trial effects. Finally, we ponder on the challenges that anti-amyloid therapies must overcome to achieve clinical success.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rosa Resende
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - José B A Custódio
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Watkins EA, Vassar R. BACE Inhibitor Clinical Trials for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S41-S52. [PMID: 39422943 DOI: 10.3233/jad-231258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The amyloid hypothesis posits that the amyloid-β aggregates in the brain initiate a cascade of events that eventually lead to neuron loss and Alzheimer's disease. Recent clinical trials of passive immunotherapy with anti-amyloid-β antibodies support this hypothesis, because clearing plaques led to better cognitive outcomes. Orally available small molecule BACE1 inhibitors are another approach to slowing the buildup of plaques and thereby cognitive worsening by preventing the cleavage of amyloid-β protein precursor (AβPP) into amyloid-β peptide, the major component of plaques. This approach is particularly attractive because of their ease of use, low cost, and advanced clinical stage. However, although effective in preventing amyloid-β production in late-stage clinical trials, BACE inhibitors have been associated with early, non-progressive, likely reversible, cognitive decline. The clinical trials tested high levels of BACE inhibition, greater than 50%, whereas genetics suggest that even a 30% inhibition may be sufficient to protect from Alzheimer's disease. Aside from AβPP, BACE1 cleaves many other substrates in the brain that may be contributing to the cognitive worsening. It is important to know what the cause of cognitive worsening is, and if a lower level of inhibition would sufficiently slow the progress of pathology while preventing these unwanted side effects. Should these side effects be mitigated, BACE inhibitors could rapidly move forward in clinical trials either as a primary prevention strategy in individuals that are at risk or biomarker positive, or as a maintenance therapy following amyloid clearance with an anti-amyloid antibody.
Collapse
Affiliation(s)
- Elyse A Watkins
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Kim J, Jeon H, Yun Kim H, Kim Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-β Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023; 24:e202300328. [PMID: 37497809 DOI: 10.1002/cbic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-β (Aβ). AD therapeutic research has been focused on targeting different species of Aβ in the amyloidogenic process to control Aβ content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aβ-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aβ-targeting chemical drugs.
Collapse
Affiliation(s)
- JiMin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hanna Jeon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
8
|
Osborne OM, Naranjo O, Heckmann BL, Dykxhoorn D, Toborek M. Anti-amyloid: An antibody to cure Alzheimer's or an attitude. iScience 2023; 26:107461. [PMID: 37588168 PMCID: PMC10425904 DOI: 10.1016/j.isci.2023.107461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
For more than a century, clinicians have been aware of the devastating neurological condition called Alzheimer's disease (AD). AD is characterized by the presence of abnormal amyloid protein plaques and tau tangles in the brain. The dominant hypothesis, termed the amyloid hypothesis, attributes AD development to excessive cleavage and accumulation of amyloid precursor protein (APP), leading to brain tissue atrophy. The amyloid hypothesis has greatly influenced AD research and therapeutic endeavors. However, despite significant attention, a complete understanding of amyloid and APP's roles in disease pathology, progression, and cognitive impairment remains elusive. Recent controversies and several unsuccessful drug trials have called into question whether amyloid is the only neuropathological factor for treatment. To accomplish disease amelioration, we argue that researchers and clinicians may need to take a compounding approach to target amyloid and other factors in the brain, including traditional pharmaceuticals and holistic therapies.
Collapse
Affiliation(s)
- Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bradlee L. Heckmann
- Department of Immunology, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Byrd Alzheimer’s Center, University of South Florida Health Neuroscience Institute, Tampa, FL 33613, USA
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33602, USA
- Asha Therapeutics, Tampa, FL, USA
| | - Derek Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Marsool MDM, Prajjwal P, Reddy YB, Marsool ADM, Lam JR, Nandwana V. Newer modalities in the management of Alzheimer's dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis Mon 2023; 69:101547. [PMID: 36931947 DOI: 10.1016/j.disamonth.2023.101547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurological condition characterized by a gradual and progressive decline in memory, language, emotion, and cognition. It mainly affects elderly people. Due to the effects of AD, pharmaceutical medications and anticholinesterases have been vigorously promoted and approved by the FDA as a form of AD therapy. However, it was progressively found that these drugs did not address the underlying causes of AD pathogenesis; rather, they focused on the symptoms in order to enhance patients' cognitive outcomes. Consequently, a hunt for superior disease-modifying options is launched. Designing new therapeutic agents requires a thorough understanding of the neuroprotective processes and varied functions carried out by certain genes, and antibodies. In this comprehensive review article, we give an overview of the history of Alzheimer's disease, the significance of the blood-brain barrier in determining the scope of treatment options, as well as the advantages and disadvantages of the current therapeutic treatment options for stem cell therapy, immunotherapy, regenerative therapy, and improved Alzheimer's disease care and diagnosis. We have also included a discussion on the potential role of aducanumab and Lecanemab as a cutting-edge therapy in refractory Alzheimer's disease patients. Lecanemab has been recently approved by the FDA for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Justin Riley Lam
- Internal Medicine, Cebu Institute of Medicine, Cebu, Philippines
| | - Varsha Nandwana
- Neurology, Virginia Tech Carilion School of Medicine, Virginia, USA
| |
Collapse
|
10
|
Saba K, Patel AB. Riluzole restores memory and brain energy metabolism in AβPP-PS1 mouse model of Alzheimer's disease. Biochem Biophys Res Commun 2022; 610:140-146. [DOI: 10.1016/j.bbrc.2022.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
|
11
|
Weiss C, Bertolino N, Procissi D, Aleppo G, Smith QC, Viola KL, Bartley SC, Klein WL, Disterhoft JF. Diet-induced Alzheimer's-like syndrome in the rabbit. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12241. [PMID: 35128030 PMCID: PMC8804622 DOI: 10.1002/trc2.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Although mouse models of Alzheimer's disease (AD) have increased our understanding of the molecular basis of the disease, none of those models represent late-onset Alzheimer's Disease which accounts for >90% of AD cases, and no therapeutics developed in the mouse (with the possible exceptions of aduhelm/aducanumab and gantenerumab) have succeeded in preventing or reversing the disease. This technology has allowed much progress in understanding the molecular basis of AD. To further enhance our understanding, we used wild-type rabbit (with a nearly identical amino acid sequence for amyloid as in humans) to model LOAD by stressing risk factors including age, hypercholesterolemia, and elevated blood glucose levels (BGLs), upon an ε3-like isoform of apolipoprotein. We report a combined behavioral, imaging, and metabolic study using rabbit as a non-transgenic model to examine effects of AD-related risk factors on cognition, intrinsic functional connectivity, and magnetic resonance-based biomarkers of neuropathology. METHODS Aging rabbits were fed a diet enriched with either 2% cholesterol or 10% fat/30% fructose. Monthly tests of novel object recognition (NOR) and object location memory (OLM) were administered to track cognitive impairment. Trace eyeblink conditioning (EBC) was administered as a final test of cognitive impairment. Magnetic resonance imaging (MRI) was used to obtain resting state connectivity and quantitative parametric data (R2*). RESULTS Experimental diets induced hypercholesterolemia or elevated BGL. Both experimental diets induced statistically significant impairment of OLM (but not NOR) and altered intrinsic functional connectivity. EBC was more impaired by fat/fructose diet than by cholesterol. Whole brain and regional R2* MRI values were elevated in both experimental diet groups relative to rabbits on the control diet. DISCUSSION We propose that mechanisms underlying LOAD can be assessed by stressing risk factors for inducing AD and that dietary manipulations can be used to assess etiological differences in the pathologies and effectiveness of potential therapeutics against LOAD. In addition, non-invasive MRI in awake, non-anesthetized rabbits further increases the translational value of this non-transgenic model to study AD.
Collapse
Affiliation(s)
- Craig Weiss
- Department of NeuroscienceNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Nicola Bertolino
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Daniele Procissi
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Quinn C. Smith
- Department of NeuroscienceNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kirsten L. Viola
- Department of NeurobiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Samuel C. Bartley
- Department of NeurobiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - William L. Klein
- Department of NeurobiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - John F. Disterhoft
- Department of NeuroscienceNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
12
|
Nimmo JT, Kelly L, Verma A, Carare RO, Nicoll JAR, Dodart JC. Amyloid-β and α-Synuclein Immunotherapy: From Experimental Studies to Clinical Trials. Front Neurosci 2021; 15:733857. [PMID: 34539340 PMCID: PMC8441015 DOI: 10.3389/fnins.2021.733857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer’s disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.
Collapse
Affiliation(s)
- Jacqui Taryn Nimmo
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Louise Kelly
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ajay Verma
- Yumanity Therapeutics, Boston, MA, United States
| | - Roxana O Carare
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
13
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
14
|
The next step of neurogenesis in the context of Alzheimer's disease. Mol Biol Rep 2021; 48:5647-5660. [PMID: 34232464 DOI: 10.1007/s11033-021-06520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Among different pathological mechanisms, neuronal loss and neurogenesis impairment in the hippocampus play important roles in cognitive decline in Alzheimer's disease (AD). AD is a progressive and complex neurodegenerative diseases, which is very debilitating. The purpose of this paper is to review recent research into neurogenesis and AD and discuss how pharmacological drugs and herbal active components have impacts on neurogenesis and consequently improve cognitive functions. To date, despite huge research, no effective treatment has been approved for AD. Therefore, an avenue for future research and drug discovery is stimulating adult hippocampal neurogenesis (AHN). Evidence suggests that neurogenesis is regulated by the pharmacological treatment that may be recommended as a part of prophylaxis and therapeutic options for AD. However, the underlying mechanisms of regulating neurogenesis in AD are not well understood. To this point, we highlight to achieve an efficient treatment in AD by manipulating neurogenesis, it's necessary to target all steps of neurogenesis.
Collapse
|
15
|
Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer's disease. Metab Brain Dis 2021; 36:781-813. [PMID: 33638805 DOI: 10.1007/s11011-021-00673-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), a well known aging-induced neurodegenerative disease is related to amyloid proteinopathy. This proteinopathy occurs due to abnormalities in protein folding, structure and thereby its function in cells. The root cause of such kind of proteinopathy and its related neurodegeneration is a disorder in metabolism, rather metabolomics of the major as well as minor nutrients. Metabolomics is the most relevant "omics" platform that offers a great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual's metabolome. In recent years, the research on such kinds of neurodegenerative diseases, especially aging-related disorders is broadened its scope towards metabolic function. Different neurotransmitter metabolisms are also involved with AD and its associated neurodegeneration. The genetic and epigenetic backgrounds are also noteworthy. In this review, the physiological changes of AD in relation to its corresponding biochemical, genetic and epigenetic involvements including its (AD) therapeutic aspects are discussed.
Collapse
Affiliation(s)
- Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Departrment of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
16
|
Janssens J, Hermans B, Vandermeeren M, Barale-Thomas E, Borgers M, Willems R, Meulders G, Wintmolders C, Van den Bulck D, Bottelbergs A, Ver Donck L, Larsen P, Moechars D, Edwards W, Mercken M, Van Broeck B. Passive immunotherapy with a novel antibody against 3pE-modified Aβ demonstrates potential for enhanced efficacy and favorable safety in combination with BACE inhibitor treatment in plaque-depositing mice. Neurobiol Dis 2021; 154:105365. [PMID: 33848635 DOI: 10.1016/j.nbd.2021.105365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
The imbalance between production and clearance of amyloid β (Aβ) peptides and their resulting accumulation in the brain is an early and crucial step in the pathogenesis of Alzheimer's disease (AD). Therefore, Aβ is strongly positioned as a promising and extensively validated therapeutic target for AD. Investigational disease-modifying approaches aiming at reducing cerebral Aβ concentrations include prevention of de novo production of Aβ through inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and clearance of Aβ deposits via passive Aβ immunotherapy. We have developed a novel, high affinity antibody against Aβ peptides bearing a pyroglutamate residue at amino acid position 3 (3pE), an Aβ species abundantly present in plaque deposits in AD brains. Here, we describe the preclinical characterization of this antibody, and demonstrate a significant reduction in amyloid burden in the absence of microhemorrhages in different mouse models with established plaque deposition. Moreover, we combined antibody treatment with chronic BACE1 inhibitor treatment and demonstrate significant clearance of pre-existing amyloid deposits in transgenic mouse brain, without induction of microhemorrhages and other histopathological findings. Together, these data confirm significant potential for the 3pE-specific antibody to be developed as a passive immunotherapy approach that balances efficacy and safety. Moreover, our studies suggest further enhanced treatment efficacy and favorable safety after combination of the 3pE-specific antibody with BACE1 inhibitor treatment.
Collapse
Affiliation(s)
- Jonathan Janssens
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bart Hermans
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Vandermeeren
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Erio Barale-Thomas
- Non-Clinical Science, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Roland Willems
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Greet Meulders
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dries Van den Bulck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Luc Ver Donck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter Larsen
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dieder Moechars
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Marc Mercken
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bianca Van Broeck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium.
| |
Collapse
|
17
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
18
|
Rombouts F, Kusakabe KI, Hsiao CC, Gijsen HJM. Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opin Ther Pat 2020; 31:25-52. [PMID: 33006491 DOI: 10.1080/13543776.2021.1832463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been extensively pursued as potential disease-modifying treatment for Alzheimer's disease (AD). Clinical failures with BACE inhibitors have progressively raised the bar forever cleaner candidates with reduced cardiovascular liability, toxicity risk, and increased selectivity over cathepsin D (CatD) and BACE2. AREAS COVERED This review provides an overview of patented BACE1 inhibitors between 2011 and 2020 per pharmaceutical company or research group and highlights the progress that was made in dialing out toxicity liabilities. EXPERT OPINION Despite an increasingly crowded IP situation, significant progress was made using highly complex chemistry in avoiding toxicity liabilities, with BACE1/BACE2 selectivity being the most remarkable achievement. However, clinical trial data suggest on-target toxicity is likely a contributing factor, which implies the only potential future of BACE1 inhibitors lies in careful titration of highly selective compounds in early populations where the amyloid burden is still minimal as prophylactic therapy, or as an affordable oral maintenance therapy following amyloid-clearing therapies.
Collapse
Affiliation(s)
- Frederik Rombouts
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd ., Toyonaka, Osaka, Japan
| | - Chien-Chi Hsiao
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Harrie J M Gijsen
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| |
Collapse
|
19
|
Chen Y, Wei G, Zhao J, Nussinov R, Ma B. Computational Investigation of Gantenerumab and Crenezumab Recognition of Aβ Fibrils in Alzheimer's Disease Brain Tissue. ACS Chem Neurosci 2020; 11:3233-3244. [PMID: 32991803 PMCID: PMC8921974 DOI: 10.1021/acschemneuro.0c00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapies using antibodies to lower assembled Aβ provide a promising approach and have been widely studied. Anti-amyloid antibodies are often selective to amyloid conformation, and the lack of amyloid-antibody structural information limits our understanding of these antibodies' conformation selection. Gantenerumab and crenezumab are two anti-Aβ antibodies that bind multiple forms of Aβ with different Aβ epitope preferences. Here, using molecular dynamic (MD) simulations, we study the binding of these two antibodies to the Aβ1-40 fibril, whose conformation is derived from an AD patient's brain tissue. We find that gantenerumab recognizes the Aβ1-11 monomer fragment only at slightly lower pH than the physiological environment where His6 of Aβ1-11 is protonated. Both gantenerumab and crenezumab bind with integrated Aβ fibril rather than binding to monomers within the fibril. Gantenerumab preferentially binds to the N-terminal region of the Aβ1-40 fibril, and the binding is driven by aromatic interactions. Crenezumab can recognize the N-terminal region, as well as the cross-section of the Aβ1-40 fibril, indicating its multiple binding modes in Aβ fibril recognition. These results demonstrate conformation-dependent interactions of antibody-amyloid recognition.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (MOE), Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, P. R. China
| | - Jun Zhao
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Tabassum S, Sheikh AM, Yano S, Ikeue T, Mitaki S, Michikawa M, Nagai A. A Cationic Gallium Phthalocyanine Inhibits Amyloid β Peptide Fibril Formation. Curr Alzheimer Res 2020; 17:589-600. [PMID: 33032510 DOI: 10.2174/1567205017666201008112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amyloid β (Aβ) peptide deposition is considered as the main cause of Alzheimer's disease (AD). Previously, we have shown that a Zn containing neutral phthalocyanine (Zn-Pc) inhibits Aβ fibril formation. OBJECTIVE The objective of this study is to investigate the effects of a cationic gallium containing Pc (GaCl-Pc) on Aβ fibril formation process. METHODS AND RESULT Aβ fibril formation was induced by incubating synthetic Aβ peptides in a fibril forming buffer, and the amount of fibril was evaluated by ThT fluorescence assay. GaCl-Pc dosedependently inhibited both Aβ1-40 and Aβ1-42 fibril formation. It mainly inhibited the elongation phase of Aβ1-42 fibril formation kinetics, but not the lag phase. Western blotting results showed that it did not inhibit its oligomerization process, rather increased it. Additionally, GaCl-Pc destabilized preformed Aβ1- 42 fibrils dose-dependently in vitro condition, and decreased Aβ levels in the brain slice culture of APP transgenic AD model mice (J20 strain). Near-infrared scanning results showed that GaCl-Pc had the ability to bind to Aβ1-42. MTT assay demonstrated that GaCl-Pc did not have toxicity towards a neuronal cell line (A1) in culture rather, showed protective effects on Aβ-induced toxicity. Moreover, it dosedependently decreased Aβ-induced reactive oxygen species levels in A1 culture. CONCLUSION Thus, our result demonstrated that GaCl-Pc decreased Aβ aggregation and destabilized the preformed fibrils. Since cationic molecules show a better ability to cross the blood-brain barrier, cationic GaCl-Pc could be important for the therapy of AD.
Collapse
Affiliation(s)
- Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Abdullah Md Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Shingo Mitaki
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1 Mizuho, Nagoya 467-8601, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan
| |
Collapse
|
21
|
Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer's disease. Neurobiol Dis 2020; 144:105010. [PMID: 32682954 PMCID: PMC7365083 DOI: 10.1016/j.nbd.2020.105010] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) and tau proteins currently represent the two most promising targets to treat Alzheimer's disease. The most extensively developed method to treat the pathologic forms of these proteins is through the administration of exogenous antibodies, or passive immunotherapy. In this review, we discuss the molecular-level strategies that researchers are using to design an effective therapeutic antibody, given the challenges in treating this disease. These challenges include selectively targeting a protein that has misfolded or is pathological rather than the more abundant, healthy protein, designing strategic constructs for immunizing an animal to raise an antibody that has the appropriate conformational selectivity to achieve this end, and clearing the pathological protein species before prion-like cell-to-cell spread of misfolded protein has irreparably damaged neurons, without invoking damaging inflammatory responses in the brain that naturally arise when the innate immune system is clearing foreign agents. The various solutions to these problems in current clinical trials will be discussed.
Collapse
Affiliation(s)
- Steven S Plotkin
- University of British Columbia, Department of Physics and Astronomy and Genome Sciences and Technology Program, Vancouver, BC V6T 1Z1, Canada.
| | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
22
|
Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Novel Anti-Alzheimer's Therapeutic Molecules Targeting Amyloid Precursor Protein Processing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7039138. [PMID: 32411333 PMCID: PMC7206886 DOI: 10.1155/2020/7039138] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among older people, and the prevalence of this disease is estimated to rise quickly in the upcoming years. Unfortunately, almost all of the drug candidates tested for AD until now have failed to exhibit any efficacy. Henceforth, there is an increased necessity to avert and/or slow down the advancement of AD. It is known that one of the major pathological characteristics of AD is the presence of senile plaques (SPs) in the brain. These SPs are composed of aggregated amyloid beta (Aβ), derived from the amyloid precursor protein (APP). Pharmaceutical companies have conducted a number of studies in order to identify safe and effective anti-Aβ drugs to combat AD. It is known that α-, β-, and γ-secretases are the three proteases that are involved in APP processing. Furthermore, there is a growing interest in these proteases, as they have a contribution to the modulation and production of Aβ. It has been observed that small compounds can be used to target these important proteases. Indeed, these compounds must satisfy the common strict requirements of a drug candidate targeted for brain penetration and selectivity toward different proteases. In this article, we have focused on the auspicious molecules which are under development for targeting APP-processing enzymes. We have also presented several anti-AD molecules targeting Aβ accumulation and phosphorylation signaling in APP processing. This review highlights the structure-activity relationship and other physicochemical features of several pharmacological candidates in order to successfully develop new anti-AD drugs.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
23
|
Scearce-Levie K, Sanchez PE, Lewcock JW. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 2020; 19:447-462. [PMID: 32612262 DOI: 10.1038/s41573-020-0065-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
A large number of mouse models have been engineered, characterized and used to advance biomedical research in Alzheimer disease (AD). Early models simply damaged the rodent brain through toxins or lesions. Later, the spread of genetic engineering technology enabled investigators to develop models of familial AD by overexpressing human genes such as those encoding amyloid precursor protein (APP) or presenilins (PSEN1 or PSEN2) carrying mutations linked to early-onset AD. Recently, more complex models have sought to explore the impact of multiple genetic risk factors in the context of different biological challenges. Although none of these models has proven to be a fully faithful reproduction of the human disease, models remain essential as tools to improve our understanding of AD biology, conduct thorough pharmacokinetic and pharmacodynamic analyses, discover translatable biomarkers and evaluate specific therapeutic approaches. To realize the full potential of animal models as new technologies and knowledge become available, it is critical to define an optimal strategy for their use. Here, we review progress and challenges in the use of AD mouse models, highlight emerging scientific innovations in model development, and introduce a conceptual framework for use of preclinical models for therapeutic development.
Collapse
|
24
|
Dar KB, Bhat AH, Amin S, Reshi BA, Zargar MA, Masood A, Ganie SA. Elucidating Critical Proteinopathic Mechanisms and Potential Drug Targets in Neurodegeneration. Cell Mol Neurobiol 2020; 40:313-345. [PMID: 31584139 PMCID: PMC11449027 DOI: 10.1007/s10571-019-00741-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Neurodegeneration entails progressive loss of neuronal structure as well as function leading to cognitive failure, apathy, anxiety, irregular body movements, mood swing and ageing. Proteomic dysregulation is considered the key factor for neurodegeneration. Mechanisms involving deregulated processing of proteins such as amyloid beta (Aβ) oligomerization; tau hyperphosphorylation, prion misfolding; α-synuclein accumulation/lewy body formation, chaperone deregulation, acetylcholine depletion, adenosine 2A (A2A) receptor hyperactivation, secretase deregulation, leucine-rich repeat kinase 2 (LRRK2) mutation and mitochondrial proteinopathies have deeper implications in neurodegenerative disorders. Better understanding of such pathological mechanisms is pivotal for exploring crucial drug targets. Herein, we provide a comprehensive outlook about the diverse proteomic irregularities in Alzheimer's, Parkinson's and Creutzfeldt Jakob disease (CJD). We explicate the role of key neuroproteomic drug targets notably Aβ, tau, alpha synuclein, prions, secretases, acetylcholinesterase (AchE), LRRK2, molecular chaperones, A2A receptors, muscarinic acetylcholine receptors (mAchR), N-methyl-D-aspartate receptor (NMDAR), glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and mitochondrial/oxidative stress-related proteins for combating neurodegeneration and associated cognitive and motor impairment. Cross talk between amyloidopathy, synucleinopathy, tauopathy and several other proteinopathies pinpoints the need to develop safe therapeutics with ability to strike multiple targets in the aetiology of the neurodegenerative disorders. Therapeutics like microtubule stabilisers, chaperones, kinase inhibitors, anti-aggregation agents and antibodies could serve promising regimens for treating neurodegeneration. However, drugs should be target specific, safe and able to penetrate blood-brain barrier.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Aashiq Hussain Bhat
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohammad Afzal Zargar
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Akbar Masood
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India.
| |
Collapse
|
25
|
Koseoglu E. New treatment modalities in Alzheimer's disease. World J Clin Cases 2019; 7:1764-1774. [PMID: 31417922 PMCID: PMC6692264 DOI: 10.12998/wjcc.v7.i14.1764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is still a major public health challenge without an effective treatment to prevent or stop it. Routinely used acetylcholinesterase inhibitors and memantine seem to slow disease progression only to a limited extend. Therefore, many investigations on new drugs and other treatment modalities are ongoing in close association with increasing knowledge of the pathophysiology of the disease. Here, we review the studies about the new treatment modalities in AD with a classification based on their main targets, specifically pathologic structures of the disease, amyloid and tau, neural network dysfunction with special interest to the regulation of gamma oscillations, and attempts for the restoration of neural tissue via regenerative medicine. Additionally, we describe the evolving modalities related to gut microbiota, modulation, microglial function, and glucose metabolism.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
26
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
27
|
Maia MA, Sousa E. BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer's Disease. Pharmaceuticals (Basel) 2019; 12:ph12010041. [PMID: 30893882 PMCID: PMC6469197 DOI: 10.3390/ph12010041] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing global health concern with a massive impact on affected individuals and society. Despite the considerable advances achieved in the understanding of AD pathogenesis, researchers have not been successful in fully identifying the mechanisms involved in disease progression. The amyloid hypothesis, currently the prevalent theory for AD, defends the deposition of β-amyloid protein (Aβ) aggregates as the trigger of a series of events leading to neuronal dysfunction and dementia. Hence, several research and development (R&D) programs have been led by the pharmaceutical industry in an effort to discover effective and safety anti-amyloid agents as disease modifying agents for AD. Among 19 drug candidates identified in the AD pipeline, nine have their mechanism of action centered in the activity of β or γ-secretase proteases, covering almost 50% of the identified agents. These drug candidates must fulfill the general rigid prerequisites for a drug aimed for central nervous system (CNS) penetration and selectivity toward different aspartyl proteases. This review presents the classes of γ-secretase and beta-site APP cleaving enzyme 1 (BACE-1) inhibitors under development, highlighting their structure-activity relationship, among other physical-chemistry aspects important for the successful development of new anti-AD pharmacological agents.
Collapse
Affiliation(s)
- Miguel A Maia
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
28
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 631] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Pradier L, Blanchard-Brégeon V, Bohme A, Debeir T, Menager J, Benoit P, Barneoud P, Taupin V, Bertrand P, Dugay P, Cameron B, Shi Y, Naimi S, Duchesne M, Gagnaire M, Weeden T, Travaline T, Reczek D, Khiroug L, Slaoui M, Brunel P, Fukuyama H, Ravetch J, Canton T, Cohen C. SAR228810: an antibody for protofibrillar amyloid β peptide designed to reduce the risk of amyloid-related imaging abnormalities (ARIA). ALZHEIMERS RESEARCH & THERAPY 2018; 10:117. [PMID: 30486882 PMCID: PMC6264593 DOI: 10.1186/s13195-018-0447-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/04/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Anti-amyloid β (Aβ) immunotherapy represents a major area of drug development for Alzheimer's disease (AD). However, Aβ peptide adopts multiple conformations and the pathological forms to be specifically targeted have not been identified. Aβ immunotherapy-related vasogenic edema has also been severely dose limiting for antibodies with effector functions binding vascular amyloid such as bapineuzumab. These two factors might have contributed to the limited efficacy demonstrated so far in clinical studies. METHODS To address these limitations, we have engineered SAR228810, a humanized monoclonal antibody (mAb) with limited Fc effector functions that binds specifically to soluble protofibrillar and fibrillar forms of Aβ peptide and we tested it together with its murine precursor SAR255952 in vitro and in vivo. RESULTS Unlike gantenerumab and BAN2401, SAR228810 and SAR255952 do not bind to Aβ monomers, low molecular weight Aβ oligomers or, in human brain sections, to Aβ diffuse deposits which are not specific of AD pathology. Both antibodies prevent Aβ42 oligomer neurotoxicity in primary neuronal cultures. In vivo, SAR255952, a mouse aglycosylated IgG1, dose-dependently prevented brain amyloid plaque formation and plaque-related inflammation with a minimal active dose of 3 mg/kg/week by the intraperitoneal route. No increase in plasma Aβ levels was observed with SAR255952 treatment, in line with its lack of affinity for monomeric Aβ. The effects of SAR255952 translated into synaptic functional improvement in ex-vivo hippocampal slices. Brain penetration and decoration of cerebral amyloid plaques was documented in live animals and postmortem. SAR255952 (up to 50 mg/kg/week intravenously) did not increase brain microhemorrhages and/or microscopic changes in meningeal and cerebral arteries in old APPSL mice while 3D6, the murine version of bapineuzumab, did. In immunotolerized mice, the clinical candidate SAR228810 demonstrated the same level of efficacy as the murine SAR255952. CONCLUSION Based on the improved efficacy/safety profile in non-clinical models of SAR228810, a first-in-man single and multiple dose administration clinical study has been initiated in AD patients.
Collapse
Affiliation(s)
- Laurent Pradier
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France.
| | | | - Andrees Bohme
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Thomas Debeir
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Jean Menager
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Patrick Benoit
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Pascal Barneoud
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Véronique Taupin
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Philippe Bertrand
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Philippe Dugay
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | | | - Yi Shi
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Souad Naimi
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Marc Duchesne
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Marie Gagnaire
- Sanofi R&D Biotherapeutics Research, Vitry s/Seine, France
| | - Tim Weeden
- Sanofi R&D Biotherapeutics Research, Framingham, USA.,Present address: Dyne Therapeutics, Inc., 400 Technology Square, Cambridge, USA
| | | | - David Reczek
- Sanofi R&D Biotherapeutics Research, Framingham, USA
| | | | | | | | - Hidehiro Fukuyama
- The Rockefeller University, New-York City, USA.,Present address: Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Thierry Canton
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| | - Caroline Cohen
- Sanofi R&D Neuroscience Unit, Sanofi, 1Av P. Brossolette, 91385, Chilly-Mazarin, France
| |
Collapse
|
30
|
Brendel M, Jaworska A, Overhoff F, Blume T, Probst F, Gildehaus FJ, Bartenstein P, Haass C, Bohrmann B, Herms J, Willem M, Rominger A. Efficacy of chronic BACE1 inhibition in PS2APP mice depends on the regional Aβ deposition rate and plaque burden at treatment initiation. Theranostics 2018; 8:4957-4968. [PMID: 30429879 PMCID: PMC6217065 DOI: 10.7150/thno.27868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Beta secretase (BACE) inhibitors are promising therapeutic compounds currently in clinical phase II/III trials. Preclinical [18F]-florbetaben (FBB) amyloid PET imaging facilitates longitudinal monitoring of amyloidosis in Alzheimer's disease (AD) mouse models. Therefore, we applied this theranostic concept to investigate, by serial FBB PET, the efficacy of a novel BACE1 inhibitor in the PS2APP mouse, which is characterized by early and massive amyloid deposition. Methods: PS2APP and C57BL/6 (WT) mice were assigned to treatment (PS2APP: N=13; WT: N=11) and vehicle control (PS2APP: N=13; WT: N=11) groups at the age of 9.5 months. All animals had a baseline PET scan and follow-up scans at two months and after completion of the four-month treatment period. In addition to this longitudinal analysis of cerebral amyloidosis by PET, we undertook biochemical amyloid peptide quantification and histological amyloid plaque analyses after the final PET session. Results: BACE1 inhibitor-treated transgenic mice revealed a progression of the frontal cortical amyloid signal by 8.4 ± 2.2% during the whole treatment period, which was distinctly lower when compared to vehicle-treated mice (15.3 ± 4.4%, p<0.001). A full inhibition of progression was evident in regions with <3.7% of the increase in controls, whereas regions with >10% of the increase in controls showed only 40% attenuation with BACE1 inhibition. BACE1 inhibition in mice with lower amyloidosis at treatment initiation showed a higher efficacy in attenuating progression to PET. A predominant reduction of small plaques in treated mice indicated a main effect of BACE1 on inhibition of de novo amyloidogenesis. Conclusions: This theranostic study with BACE1 treatment in a transgenic AD model together with amyloid PET monitoring indicated that progression of amyloidosis is more effectively reduced in regions with low initial plaque development and revealed the need of an early treatment initiation during amyloidogenesis.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich; Munich, Germany
| | - Anna Jaworska
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Felix Overhoff
- Department of Nuclear Medicine, University Hospital, LMU Munich; Munich, Germany
| | - Tanja Blume
- Department of Nuclear Medicine, University Hospital, LMU Munich; Munich, Germany
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Federico Probst
- Department of Nuclear Medicine, University Hospital, LMU Munich; Munich, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich; Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | | | - Jochen Herms
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich; Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
31
|
Abstract
Alzheimer’s disease is the most common cause of dementia worldwide, with the prevalence continuing to grow in part because of the aging world population. This neurodegenerative disease process is characterized classically by two hallmark pathologies: β-amyloid plaque deposition and neurofibrillary tangles of hyperphosphorylated tau. Diagnosis is based upon clinical presentation fulfilling several criteria as well as fluid and imaging biomarkers. Treatment is currently targeted toward symptomatic therapy, although trials are underway that aim to reduce the production and overall burden of pathology within the brain. Here, we discuss recent advances in our understanding of the clinical evaluation and treatment of Alzheimer’s disease, with updates regarding clinical trials still in progress.
Collapse
Affiliation(s)
- Jason Weller
- Department of Neurology, Boston VA Hospital, 150 South Huntington Street, Jamaica Plain, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 East Concord Street C-309, Boston, MA, USA
| | - Andrew Budson
- Department of Neurology, Boston VA Hospital, 150 South Huntington Street, Jamaica Plain, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 East Concord Street C-309, Boston, MA, USA
| |
Collapse
|
32
|
Abstract
In this issue, Chiang et al. (https://doi.org/10.1084/jem.20171484) make a notable contribution to Alzheimer disease (AD) therapeutics in a thorough and rigorous study demonstrating superior efficacy of dual therapy against Aβ in a mouse model of amyloid β deposition.
Collapse
Affiliation(s)
- Tirth K Patel
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
33
|
Peters F, Salihoglu H, Rodrigues E, Herzog E, Blume T, Filser S, Dorostkar M, Shimshek DR, Brose N, Neumann U, Herms J. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol 2018; 135:695-710. [PMID: 29327084 PMCID: PMC5904228 DOI: 10.1007/s00401-017-1804-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023]
Abstract
BACE1 is the rate-limiting protease in the production of synaptotoxic β-amyloid (Aβ) species and hence one of the prime drug targets for potential therapy of Alzheimer's disease (AD). However, so far pharmacological BACE1 inhibition failed to rescue the cognitive decline in mild-to-moderate AD patients, which indicates that treatment at the symptomatic stage might be too late. In the current study, chronic in vivo two-photon microscopy was performed in a transgenic AD model to monitor the impact of pharmacological BACE1 inhibition on early β-amyloid pathology. The longitudinal approach allowed to assess the kinetics of individual plaques and associated presynaptic pathology, before and throughout treatment. BACE1 inhibition could not halt but slow down progressive β-amyloid deposition and associated synaptic pathology. Notably, the data revealed that the initial process of plaque formation, rather than the subsequent phase of gradual plaque growth, is most sensitive to BACE1 inhibition. This finding of particular susceptibility of plaque formation has profound implications to achieve optimal therapeutic efficacy for the prospective treatment of AD.
Collapse
Affiliation(s)
- Finn Peters
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Hazal Salihoglu
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Eva Rodrigues
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
| | - Etienne Herzog
- Université Bordeaux, IINS, UMR 5297, 33000, Bordeaux, France
- CNRS, IINS, UMR 5297, 33000, Bordeaux, France
| | - Tanja Blume
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Mario Dorostkar
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Derya R Shimshek
- Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ulf Neumann
- Neuroscience, Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
34
|
Chiang ACA, Fowler SW, Savjani RR, Hilsenbeck SG, Wallace CE, Cirrito JR, Das P, Jankowsky JL. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med 2018; 215:1349-1364. [PMID: 29626114 PMCID: PMC5940263 DOI: 10.1084/jem.20171484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/03/2018] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Chiang et al. show that combining two complementary approaches for Aβ reduction improved cognitive function in a mouse model of amyloidosis relative to either treatment alone. Efficacy corresponded with restoration of mTOR signaling, TFEB expression, and autophagic flux, suggesting additional targets for future polytherapy in AD. Drug development for Alzheimer’s disease has endeavored to lower amyloid β (Aβ) by either blocking production or promoting clearance. The benefit of combining these approaches has been examined in mouse models and shown to improve pathological measures of disease over single treatment; however, the impact on cellular and cognitive functions affected by Aβ has not been tested. We used a controllable APP transgenic mouse model to test whether combining genetic suppression of Aβ production with passive anti-Aβ immunization improved functional outcomes over either treatment alone. Compared with behavior before treatment, arresting further Aβ production (but not passive immunization) was sufficient to stop further decline in spatial learning, working memory, and associative memory, whereas combination treatment reversed each of these impairments. Cognitive improvement coincided with resolution of neuritic dystrophy, restoration of synaptic density surrounding deposits, and reduction of hyperactive mammalian target of rapamycin signaling. Computational modeling corroborated by in vivo microdialysis pointed to the reduction of soluble/exchangeable Aβ as the primary driver of cognitive recovery.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | | | - Susan G Hilsenbeck
- Department of Medicine, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Clare E Wallace
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - John R Cirrito
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Pritam Das
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX .,Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK. Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead. Eur J Med Chem 2018; 148:436-452. [DOI: 10.1016/j.ejmech.2018.02.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
|
36
|
Condello C, Yuan P, Grutzendler J. Microglia-Mediated Neuroprotection, TREM2, and Alzheimer's Disease: Evidence From Optical Imaging. Biol Psychiatry 2018; 83:377-387. [PMID: 29169609 PMCID: PMC5767550 DOI: 10.1016/j.biopsych.2017.10.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Recent genetic studies have provided overwhelming evidence of the involvement of microglia-related molecular networks in the pathophysiology of Alzheimer's disease (AD). However, the precise mechanisms by which microglia alter the course of AD neuropathology remain poorly understood. Here we discuss current evidence of the neuroprotective functions of microglia with a focus on optical imaging studies that have revealed a role of these cells in the encapsulation of amyloid deposits ("microglia barrier"). This barrier modulates the degree of plaque compaction, amyloid fibril surface area, and insulation from adjacent axons thereby reducing neurotoxicity. We discuss findings implicating genetic variants of the microglia receptor, triggering receptor expressed on myeloid cells 2, in the increased risk of late onset AD. We provide evidence that increased AD risk may be at least partly mediated by deficient microglia polarization toward amyloid deposits, resulting in ineffective plaque encapsulation and reduced plaque compaction, which is associated with worsened axonal pathology. Finally, we propose possible avenues for therapeutic targeting of plaque-associated microglia with the goal of enhancing the microglia barrier and potentially reducing disease progression.
Collapse
Affiliation(s)
- Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA,Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Peng Yuan
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
37
|
Voytyuk I, De Strooper B, Chávez-Gutiérrez L. Modulation of γ- and β-Secretases as Early Prevention Against Alzheimer's Disease. Biol Psychiatry 2018; 83:320-327. [PMID: 28918941 DOI: 10.1016/j.biopsych.2017.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023]
Abstract
The genetic evidence implicating amyloid-β in the initial stage of Alzheimer's disease is unequivocal. However, the long biochemical and cellular prodromal phases of the disease suggest that dementia is the result of a series of molecular and cellular cascades whose nature and connections remain unknown. Therefore, it is unlikely that treatments directed at amyloid-β will have major clinical effects in the later stages of the disease. We discuss the two major candidate therapeutic targets to lower amyloid-β in a preventive mode, i.e., γ- and β-secretase; the rationale behind these two targets; and the current state of the field.
Collapse
Affiliation(s)
- Iryna Voytyuk
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Bart De Strooper
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; UK Dementia Research Institute, University College, London, United Kingdom.
| | - Lucía Chávez-Gutiérrez
- KU Leuven Department for Neurosciences, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
38
|
Abstract
Notwithstanding tremendous research efforts, the cause of Alzheimer's disease (AD) remains elusive and there is no curative treatment. The cholinergic hypothesis presented 35 years ago was the first major evidence-based hypothesis on the etiology of AD. It proposed that the depletion of brain acetylcholine was a primary cause of cognitive decline in advanced age and AD. It relied on a series of observations obtained in aged animals, elderly, and AD patients that pointed to dysfunctions of cholinergic basal forebrain, similarities between cognitive impairments induced by anticholinergic drugs and those found in advanced age and AD, and beneficial effects of drugs stimulating cholinergic activity. This review revisits these major results to show how this hypothesis provided the drive for the development of anticholinesterase inhibitor-based therapies of AD, the almost exclusively approved treatment in use despite transient and modest efficacy. New ideas for improving cholinergic therapies are also compared and discussed in light of the current revival of the cholinergic hypothesis on the basis of two sets of evidence from new animal models and refined imagery techniques in humans. First, human and animal studies agree in detecting signs of cholinergic dysfunctions much earlier than initially believed. Second, alterations of the cholinergic system are deeply intertwined with its reactive responses, providing the brain with efficient compensatory mechanisms to delay the conversion into AD. Active research in this field should provide new insight into development of multitherapies incorporating cholinergic manipulation, as well as early biomarkers of AD enabling earlier diagnostics. This is of prime importance to counteract a disease that is now recognized to start early in adult life.
Collapse
|
39
|
Review of the advances in treatment for Alzheimer disease: strategies for combating β-amyloid protein. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2015.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
40
|
Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: estrategia frente a la proteína β-amiloide. Neurologia 2018; 33:47-58. [DOI: 10.1016/j.nrl.2015.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/19/2022] Open
|
41
|
Yadav DB, Maloney JA, Wildsmith KR, Fuji RN, Meilandt WJ, Solanoy H, Lu Y, Peng K, Wilson B, Chan P, Gadkar K, Kosky A, Goo M, Daugherty A, Couch JA, Keene T, Hayes K, Nikolas LJ, Lane D, Switzer R, Adams E, Watts RJ, Scearce-Levie K, Prabhu S, Shafer L, Thakker DR, Hildebrand K, Atwal JK. Widespread brain distribution and activity following i.c.v. infusion of anti-β-secretase (BACE1) in nonhuman primates. Br J Pharmacol 2017; 174:4173-4185. [PMID: 28859225 DOI: 10.1111/bph.14021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/09/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The potential for therapeutic antibody treatment of neurological diseases is limited by poor penetration across the blood-brain barrier. I.c.v. delivery is a promising route to the brain; however, it is unclear how efficiently antibodies delivered i.c.v. penetrate the cerebrospinal spinal fluid (CSF)-brain barrier and distribute throughout the brain parenchyma. EXPERIMENTAL APPROACH We evaluated the pharmacokinetics and pharmacodynamics of an inhibitory monoclonal antibody against β-secretase 1 (anti-BACE1) following continuous infusion into the left lateral ventricle of healthy adult cynomolgus monkeys. KEY RESULTS Animals infused with anti-BACE1 i.c.v. showed a robust and sustained reduction (~70%) of CSF amyloid-β (Aβ) peptides. Antibody distribution was near uniform across the brain parenchyma, ranging from 20 to 40 nM, resulting in a ~50% reduction of Aβ in the cortical parenchyma. In contrast, animals administered anti-BACE1 i.v. showed no significant change in CSF or cortical Aβ levels and had a low (~0.6 nM) antibody concentration in the brain. CONCLUSION AND IMPLICATIONS I.c.v. administration of anti-BACE1 resulted in enhanced BACE1 target engagement and inhibition, with a corresponding dramatic reduction in CNS Aβ concentrations, due to enhanced brain exposure to antibody.
Collapse
Affiliation(s)
| | - Janice A Maloney
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Kristin R Wildsmith
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Reina N Fuji
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Kun Peng
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Blair Wilson
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Kapil Gadkar
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Andrew Kosky
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Marisa Goo
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Ann Daugherty
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Jessica A Couch
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | - Eric Adams
- Northern Biomedical Research, Norton Shores, MI, USA
| | - Ryan J Watts
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | | | - Saileta Prabhu
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
42
|
Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport. EBioMedicine 2017; 24:76-92. [PMID: 28923680 PMCID: PMC5652008 DOI: 10.1016/j.ebiom.2017.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.
Collapse
|
43
|
Freskgård PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology 2017; 120:38-55. [DOI: 10.1016/j.neuropharm.2016.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
|
44
|
Pansieri J, Plissonneau M, Stransky-Heilkron N, Dumoulin M, Heinrich-Balard L, Rivory P, Morfin JF, Toth E, Saraiva MJ, Allémann E, Tillement O, Forge V, Lux F, Marquette C. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (Lond) 2017. [PMID: 28635419 DOI: 10.2217/nnm-2017-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses. MATERIALS & METHODS The ability of the functionalized nanoparticles to target amyloid fibrils made of β-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy. RESULTS Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with KD values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles. Moreover, they allowed the detection of amyloid deposits on pathological tissues. CONCLUSION Such functionalized nanoparticles could represent promising flexible and multimodal imaging tools for the early diagnostic of amyloid diseases, in other words, Alzheimer's disease, Type 2 diabetes mellitus and the familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Jonathan Pansieri
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Marie Plissonneau
- Nano-H S.A.S, 38070 Saint Quentin Fallavier, France.,Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Nathalie Stransky-Heilkron
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Mireille Dumoulin
- Laboratory of Enzymology & Protein Folding, Centre for Protein Engineering, InBioS, University of Liege Sart Tilman, 4000 Liege, Belgium
| | - Laurence Heinrich-Balard
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Pascaline Rivory
- University of Lyon, University of Claude Bernard Lyon 1, ISPB Faculté de Pharmacie, MATEIS UMR CNRS 5510, 69373 Lyon, France
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Eva Toth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans, France
| | - Maria Joao Saraiva
- Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal; Molecular Neurobiology Group, IBMC - Institute for Molecular & Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Pharmaceutical technology, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Olivier Tillement
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Vincent Forge
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - François Lux
- Institut Lumière Matière, University of Lyon, University of Claude Bernard Lyon 1, CNRS, F-69622, Lyon, France
| | - Christel Marquette
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Sciences Division, CNRS, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
45
|
Peña-Altamira E, Petralla S, Massenzio F, Virgili M, Bolognesi ML, Monti B. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging and Alzheimer's Disease. Front Aging Neurosci 2017. [PMID: 28638339 PMCID: PMC5461295 DOI: 10.3389/fnagi.2017.00175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of microglia, the immune cells of the brain, has experienced a renaissance after the discovery of microglia polarization. In fact, the concept that activated microglia can shift into the M1 pro-inflammatory or M2 neuroprotective phenotypes, depending on brain microenvironment, has completely changed the understanding of microglia in brain aging and neurodegenerative diseases. Microglia polarization is particularly important in aging since an increased inflammatory status of body compartments, including the brain, has been reported in elderly people. In addition, inflammatory markers, mainly derived from activated microglia, are widely present in neurodegenerative diseases. Microglial inflammatory dysfunction, also linked to microglial senescence, has been extensively demonstrated and associated with cognitive impairment in neuropathological conditions related to aging. In fact, microglia polarization is known to influence cognitive function and has therefore become a main player in neurodegenerative diseases leading to dementia. As the life span of human beings increases, so does the prevalence of cognitive dysfunction. Thus, therapeutic strategies aimed to modify microglia polarization are currently being developed. Pharmacological approaches able to shift microglia from M1 pro-inflammatory to M2 neuroprotective phenotype are actually being studied, by acting on many different molecular targets, such as glycogen synthase kinase-3 (GSK3) β, AMP-activated protein kinase (AMPK), histone deacetylases (HDACs), etc. Furthermore, nutritional approaches can also modify microglia polarization and, consequently, impact cognitive function. Several bioactive compounds normally present in foods, such as polyphenols, can have anti-inflammatory effects on microglia. Both pharmacological and nutritional approaches seem to be promising, but still need further development. Here we review recent data on these approaches and propose that their combination could have a synergistic effect to counteract cognitive aging impairment and Alzheimer's disease (AD) through immunomodulation of microglia polarization, i.e., by driving the shift of activated microglia from the pro-inflammatory M1 to the neuroprotective M2 phenotype.
Collapse
Affiliation(s)
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
46
|
Bachurin SO, Bovina EV, Ustyugov AA. Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Med Res Rev 2017; 37:1186-1225. [PMID: 28084618 DOI: 10.1002/med.21434] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/18/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by a chronic and progressive neurodegenerative process resulting from the intracellular and extracellular accumulation of fibrillary proteins: beta-amyloid and hyperphosphorylated Tau. Overaccumulation of these aggregates leads to synaptic dysfunction and subsequent neuronal loss. The precise molecular mechanisms of AD are still not fully understood but it is clear that AD is a multifactorial disorder and that advanced age is the main risk factor. Over the last decade, more than 50 drug candidates have successfully passed phase II clinical trials, but none has passed phase III. Here, we summarize data on current "anti-Alzheimer's" agents currently in clinical trials based on findings available in the Thomson Reuters «Integrity» database, on the public website www.clinicaltrials.gov, and on database of the website Alzforum.org. As a result, it was possible to outline some major trends in AD drug discovery: (i) the development of compounds acting on the main stages of the pathogenesis of the disease (the so-called "disease-modifying agents") - these drugs could potentially slow the development of structural and functional abnormalities in the central nervous system providing sustainable improvements of cognitive functions, which persist even after drug withdrawal; (ii) focused design of multitargeted drugs acting on multiple molecular targets involved in the pathogenesis of the disease; (3) finally, the repositioning of old drugs for new (anti-Alzheimer's) application offers a very attractive approach to facilitate the completion of clinical trials.
Collapse
Affiliation(s)
- Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| | - Elena V Bovina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| |
Collapse
|
47
|
Bateman RJ, Benzinger TL, Berry S, Clifford DB, Duggan C, Fagan AM, Fanning K, Farlow MR, Hassenstab J, McDade EM, Mills S, Paumier K, Quintana M, Salloway SP, Santacruz A, Schneider LS, Wang G, Xiong C. The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model. Alzheimers Dement 2017; 13:8-19. [PMID: 27583651 PMCID: PMC5218895 DOI: 10.1016/j.jalz.2016.07.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) trial is an adaptive platform trial testing multiple drugs to slow or prevent the progression of Alzheimer's disease in autosomal dominant Alzheimer's disease (ADAD) families. With completion of enrollment of the first two drug arms, the DIAN-TU now plans to add new drugs to the platform, designated as the Next Generation (NexGen) prevention trial. METHODS In collaboration with ADAD families, philanthropic organizations, academic leaders, the DIAN-TU Pharma Consortium, the National Institutes of Health, and regulatory colleagues, the DIAN-TU developed innovative clinical study designs for the DIAN-TU NexGen prevention trial. RESULTS Our expanded trial toolbox consists of a disease progression model for ADAD, primary end point DIAN-TU cognitive performance composite, biomarker development, self-administered cognitive assessments, adaptive dose adjustments, and blinded data collection through the last participant completion. CONCLUSION These steps represent elements to improve efficacy of the adaptive platform trial and a continued effort to optimize prevention and treatment trials in ADAD.
Collapse
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
| | - Tammie L Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | | | - David B Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Cynthia Duggan
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Kathleen Fanning
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University, Indianapolis, IN, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric M McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Susan Mills
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Katrina Paumier
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Stephen P Salloway
- Memory and Aging Program, Butler Hospital, Brown Medical School, Providence, RI, USA
| | - Anna Santacruz
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Guoqiao Wang
- Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
48
|
Fernandez-Martos CM, Atkinson RAK, Chuah MI, King AE, Vickers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 3:92-106. [PMID: 29067321 PMCID: PMC5651376 DOI: 10.1016/j.trci.2016.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Combination therapy approaches may be necessary to address the many facets of pathologic change in the brain in Alzheimer's disease (AD). The drugs leptin and pioglitazone have previously been shown individually to have neuroprotective and anti-inflammatory actions, respectively, in animal models. METHODS We studied the impact of combined leptin and pioglitazone treatment in 6-month-old APP/PS1 (APPswe/PSEN1dE9) transgenic AD mouse model. RESULTS We report that an acute 2-week treatment with combined leptin and pioglitazone resulted in a reduction of spatial memory deficits (Y maze) and brain β-amyloid levels (soluble β-amyloid and amyloid plaque burden) relative to vehicle-treated animals. Combination treatment was also associated with amelioration in plaque-associated neuritic pathology and synapse loss, and also a significantly reduced neocortical glial response. DISCUSSION Combination therapy with leptin and pioglitazone ameliorates pathologic changes in APP/PS1 mice and may represent a potential treatment approach for AD.
Collapse
Affiliation(s)
- Carmen M Fernandez-Martos
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Meng I Chuah
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
49
|
Computational approach for the assessment of inhibitory potency against beta-amyloid aggregation. Bioorg Med Chem Lett 2016; 27:212-216. [PMID: 27914799 DOI: 10.1016/j.bmcl.2016.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
Beta-amyloid (Aβ) plaques are one of the hallmarks of Alzheimer's disease. Their presence in the brain leads to neurodegeneration and memory decline. Therefore, search for new drugs able to decrease formation of such deposits is of great interest. Our previously developed multifunctional compounds inhibited transformation of monomers into fibrils. Herein, we describe the computational approach for the assessment of inhibitory activity against Aβ aggregation. The influence of novel inhibitors on amyloid Aβ17-42 was studied by employing of molecular docking and all-atom molecular dynamics simulations. We found that the number of intermolecular backbone hydrogen bonds at the end of 100ns MD simulation was correlated with the level of anti-aggregation potency of studied compounds. Such data may be successfully applied to in silico design of novel inhibitors of Aβ aggregation.
Collapse
|
50
|
Kuruva CS, Reddy PH. Amyloid beta modulators and neuroprotection in Alzheimer's disease: a critical appraisal. Drug Discov Today 2016; 22:223-233. [PMID: 27794478 DOI: 10.1016/j.drudis.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/16/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022]
Abstract
Multiple cellular changes have been identified as being involved in Alzheimer's disease (AD) pathogenesis, including mitochondrial damage, synaptic loss, amyloid beta (Aβ) production and/or accumulation, inflammatory responses, and phosphorylated tau formation and/or accumulation. Studies have established that Aβ-induced synaptic dysfunction is dependent on abnormal amyloid precursor protein (APP) processing caused by β- and γ-secretases, resulting in the generation of Aβ. The Aβ formed as a result of abnormal APP processing induces phosphorylated tau and activates glycogen synthase kinase-3β (GSK3β) and cyclin-dependent kinase-5 (CDK5). Here, we review the latest research on the development of Aβ modulators for neuroprotection in AD. We also review the use of molecular inhibitors as therapeutic targets in AD.
Collapse
Affiliation(s)
- Chandra Sekhar Kuruva
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, USA.
| |
Collapse
|