1
|
Mirhashemi E, Bachman P, Krishnan G, Asarnow RF, Forsyth JK. Altered neural oscillations are associated with improved working memory performance in schizophrenia following D-cycloserine administration. Schizophr Res 2025; 282:85-94. [PMID: 40513304 DOI: 10.1016/j.schres.2025.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/29/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025]
Abstract
Cognitive deficits, such as impaired working memory, are a core feature of schizophrenia and a key target for intervention that have been hypothesized to reflect hypofunction at the N-methyl-d-aspartate glutamate receptor (NMDAR). Working memory depends on neural oscillations in the gamma (30-80 Hz), theta (4-7 Hz), and alpha (8-13 Hz) frequency bands, with gamma oscillations known to be strongly impacted in schizophrenia and to be sensitive to NMDAR hypofunction. Importantly, in a previous double-blind randomized placebo-controlled study, findings suggested that n-back working memory performance was improved in schizophrenia patients who received 100 mg of the NMDAR agonist D-cycloserine (SZ-DCS; n = 17) compared to patients who received placebo (SZ-placebo; n = 16; Forsyth et al., 2017). To understand potential mechanisms underlying this effect, the current study examined electroencephalogram data collected during this study to identify whether gamma, theta, and alpha oscillations were altered in patients who received DCS versus placebo. Results revealed reduced working memory-related gamma power in right frontal and occipital channels from 1 to 1.5 s post-stimulus onset in SZ-DCS versus SZ-placebo patients. SZ-DCS patients also showed reduced frontal theta power relative to SZ-placebo patients across memory loads. Conversely, SZ-DCS patients showed increased left-hemisphere alpha power during the 0-back control condition, without differences during working memory loads. Our findings suggest that increasing NMDAR signaling in schizophrenia may improve working memory performance by increasing the efficiency of gamma and theta oscillations that support working memory demands, as well as enhancing alpha oscillations that support preparatory attentional processes.
Collapse
Affiliation(s)
- Emma Mirhashemi
- Department of Psychology, University of Washington, Seattle, Seattle, WA, United States
| | - Peter Bachman
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, United States
| | - Giri Krishnan
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle, Seattle, WA, United States.
| |
Collapse
|
2
|
Kim K, Yokosawa K, Okada K, Onishi H, Tan Y, Lee SI. Effects of blue light during and after exposure on auditory working memory. J Physiol Anthropol 2025; 44:15. [PMID: 40405240 PMCID: PMC12096479 DOI: 10.1186/s40101-025-00395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
INTRODUCTION Exposure to short-wavelength light (i.e., blue light) has been shown to enhance cognitive function in humans. While most prior studies have focused on visuospatial working memory, the effects of blue light on auditory working memory, particularly tasks involving the phonological loop, remain underexplored. This study investigated both the during- and post-exposure effects of blue light on auditory memory performance. METHODS Fifteen healthy university students (13 males, 2 females; 21.47 ± 1.06 years old) participated in a randomized crossover design. Each participant was exposed to three lighting conditions for approximately 20-min: blue (λmax = 476 nm, illuminance = 21.84 lx, 13.8 log photons/s-1.cm-2, melanopic EDI = 169.68 lx), amber (λmax = 580 nm, illuminance = 61.65 lx, 13.5 log photons/s-1.cm-2, melanopic EDI = 2.87 lx) and dim light (baseline; illuminance < 5.00 lx). Each session was separated by a one-week washout period. To mitigate order effects, the sequence of light conditions was randomized across participants. The modified version of the Sternberg working memory task was performed during light exposure and after a 10-min break (i.e., During- vs Post-exposure phase). The accuracy, reaction time, subject anxiety and subject sleepiness were measured. RESULTS In the post-exposure phase, blue light significantly improved accuracy compared to amber (p < 0.01, d = 0.66) and dim light (p < 0.01, d = 0.67). No significant differences were observed during exposure or in reaction time across three light conditions. Anxiety levels were significantly higher during blue light exposure (vs. amber: p = 0.013, d = 0.96; vs. dim: p = 0.027, d = 0.83), while sleepiness remained unchanged. CONCLUSIONS Blue light exposure may enhance auditory working memory accuracy with a delayed effect, independent of vigilance or processing speed. While these findings are promising, the observed effects are preliminary and require validation in larger and more diverse populations.
Collapse
Affiliation(s)
- Kyungshil Kim
- Faculty of Medical and Health Sciences, Hokkaido Bunkyo University, 196-1 Kogane-Chuo 5-Chome, Eniwa, Hokkaido, 061-1449, Japan
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Ken Okada
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0813, Japan
| | - Hayate Onishi
- Graduate School of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yumiko Tan
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0813, Japan
| | - Sang-Il Lee
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0813, Japan.
| |
Collapse
|
3
|
Vinnakota C, Hudson MR, Ikeda K, Ide S, Mishina M, Sundram S, Jones NC, Hill RA. Effects of NMDA receptor antagonists on working memory and gamma oscillations, and the mediating role of the GluN2D subunit. Neuropsychopharmacology 2025:10.1038/s41386-025-02129-9. [PMID: 40374854 DOI: 10.1038/s41386-025-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
Working memory relies on synchronised network oscillations involving complex interplay between pyramidal cells and GABAergic interneurons. NMDA receptor (NMDAR) antagonists influence both network oscillations and working memory, but the relationship between these two consequences has not been elucidated. This study aimed to determine the effect of NMDAR antagonists on network oscillations during a working memory task in mice, and the contribution of the GluN2D receptor subunit. After training wildtype (WT) and GluN2D-knockout (KO) mice on the Trial-Unique-Non-match to Location (TUNL) touchscreen task of working memory, recording electrodes were implanted into the prefrontal cortex (PFC) and hippocampus. Mice were challenged with either (S)-ketamine (30 mg/kg), (R)-ketamine (30 mg/kg), phencyclidine (PCP, 1 mg/kg), MK-801 (0.3 mg/kg) or saline prior to TUNL testing while simultaneous local field potential recordings were acquired. PCP disrupted working memory accuracy in WT (p = 0.001) but not GluN2D-KO mice (p = 0.79). MK-801 (p < 0.0001), (S)-ketamine (p < 0.0001) and (R)-ketamine (p = 0.007) disrupted working memory accuracy in both genotypes. PCP increased baseline hippocampal gamma (30-80 Hz) power in WT (p = 0.0015) but not GluN2D-KO mice (p = 0.92). All drugs increased baseline gamma power in the PFC in both genotypes (p < 0.05). Low gamma was induced during the maintenance phase of the TUNL task and increased when mice correctly completed the task (p = 0.024). This response-dependent increase in low gamma was disrupted by all drugs. In summary, PCP action involves the GluN2D subunit of the NMDA receptor in the hippocampus to alter baseline gamma power and working memory. Task-induced low gamma activity during maintenance aligns with task performance, and is disrupted by all NMDAR antagonists.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Department of Neuropsychopharmacology, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC, 3168, Australia
| | - Nigel C Jones
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.
- Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Rachel Anne Hill
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
4
|
Leicht G, Rauh J, Mußmann M, Vauth S, Steinmann S, Haaf M, Haenschel C, Mulert C. Simultaneous EEG-fMRI Reveals a Visual Working Memory Encoding Network Related to Theta Oscillatory Activity in Healthy Subjects. Hum Brain Mapp 2025; 46:e70216. [PMID: 40256822 PMCID: PMC12010137 DOI: 10.1002/hbm.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/21/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Working memory (WM) is crucially involved in many aspects of higher cognitive functions and goal-directed behavior. The encoding of sensory information necessitates the conversion of sensory stimuli into maintainable constructs. Oscillatory activity in the theta frequency range (4-8 Hz) of the human electroencephalogram (EEG) has been related to this. However, so far, no study has investigated the neurophysiological mechanisms and the brain network structure underlying the WM encoding process simultaneously. Thus, this study aimed to test whether theta oscillatory activity would be specifically related to the activity within a WM encoding brain network in healthy subjects by means of simultaneous recordings of EEG and functional magnetic resonance imaging (fMRI). Simultaneous recordings of EEG and fMRI were conducted in 32 healthy subjects during the performance of a visual working memory delayed matched to sample task. The fMRI analysis was informed by single-trial theta oscillatory responses to encoding stimuli. This analysis revealed a working memory encoding network mediated by theta oscillatory activity. The network included regions within the dorsolateral prefrontal cortex and parietal areas. Our results give reason to assume that the formation of a working memory network might take place during the encoding of information utilizing theta synchrony as a binding mechanism.
Collapse
Affiliation(s)
- Gregor Leicht
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marius Mußmann
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sebastian Vauth
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Saskia Steinmann
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Moritz Haaf
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB)University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB)University Medical Center Hamburg‐EppendorfHamburgGermany
- Center of PsychiatryJustus‐Liebig UniversityGiessenGermany
| |
Collapse
|
5
|
Donati FL, Mayeli A, Nascimento Couto BA, Sharma K, Janssen S, Krafty RJ, Casali AG, Ferrarelli F. Prefrontal Oscillatory Slowing in Early-Course Schizophrenia Is Associated With Worse Cognitive Performance and Negative Symptoms: A Transcranial Magnetic Stimulation-Electroencephalography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:158-166. [PMID: 39059465 PMCID: PMC11759720 DOI: 10.1016/j.bpsc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Abnormalities in dorsolateral prefrontal cortex (DLPFC) oscillations are neurophysiological signatures of schizophrenia thought to underlie its cognitive deficits. Transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a measure of cortical oscillations unaffected by sensory relay functionality and/or patients' level of engagement, which are important confounding factors in schizophrenia. Previous TMS-EEG work showed reduced fast, gamma-range oscillations and a slowing of the main DLPFC oscillatory frequency, or natural frequency, in chronic schizophrenia. However, it is unclear whether this DLPFC natural frequency slowing is present in early-course schizophrenia (EC-SCZ) and is associated with symptom severity and cognitive dysfunction. METHODS We applied TMS-EEG to the left DLPFC in 30 individuals with EC-SCZ and 28 healthy control participants. Goal-directed working memory performance was assessed using the AX-Continuous Performance Task. The EEG frequency with the highest cumulative power at the stimulation site, or natural frequency, was extracted. We also calculated the local relative spectral power as the average power in each frequency band divided by the broadband power. RESULTS Compared with the healthy control group, the EC-SCZ group had reduced DLPFC natural frequency (p = .0000002, Cohen's d = -2.32) and higher DLPFC beta-range relative spectral power (p = .0003, Cohen's d = 0.77). In the EC-SCZ group, the DLPFC natural frequency was inversely associated with negative symptoms. Across all participants, the beta band relative spectral power negatively correlated with AX-Continuous Performance Task performance. CONCLUSIONS DLPFC oscillatory slowing is an early pathophysiological biomarker of schizophrenia that is associated with its symptom severity and cognitive impairments. Future work should assess whether noninvasive neurostimulation, including repetitive TMS, can ameliorate prefrontal oscillatory deficits and related clinical functions in patients with EC-SCZ.
Collapse
Affiliation(s)
- Francesco L Donati
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Health Science, University of Milan, Milan, Italy
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kamakashi Sharma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sabine Janssen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert J Krafty
- Department of Biostatistics & Bioinformatics, Emory University, Atlanta, Georgia
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Gee A, Dazzan P, Grace AA, Modinos G. Corticolimbic circuitry as a druggable target in schizophrenia spectrum disorders: a narrative review. Transl Psychiatry 2025; 15:21. [PMID: 39856031 PMCID: PMC11760974 DOI: 10.1038/s41398-024-03221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Schizophrenia spectrum disorders (SSD) involve disturbances in the integration of perception, emotion and cognition. The corticolimbic system is an interacting set of cortical and subcortical brain regions critically involved in this process. Understanding how neural circuitry and molecular mechanisms within this corticolimbic system may contribute to the development of not only positive symptoms but also negative and cognitive deficits in SSD has been a recent focus of intense research, as the latter are not adequately treated by current antipsychotic medications and are more strongly associated with poorer functioning and long-term outcomes. This review synthesises recent developments examining corticolimbic dysfunction in the pathophysiology of SSD, with a focus on neuroimaging advances and related novel methodologies that enable the integration of data across different scales. We then integrate how these findings may inform the identification of novel therapeutic and preventive targets for SSD symptomatology. A range of pharmacological interventions have shown initial promise in correcting corticolimbic dysfunction and improving negative, cognitive and treatment-resistant symptoms. We discuss current challenges and opportunities for improving the still limited translation of these research findings into clinical practice. We argue how our knowledge of the role of corticolimbic dysfunction can be improved by combining multiple research modalities to examine hypotheses across different spatial and temporal scales, combining neuroimaging with experimental interventions and utilising large-scale consortia to advance biomarker identification. Translation of these findings into clinical practice will be aided by consideration of optimal intervention timings, biomarker-led patient stratification, and the development of more selective medications.
Collapse
Affiliation(s)
- Abigail Gee
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
7
|
Debnath R, Elyamany O, Iffland JR, Rauh J, Siebert M, Andraes E, Leicht G, Mulert C. Theta transcranial alternating current stimulation over the prefrontal cortex enhances theta power and working memory performance. Front Psychiatry 2025; 15:1493675. [PMID: 39876999 PMCID: PMC11772280 DOI: 10.3389/fpsyt.2024.1493675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. This study investigated whether 5 Hz tACS could modulate neural oscillations in the prefrontal cortex and how this modulation impacts performance in working memory (WM) tasks. Method In two sessions, 28 healthy participants received 5 Hz tACS or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC) while performing tasks with high and low WM loads. Resting-state EEG was recorded before and after stimulations for 5 minutes. EEG power was measured at electrodes surrounding the stimulation site. Results The results showed that tACS significantly improved reaction time (RT) compared to sham stimulation. This effect was task-specific, as tACS improved RT for hit responses only in high WM load trials, with no impact on low-load trials. Moreover, tACS significantly increased EEG power at 5 Hz and in the theta band compared to pre-stimulation levels. Discussion These findings demonstrate that tACS applied over left DLPFC modulates post-stimulation brain oscillations at the stimulation sites - known as tACS after-effects. Furthermore, the results suggest that 5 Hz tACS enhances response speed by elevating task-related activity in the prefrontal cortex to an optimal level for task performance. Conclusion In summary, the findings highlight the potential of tACS as a technique for modulating specific brain oscillations, with implications for research and therapeutic interventions.
Collapse
Affiliation(s)
- Ranjan Debnath
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Osama Elyamany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| | - Jona Ruben Iffland
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Siebert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Elisa Andraes
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| |
Collapse
|
8
|
Ciacciarelli EJ, Dunn SD, Gohar T, Joseph Sloand T, Niedringhaus M, West EA. Medial prefrontal cortex to nucleus reuniens circuit is critical for performance in an operant delayed nonmatch to position task. Neurobiol Learn Mem 2025; 217:108007. [PMID: 39586458 PMCID: PMC11769756 DOI: 10.1016/j.nlm.2024.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Working memory refers to the temporary retention of a small amount of information used in the execution of a cognitive task. The prefrontal cortex and its connections with thalamic subregions are thought to mediate specific aspects of working memory, including engaging with the hippocampus to mediate memory retrieval. We used an operant delayed-non match to position task, which does not require the hippocampus, to determine roles of the rodent medial prefrontal cortex (mPFC), the nucleus reuniens thalamic region (RE), and their connection. We found that transient inactivation of the mPFC and RE using the GABA-A agonist muscimol led to a delay-independent reduction in behavioral performance in the delayed non-match to position paradigm. We used a chemogenetic approach to determine the directionality of the necessary circuitry for behavioral performance reliant on working memory. Specifically, when we targeted mPFC neurons that project to the RE (mPFC-RE) we found a delay-independent reduction in the delayed non-match to position task, but not when we targeted RE neurons that project to the mPFC (RE-mPFC). Our results suggest a broader role for the mPFC-RE circuit in mediating working memory beyond the connection with the hippocampus.
Collapse
Affiliation(s)
- Evan J Ciacciarelli
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Scott D Dunn
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Taqdees Gohar
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States; MARC Program, Rutgers University-Camden, Camden, NJ, 08102, United States
| | - T Joseph Sloand
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Mark Niedringhaus
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States.
| | - Elizabeth A West
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States.
| |
Collapse
|
9
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
10
|
Gonzalez-Burgos I, Valencia M, Redondo R, Janz P. Optogenetic inhibition of the limbic corticothalamic circuit does not alter spontaneous oscillatory activity, auditory-evoked oscillations, and deviant detection. Sci Rep 2024; 14:13114. [PMID: 38849374 PMCID: PMC11161607 DOI: 10.1038/s41598-024-63036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Aberrant neuronal circuit dynamics are at the core of complex neuropsychiatric disorders, such as schizophrenia (SZ). Clinical assessment of the integrity of neuronal circuits in SZ has consistently described aberrant resting-state gamma oscillatory activity, decreased auditory-evoked gamma responses, and abnormal mismatch responses. We hypothesized that corticothalamic circuit manipulation could recapitulate SZ circuit phenotypes in rodent models. In this study, we optogenetically inhibited the mediodorsal thalamus-to-prefrontal cortex (MDT-to-PFC) or the PFC-to-MDT projection in rats and assessed circuit function through electrophysiological readouts. We found that MDT-PFC perturbation could not recapitulate SZ-linked phenotypes such as broadband gamma disruption, altered evoked oscillatory activity, and diminished mismatch negativity responses. Therefore, the induced functional impairment of the MDT-PFC pathways cannot account for the oscillatory abnormalities described in SZ.
Collapse
Affiliation(s)
- Irene Gonzalez-Burgos
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
- Program of Biomedical Engineering, Universidad de Navarra, CIMA, Avenida Pío XII 55, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
| | - Miguel Valencia
- Program of Biomedical Engineering, Universidad de Navarra, CIMA, Avenida Pío XII 55, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
| | - Roger Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
11
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
12
|
Olkhova EA, Smith LA, Dennis BH, Ng YS, LeBeau FEN, Gorman GS. Delineating mechanisms underlying parvalbumin neuron impairment in different neurological and neurodegenerative disorders: the emerging role of mitochondrial dysfunction. Biochem Soc Trans 2024; 52:553-565. [PMID: 38563502 PMCID: PMC11088917 DOI: 10.1042/bst20230191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.
Collapse
Affiliation(s)
- Elizaveta A. Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Laura A. Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Bethany H. Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Fiona E. N. LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
13
|
McGill MB, Kieffaber PD. Event-related theta and gamma band oscillatory dynamics during visuo-spatial sequence memory in younger and older adults. PLoS One 2024; 19:e0297995. [PMID: 38564573 PMCID: PMC10986947 DOI: 10.1371/journal.pone.0297995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Visuo-spatial working memory (VSWM) for sequences is thought to be crucial for daily behaviors. Decades of research indicate that oscillations in the gamma and theta bands play important functional roles in the support of visuo-spatial working memory, but the vast majority of that research emphasizes measures of neural activity during memory retention. The primary aims of the present study were (1) to determine whether oscillatory dynamics in the Theta and Gamma ranges would reflect item-level sequence encoding during a computerized spatial span task, (2) to determine whether item-level sequence recall is also related to these neural oscillations, and (3) to determine the nature of potential changes to these processes in healthy cognitive aging. Results indicate that VSWM sequence encoding is related to later (∼700 ms) gamma band oscillatory dynamics and may be preserved in healthy older adults; high gamma power over midline frontal and posterior sites increased monotonically as items were added to the spatial sequence in both age groups. Item-level oscillatory dynamics during the recall of VSWM sequences were related only to theta-gamma phase amplitude coupling (PAC), which increased monotonically with serial position in both age groups. Results suggest that, despite a general decrease in frontal theta power during VSWM sequence recall in older adults, gamma band dynamics during encoding and theta-gamma PAC during retrieval play unique roles in VSWM and that the processes they reflect may be spared in healthy aging.
Collapse
Affiliation(s)
- Makenna B. McGill
- Department of Psychological Sciences, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Paul D. Kieffaber
- Department of Psychological Sciences, College of William & Mary, Williamsburg, Virginia, United States of America
| |
Collapse
|
14
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
15
|
Zinnamon FA, Harrison FG, Wenas SS, Liu Q, Wang KH, Linden JF. Increased Central Auditory Gain and Decreased Parvalbumin-Positive Cortical Interneuron Density in the Df1/+ Mouse Model of Schizophrenia Correlate With Hearing Impairment. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:386-397. [PMID: 37519460 PMCID: PMC10382707 DOI: 10.1016/j.bpsgos.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 deletion syndrome have a 25% to 30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle-ear inflammation. The Df1/+ mouse model of 22q11.2 deletion syndrome recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high interindividual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses, cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal auditory brainstem response measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in the auditory cortex but not the secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2 deletion syndrome, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle-ear inflammation.
Collapse
Affiliation(s)
- Fhatarah A. Zinnamon
- Ear Institute, University College London, London, United Kingdom
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Freya G. Harrison
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Sandra S. Wenas
- Ear Institute, University College London, London, United Kingdom
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Jennifer F. Linden
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, Mulert C, Leicht G. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry 2023; 14:1140361. [PMID: 37457770 PMCID: PMC10348840 DOI: 10.3389/fpsyt.2023.1140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction One of the most important cognitive functions in our everyday life is the working memory (WM). In several neuropsychiatric diseases such as ADHD or schizophrenia WM deficits can be observed, making it an attractive target for non-invasive brain stimulation methods like transcranial electrical stimulation (tES). However, the literature shows rather heterogeneous results of tES effects on WM performance. fMRI meta-analyses have identified a WM network including frontoparietal brain areas such as the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Neurophysiological studies revealed oscillatory activity in the theta band frequency range to be of crucial functional relevance for WM processes. Based on this, transcranial alternating current stimulation (tACS) in the theta frequency range targeting DLPFC and PPC in a spatially optimized way might further improve effects of tES on WM performance. Methods Sixteen healthy subjects were stimulated with varying stimulation settings on four different days in a counterbalanced within-subject design. These setups included the application of (1) tACS with a frequency of 5 Hz (theta frequency range) over the left DLPFC and (2) the right superior parietal cortex, (3) transcranial direct current stimulation (tDCS) of the DLPFC and (4) a sham stimulation condition during the online performance of a visual delayed-match-to-sample task with varying working memory load. We introduce a procedure to calculate an optimal tES model revealing optimized high-density setups for the present study for 3 cathodes and 1 anode and stimulation currents of 1.5 mA. Results A significant interaction effect of stimulation type and load condition on working memory capacity was found. This was reflected by a significant improvement of WM performance in the high load condition during tACS over the left DLPFC compared with sham stimulation, which was not the case for our parietal tACS or tDCS setup. Discussion Working memory performance can be improved with optimized high-definition tACS with a frequency of 5 Hz over the left DLPFC. The conception of different mechanisms underlying transcranial electrical stimulation with alternating and direct currents is supported by these results. Patients suffering from working memory impairments due to neuropsychiatric diseases might potentially benefit from this brain stimulation approach.
Collapse
Affiliation(s)
- Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne S. M. Müller
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Rubinstein DY, Eisenberg DP, Carver FW, Holroyd T, Apud JA, Coppola R, Berman KF. Spatiotemporal Alterations in Working Memory-Related Beta Band Neuromagnetic Activity of Patients With Schizophrenia On and Off Antipsychotic Medication: Investigation With MEG. Schizophr Bull 2023; 49:669-678. [PMID: 36772948 PMCID: PMC10154700 DOI: 10.1093/schbul/sbac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND HYPOTHESIS We used the uniquely high combined spatial and temporal resolution of magnetoencephalography to characterize working memory (WM)-related modulation of beta band activity in neuroleptic-free patients with schizophrenia in comparison to a large sample of performance-matched healthy controls. We also tested for effects of antipsychotic medication on identified differences in these same patients. STUDY DESIGN Inpatients with schizophrenia (n = 21) or psychotic disorder not otherwise specified (n = 4) completed N-back and control tasks during magnetoencephalography while on placebo and during antipsychotic medication treatment, in a blinded, randomized, counterbalanced manner. Healthy, performance-matched controls (N = 100) completed the same tasks. WM-related neural activation was estimated as beta band (14-30 Hz) desynchronization throughout the brain in successive 400 ms time windows. Voxel-wise statistical comparisons were performed between controls and patients while off-medication at each time window. Significant clusters resulting from this between-groups analysis were then used as regions-of-interest, the activations of which were compared between on- and off-medication conditions in patients. STUDY RESULTS Controls showed beta-band desynchronization (activation) of a fronto-parietal network immediately preceding correct button press responses-the time associated with WM updating and task execution. Altered activation in medication-free patients occurred largely during this time, in prefrontal, parietal, and visual cortices. Medication altered patients' neural responses such that the activation time courses in these regions-of-interest more closely resembled those of controls. CONCLUSIONS These findings demonstrate that WM-related beta band alterations in schizophrenia are time-specific and associated with neural systems targeted by antipsychotic medications. Future studies may investigate this association by examining its potential neurochemical basis.
Collapse
Affiliation(s)
- Daniel Y Rubinstein
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Daniel P Eisenberg
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | | | - Tom Holroyd
- MEG Core Facility, NIH, DHHS, Bethesda, MD, USA
| | - Jose A Apud
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Richard Coppola
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
- MEG Core Facility, NIH, DHHS, Bethesda, MD, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
18
|
Haigh SM, Berryhill ME, Kilgore-Gomez A, Dodd M. Working memory and sensory memory in subclinical high schizotypy: An avenue for understanding schizophrenia? Eur J Neurosci 2023; 57:1577-1596. [PMID: 36895099 PMCID: PMC10178355 DOI: 10.1111/ejn.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The search for robust, reliable biomarkers of schizophrenia remains a high priority in psychiatry. Biomarkers are valuable because they can reveal the underlying mechanisms of symptoms and monitor treatment progress and may predict future risk of developing schizophrenia. Despite the existence of various promising biomarkers that relate to symptoms across the schizophrenia spectrum, and despite published recommendations encouraging multivariate metrics, they are rarely investigated simultaneously within the same individuals. In those with schizophrenia, the magnitude of purported biomarkers is complicated by comorbid diagnoses, medications and other treatments. Here, we argue three points. First, we reiterate the importance of assessing multiple biomarkers simultaneously. Second, we argue that investigating biomarkers in those with schizophrenia-related traits (schizotypy) in the general population can accelerate progress in understanding the mechanisms of schizophrenia. We focus on biomarkers of sensory and working memory in schizophrenia and their smaller effects in individuals with nonclinical schizotypy. Third, we note irregularities across research domains leading to the current situation in which there is a preponderance of data on auditory sensory memory and visual working memory, but markedly less in visual (iconic) memory and auditory working memory, particularly when focusing on schizotypy where data are either scarce or inconsistent. Together, this review highlights opportunities for researchers without access to clinical populations to address gaps in knowledge. We conclude by highlighting the theory that early sensory memory deficits contribute negatively to working memory and vice versa. This presents a mechanistic perspective where biomarkers may interact with one another and impact schizophrenia-related symptoms.
Collapse
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Marian E. Berryhill
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Michael Dodd
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
19
|
Qin Y, Mahdavi A, Bertschy M, Anderson PM, Kulikova S, Pinault D. The psychotomimetic ketamine disrupts the transfer of late sensory information in the corticothalamic network. Eur J Neurosci 2023; 57:440-455. [PMID: 36226598 PMCID: PMC10092610 DOI: 10.1111/ejn.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
In prodromal and early schizophrenia, disorders of attention and perception are associated with structural and chemical brain abnormalities and with dysfunctional corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the symptoms of prodromal and early schizophrenia, including disturbances in ongoing and task & sensory-related broadband beta-/gamma-frequency (17-29 Hz/30-80 Hz) oscillations in corticothalamic networks. In normal healthy subjects and rodents, complex integration processes, like sensory perception, induce transient, large-scale synchronised beta/gamma oscillations in a time window of a few hundred ms (200-700 ms) after the presentation of the object of attention (e.g., sensory stimulation). Our goal was to use an electrophysiological multisite network approach to investigate, in lightly anesthetised rats, the effects of a single psychotomimetic dose (2.5 mg/kg, subcutaneous) of ketamine on sensory stimulus-induced oscillations. Ketamine transiently increased the power of baseline beta/gamma oscillations and decreased sensory-induced beta/gamma oscillations. In addition, it disrupted information transferability in both the somatosensory thalamus and the related cortex and decreased the sensory-induced thalamocortical connectivity in the broadband gamma range. The present findings support the hypothesis that NMDA receptor antagonism disrupts the transfer of perceptual information in the somatosensory cortico-thalamo-cortical system.
Collapse
Affiliation(s)
- Yi Qin
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- Netherlands Institute for NeuroscienceThe Netherlands
| | - Ali Mahdavi
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- The University of Freiburg, Bernstein Center FreiburgFreiburgGermany
| | - Marine Bertschy
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| | - Paul M. Anderson
- Dept. Cognitive Neurobiology, Center for Brain ResearchMedical University ViennaAustria
| | - Sofya Kulikova
- National Research University Higher School of EconomicsPermRussia
| | - Didier Pinault
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| |
Collapse
|
20
|
Abstract
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
- Current affiliation: Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
| |
Collapse
|
21
|
Soni S, Muthukrishnan SP, Sood M, Kaur S, Sharma R. Spectral perturbations of cortical dipoles during a dynamic visuo-spatial working memory task in schizophrenia. Psychiatry Res Neuroimaging 2022; 326:111530. [PMID: 36067547 DOI: 10.1016/j.pscychresns.2022.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Altered neural oscillations during prestimulus-task conditions have been reported to be associated with aberrant information processing in schizophrenia. Spectral perturbations induced by visuo-spatial working memory (VSWM) task were investigated in patients and their first-degree relatives in order to study the biomarkers in schizophrenia. EEG was recorded using 128-channel during VSWM task in 28 patients, 27 first-degree relatives and 25 controls. After pre-processing and ICA, current dipole was estimated for each IC. Total of 1609 independent and localizable EEG components across all groups were used to compute ERSP during different events of task. Patients deactivated DMN, RSN, auditory cortex more compared to controls during search period to perform VSWM task. Relatives showed altered activation of right medial and inferior frontal gyri during different events and loads of task in lower frequencies compared to controls. Relatives also showed hyperactivity in right cingulate and parahippocampal gyri compared to controls. This is suggestive of genetic predisposition in schizophrenia and could act as vulnerability markers, further strengthened by no significant differences between patients and relatives. Altered processing of simultaneous ongoing events in patients and relatives can serve as state and trait-specific features of schizophrenia.
Collapse
Affiliation(s)
- Sunaina Soni
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
22
|
Shu IW, Granholm EL, Singh F. Targeting Frontal Gamma Activity with Neurofeedback to Improve Working Memory in Schizophrenia. Curr Top Behav Neurosci 2022; 63:153-172. [PMID: 35989397 DOI: 10.1007/7854_2022_377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Optimal working memory (WM), the mental ability to internally maintain and manipulate task-relevant information, requires coordinated activity of dorsal-lateral prefrontal cortical (DLPFC) neurons. More specifically, during delay periods of tasks with WM features, DLPFC microcircuits generate persistent, stimulus-specific higher-frequency (e.g., gamma) activity. This activity largely depends on recurrent connections between parvalbumin positive inhibitory interneurons and pyramidal neurons in more superficial DLPFC layers. Due to the size and organization of pyramidal neurons (especially apical dendrites), local field potentials generated by DLPFC microcircuits are strong enough to pass outside the skull and can be detected using electroencephalography (EEG). Since patients with schizophrenia (SCZ) exhibit both DLPFC and WM abnormalities, EEG markers of DLPFC microcircuit activity during WM may serve as effective biomarkers or treatment targets. In this review, we summarize converging evidence from primate and human studies for a critical role of DLPFC microcircuit activity during WM and in the pathophysiology of SCZ. We also present a meta-analysis of studies available in PubMed specifically comparing frontal gamma activity between participants with SCZ and healthy controls, to determine whether frontal gamma activity may be a valid biomarker or treatment target for patients with SCZ. We summarize the complex cognitive and neurophysiologic processes contributing to neural oscillations during tasks with WM features, and how such complexity has stalled the development of neurophysiologic biomarkers and treatment targets. Finally, we summarize promising results from early reports using neuromodulation to target DLPFC neural activity and improve cognitive function in participants with SCZ, including a study from our team demonstrating that gamma-EEG neurofeedback increases frontal gamma power and WM performance in participants with SCZ. From the evidence discussed in this review, we believe the emerging field of neuromodulation, which includes extrinsic (electrical or magnetic stimulation) and intrinsic (EEG neurofeedback) modalities, will, in the coming decade, provide promising treatment options targeting specific neurophysiologic properties of specific brain areas to improve cognitive and behavioral health for patients with SCZ.
Collapse
Affiliation(s)
- I-Wei Shu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Eric L Granholm
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Fiza Singh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
24
|
Korda A, Ventouras E, Asvestas P, Toumaian M, Matsopoulos G, Smyrnis N. Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia. Clin Neurophysiol 2022; 139:90-105. [DOI: 10.1016/j.clinph.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
|
25
|
Sohal VS. Transforming Discoveries About Cortical Microcircuits and Gamma Oscillations Into New Treatments for Cognitive Deficits in Schizophrenia. Am J Psychiatry 2022; 179:267-276. [PMID: 35360913 DOI: 10.1176/appi.ajp.20220147] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major cause of disability in schizophrenia is cognitive impairment, which remains largely refractory to existing treatments. This reflects the fact that antipsychotics and other therapies have not been designed to address specific brain abnormalities that cause cognitive impairment. This overview proposes that understanding how specific cellular and synaptic loci within cortical microcircuits contribute to cortical gamma oscillations may reveal treatments for cognitive impairment. Gamma oscillations are rhythmic patterns of high frequency (∼30-100 Hz) neuronal activity that are synchronized within and across brain regions, generated by a class of inhibitory interneurons that express parvalbumin, and recruited during a variety of cognitive tasks. In schizophrenia, both parvalbumin interneuron function and task-evoked gamma oscillations are deficient. While it has long been controversial whether gamma oscillations are merely a biomarker of circuit function or actually contribute to information processing by neuronal networks, recent neurobiological studies in mice have shown that disrupting or enhancing synchronized gamma oscillations can reproduce or ameliorate cognitive deficits resembling those seen in schizophrenia. In fact, transiently enhancing the synchrony of parvalbumin interneuron-generated gamma oscillations can lead to long-lasting improvements in cognition in mice that model aspects of schizophrenia. Gamma oscillations emerge from specific patterns of connections between a variety of cell types within cortical microcircuits. Thus, a critical next step is to understand how specific cell types and synapses generate gamma oscillations, mediate the effects of gamma oscillations on information processing, and/or undergo plasticity following the induction of gamma oscillations. Modulating these circuit loci, potentially in combination with other approaches such as cognitive training and brain stimulation, may yield potent and selective interventions for enhancing cognition in schizophrenia.
Collapse
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| |
Collapse
|
26
|
Ibarra-Lecue I, Haegens S, Harris AZ. Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Front Neural Circuits 2022; 16:846905. [PMID: 35310550 PMCID: PMC8931663 DOI: 10.3389/fncir.2022.846905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
A century worth of research has linked multiple cognitive, perceptual and behavioral states to various brain oscillations. However, the mechanistic roles and circuit underpinnings of these oscillations remain an area of active study. In this review, we argue that the advent of optogenetic and related systems neuroscience techniques has shifted the field from correlational to causal observations regarding the role of oscillations in brain function. As a result, studying brain rhythms associated with behavior can provide insight at different levels, such as decoding task-relevant information, mapping relevant circuits or determining key proteins involved in rhythmicity. We summarize recent advances in this field, highlighting the methods that are being used for this purpose, and discussing their relative strengths and limitations. We conclude with promising future approaches that will help unravel the functional role of brain rhythms in orchestrating the repertoire of complex behavior.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alexander Z. Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
27
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
28
|
Jenkins BW, Buckhalter S, Perreault ML, Khokhar JY. Cannabis Vapor Exposure Alters Neural Circuit Oscillatory Activity in a Neurodevelopmental Model of Schizophrenia: Exploring the Differential Impact of Cannabis Constituents. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab052. [PMID: 35036917 PMCID: PMC8752653 DOI: 10.1093/schizbullopen/sgab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cannabis use is highly prevalent in patients with schizophrenia and worsens the course of the disorder. To understand how exposure to cannabis changes schizophrenia-related oscillatory disruptions, we investigated the impact of administering cannabis vapor containing either Δ9-tetrahydrocannabinol (THC) or balanced THC/cannabidiol (CBD) on oscillatory activity in the neonatal ventral hippocampal lesion (NVHL) rat model of schizophrenia. Male Sprague Dawley rats underwent lesion or sham surgeries on postnatal day 7. In adulthood, electrodes were implanted targeting the cingulate cortex (Cg), the prelimbic cortex (PrLC), the hippocampus (HIP), and the nucleus accumbens (NAc). Local field potential recordings were obtained after rats were administered either the "THC-only" cannabis vapor (8-18% THC/0% CBD) or the "Balanced THC:CBD" cannabis vapor (4-11% THC/8.5-15.5% CBD) in a cross-over design with a 2-week wash-out period between exposures. Compared to controls, NVHL rats had reduced baseline gamma power in the Cg, HIP, and NAc, and reduced HIP-Cg high-gamma coherence. THC-only vapor exposure broadly suppressed oscillatory power and coherence, even beyond the baseline reductions observed in NHVL rats. Balanced THC:CBD vapor, however, did not suppress oscillatory power and coherence, and in some instances enhanced power. For NVHL rats, THC-only vapor normalized the baseline HIP-Cg high-gamma coherence deficits. NHVL rats demonstrated a 20 ms delay in HIP theta to high-gamma phase coupling, which was not apparent in the PrLC and NAc after both exposures. In conclusion, cannabis vapor exposure has varying impacts on oscillatory activity in NVHL rats, and the relative composition of naturally occurring cannabinoids may contribute to this variability.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Shoshana Buckhalter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
29
|
di Hou M, Santoro V, Biondi A, Shergill SS, Premoli I. A systematic review of TMS and neurophysiological biometrics in patients with schizophrenia. J Psychiatry Neurosci 2021; 46:E675-E701. [PMID: 34933940 PMCID: PMC8695525 DOI: 10.1503/jpn.210006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation can be combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) to evaluate the excitatory and inhibitory functions of the cerebral cortex in a standardized manner. It has been postulated that schizophrenia is a disorder of functional neural connectivity underpinned by a relative imbalance of excitation and inhibition. The aim of this review was to provide a comprehensive overview of TMS-EMG and TMS-EEG research in schizophrenia, focused on excitation or inhibition, connectivity, motor cortical plasticity and the effect of antipsychotic medications, symptom severity and illness duration on TMS-EMG and TMS-EEG indices. METHODS We searched PsycINFO, Embase and Medline, from database inception to April 2020, for studies that included TMS outcomes in patients with schizophrenia. We used the following combination of search terms: transcranial magnetic stimulation OR tms AND interneurons OR glutamic acid OR gamma aminobutyric acid OR neural inhibition OR pyramidal neurons OR excita* OR inhibit* OR GABA* OR glutam* OR E-I balance OR excitation-inhibition balance AND schizoaffective disorder* OR Schizophrenia OR schizophreni*. RESULTS TMS-EMG and TMS-EEG measurements revealed deficits in excitation or inhibition, functional connectivity and motor cortical plasticity in patients with schizophrenia. Increased duration of the cortical silent period (a TMS-EMG marker of γ-aminobutyric acid B receptor activity) with clozapine was a relatively consistent finding. LIMITATIONS Most of the studies used patients with chronic schizophrenia and medicated patients, employed cross-sectional group comparisons and had small sample sizes. CONCLUSION TMS-EMG and TMS-EEG offer an opportunity to develop a novel and improved understanding of the physiologic processes that underlie schizophrenia and to assess the therapeutic effect of antipsychotic medications. In the future, these techniques may also help predict disease progression and further our understanding of the excitatory/inhibitory balance and its implications for mechanisms that underlie treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Meng di Hou
- From the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Hou, Shergill); the Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Santoro, Biondi, Premoli); and the Kent and Medway Medical School, Canterbury, UK (Shergill)
| | | | | | | | | |
Collapse
|
30
|
Hirano Y, Uhlhaas PJ. Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 2021; 75:358-368. [PMID: 34558155 DOI: 10.1111/pcn.13300] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
There is now consistent evidence that neural oscillation at low- and high-frequencies constitute an important aspect of the pathophysiology of schizophrenia. Specifically, impaired rhythmic activity may underlie the deficit to generate coherent cognition and behavior, leading to the characteristic symptoms of psychosis and cognitive deficits. Importantly, the generating mechanisms of neural oscillations are relatively well-understood and thus enable the targeted search for the underlying circuit impairments and novel treatment targets. In the following review, we will summarize and assess the evidence for aberrant rhythmic activity in schizophrenia through evaluating studies that have utilized Electro/Magnetoencephalography to examine neural oscillations during sensory and cognitive tasks as well as during resting-state measurements. These data will be linked to current evidence from post-mortem, neuroimaging, genetics, and animal models that have implicated deficits in GABAergic interneurons and glutamatergic neurotransmission in oscillatory deficits in schizophrenia. Finally, we will highlight methodological and analytical challenges as well as provide recommendations for future research.
Collapse
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
31
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
32
|
Van Derveer AB, Bastos G, Ferrell AD, Gallimore CG, Greene ML, Holmes JT, Kubricka V, Ross JM, Hamm JP. A Role for Somatostatin-Positive Interneurons in Neuro-Oscillatory and Information Processing Deficits in Schizophrenia. Schizophr Bull 2021; 47:1385-1398. [PMID: 33370434 PMCID: PMC8379548 DOI: 10.1093/schbul/sbaa184] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alterations in neocortical GABAergic interneurons (INs) have been affiliated with neuropsychiatric diseases, including schizophrenia (SZ). Significant progress has been made linking the function of a specific subtype of GABAergic cells, parvalbumin (PV) positive INs, to altered gamma-band oscillations, which, in turn, underlie perceptual and feedforward information processing in cortical circuits. Here, we review a smaller but growing volume of literature focusing on a separate subtype of neocortical GABAergic INs, somatostatin (SST) positive INs. Despite sharing similar neurodevelopmental origins, SSTs exhibit distinct morphology and physiology from PVs. Like PVs, SSTs are altered in postmortem brain samples from multiple neocortical regions in SZ, although basic and translational research into consequences of SST dysfunction has been relatively sparse. We highlight a growing body of work in rodents, which now indicates that SSTs may also underlie specific aspects of cortical circuit function, namely low-frequency oscillations, disinhibition, and mediation of cortico-cortical feedback. SSTs may thereby support the coordination of local cortical information processing with more global spatial, temporal, and behavioral context, including predictive coding and working memory. These functions are notably deficient in some cases of SZ, as well as other neuropsychiatric disorders, emphasizing the importance of focusing on SSTs in future translational studies. Finally, we highlight the challenges that remain, including subtypes within the SST class.
Collapse
Affiliation(s)
- Alice B Van Derveer
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, Atlanta, GA
| | - Antanovia D Ferrell
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Michelle L Greene
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Vivien Kubricka
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, Atlanta, GA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, Atlanta, GA
| |
Collapse
|
33
|
Investigating neurophysiological markers of impaired cognition in schizophrenia. Schizophr Res 2021; 233:34-43. [PMID: 34225025 DOI: 10.1016/j.schres.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Cognitive impairment is highly prevalent in schizophrenia and treatment options are severely limited. A greater understanding of the pathophysiology of impaired cognition would have broad implications, including for the development of effective treatments. In the current study we used a multimodal approach to identify neurophysiological markers of cognitive impairment in schizophrenia. Fifty-seven participants (30 schizophrenia, 27 controls) underwent neurobiological assessment (electroencephalography [EEG] and Transcranial Magnetic Stimulation combined with EEG [TMS-EEG]) and assessment of cognitive functioning using an n-back task and the MATRICS Consensus Cognitive Battery. Neurobiological outcome measures included oscillatory power during a 2-back task, TMS-related oscillations and TMS-evoked potentials (TEPs). Cognitive outcome measures were d prime and accurate reaction time on the 2-back and MATRICS domain scores. Compared to healthy controls, participants with schizophrenia showed significantly reduced theta oscillations in response to TMS, and trend level decreases in task-related theta and cortical reactivity (i.e. reduced N100 and N40 TEPs). Participants with schizophrenia also showed significantly impaired cognitive performance across all measures. Correlational analysis identified significant associations between cortical reactivity and TMS-related oscillations in both groups; and trend level associations between task-related oscillations and impaired cognition in schizophrenia. The current study provides experimental support for possible neurophysiological markers of cognitive impairment in schizophrenia. The potential implications of these findings, including for treatment development, are discussed.
Collapse
|
34
|
Reduced evoked activity and cortical oscillations are correlated with anisometric amblyopia and impairment of visual acuity. Sci Rep 2021; 11:8310. [PMID: 33859272 PMCID: PMC8050307 DOI: 10.1038/s41598-021-87545-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Amblyopia is a developmental disorder associated with abnormal visual experience during early childhood commonly arising from strabismus and/or anisometropia and leading to dysfunctions in visual cortex and to various visual deficits. The different forms of neuronal activity that are attenuated in amblyopia have been only partially characterized. In electrophysiological recordings of healthy human brain, the presentation of visual stimuli is associated with event-related activity and oscillatory responses. It has remained poorly understood whether these forms of activity are reduced in amblyopia and whether possible dysfunctions would arise from lower- or higher-order visual areas. We recorded neuronal activity with magnetoencephalography (MEG) from anisometropic amblyopic patients and control participants during two visual tasks presented separately for each eye and estimated neuronal activity from source-reconstructed MEG data. We investigated whether event-related and oscillatory responses would be reduced for amblyopia and localized their cortical sources. Oscillation amplitudes and evoked responses were reduced for stimuli presented to the amblyopic eye in higher-order visual areas and in parietal and prefrontal cortices. Importantly, the reduction of oscillation amplitudes but not that of evoked responses was correlated with decreased visual acuity in amblyopia. These results show that attenuated oscillatory responses are correlated with visual deficits in anisometric amblyopia.
Collapse
|
35
|
Barnes-Scheufler CV, Passow C, Rösler L, Mayer JS, Oertel V, Kittel-Schneider S, Matura S, Reif A, Bittner RA. Transdiagnostic comparison of visual working memory capacity in bipolar disorder and schizophrenia. Int J Bipolar Disord 2021; 9:12. [PMID: 33797645 PMCID: PMC8018920 DOI: 10.1186/s40345-020-00217-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/22/2020] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Impaired working memory is a core cognitive deficit in both bipolar disorder and schizophrenia. Its study might yield crucial insights into the underpinnings of both disorders on the cognitive and neurophysiological level. Visual working memory capacity is a particularly promising construct for such translational studies. However, it has not yet been investigated across the full spectrum of both disorders. The aim of our study was to compare the degree of reductions of visual working memory capacity in patients with bipolar disorder (PBD) and patients with schizophrenia (PSZ) using a paradigm well established in cognitive neuroscience. METHODS 62 PBD, 64 PSZ, and 70 healthy controls (HC) completed a canonical visual change detection task. Participants had to encode the color of four circles and indicate after a short delay whether the color of one of the circles had changed or not. We estimated working memory capacity using Pashler's K. RESULTS Working memory capacity was significantly reduced in both PBD and PSZ compared to HC. We observed a small effect size (r = .202) for the difference between HC and PBD and a medium effect size (r = .370) for the difference between HC and PSZ. Working memory capacity in PSZ was also significantly reduced compared to PBD with a small effect size (r = .201). Thus, PBD showed an intermediate level of impairment. CONCLUSIONS These findings provide evidence for a gradient of reduced working memory capacity in bipolar disorder and schizophrenia, with PSZ showing the strongest degree of impairment. This underscores the importance of disturbed information processing for both bipolar disorder and schizophrenia. Our results are compatible with the cognitive manifestation of a neurodevelopmental gradient affecting bipolar disorder to a lesser degree than schizophrenia. They also highlight the relevance of visual working memory capacity for the development of both behavior- and brain-based transdiagnostic biomarkers.
Collapse
Affiliation(s)
- Catherine V Barnes-Scheufler
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Caroline Passow
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Lara Rösler
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany.,Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jutta S Mayer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany.,Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Robert A Bittner
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany. .,Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Abnormal white matter functional connectivity density in antipsychotic-naive adolescents with schizophrenia. Clin Neurophysiol 2021; 132:1025-1032. [PMID: 33743297 DOI: 10.1016/j.clinph.2020.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study aimed to assess the white matter (WM) functional hubs and abnormal functional connectivity pattern in adolescents with schizophrenia (AOS) and to explore the potential mechanisms. METHODS Based on resting-state fMRI data, we measured the WM functional connectivity density (FCD) at local- and long- ranges in 39 AOS and 31 healthy controls (HCs). Group comparison was conducted between the two groups. Spearman rank correlation analysis between the altered WM FCD and clinical PANSS scores was performed. RESULTS In the local scale, the functional hubs of the WM were mainly located in the corona radiata and cerebellum. Compared with HCs, AOS patients exhibited decreased FCD in the superior corona radiata. In the long-range, the functional hubs of the WM were mainly located in the external capsule and pons. AOS patients exhibited increased FCD in the cingulum but decreased FCD in the right dorsal raphe nuclei (DR). Furthermore, the aberrant long-range FCD in the right DR was inversely proportional to the clinical symptoms. CONCLUSION These findings indicated that the pathophysiology of schizophrenia may also lie in WM functional dysconnectivity. SIGNIFICANCE The current results provided initial evidence for the hypothesis of abnormal WM functional connectivity in schizophrenia.
Collapse
|
37
|
Jenkins BW, Khokhar JY. Cannabis Use and Mental Illness: Understanding Circuit Dysfunction Through Preclinical Models. Front Psychiatry 2021; 12:597725. [PMID: 33613338 PMCID: PMC7892618 DOI: 10.3389/fpsyt.2021.597725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with a serious mental illness often use cannabis at higher rates than the general population and are also often diagnosed with cannabis use disorder. Clinical studies reveal a strong association between the psychoactive effects of cannabis and the symptoms of serious mental illnesses. Although some studies purport that cannabis may treat mental illnesses, others have highlighted the negative consequences of use for patients with a mental illness and for otherwise healthy users. As epidemiological and clinical studies are unable to directly infer causality or examine neurobiology through circuit manipulation, preclinical animal models remain a valuable resource for examining the causal effects of cannabis. This is especially true considering the diversity of constituents in the cannabis plant contributing to its effects. In this mini-review, we provide an updated perspective on the preclinical evidence of shared neurobiological mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents, as well as rodent models of schizophrenia, depression, and bipolar disorder, and the resulting impact on electrophysiological indices of neural circuit activity. We propose a consolidated neural circuit-based understanding of the preclinical evidence to generate new hypotheses and identify novel therapeutic targets.
Collapse
Affiliation(s)
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
38
|
Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci 2021; 271:135-156. [PMID: 33211157 PMCID: PMC7867505 DOI: 10.1007/s00406-020-01209-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Transcranial alternating current stimulation (tACS) is a unique form of non-invasive brain stimulation. Sinusoidal alternating electric currents are delivered to the scalp to affect mostly cortical neurons. tACS is supposed to modulate brain function and, in turn, cognitive processes by entraining brain oscillations and inducing long-term synaptic plasticity. Therefore, tACS has been investigated in cognitive neuroscience, but only recently, it has been also introduced in psychiatric clinical trials. This review describes current concepts and first findings of applying tACS as a potential therapeutic tool in the field of psychiatry. The current understanding of its mechanisms of action is explained, bridging cellular neuronal activity and the brain network mechanism. Revisiting the relevance of altered brain oscillations found in six major psychiatric disorders, putative targets for the management of mental disorders using tACS are discussed. A systematic literature search on PubMed was conducted to report findings of the clinical studies applying tACS in patients with psychiatric conditions. In conclusion, the initial results may support the feasibility of tACS in clinical psychiatric populations without serious adverse events. Moreover, these results showed the ability of tACS to reset disturbed brain oscillations, and thus to improve behavioural outcomes. In addition to its potential therapeutic role, the reactivity of the brain circuits to tACS could serve as a possible tool to determine the diagnosis, classification or prognosis of psychiatric disorders. Future double-blind randomised controlled trials are necessary to answer currently unresolved questions. They may aim to detect response predictors and control for various confounding factors.
Collapse
Affiliation(s)
- Osama Elyamany
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, 35392, Giessen, Hessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Centre for Excellence "Hearing4all," European Medical School, University of Oldenburg, Oldenburg, Lower Saxony, Germany
- Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Christoph Mulert
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, 35392, Giessen, Hessen, Germany.
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany.
| |
Collapse
|
39
|
Lenck-Santini PP, Sakkaki S. Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy. Curr Top Behav Neurosci 2021; 55:65-106. [PMID: 33454922 DOI: 10.1007/7854_2020_193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients.
Collapse
Affiliation(s)
- Pierre-Pascal Lenck-Santini
- Aix-Marseille Université, INSERM, INMED, Marseille, France. .,Department of Neurological sciences, University of Vermont, Burlington, VT, USA.
| | - Sophie Sakkaki
- Department of Neurological sciences, University of Vermont, Burlington, VT, USA.,Université de. Montpellier, CNRS, INSERM, IGF, Montpellier, France
| |
Collapse
|
40
|
Amidfar M, Kim YK. EEG Correlates of Cognitive Functions and Neuropsychiatric Disorders: A Review of Oscillatory Activity and Neural Synchrony Abnormalities. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999201209130117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A large body of evidence suggested that disruption of neural rhythms and
synchronization of brain oscillations are correlated with a variety of cognitive and perceptual processes.
Cognitive deficits are common features of psychiatric disorders that complicate treatment of
the motivational, affective and emotional symptoms.
Objective:
Electrophysiological correlates of cognitive functions will contribute to understanding of
neural circuits controlling cognition, the causes of their perturbation in psychiatric disorders and
developing novel targets for the treatment of cognitive impairments.
Methods:
This review includes a description of brain oscillations in Alzheimer’s disease, bipolar
disorder, attention-deficit/hyperactivity disorder, major depression, obsessive compulsive disorders,
anxiety disorders, schizophrenia and autism.
Results:
The review clearly shows that the reviewed neuropsychiatric diseases are associated with
fundamental changes in both spectral power and coherence of EEG oscillations.
Conclusion:
In this article, we examined the nature of brain oscillations, the association of brain
rhythms with cognitive functions and the relationship between EEG oscillations and neuropsychiatric
diseases. Accordingly, EEG oscillations can most likely be used as biomarkers in psychiatric
disorders.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
41
|
Campanella S, Arikan K, Babiloni C, Balconi M, Bertollo M, Betti V, Bianchi L, Brunovsky M, Buttinelli C, Comani S, Di Lorenzo G, Dumalin D, Escera C, Fallgatter A, Fisher D, Giordano GM, Guntekin B, Imperatori C, Ishii R, Kajosch H, Kiang M, López-Caneda E, Missonnier P, Mucci A, Olbrich S, Otte G, Perrottelli A, Pizzuti A, Pinal D, Salisbury D, Tang Y, Tisei P, Wang J, Winkler I, Yuan J, Pogarell O. Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clin EEG Neurosci 2021; 52:3-28. [PMID: 32975150 PMCID: PMC8121213 DOI: 10.1177/1550059420954054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Salvatore Campanella
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Kemal Arikan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Italy.,San Raffaele Cassino, Cassino (FR), Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Maurizio Bertollo
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Luigi Bianchi
- Dipartimento di Ingegneria Civile e Ingegneria Informatica (DICII), University of Rome Tor Vergata, Rome, Italy
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany Czech Republic.,Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Carla Buttinelli
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Silvia Comani
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Chair of Psychiatry, Department of Systems Medicine, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniel Dumalin
- AZ Sint-Jan Brugge-Oostende AV, Campus Henri Serruys, Lab of Neurophysiology, Department Neurology-Psychiatry, Ostend, Belgium
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Andreas Fallgatter
- Department of Psychiatry, University of Tübingen, Germany; LEAD Graduate School and Training Center, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, and Department of Psychiatry, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | | | - Bahar Guntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Ryouhei Ishii
- Department of Psychiatry Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hendrik Kajosch
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Michael Kiang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Pascal Missonnier
- Mental Health Network Fribourg (RFSM), Sector of Psychiatry and Psychotherapy for Adults, Marsens, Switzerland
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Olbrich
- Psychotherapy and Psychosomatics, Department for Psychiatry, University Hospital Zurich, Zurich, Switzerland
| | | | - Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Pizzuti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Diego Pinal
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Dean Salisbury
- Clinical Neurophysiology Research Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Paolo Tisei
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Istvan Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Jiajin Yuan
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
42
|
Hamilton HK, Roach BJ, Cavus I, Teyler TJ, Clapp WC, Ford JM, Tarakci E, Krystal JH, Mathalon DH. Impaired Potentiation of Theta Oscillations During a Visual Cortical Plasticity Paradigm in Individuals With Schizophrenia. Front Psychiatry 2020; 11:590567. [PMID: 33391054 PMCID: PMC7772351 DOI: 10.3389/fpsyt.2020.590567] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term potentiation (LTP) is a form of experience-dependent synaptic plasticity mediated by glutamatergic transmission at N-methyl-D-aspartate receptors (NMDARs). Impaired neuroplasticity has been implicated in the pathophysiology of schizophrenia, possibly due to underlying NMDAR hypofunction. Analogous to the high frequency electrical stimulation used to induce LTP in vitro and in vivo in animal models, repeated high frequency presentation of a visual stimulus in humans in vivo has been shown to induce enduring LTP-like neuroplastic changes in electroencephalography (EEG)-based visual evoked potentials (VEPs) elicited by the stimulus. Using this LTP-like visual plasticity paradigm, we previously showed that visual high-frequency stimulation (VHFS) induced sustained changes in VEP amplitudes in healthy controls, but not in patients with schizophrenia. Here, we extend this prior work by re-analyzing the EEG data underlying the VEPs, focusing on neuroplastic changes in stimulus-evoked EEG oscillatory activity following VHFS. EEG data were recorded from 19 patients with schizophrenia and 21 healthy controls during the visual plasticity paradigm. Event-related EEG oscillations (total power, intertrial phase coherence; ITC) elicited by a standard black and white checkerboard stimulus (~0.83 Hz, several 2-min blocks) were assessed before and after exposure to VHFS with the same stimulus (~8.9 Hz, 2 min). A cluster-based permutation testing approach was applied to time-frequency data to examine LTP-like plasticity effects following VHFS. VHFS enhanced theta band total power and ITC in healthy controls but not in patients with schizophrenia. The magnitude and phase synchrony of theta oscillations in response to a visual stimulus were enhanced for at least 22 min following VHFS, a frequency domain manifestation of LTP-like visual cortical plasticity. These theta oscillation changes are deficient in patients with schizophrenia, consistent with hypothesized NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - Idil Cavus
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Timothy J. Teyler
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States
| | | | - Judith M. Ford
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Erendiz Tarakci
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
43
|
Semprini M, Bonassi G, Barban F, Pelosin E, Iandolo R, Chiappalone M, Mantini D, Avanzino L. Modulation of neural oscillations during working memory update, maintenance, and readout: An hdEEG study. Hum Brain Mapp 2020; 42:1153-1166. [PMID: 33200500 PMCID: PMC7856639 DOI: 10.1002/hbm.25283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
Working memory (WM) performance is very often measured using the n‐back task, in which the participant is presented with a sequence of stimuli, and required to indicate whether the current stimulus matches the one presented n steps earlier. In this study, we used high‐density electroencephalography (hdEEG) coupled to source localization to obtain information on spatial distribution and temporal dynamics of neural oscillations associated with WM update, maintenance and readout. Specifically, we a priori selected regions from a large fronto‐parietal network, including also the insula and the cerebellum, and we analyzed modulation of neural oscillations by event‐related desynchronization and synchronization (ERD/ERS). During update and readout, we found larger θ ERS and smaller β ERS respect to maintenance in all the selected areas. γLOW and γHIGH bands oscillations decreased in the frontal and insular cortices of the left hemisphere. In the maintenance phase we observed decreased θ oscillations and increased β oscillations (ERS) in most of the selected posterior areas and focally increased oscillations in γLOW and γHIGH bands in the frontal and insular cortices of the left hemisphere. Finally, during WM readout, we also found a focal modulation of the γLOW band in the left fusiform cortex and cerebellum, depending on the response trial type (true positive vs. true negative). Overall, our study demonstrated specific spectral signatures associated with updating of memory information, WM maintenance, and readout, with relatively high spatial resolution.
Collapse
Affiliation(s)
| | - Gaia Bonassi
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Federico Barban
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Riccardo Iandolo
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| |
Collapse
|
44
|
Non-Invasive Brain Stimulation Does Not Improve Working Memory in Schizophrenia: A Meta-Analysis of Randomised Controlled Trials. Neuropsychol Rev 2020; 31:115-138. [PMID: 32918254 DOI: 10.1007/s11065-020-09454-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Poor working memory functioning is commonly found in schizophrenia. A number of studies have now tested whether non-invasive brain stimulation can improve this aspect of cognitive functioning. This report used meta-analysis to synthesise the results of these studies to examine whether transcranial electrical stimulation (tES) or repetitive transcranial magnetic stimulation (rTMS) can improve working memory in schizophrenia. The studies included in this meta-analysis were sham-controlled, randomised controlled trials that utilised either tES or rTMS to treat working memory problems in schizophrenia. A total of 22 studies were included in the review. Nine studies administered rTMS and 13 administered tES. Meta-analysis revealed that compared to sham/placebo stimulation, neither TMS nor tES significantly improved working memory. This was found when working memory was measured with respect to the accuracy on working memory tasks (TMS studies: Hedges' g = 0.112, CI95: -0.082, 0.305, p = .257; tES studies Hedges' g = 0.080, CI95: -0.117, 0.277, p = .427) or the speed working memory tasks were completed (rTMS studies: Hedges' g = 0.233, CI95: -0.212, 0.678, p = .305; tES studies Hedges' g = -0.016, CI95: -0.204, 0.173, p = .871). For tES studies, meta-regression analysis found that studies with a larger number of stimulation sessions were associated with larger treatment effects. This association was not found for TMS studies. At present, rTMS and tES is not associated with a reliable improvement in working memory for individuals with schizophrenia.
Collapse
|
45
|
Rürup L, Mathes B, Schmiedt-Fehr C, Wienke AS, Özerdem A, Brand A, Basar-Eroglu C. Altered gamma and theta oscillations during multistable perception in schizophrenia. Int J Psychophysiol 2020; 155:127-139. [DOI: 10.1016/j.ijpsycho.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
|
46
|
Singh F, Shu IW, Hsu SH, Link P, Pineda JA, Granholm E. Modulation of frontal gamma oscillations improves working memory in schizophrenia. NEUROIMAGE-CLINICAL 2020; 27:102339. [PMID: 32712452 PMCID: PMC7390812 DOI: 10.1016/j.nicl.2020.102339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022]
Abstract
Cognitive deficits, a core symptom of schizophrenia, are difficult to treat with available therapies. Abnormal neural dynamics of frontal gamma oscillations contribute to these deficits. Neurofeedback has been used previously to alter brain oscillations. Gamma band neurofeedback can impact brain and behavioral markers of cognition.
Schizophrenia is a debilitating mental disorder that is associated with cognitive deficits. Impairments in cognition occur early in the course of illness and are associated with poor functional outcome, but have been difficult to treat with conventional treatments. Recent studies have implicated abnormal neural network dynamics and impaired connectivity in frontal brain regions as possible causes of cognitive deficits. For example, high-frequency, dorsal-lateral prefrontal oscillatory activity in the gamma range (30–50 Hz) is associated with impaired working memory in individuals with schizophrenia. In light of these findings, it may be possible to use EEG neurofeedback (EEG-NFB) to train individuals with schizophrenia to enhance frontal gamma activity to improve working memory and cognition. In a single-group, proof-of-concept study, 31 individuals with schizophrenia received 12 weeks of twice weekly EEG-NFB to enhance frontal gamma band response. EEG-NFB was well-tolerated, associated with increased gamma training threshold, and significant increases in frontal gamma power during an n-back working memory task. Additionally, EEG-NFB was associated with significant improvements in n-back performance and working memory, speed of processing, and reasoning and problem solving on neuropsychological tests. Change in gamma power was associated with change in cognition. Significant improvements in psychiatric symptoms were also found. These encouraging findings suggest EEG-NFB targeting frontal gamma activity may provide a novel effective approach to cognitive remediation in schizophrenia, although placebo-controlled trials are needed to assess the effects of non-treatment related factors.
Collapse
Affiliation(s)
- Fiza Singh
- Department of Psychiatry, School of Medicine, University of California at San Diego, United States.
| | - I-Wei Shu
- Department of Psychiatry, School of Medicine, University of California at San Diego, United States
| | - Sheng-Hsiou Hsu
- Swartz Center for Computational Neuroscience, University of California at San Diego, United States
| | - Peter Link
- Department of Psychiatry, School of Medicine, University of California at San Diego, United States
| | - Jaime A Pineda
- Department of Cognitive Science, Division of Cognitive Neuroscience, University of California at San Diego, United States
| | - Eric Granholm
- Department of Psychiatry, School of Medicine, University of California at San Diego, United States
| |
Collapse
|
47
|
Liu XL, Ranganath C, Hsieh LT, Hurtado M, Niendam TA, Lesh TA, Carter CS, Ragland JD. Task-specific Disruptions in Theta Oscillations during Working Memory for Temporal Order in People with Schizophrenia. J Cogn Neurosci 2020; 32:2117-2130. [PMID: 32573383 DOI: 10.1162/jocn_a_01598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prior studies demonstrated that neural oscillations are enhanced during working memory (WM) maintenance and that this activity can predict behavioral performance in healthy individuals. However, it is unclear whether the relationship holds for people with WM deficits. People with schizophrenia have marked WM deficits, and such deficits are most prominent when patients are required to process relationships between items, such as temporal order. Here, we used EEG to compare the relationship between oscillatory activity and WM performance in patients and controls. EEG was recorded as participants performed tasks requiring maintenance of complex objects ("Item") or the temporal order of objects ("Order"). In addition to testing for group differences, we examined individual differences in EEG power and WM performance across groups. Behavioral results demonstrated that patients showed impaired performance on both Item and Order trials. EEG analyses revealed that patients showed an overall reduction in alpha power, but the relationship between alpha activity and performance was preserved. In contrast, patients showed a reduction in theta power specific to Order trials, and theta power could predict performance on Order trials in controls, but not in patients. These findings demonstrate that WM impairments in patients may reflect two different processes: a general deficit in alpha oscillations and a specific deficit in theta oscillations when temporal order information must be maintained. At a broader level, the results highlight the value of characterizing brain-behavior relationships, by demonstrating that the relationship between neural oscillations and WM performance can be fundamentally disrupted in those with WM deficits.
Collapse
|
48
|
Herman AB, Brown EG, Dale CL, Hinkley LB, Subramaniam K, Houde JF, Fisher M, Vinogradov S, Nagarajan SS. The Visual Word Form Area compensates for auditory working memory dysfunction in schizophrenia. Sci Rep 2020; 10:8881. [PMID: 32483253 PMCID: PMC7264140 DOI: 10.1038/s41598-020-63962-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/28/2020] [Indexed: 11/23/2022] Open
Abstract
Auditory working memory impairments feature prominently in schizophrenia. However, the existence of altered and perhaps compensatory neural dynamics, sub-serving auditory working memory, remains largely unexplored. We compared the dynamics of induced high gamma power (iHGP) across cortex in humans during speech-sound working memory in individuals with schizophrenia (SZ) and healthy comparison subjects (HC) using magnetoencephalography (MEG). SZ showed similar task performance to HC while utilizing different brain regions. During encoding of speech sounds, SZ lacked the correlation of iHGP with task performance in posterior superior temporal gyrus (STGp) that was observed in healthy subjects. Instead, SZ recruited the visual word form area (VWFA) during both stimulus encoding and response preparation. Importantly, VWFA activity during encoding correlated with the magnitude of SZ hallucinations, task performance and an independent measure of verbal working memory. These findings suggest that VWFA plasticity is harnessed to compensate for STGp dysfunction in schizophrenia patients with hallucinations.
Collapse
Affiliation(s)
- Alexander B Herman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- UCB-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Ethan G Brown
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Corby L Dale
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Karuna Subramaniam
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - John F Houde
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa Fisher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
- San Francisco Veterans' Affairs Medical Center, San Francisco, CA, United States
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
- San Francisco Veterans' Affairs Medical Center, San Francisco, CA, United States
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
49
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
50
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|