1
|
Gutiérrez Fuster R, León A, Aparicio GI, Brizuela Sotelo F, Scorticati C. Combined additive effects of neuronal membrane glycoprotein GPM6a and the intercellular cell adhesion molecule ICAM5 on neuronal morphogenesis. J Neurochem 2025; 169:e16231. [PMID: 39352694 DOI: 10.1111/jnc.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 12/20/2024]
Abstract
The mechanisms underlying neuronal development and synaptic formation in the brain depend on intricate cellular and molecular processes. The neuronal membrane glycoprotein GPM6a promotes neurite elongation, filopodia/spine formation, and synapse development, yet its molecular mechanisms remain unknown. Since the extracellular domains of GPM6a (ECs) command its function, we investigated the interaction between ICAM5, the neuronal member of the intercellular adhesion molecule (ICAM) family, and GPM6a's ECs. Our study aimed to explore the functional relationship between GPM6a and ICAM5 in hippocampal culture neurons and cell lines. Immunostaining of 15 days in vitro (DIV) neurons revealed significant co-localization between endogenous GPM6a clusters and ICAM5 clusters in the dendritic shaft. These results were further corroborated by overexpressing GPM6a and ICAM5 in N2a cells and hippocampal neurons at 5 DIV. Moreover, results from the co-immunoprecipitations and cell aggregation assays prove the cis and trans interaction between both proteins in GPM6a/ICAM5 overexpressing HEK293 cells. Additionally, GPM6a and ICAM5 overexpression additively enhanced neurite length, the number of neurites in N2a cells, and filopodia formation in 5 DIV neurons, indicating their cooperative role. These findings highlight the dynamic association between GPM6a and ICAM5 during neuronal development, offering insights into their contributions to neurite outgrowth, filopodia formation, and cell-cell interactions.
Collapse
Affiliation(s)
- R Gutiérrez Fuster
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - A León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - G I Aparicio
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - F Brizuela Sotelo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - C Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
2
|
Gao H, Chen Z, Zhao L, Ji C, Xing F. Cellular functions, molecular signalings and therapeutic applications: Translational potential of deubiquitylating enzyme USP9X as a drug target in cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189099. [PMID: 38582329 DOI: 10.1016/j.bbcan.2024.189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
4
|
Riboldi GM, Faravelli I, Rinchetti P, Lotti F. SMN post-translational modifications in spinal muscular atrophy. Front Cell Neurosci 2023; 17:1092488. [PMID: 36874214 PMCID: PMC9981653 DOI: 10.3389/fncel.2023.1092488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
Since its first identification as the gene responsible for spinal muscular atrophy (SMA), the range of survival motor neuron (SMN) protein functions has increasingly expanded. This multimeric complex plays a crucial role in a variety of RNA processing pathways. While its most characterized function is in the biogenesis of ribonucleoproteins, several studies have highlighted the SMN complex as an important contributor to mRNA trafficking and translation, axonal transport, endocytosis, and mitochondria metabolism. All these multiple functions need to be selectively and finely modulated to maintain cellular homeostasis. SMN has distinct functional domains that play a crucial role in complex stability, function, and subcellular distribution. Many different processes were reported as modulators of the SMN complex activities, although their contribution to SMN biology still needs to be elucidated. Recent evidence has identified post-translational modifications (PTMs) as a way to regulate the pleiotropic functions of the SMN complex. These modifications include phosphorylation, methylation, ubiquitination, acetylation, sumoylation, and many other types. PTMs can broaden the range of protein functions by binding chemical moieties to specific amino acids, thus modulating several cellular processes. Here, we provide an overview of the main PTMs involved in the regulation of the SMN complex with a major focus on the functions that have been linked to SMA pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhao Q, Li Y, Du X, Chen X, Jiao Q, Jiang H. Effects of deubiquitylases on the biological behaviors of neural stem cells. Dev Neurobiol 2021; 81:847-858. [PMID: 34241974 DOI: 10.1002/dneu.22844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
New neurons are generated throughout life in distinct regions of the mammalian brain due to the proliferation and differentiation of neural stem cells (NSCs). Ubiquitin, a post-translational modification of cellular proteins, is an important factor in regulating neurogenesis. Deubiquitination is a biochemical process that mediates the removal of ubiquitin moieties from ubiquitin-conjugated substrates. Recent studies have provided growing evidence that deubiquitylases (DUBs) which reverse ubiquitylation process play critical roles in NSCs maintenance, differentiation and maturation. This review mainly focused on the relationship of DUBs and NSCs, and further summarized recent advances in our understanding of DUBs on regulating NSCs biological behaviors.
Collapse
Affiliation(s)
- Qiqi Zhao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yixin Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes. Proc Natl Acad Sci U S A 2020; 118:2015794118. [PMID: 33443154 DOI: 10.1073/pnas.2015794118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.
Collapse
|
8
|
Bame M, McInnis MG, O'Shea KS. MicroRNA Alterations in Induced Pluripotent Stem Cell-Derived Neurons from Bipolar Disorder Patients: Pathways Involved in Neuronal Differentiation, Axon Guidance, and Plasticity. Stem Cells Dev 2020; 29:1145-1159. [PMID: 32438891 PMCID: PMC7469698 DOI: 10.1089/scd.2020.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BP) is a complex psychiatric condition characterized by severe fluctuations in mood for which underlying pathological mechanisms remain unclear. Family and twin studies have identified a hereditary component to the disorder, but a single causative gene (or set of genes) has not been identified. MicroRNAs (miRNAs) are small, noncoding RNAs ∼20 nucleotides in length, that are responsible for the posttranslational regulation of multiple genes. They have been shown to play important roles in neural development as well as in the adult brain, and several miRNAs have been reported to be dysregulated in postmortem brain tissue isolated from bipolar patients. Because there are no viable cellular models to study BP, we have taken advantage of the recent discovery that somatic cells can be reprogrammed to pluripotency then directed to form the full complement of neural cells. Analysis of RNAs extracted from Control and BP patient-derived neurons identified 58 miRNAs that were differentially expressed between the two groups. Using quantitative polymerase chain reaction we validated six miRNAs that were elevated and two miRNAs that were expressed at lower levels in BP-derived neurons. Analysis of the targets of the miRNAs indicate that they may regulate a number of cellular pathways, including axon guidance, Mapk, Ras, Hippo, Neurotrophin, and Wnt signaling. Many are involved in processes previously implicated in BP, such as cell migration, axon guidance, dendrite and synapse development, and function. We have validated targets of several different miRNAs, including AXIN2, BDNF, RELN, and ANK3 as direct targets of differentially expressed miRNAs using luciferase assays. Identification of pathways altered in patient-derived neurons suggests that disruption of these regulatory networks that may contribute to the complex phenotypes in BP.
Collapse
Affiliation(s)
- Monica Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Sue O'Shea
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Das S, Ramakrishna S, Kim KS. Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders. Mol Cells 2020; 43:203-214. [PMID: 32133826 PMCID: PMC7103888 DOI: 10.14348/molcells.2020.2289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity,axonal growth, and proper function of the nervous system.Moreover, mutations or downregulation of certain DUBshave been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Dho SE, Silva-Gagliardi N, Morgese F, Coyaud E, Lamoureux E, Berry DM, Raught B, McGlade CJ. Proximity interactions of the ubiquitin ligase Mind bomb 1 reveal a role in regulation of epithelial polarity complex proteins. Sci Rep 2019; 9:12471. [PMID: 31462741 PMCID: PMC6713736 DOI: 10.1038/s41598-019-48902-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
MIB1 belongs to the RING domain containing family of E3 ubiquitin ligases. In vertebrates, MIB1 plays an essential role in activation of Notch signaling during development, through the ubiquitination and endocytosis of Notch ligands. More recently, Notch independent functions for MIB1 have been described in centriole homeostasis, dendritic spine outgrowth and directional cell migration. Here we use proximity-dependent biotin identification (BioID) to define the MIB1 interactome that included 163 high confidence interactions with polypeptides linked to centrosomes and cilia, endosomal trafficking, RNA and DNA processing, the ubiquitin system, and cell adhesion. Biochemical analysis identified several proteins within these groups including CCDC14 and EPS15 that were ubiquitinated but not degraded when co-expressed with MIB1. The MIB1 interactome included the epithelial cell polarity protein, EPB41L5. MIB1 binds to and ubiquitinates EPB41L5 resulting in its degradation. Furthermore, MIB1 ubiquitinates the EPB41L5-associated polarity protein CRB1, an important determinant of the apical membrane. In polarized cells, MIB1 localized to the lateral membrane with EPB41L5 and to the tight junction with CRB1, CRB3 and ZO1. Furthermore, over expression of MIB1 resulted in altered epithelial cell morphology and apical membrane expansion. These results support a role for MIB1 in regulation of polarized epithelial cell morphology.
Collapse
Affiliation(s)
- Sascha E Dho
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Nancy Silva-Gagliardi
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Fabio Morgese
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Emily Lamoureux
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Donna M Berry
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - C Jane McGlade
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Han KJ, Wu Z, Pearson CG, Peng J, Song K, Liu CW. Deubiquitylase USP9X maintains centriolar satellite integrity by stabilizing pericentriolar material 1 protein. J Cell Sci 2019; 132:jcs.221663. [PMID: 30584065 DOI: 10.1242/jcs.221663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Centriolar satellites are small cytoplasmic granules that play important roles in regulating the formation of centrosomes and primary cilia. Ubiquitylation of satellite proteins, including the core satellite scaffold protein pericentriolar material 1 (PCM1), regulates centriolar satellite integrity. Currently, deubiquitylases that control centriolar satellite integrity have not been identified. In this study, we find that the deubiquitylase USP9X binds PCM1, and antagonizes PCM1 ubiquitylation to protect it from proteasomal degradation. Knockdown of USP9X in human cell lines reduces PCM1 protein levels, disrupts centriolar satellite particles and causes localization of satellite proteins, such as CEP290, to centrosomes. Interestingly, knockdown of mindbomb 1 (MIB1), a ubiquitin ligase that promotes PCM1 ubiquitylation and degradation, in USP9X-depleted cells largely restores PCM1 protein levels and corrects defects caused by the loss of USP9X. Overall, our study reveals that USP9X is a constituent of centriolar satellites and functions to maintain centriolar satellite integrity by stabilizing PCM1.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
13
|
Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G. Cell Signaling in Neuronal Stem Cells. Cells 2018; 7:E75. [PMID: 30011912 PMCID: PMC6070865 DOI: 10.3390/cells7070075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- School of Medicine, Universidad Rafael Nuñez, Cartagena 130001, Colombia.
| | - Roberto Navarro Quiroz
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta 470002, Colombia.
| | - Mostapha Ahmad
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | - Lorena Gomez Escorcia
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | | | | | - Gustavo Aroca Martinez
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- Clinica de la Costa, Barranquilla 080002, Colombia.
| |
Collapse
|
14
|
Ratliff M, Hill-Harfe KL, Gleason EJ, Ling H, Kroft TL, L'Hernault SW. MIB-1 Is Required for Spermatogenesis and Facilitates LIN-12 and GLP-1 Activity in Caenorhabditis elegans. Genetics 2018; 209:173-193. [PMID: 29531012 PMCID: PMC5935030 DOI: 10.1534/genetics.118.300807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Covalent attachment of ubiquitin to substrate proteins changes their function or marks them for proteolysis, and the specificity of ubiquitin attachment is mediated by the numerous E3 ligases encoded by animals. Mind Bomb is an essential E3 ligase during Notch pathway signaling in insects and vertebrates. While Caenorhabditis elegans encodes a Mind Bomb homolog (mib-1), it has never been recovered in the extensive Notch suppressor/enhancer screens that have identified numerous pathway components. Here, we show that C. elegans mib-1 null mutants have a spermatogenesis-defective phenotype that results in a heterogeneous mixture of arrested spermatocytes, defective spermatids, and motility-impaired spermatozoa. mib-1 mutants also have chromosome segregation defects during meiosis, molecular null mutants are intrinsically temperature-sensitive, and many mib-1 spermatids contain large amounts of tubulin. These phenotypic features are similar to the endogenous RNA intereference (RNAi) mutants, but mib-1 mutants do not affect RNAi. MIB-1 protein is expressed throughout the germ line with peak expression in spermatocytes followed by segregation into the residual body during spermatid formation. C. elegans mib-1 expression, while upregulated during spermatogenesis, also occurs somatically, including in vulva precursor cells. Here, we show that mib-1 mutants suppress both lin-12 and glp-1 (C. elegans Notch) gain-of-function mutants, restoring anchor cell formation and a functional vulva to the former and partly restoring oocyte production to the latter. However, suppressed hermaphrodites are only observed when grown at 25°, and they are self-sterile. This probably explains why mib-1 was not previously recovered as a Notch pathway component in suppressor/enhancer selection experiments.
Collapse
Affiliation(s)
- Miriam Ratliff
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Katherine L Hill-Harfe
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322
| | | | - Huiping Ling
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Tim L Kroft
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Steven W L'Hernault
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
15
|
Kanungo J, Goswami MT, Pant HC. Notch and Cdk5 in Zebrafish Mindbomb Mutant: Co-regulation or Coincidence? Folia Biol (Praha) 2018; 64:35-40. [PMID: 30338754 PMCID: PMC6196738 DOI: 10.14712/fb2018064020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Notch signalling is critical for the development of the nervous system. In the zebrafish mindbomb mutants, disruption of E3 ubiquitin ligase activity inhibits Notch signalling. In these mutant embryos, precocious development of primary neurons leading to depletion of neural progenitor cells results in a neurogenic phenotype characterized by defects in neural patterning and brain development. Cyclin-dependent kinase 5 (Cdk5), a predominant neuronal kinase, is involved in a variety of essential functions of the nervous system. Most recently, mammalian studies on Notch and Cdk5 regulating each other's function have been emerging. The status of Cdk5 in the mindbomb mutant embryos with excessive primary neurons is not known. In situ hybridization of the zebrafish mindbomb mutant embryos uncovered a robust upregulation in Cdk5 expression but with a reduced Cdk5 activity. The implications of these findings in both the mammalian system and zebrafish are discussed in this mini-review to provide a glimpse into the relationship between Notch and Cdk5 that may explain certain neurodevelopmental defects associated with either mutations in ubiquitin ligase or altered expression of Cdk5.
Collapse
Affiliation(s)
- J Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
- National Institute of Neuronal Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | - M T Goswami
- National Institute of Children's Health and Development, National Institute of Health, Bethesda, MD, USA
| | - H C Pant
- National Institute of Neuronal Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway. Proc Natl Acad Sci U S A 2017; 114:E9280-E9289. [PMID: 29078376 DOI: 10.1073/pnas.1712560114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway.
Collapse
|
18
|
Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors. Sci Rep 2017; 7:8109. [PMID: 28808228 PMCID: PMC5556043 DOI: 10.1038/s41598-017-05451-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Development of neural progenitors depends upon the coordination of appropriate intrinsic responses to extrinsic signalling pathways. Here we show the deubiquitylating enzyme, Usp9x regulates components of both intrinsic and extrinsic fate determinants. Nestin-cre mediated ablation of Usp9x from embryonic neural progenitors in vivo resulted in a transient disruption of cell adhesion and apical-basal polarity and, an increased number and ectopic localisation of intermediate neural progenitors. In contrast to other adhesion and polarity proteins, levels of β-catenin protein, especially S33/S37/T41 phospho-β-catenin, were markedly increased in Usp9x−/Y embryonic cortices. Loss of Usp9x altered composition of the β-catenin destruction complex possibly impeding degradation of S33/S37/T41 phospho-β-catenin. Pathway analysis of transcriptomic data identified Wnt signalling as significantly affected in Usp9x−/Y embryonic brains. Depletion of Usp9x in cultured human neural progenitors resulted in Wnt-reporter activation. Usp9x also regulated components of the Notch signalling pathway. Usp9x co-localized and associated with both Itch and Numb in embryonic neocortices. Loss of Usp9x led to decreased Itch and Numb levels, and a concomitant increase in levels of the Notch intracellular domain as well as, increased expression of the Notch target gene Hes5. Therefore Usp9x modulates and potentially coordinates multiple fate determinants in neural progenitors.
Collapse
|
19
|
Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, Mishra A. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front Mol Neurosci 2017; 10:151. [PMID: 28579943 PMCID: PMC5437216 DOI: 10.3389/fnmol.2017.00151] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
20
|
Domsch K, Acs A, Obermeier C, Nguyen HT, Reim I. Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles. PLoS One 2017; 12:e0173733. [PMID: 28282454 PMCID: PMC5345843 DOI: 10.1371/journal.pone.0173733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/24/2017] [Indexed: 12/01/2022] Open
Abstract
The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis.
Collapse
Affiliation(s)
- Katrin Domsch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Acs
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Obermeier
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hanh T. Nguyen
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
21
|
Abera MB, Xiao J, Nofziger J, Titus S, Southall N, Zheng W, Moritz KE, Ferrer M, Cherry JJ, Androphy EJ, Wang A, Xu X, Austin C, Fischbeck KH, Marugan JJ, Burnett BG. ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice. JCI Insight 2016; 1:e88427. [PMID: 27882347 DOI: 10.1172/jci.insight.88427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease and one of the leading inherited causes of infant mortality. SMA results from insufficient levels of the survival motor neuron (SMN) protein, and studies in animal models of the disease have shown that increasing SMN protein levels ameliorates the disease phenotype. Our group previously identified and optimized a new series of small molecules, with good potency and toxicity profiles and reasonable pharmacokinetics, that were able to increase SMN protein levels in SMA patient-derived cells. We show here that ML372, a representative of this series, almost doubles the half-life of residual SMN protein expressed from the SMN2 locus by blocking its ubiquitination and subsequent degradation by the proteasome. ML372 increased SMN protein levels in muscle, spinal cord, and brain tissue of SMA mice. Importantly, ML372 treatment improved the righting reflex and extended survival of a severe mouse model of SMA. These results demonstrate that slowing SMN degradation by selectively inhibiting its ubiquitination can improve the motor phenotype and lifespan of SMA model mice.
Collapse
Affiliation(s)
- Mahlet B Abera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| | - Jingbo Xiao
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jonathan Nofziger
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steve Titus
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Noel Southall
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wei Zheng
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kasey E Moritz
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| | - Marc Ferrer
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Jonathan J Cherry
- Department of Dermatology,, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Elliot J Androphy
- Department of Dermatology,, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Amy Wang
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Xin Xu
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Christopher Austin
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Izrailit J, Jaiswal A, Zheng W, Moran MF, Reedijk M. Cellular stress induces TRB3/USP9x-dependent Notch activation in cancer. Oncogene 2016; 36:1048-1057. [PMID: 27593927 DOI: 10.1038/onc.2016.276] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/29/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Expression of the Notch ligand JAG1 and Notch pathway activation promote poor prognosis, basal-like breast cancer. We have recently shown that the pseudokinase Tribbles homolog 3 (TRB3) regulates JAG1 expression in this malignancy. TRB3 is a stress and metabolic sensor, and here we show that nutrient deprivation or endoplasmic reticulum stress markedly upregulate TRB3, which serves as a scaffold for the deubiquitinase USP9x. USP9x in turn stimulates JAG1 activity through two mechanisms: (1) through TRB3 deubiquitination and stabilization, and (2) through deubiquitination and activation of Mind Bomb 1, an E3 ligase required for JAG1 ubiquitination-mediated endocytosis and Notch activation. These USP9x activities are confined to the signal-sending cell of a cell pair undergoing Notch signaling. We demonstrate that USP9x is required for TRB3 upregulation and Notch activation in response to cellular stress in basal-like breast cancer cells. These data suggest that TRB3 functions as a sensor of tumor microenvironmental stress and together with USP9x induces the cell survival and tumor-promoting activities of Notch. These findings identify a novel mechanism by which cancer cells survive in their hostile environment and provide potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- J Izrailit
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | - A Jaiswal
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | - W Zheng
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada
| | - M F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - M Reedijk
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada.,Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr Opin Struct Biol 2016; 41:38-45. [PMID: 27285058 DOI: 10.1016/j.sbi.2016.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
The Notch signaling pathway has a critical role in cell fate determination and tissue homeostasis in a variety of different lineages. In the context of normal Notch signaling, the Notch receptor of the 'signal-receiving' cell is activated in trans by a Notch ligand from a neighboring 'signal-sending' cell. Genetic studies in several model organisms have established that ubiquitination of the Notch ligand, and its regulated endocytosis, is essential for transmission of this activation signal. In mammals, this ubiquitination step is dependent on the protein Mind bomb 1 (Mib1), a large multi-domain RING-type E3 ligase, and its direct interaction with the intracellular tails of Notch ligand molecules. Here, we discuss our current understanding of Mind bomb structure and mechanism in the context of Notch signaling and beyond.
Collapse
|
24
|
Oishi S, Premarathne S, Harvey TJ, Iyer S, Dixon C, Alexander S, Burne THJ, Wood SA, Piper M. Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep 2016; 6:25783. [PMID: 27181636 PMCID: PMC4867638 DOI: 10.1038/srep25783] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023] Open
Abstract
Within the adult mammalian brain, neurogenesis persists within two main discrete locations, the subventricular zone lining the lateral ventricles, and the hippocampal dentate gyrus. Neurogenesis within the adult dentate gyrus contributes to learning and memory, and deficiencies in neurogenesis have been linked to cognitive decline. Neural stem cells within the adult dentate gyrus reside within the subgranular zone (SGZ), and proteins intrinsic to stem cells, and factors within the niche microenvironment, are critical determinants for development and maintenance of this structure. Our understanding of the repertoire of these factors, however, remains limited. The deubiquitylating enzyme USP9X has recently emerged as a mediator of neural stem cell identity. Furthermore, mice lacking Usp9x exhibit a striking reduction in the overall size of the adult dentate gyrus. Here we reveal that the development of the postnatal SGZ is abnormal in mice lacking Usp9x. Usp9x conditional knockout mice exhibit a smaller hippocampus and shortened dentate gyrus blades from as early as P7. Moreover, the analysis of cellular populations within the dentate gyrus revealed reduced stem cell, neuroblast and neuronal numbers and abnormal neuroblast morphology. Collectively, these findings highlight the critical role played by USP9X in the normal morphological development of the postnatal dentate gyrus.
Collapse
Affiliation(s)
- Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Susitha Premarathne
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Swati Iyer
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chantelle Dixon
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Suzanne Alexander
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, 4077, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas H J Burne
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, 4077, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stephen A Wood
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
25
|
Liu X, BoseDasgupta S, Jayachandran R, Studer V, Rühl S, Stiess M, Pieters J. Activation of the cAMP/protein kinase A signalling pathway by coronin 1 is regulated by cyclin-dependent kinase 5 activity. FEBS Lett 2016; 590:279-287. [PMID: 26823173 DOI: 10.1002/1873-3468.12046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Coronins constitute a family of conserved proteins expressed in all eukaryotes that have been implicated in the regulation of a wide variety of cellular activities. Recent work showed an essential role for coronin 1 in the modulation of the cAMP/PKA pathway in neurons through the interaction of coronin 1 with the G protein subtype Gαs in a stimulus-dependent manner, but the molecular mechanism regulating coronin 1-Gαs interaction remains unclear. We here show that phosphorylation of coronin 1 on Thr(418/424) by cyclin-dependent kinase (CDK) 5 activity was responsible for coronin 1-Gαs association and the modulation of cAMP production. Together these results show an essential role for CDK5 activity in promoting the coronin 1-dependent cAMP/PKA pathway.
Collapse
Affiliation(s)
| | | | | | - Vera Studer
- Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
26
|
Sturgeon M, Davis D, Albers A, Beatty D, Austin R, Ferguson M, Tounsel B, Liebl FLW. The Notch ligand E3 ligase, Mind Bomb1, regulates glutamate receptor localization in Drosophila. Mol Cell Neurosci 2015; 70:11-21. [PMID: 26596173 DOI: 10.1016/j.mcn.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
The postsynaptic density (PSD) is a protein-rich network important for the localization of postsynaptic glutamate receptors (GluRs) and for signaling downstream of these receptors. Although hundreds of PSD proteins have been identified, many are functionally uncharacterized. We conducted a reverse genetic screen for mutations that affected GluR localization using Drosophila genes that encode homologs of mammalian PSD proteins. 42.8% of the mutants analyzed exhibited a significant change in GluR localization at the third instar larval neuromuscular junction (NMJ), a model synapse that expresses homologs of AMPA receptors. We identified the E3 ubiquitin ligase, Mib1, which promotes Notch signaling, as a regulator of synaptic GluR localization. Mib1 positively regulates the localization of the GluR subunits GluRIIA, GluRIIB, and GluRIIC. Mutations in mib1 and ubiquitous expression of Mib1 that lacks its ubiquitin ligase activity result in the loss of synaptic GluRIIA-containing receptors. In contrast, overexpression of Mib1 in all tissues increases postsynaptic levels of GluRIIA. Cellular levels of Mib1 are also important for the structure of the presynaptic motor neuron. While deficient Mib1 signaling leads to overgrowth of the NMJ, ubiquitous overexpression of Mib1 results in a reduction in the number of presynaptic motor neuron boutons and branches. These synaptic changes may be secondary to attenuated glutamate release from the presynaptic motor neuron in mib1 mutants as mib1 mutants exhibit significant reductions in the vesicle-associated protein cysteine string protein and in the frequency of spontaneous neurotransmission.
Collapse
Affiliation(s)
- Morgan Sturgeon
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Dustin Davis
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Amanda Albers
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Derek Beatty
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Rik Austin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Matt Ferguson
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Brittany Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States.
| |
Collapse
|
27
|
McMillan BJ, Schnute B, Ohlenhard N, Zimmerman B, Miles L, Beglova N, Klein T, Blacklow SC. A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases. Mol Cell 2015; 57:912-924. [PMID: 25747658 DOI: 10.1016/j.molcel.2015.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/22/2014] [Accepted: 01/09/2015] [Indexed: 12/30/2022]
Abstract
Mind bomb (Mib) proteins are large, multi-domain E3 ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. This ubiquitination step marks the ligand proteins for epsin-dependent endocytosis, which is critical for in vivo Notch receptor activation. We present here crystal structures of the substrate recognition domains of Mib1, both in isolation and in complex with peptides derived from Notch ligands. The structures, in combination with biochemical, cellular, and in vivo assays, show that Mib1 contains two independent substrate recognition domains that engage two distinct epitopes from the cytoplasmic tail of the ligand Jagged1, one in the intracellular membrane proximal region and the other near the C terminus. Together, these studies provide insights into the mechanism of ubiquitin transfer by Mind bomb E3 ligases, illuminate a key event in ligand-induced activation of Notch receptors, and identify a potential target for therapeutic modulation of Notch signal transduction in disease.
Collapse
Affiliation(s)
| | | | | | - Brandon Zimmerman
- Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02215 USA
| | - Laura Miles
- Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02215 USA
| | - Natalia Beglova
- Harvard Medical School, Boston, MA 02115, USA; Beth-Israel Deaconess Medical Center, Boston, MA, 02215 USA
| | - Thomas Klein
- University of Dusseldorf, Dusseldorf 40225, Germany
| | - Stephen C Blacklow
- Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02215 USA.
| |
Collapse
|
28
|
Mertz J, Tan H, Pagala V, Bai B, Chen PC, Li Y, Cho JH, Shaw T, Wang X, Peng J. Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth. Mol Cell Proteomics 2015; 14:1898-910. [PMID: 25931508 DOI: 10.1074/mcp.m114.045898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development.
Collapse
Affiliation(s)
- Joseph Mertz
- From the ‡Departments of Structural Biology and Developmental Neurobiology
| | | | | | - Bing Bai
- From the ‡Departments of Structural Biology and Developmental Neurobiology
| | - Ping-Chung Chen
- From the ‡Departments of Structural Biology and Developmental Neurobiology
| | - Yuxin Li
- From the ‡Departments of Structural Biology and Developmental Neurobiology
| | | | - Timothy Shaw
- §St. Jude Proteomics Facility, ¶Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | - Junmin Peng
- From the ‡Departments of Structural Biology and Developmental Neurobiology, §St. Jude Proteomics Facility,
| |
Collapse
|
29
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Murtaza M, Jolly LA, Gecz J, Wood SA. La FAM fatale: USP9X in development and disease. Cell Mol Life Sci 2015; 72:2075-89. [PMID: 25672900 PMCID: PMC4427618 DOI: 10.1007/s00018-015-1851-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 11/12/2022]
Abstract
Deubiquitylating enzymes (DUBs), act downstream of ubiquitylation. As such, these post-post-translational modifiers function as the final arbitrators of a protein substrate’s ubiquitylation status, thus regulating its fate. In most instances, DUBs moderate the absolute level of a substrate, its locality or activity, rather than being an “all-or-none” phenomenon. Yet, disruption of this quantitative regulation can produce dramatic qualitative differences. The ubiquitin-specific protease 9X (USP9X/FAM) is a substrate-specific DUB, which displays an extraordinarily high level of sequence conservation from Drosophila to mammals. It is primarily the recent revelations of USP9X’s pivotal role in human cancers, both as oncogene or tumour suppressor, in developmental disorders including intellectual disability, epilepsy, autism and developmental delay that has led to a subsequent re-examination of its molecular and cellular functions. Results from experimental animal models have implicated USP9X in neurodegeneration, including Parkinson’s and Alzheimer’s disease, as well as autoimmune diseases. In this review, we describe the current and accumulated knowledge on the molecular, cellular and developmental aspects of USP9X function within the context of the biological consequences during normal development and disease.
Collapse
Affiliation(s)
- Mariyam Murtaza
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
31
|
Büchner A, Krumova P, Ganesan S, Bähr M, Eckermann K, Weishaupt JH. Sumoylation of p35 modulates p35/cyclin-dependent kinase (Cdk) 5 complex activity. Neuromolecular Med 2014; 17:12-23. [PMID: 25391294 DOI: 10.1007/s12017-014-8336-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinase (Cdk) 5 is critical for central nervous system development and neuron-specific functions including neurite outgrowth as well as synaptic function and plasticity. Cdk5 activity requires association with one of the two regulatory subunits, called p35 and p39. p35 redistribution as well as misregulation of Cdk5 activity is followed by cell death in several models of neurodegeneration. Posttranslational protein modification by small ubiquitin-related modifier (SUMO) proteins (sumoylation) has emerged as key regulator of protein targeting and protein/protein interaction. Under cell-free in vitro conditions, we found p35 covalently modified by SUMO1. Using both biochemical and FRET-/FLIM-based approaches, we demonstrated that SUMO2 is robustly conjugated to p35 in cells and identified the two major SUMO acceptor lysines in p35, K246 and K290. Furthermore, different degrees of oxidative stress resulted in differential p35 sumoylation, linking oxidative stress that is encountered in neurodegenerative diseases to the altered activity of Cdk5. Functionally, sumoylation of p35 increased the activity of the p35/Cdk5 complex. We thus identified a novel neuronal SUMO target and show that sumoylation is a likely candidate mechanism for the rapid modulation of p35/Cdk5 activity in physiological situations as well as in disease.
Collapse
Affiliation(s)
- Anja Büchner
- Department of Neurology, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Oosterkamp HM, Hijmans EM, Brummelkamp TR, Canisius S, Wessels LFA, Zwart W, Bernards R. USP9X downregulation renders breast cancer cells resistant to tamoxifen. Cancer Res 2014; 74:3810-20. [PMID: 25028367 DOI: 10.1158/0008-5472.can-13-1960] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tamoxifen is one of the most widely used endocrine agents for the treatment of estrogen receptor α (ERα)-positive breast cancer. Although effective in most patients, resistance to tamoxifen is a clinically significant problem and the mechanisms responsible remain elusive. To address this problem, we performed a large scale loss-of-function genetic screen in ZR-75-1 luminal breast cancer cells to identify candidate resistance genes. In this manner, we found that loss of function in the deubiquitinase USP9X prevented proliferation arrest by tamoxifen, but not by the ER downregulator fulvestrant. RNAi-mediated attenuation of USP9X was sufficient to stabilize ERα on chromatin in the presence of tamoxifen, causing a global tamoxifen-driven activation of ERα-responsive genes. Using a gene signature defined by their differential expression after USP9X attenuation in the presence of tamoxifen, we were able to define patients with ERα-positive breast cancer experiencing a poor outcome after adjuvant treatment with tamoxifen. The signature was specific in its lack of correlation with survival in patients with breast cancer who did not receive endocrine therapy. Overall, our findings identify a gene signature as a candidate biomarker of response to tamoxifen in breast cancer.
Collapse
Affiliation(s)
- Hendrika M Oosterkamp
- Authors' Affiliations: Division of Molecular Carcinogenesis and Cancer Genomics Center Netherlands; and
| | - E Marielle Hijmans
- Authors' Affiliations: Division of Molecular Carcinogenesis and Cancer Genomics Center Netherlands; and
| | - Thijn R Brummelkamp
- Authors' Affiliations: Division of Molecular Carcinogenesis and Cancer Genomics Center Netherlands; and
| | - Sander Canisius
- Authors' Affiliations: Division of Molecular Carcinogenesis and Cancer Genomics Center Netherlands; and
| | - Lodewyk F A Wessels
- Authors' Affiliations: Division of Molecular Carcinogenesis and Cancer Genomics Center Netherlands; and
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René Bernards
- Authors' Affiliations: Division of Molecular Carcinogenesis and Cancer Genomics Center Netherlands; and
| |
Collapse
|
33
|
Tseng LC, Zhang C, Cheng CM, Xu H, Hsu CH, Jiang YJ. New classes of mind bomb-interacting proteins identified from yeast two-hybrid screens. PLoS One 2014; 9:e93394. [PMID: 24714733 PMCID: PMC3979679 DOI: 10.1371/journal.pone.0093394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
Notch signaling pathway defines an evolutionarily conserved mechanism in cell-fate determination in a broad spectrum of developmental processes through local cell interactions. mind bomb (mib) encodes an E3 ubiquitin ligase that is involved in Notch activation through Delta ubiquitylation and internalization. To further dissect the function of Mib, two yeast two-hybrid screens for zebrafish Mib/Mib2-binding proteins with different strategies have been performed. 81 putative interesting proteins were discovered and classified into six groups: ubiquitin proteasome pathway, cytoskeleton, trafficking, replication/transcription/translation factors, cell signaling and others. Confirmed by coimmunoprecipitation (Co-IP), Mib interacted with four tested proteins: ubiquitin specific protease 1 (Usp1), ubiquitin specific protease 9 (Usp9), tumor-necrosis-factor-receptor-associated factor (TRAF)-binding domain (Trabid)/zinc finger, RAN-binding domain containing 1 (Zranb1) and hypoxia-inducible factor 1, alpha subunit inhibitor (Hif1an)/factor inhibiting HIF 1 (Fih-1). Usp1, Usp9, Trabid and Fih-1 also bound to zebrafish Mib2, a Mib homolog with similar structural domains and functions. Both Mib and Mib2 can ubiquitylate Trabid and Fih-1, indicating a potential regulating role of Mib and Mib2 on Trabid and Fih-1 and, furthermore, the possible involvement of Notch signaling in hypoxia-regulated differentiation, tumorigenesis and NF-κB pathway. Finally, functions of confirmed Mib/Mib2-interacting proteins are collated, summarized and hypothesized, which depicts a regulating network beyond Notch signaling.
Collapse
Affiliation(s)
- Li-Chuan Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chengjin Zhang
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chun-Mei Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Haoying Xu
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chia-Hao Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Forstner AJ, Degenhardt F, Schratt G, Nöthen MM. MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review. Front Mol Neurosci 2013; 6:47. [PMID: 24367288 PMCID: PMC3851736 DOI: 10.3389/fnmol.2013.00047] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
The 22q11.2 deletion is the strongest known genetic risk factor for schizophrenia. Research has implicated microRNA-mediated dysregulation in 22q11.2 deletion syndrome (22q11.2DS) schizophrenia-risk. Primary candidate genes are DGCR8 (DiGeorge syndrome critical region gene 8), which encodes a component of the microprocessor complex essential for microRNA biogenesis, and MIR185, which encodes microRNA 185. Mouse models of 22q11.2DS have demonstrated alterations in brain microRNA biogenesis, and that DGCR8 haploinsufficiency may contribute to these alterations, e.g., via down-regulation of a specific microRNA subset. miR-185 was the top-scoring down-regulated microRNA in both the prefrontal cortex and the hippocampus, brain areas which are the key foci of schizophrenia research. This reduction in miR-185 expression contributed to dendritic and spine development deficits in hippocampal neurons. In addition, miR-185 has two validated targets (RhoA, Cdc42), both of which have been associated with altered expression levels in schizophrenia. These combined data support the involvement of miR-185 and its down-stream pathways in schizophrenia. This review summarizes evidence implicating microRNA-mediated dysregulation in schizophrenia in both 22q11.2DS-related and idiopathic cases.
Collapse
Affiliation(s)
- Andreas J Forstner
- Institute of Human Genetics, University of Bonn Bonn, Germany ; Department of Genomics, Life and Brain Center Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn Bonn, Germany ; Department of Genomics, Life and Brain Center Bonn, Germany
| | - Gerhard Schratt
- Institute of Physiological Chemistry, Philipps-University Marburg Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn Bonn, Germany ; Department of Genomics, Life and Brain Center Bonn, Germany
| |
Collapse
|
35
|
Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis. PLoS One 2013; 8:e68287. [PMID: 23861879 PMCID: PMC3702552 DOI: 10.1371/journal.pone.0068287] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/28/2013] [Indexed: 01/17/2023] Open
Abstract
The deubiquitylating enzyme Usp9x is highly expressed in the developing mouse brain, and increased Usp9x expression enhances the self-renewal of neural progenitors in vitro. USP9X is a candidate gene for human neurodevelopmental disorders, including lissencephaly, epilepsy and X-linked intellectual disability. To determine if Usp9x is critical to mammalian brain development we conditionally deleted the gene from neural progenitors, and their subsequent progeny. Mating Usp9xloxP/loxP mice with mice expressing Cre recombinase from the Nestin promoter deleted Usp9x throughout the entire brain, and resulted in early postnatal lethality. Although the overall brain architecture was intact, loss of Usp9x disrupted the cellular organization of the ventricular and sub-ventricular zones, and cortical plate. Usp9x absence also led to dramatic reductions in axonal length, in vivo and in vitro, which could in part be explained by a failure in Tgf-β signaling. Deletion of Usp9x from the dorsal telencephalon only, by mating with Emx1-cre mice, was compatible with survival to adulthood but resulted in reduction or loss of the corpus callosum, a dramatic decrease in hippocampal size, and disorganization of the hippocampal CA3 region. This latter phenotypic aspect resembled that observed in Doublecortin knock-out mice, which is an Usp9x interacting protein. This study establishes that Usp9x is critical for several aspects of CNS development, and suggests that its regulation of Tgf-β signaling extends to neurons.
Collapse
|
36
|
Kwon DY, Dimitriadi M, Terzic B, Cable C, Hart AC, Chitnis A, Fischbeck KH, Burnett BG. The E3 ubiquitin ligase mind bomb 1 ubiquitinates and promotes the degradation of survival of motor neuron protein. Mol Biol Cell 2013; 24:1863-71. [PMID: 23615451 PMCID: PMC3681692 DOI: 10.1091/mbc.e13-01-0042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy is caused by deficiency of the survival motor neuron (SMN) protein. We show that the E3 ubiquitin ligase, mind bomb 1 (Mib1), ubiquitinates and targets SMN for degradation. Reducing Mib1 increases SMN levels, and decreasing the Caenorhabditis elegans orthologue of Mib1 mitigates a neuromuscular defect characteristic of SMN deficiency. Spinal muscular atrophy is an inherited motor neuron disease that results from a deficiency of the survival of motor neuron (SMN) protein. SMN is ubiquitinated and degraded through the ubiquitin proteasome system (UPS). We have previously shown that proteasome inhibition increases SMN protein levels, improves motor function, and reduces spinal cord, muscle, and neuromuscular junction pathology of spinal muscular atrophy (SMA) mice. Specific targets in the UPS may be more efficacious and less toxic. In this study, we show that the E3 ubiquitin ligase, mind bomb 1 (Mib1), interacts with and ubiquitinates SMN and facilitates its degradation. Knocking down Mib1 levels increases SMN protein levels in cultured cells. Also, knocking down the Mib1 orthologue improves neuromuscular function in Caenorhabditis elegans deficient in SMN. These findings demonstrate that Mib1 ubiquitinates and catalyzes the degradation of SMN, and thus represents a novel therapeutic target for SMA.
Collapse
Affiliation(s)
- Deborah Y Kwon
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Capoccia BJ, Jin RU, Kong YY, Peek RM, Fassan M, Rugge M, Mills JC. The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Invest 2013; 123:1475-1491. [PMID: 23478405 PMCID: PMC3613919 DOI: 10.1172/jci65703] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/17/2013] [Indexed: 01/04/2023] Open
Abstract
After cell fate specification, differentiating cells must amplify the specific subcellular features required for their specialized function. How cells regulate such subcellular scaling is a fundamental unanswered question. Here, we show that the E3 ubiquitin ligase Mindbomb 1 (MIB1) is required for the apical secretory apparatus established by gastric zymogenic cells as they differentiate from their progenitors. When Mib1 was deleted, death-associated protein kinase-1 (DAPK1) was rerouted to the cell base, microtubule-associated protein 1B (MAP1B) was dephosphorylated, and the apical vesicles that normally support mature secretory granules were dispersed. Consequently, secretory granules did not mature. The transcription factor MIST1 bound the first intron of Mib1 and regulated its expression. We further showed that loss of MIB1 and dismantling of the apical secretory apparatus was the earliest quantifiable aberration in zymogenic cells undergoing transition to a precancerous metaplastic state in mouse and human stomach. Our results reveal a mechanistic pathway by which cells can scale up a specific, specialized subcellular compartment to alter function during differentiation and scale it down during disease.
Collapse
Affiliation(s)
- Benjamin J. Capoccia
- Division of Gastroenterology, Departments of Medicine, Developmental Biology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Ramon U. Jin
- Division of Gastroenterology, Departments of Medicine, Developmental Biology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Young-Yun Kong
- Division of Gastroenterology, Departments of Medicine, Developmental Biology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Richard M. Peek
- Division of Gastroenterology, Departments of Medicine, Developmental Biology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Matteo Fassan
- Division of Gastroenterology, Departments of Medicine, Developmental Biology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Massimo Rugge
- Division of Gastroenterology, Departments of Medicine, Developmental Biology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Jason C. Mills
- Division of Gastroenterology, Departments of Medicine, Developmental Biology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
38
|
Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast 2013; 2013:196848. [PMID: 23476809 PMCID: PMC3586504 DOI: 10.1155/2013/196848] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/31/2012] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.
Collapse
|
39
|
Yoon KJ, Lee HR, Jo YS, An K, Jung SY, Jeong MW, Kwon SK, Kim NS, Jeong HW, Ahn SH, Kim KT, Lee K, Kim E, Kim JH, Choi JS, Kaang BK, Kong YY. Mind bomb-1 is an essential modulator of long-term memory and synaptic plasticity via the Notch signaling pathway. Mol Brain 2012; 5:40. [PMID: 23111145 PMCID: PMC3541076 DOI: 10.1186/1756-6606-5-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/20/2012] [Indexed: 12/29/2022] Open
Abstract
Background Notch signaling is well recognized as a key regulator of the neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-1 (Mib1) is an essential positive regulator in the Notch pathway, acting non-autonomously in the signal-sending cells. Therefore, genetic ablation of Mib1 in mature neuron would give valuable insight to understand the cell-to-cell interaction between neurons via Notch signaling for their proper function. Results Here we show that the inactivation of Mib1 in mature neurons in forebrain results in impaired hippocampal dependent spatial memory and contextual fear memory. Consistently, hippocampal slices from Mib1-deficient mice show impaired late-phase, but not early-phase, long-term potentiation and long-term depression without change in basal synaptic transmission at SC-CA1 synapses. Conclusions These data suggest that Mib1-mediated Notch signaling is essential for long-lasting synaptic plasticity and memory formation in the rodent hippocampus.
Collapse
Affiliation(s)
- Ki-Jun Yoon
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1 Silim-dong Gwanak-gu, Seoul 151-747, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 2012; 43:1049-60. [PMID: 22821265 DOI: 10.1007/s00726-012-1286-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
Ubiquitin signaling plays an essential role in controlling cellular processes in eukaryotes, and the impairment of ubiquitin regulation contributes to the pathogenesis of a wide range of human diseases. During the last decade, mass spectrometry-based proteomics has emerged as an indispensable approach for identifying the ubiquitinated proteome (ubiquitinome), ubiquitin modification sites, the linkages of complex ubiquitin chains, as well as the interactome of ubiquitin enzymes. In particular, implementation of quantitative strategies allows the detection of dynamic changes in the ubiquitinome, enhancing the ability to differentiate between function-relevant protein targets and false positives arising from biological and experimental variations. The profiling of total cell lysate and the ubiquitinated proteome in the same sets of samples has become a powerful tool, revealing a subset of substrates that are modulated by specific physiological and pathological conditions, such as gene mutations in ubiquitin signaling. This strategy is equally useful for dissecting the pathways of ubiquitin-like proteins.
Collapse
|
41
|
LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J Neurosci 2012; 32:6587-99. [PMID: 22573681 DOI: 10.1523/jneurosci.5317-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Axonal outgrowth is a coordinated process of cytoskeletal dynamics and membrane trafficking; however, little is known about proteins responsible for regulating the membrane supply. LMTK1 (lemur kinase 1)/AATYK1 (apoptosis-associated tyrosine kinase 1) is a serine/threonine kinase that is highly expressed in neurons. We recently reported that LMTK1 plays a role in recycling endosomal trafficking in CHO-K1 cells. Here we explore the role of LMTK1 in axonal outgrowth and its regulation by Cdk5 using mouse brain cortical neurons. LMTK1 was expressed and was phosphorylated at Ser34, the Cdk5 phosphorylation site, at the time of axonal outgrowth in culture and colocalized with Rab11A, the small GTPase that regulates recycling endosome traffic, at the perinuclear region and in the axon. Overexpression of the unphosphorylated mutant LMTK1-S34A dramatically promoted axonal outgrowth in cultured neurons. Enhanced axonal outgrowth was diminished by the inactivation of Rab11A, placing LMTK1 upstream of Rab11A. Unexpectedly, the downregulation of LMTK1 by knockdown or gene targeting also significantly enhanced axonal elongation. Rab11A-positive vesicles were transported anterogradely more quickly in the axons of LMTK1-deficient neurons than in those of wild-type neurons. The enhanced axonal outgrowth was reversed by LMTK1-WT or the LMTK1-S34D mutant, which mimics the phosphorylated state, but not by LMTK1-S34A. Thus, LMTK1 can negatively control axonal outgrowth by regulating Rab11A activity in a Cdk5-dependent manner, and Cdk5-LMTK1-Rab11 is a novel signaling pathway involved in axonal outgrowth.
Collapse
|
42
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifaceted serine/threonine kinase protein with important roles in the nervous system. Two related proteins, p35 and p39, activate Cdk5 upon direct binding. Over the past decade, Cdk5 activity has been demonstrated to regulate many events during brain development, including neuronal migration as well as axon and dendrite development. Recent evidence also suggests a pivotal role for Cdk5 in synaptic plasticity, behavior, and cognition. Dysfunction of Cdk5 has been implicated in a number of neurological disorders and neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick type C disease, and ischemia. Hyperactivation of Cdk5 due to the conversion of p35 to p25 by the calcium-dependent protease calpain during neurotoxicity also contributes to the pathological state. This review surveys recent literature surrounding Cdk5 in synaptic plasticity and homeostasis, with particular emphasis on Cdk5 kinase activity under neurodegenerative conditions.
Collapse
Affiliation(s)
- Susan C Su
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
43
|
Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 2011; 48:308-20. [DOI: 10.1016/j.mcn.2011.05.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/20/2011] [Accepted: 05/01/2011] [Indexed: 11/23/2022] Open
|
44
|
Abstract
In the first volume of Developmental Cell, it was reported that the classic Drosophila neurogenic gene neuralized encodes a ubiquitin ligase that monoubiquitylates the Notch ligand Delta, thus promoting Delta endocytosis. A requirement for ligand internalization by the signal-sending cell, although counterintuitive, remains to date a feature unique to Notch signaling. Ten years and many ubiquitin ligases later, we discuss sequels to these three papers with an eye toward reviewing the development of ideas for how ligand ubiquitylation and endocytosis propel Notch signaling.
Collapse
Affiliation(s)
- Gerry Weinmaster
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | |
Collapse
|
45
|
Qurashi A, Li W, Zhou JY, Peng J, Jin P. Nuclear accumulation of stress response mRNAs contributes to the neurodegeneration caused by Fragile X premutation rCGG repeats. PLoS Genet 2011; 7:e1002102. [PMID: 21655086 PMCID: PMC3107199 DOI: 10.1371/journal.pgen.1002102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 04/08/2011] [Indexed: 12/28/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in Fragile X premutation carriers. Previous studies found that Fragile X rCGG repeats are sufficient to cause neurodegeneration and that the rCGG repeat-binding proteins Pur α and hnRNP A2/B1 can modulate rCGG-mediated neuronal toxicity. To explore the role of Pur α in rCGG-mediated neurodegeneration further, we took a proteomic approach and identified more than 100 proteins that interact with Pur α. Of particular interest is Rm62, the Drosophila ortholog of p68 RNA helicase, which could modulate rCGG-mediated neurodegeneration. Here we show that rCGG repeats decreased the expression of Rm62 posttranscriptionally, leading to the nuclear accumulation of Hsp70 transcript, as well as additional mRNAs involved in stress and immune responses. Together these findings suggest that abnormal nuclear accumulation of these mRNAs, likely as a result of impaired nuclear export, could contribute to FXTAS pathogenesis.
Collapse
Affiliation(s)
- Abrar Qurashi
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wendi Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jian-Ying Zhou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Junmin Peng
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Proteomics Service Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
46
|
Kraemer N, Issa L, Hauck SCR, Mani S, Ninnemann O, Kaindl AM. What's the hype about CDK5RAP2? Cell Mol Life Sci 2011; 68:1719-36. [PMID: 21327915 PMCID: PMC11115181 DOI: 10.1007/s00018-011-0635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 12/11/2022]
Abstract
Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.
Collapse
Affiliation(s)
- Nadine Kraemer
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lina Issa
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie C. R. Hauck
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Shyamala Mani
- Center for Neuroscience, Indian Institute of Science, Bangalore, 560 012 India
| | - Olaf Ninnemann
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Neuroanatomy and Cell Biology and Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Center for Anatomy, Charité, Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
47
|
Barresi MJF, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn 2011; 239:2603-18. [PMID: 20806318 DOI: 10.1002/dvdy.22393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a "shelf-screen" to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.
Collapse
|
48
|
Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S, Neveu P, Kosik KS. MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 2010; 30:14931-6. [PMID: 21068294 PMCID: PMC3071711 DOI: 10.1523/jneurosci.4280-10.2010] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs are a class of small RNA regulators that are involved in numerous cellular processes, including development, proliferation, differentiation, and plasticity. The emerging concept is that microRNAs play a central role in controlling the balance between stem cell self-renewal and fate determination by regulating the expression of stem cell regulators. This review will highlight recent advances in the regulation of neural stem cell self-renewal and neurogenesis by microRNAs. It will cover microRNA functions during the entire process of neurogenesis, from neural stem cell self-renewal and fate determination to neuronal maturation, synaptic formation, and plasticity. The interplay between microRNAs and both cell-intrinsic and -extrinsic stem cell players, including transcription factors, epigenetic regulators, and extrinsic signaling molecules will be discussed. This is a summary of the topics covered in the mini-symposium on microRNA regulation of neural stem cells and neurogenesis in SFN 2010 and is not meant to be a comprehensive review of the subject.
Collapse
Affiliation(s)
- Yanhong Shi
- Department of Neurosciences, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Song Y, Willer JR, Scherer PC, Panzer JA, Kugath A, Skordalakes E, Gregg RG, Willer GB, Balice-Gordon RJ. Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS One 2010; 5:e13743. [PMID: 21060795 PMCID: PMC2966427 DOI: 10.1371/journal.pone.0013743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/22/2010] [Indexed: 12/28/2022] Open
Abstract
Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development.
Collapse
Affiliation(s)
- Yuanquan Song
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jason R. Willer
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Paul C. Scherer
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica A. Panzer
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Amy Kugath
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Ronald G. Gregg
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Gregory B. Willer
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Rita J. Balice-Gordon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Matsuda M, Chitnis AB. Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish. Development 2010; 137:3477-87. [PMID: 20876657 DOI: 10.1242/dev.052761] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The posterior lateral line primordium (pLLp) migrates caudally, depositing neuromasts to establish the posterior lateral line system in zebrafish. A Wnt-dependent FGF signaling center at the leading end of the pLLp initiates the formation of `proneuromasts' by facilitating the reorganization of cells into epithelial rosettes and by initiating atoh1a expression. Expression of atoh1a gives proneuromast cells the potential to become sensory hair cells, and lateral inhibition mediated by Delta-Notch signaling restricts atoh1a expression to a central cell. We show that as atoh1a expression becomes established in the central cell, it drives expression of fgf10 and of the Notch ligand deltaD, while it inhibits expression of fgfr1. As a source of Fgf10, the central cell activates the FGF pathway in neighboring cells, ensuring that they form stable epithelial rosettes. At the same time, DeltaD activates Notch in neighboring cells, inhibiting atoh1a expression and ensuring that they are specified as supporting cells. When Notch signaling fails, unregulated atoh1a expression reduces Fgfr1 expression, eventually resulting in attenuated FGF signaling, which prevents effective maturation of epithelial rosettes in the pLLp. In addition, atoh1a inhibits e-cadherin expression, which is likely to reduce cohesion and contribute to fragmentation of the pLLp. Together, our observations reveal a genetic regulatory network that explains why atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the pLLp.
Collapse
Affiliation(s)
- Miho Matsuda
- Laboratory of Molecular Genetics, Section on Neural Developmental Dynamics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|