1
|
El Hajjar L, Boll E, Cantrelle FX, Bridot C, Landrieu I, Smet-Nocca C. Effect of PHF-1 hyperphosphorylation on the seeding activity of C-terminal Tau fragments. Sci Rep 2025; 15:9975. [PMID: 40121258 PMCID: PMC11929799 DOI: 10.1038/s41598-025-91867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Tau proteins as neurofibrillary tangles are one of the molecular hallmarks of Alzheimer's disease (AD) and play a central role in tauopathies, a group of age-related neurodegenerative disorders. The filament cores from diverse tauopathies share a common region of tau consisting of the R3-R4 microtubule-binding repeats and part of the C-terminal domain, but present a structural polymorphism. Unlike the fibril structure, the PTM signature of tau found in neuronal inclusions, more particularly hyperphosphorylation, is variable between individuals with the same tauopathy, giving rise to diverse strains with different seeding properties that could modulate the aggressiveness of tau pathology. Here, we investigate the conformation, function and seeding activity of two tau fragments and their GSK3β-phosphorylated variants. The R2Ct and R3Ct fragments encompass the aggregation-prone region of tau starting at the R2 and R3 repeats, respectively, and the full C-terminal domain including the PHF-1 epitope (S396, S400, S404), which undergoes a triple phosphorylation upon GSK3β activity. We found that the R3Ct fragment shows both a greater loss of function and pathological activity in seeding of aggregation than the R2Ct fragment which imposes a cross-seeding barrier. PHF-1 hyperphosphorylation induces a local conformational change with a propensity to adopt a β-sheet conformation in the region spanning residues 392-402, and exacerbates the seeding ability of fragments to induce aggregation by overcoming a cross-seeding barrier between tau variants.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Emmanuelle Boll
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France.
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France.
- Inserm U1167/Institut Pasteur de Lille, 1 rue Professeur Calmette, BP245, Lille, 59019, France.
| |
Collapse
|
2
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. Sleep 2024; 47:zsae226. [PMID: 39331490 DOI: 10.1093/sleep/zsae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
STUDY OBJECTIVES Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and reduction of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep (VIS) provides similar cognitive and health benefits in Drosophila. METHODS We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synaptic varicosities of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and suppress the accumulation of Amyloid β (Aβ) and Tubulin Associated Unit (TAU). RESULTS VIS enhanced performance in a courtship conditioning paradigm and reduced the number of synaptic varicosities in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, reducing Aβ and TAU levels. CONCLUSIONS Mechanosensory stimulation offers a promising noninvasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
3
|
Singh MK, Ryu TH, Nguyen MN, Yu K. Inhibition of high-fat diet-induced miRNA ameliorates tau toxicity in Drosophila. Biochem Biophys Res Commun 2024; 733:150446. [PMID: 39067249 DOI: 10.1016/j.bbrc.2024.150446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Alzheimer's disease (AD), caused by amyloid beta (Aβ) plaques and Tau tangles, is a neurodegenerative disease characterized by progressive memory impairment and cognitive dysfunction. High-fat diet (HFD), which induces type 2 diabetes, exacerbates Aβ plaque deposition in the brain. To investigate the function of HFD in Tau-mediated AD, we fed an HFD to the Drosophila Tau model and found that HFD aggravates Tau-induced neurological phenotypes. Since microRNAs (miRNAs) are biomarkers for diabetes and AD, we evaluated the expression levels of common miRNAs of HFD and AD in HFD-fed Tau model fly brains. Among the common miRNAs, the expression levels of Let-7 and miR-34 were increased. We found that the inhibition of these miRNAs alleviates Tau-mediated AD phenotypes. Our research provides valuable insights into how HFD accelerates tau toxicity. Additionally, our work highlights the therapeutic potential of targeting Let-7 and miR-34 to develop innovative treatment approaches for AD.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Tae Hoon Ryu
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Minh Nguyet Nguyen
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, Disease Target Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Catterson JH, Mouofo EN, López De Toledo Soler I, Lean G, Dlamini S, Liddell P, Voong G, Katsinelos T, Wang YC, Schoovaerts N, Verstreken P, Spires-Jones TL, Durrant CS. Drosophila appear resistant to trans-synaptic tau propagation. Brain Commun 2024; 6:fcae256. [PMID: 39130515 PMCID: PMC11316205 DOI: 10.1093/braincomms/fcae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly, prompting extensive efforts to pinpoint novel therapeutic targets for effective intervention. Among the hallmark features of Alzheimer's disease is the development of neurofibrillary tangles comprised of hyperphosphorylated tau protein, whose progressive spread throughout the brain is associated with neuronal death. Trans-synaptic propagation of tau has been observed in mouse models, and indirect evidence for tau spread via synapses has been observed in human Alzheimer's disease. Halting tau propagation is a promising therapeutic target for Alzheimer's disease; thus, a scalable model system to screen for modifiers of tau spread would be very useful for the field. To this end, we sought to emulate the trans-synaptic spread of human tau in Drosophila melanogaster. Employing the trans-Tango circuit mapping technique, we investigated whether tau spreads between synaptically connected neurons. Immunohistochemistry and confocal imaging were used to look for tau propagation. Examination of hundreds of flies expressing four different human tau constructs in two distinct neuronal populations reveals a robust resistance in Drosophila to the trans-synaptic spread of human tau. This resistance persisted in lines with concurrent expression of amyloid-β, in lines with global human tau knock-in to provide a template for human tau in downstream neurons, and with manipulations of temperature. These negative data are important for the field as we establish that Drosophila expressing human tau in subsets of neurons are unlikely to be useful to perform screens to find mechanisms to reduce the trans-synaptic spread of tau. The inherent resistance observed in Drosophila may serve as a valuable clue, offering insights into strategies for impeding tau spread in future studies.
Collapse
Affiliation(s)
- James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Edmond N Mouofo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Gillian Lean
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Dlamini
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Phoebe Liddell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Graham Voong
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Taxiarchis Katsinelos
- Schaller Research Group at the University of Heidelberg and the DKFZ, German Cancer Research Center, Proteostasis in Neurodegenerative Disease (B180), INF 581, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, INF 234, 69120 Heidelberg, Germany
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
5
|
Nair S, Jiang Y, Marchal IS, Chernobelsky E, Huang HW, Suh S, Pan R, Kong XP, Ryoo HD, Sigurdsson EM. Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects. Cell Death Dis 2024; 15:543. [PMID: 39079958 PMCID: PMC11289317 DOI: 10.1038/s41419-024-06927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth Chernobelsky
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Huai-Wei Huang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah Suh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602891. [PMID: 39026689 PMCID: PMC11257551 DOI: 10.1101/2024.07.10.602891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Study Objectives Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and clearance of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep provides similar cognitive and health benefits in Drosophila. Methods We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synapse numbers of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and promote the clearance of Amyloid b (Ab) and Tubulin Associated Unit (TAU). Results Vibration-induced sleep enhanced performance in a courtship conditioning paradigm and reduced the number of synapses in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, promoting the clearance of Ab and TAU. Conclusions Mechanosensory stimulation offers a promising non-invasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| |
Collapse
|
7
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
8
|
Waheed Z, Choudhary J, Jatala FH, Fatimah, Noor A, Zerr I, Zafar S. The Role of Tau Proteoforms in Health and Disease. Mol Neurobiol 2023; 60:5155-5166. [PMID: 37266762 DOI: 10.1007/s12035-023-03387-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Tau is a microtubule-associated binding protein in the nervous system that is known for its role in stabilizing microtubules throughout the nerve cell. It accumulates as β-sheet-rich aggregates and neurofibrillary tangles, leading to an array of different pathologies. Six splice variants of this protein, generated from the microtubule-associated protein tau (MAPT) gene, are expressed in the brain. Amongst these variants, 0N3R, is prominent during fetal development, while the rest, 0N4R, 1N3R, 1N4R, 2N3R, and 2N4R, are expressed in postnatal stages. Tau isoforms play their role separately or in combination with others to contribute to one or multiple neurodegenerative disorders and clinical syndromes. For instance, in Alzheimer's disease and a subset of frontotemporal lobar degeneration (FTLD)-MAPT (i.e., R406W and V337M), both 3R and 4R isoforms are involved; therefore, they are called 3R/4R mix tauopathies. On the other hand, 4R isoforms are aggregated in progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and a majority of FTLD-MAPT and these diseases are called 4R tauopathies. Similarly, Pick's disease has an association with 3R tau isoforms and is thereby referred to as 3R tauopathy. Unlike 3R isoforms, the 4R variants have a faster rate of aggregation that accelerates the associated neurodegenerative mechanisms. Moreover, post-translational modifications of each isoform occur at a different rate and dictate their physiological and pathological attributes. The smallest tau isoform (0N3R) is highly phosphorylated in the fetal brain but does not lead to the generation of aggregates. On the other hand, proteoforms in the adult human brain undergo aggregation upon their phosphorylation and glycation. Expanding on this knowledge, this article aims to review the physiological and pathological roles of tau isoforms and their underlying mechanisms that result in neurological deficits. Physiological and pathological relevance of microtubule-associated protein tau (MAPT): Tau exists as six splice variants in the brain, each differing with respect to expression, post-translational modifications (PTMs), and aggregation kinetics. Physiologically, they are involved in the stabilization of microtubules that form the molecular highways for axonal transport. However, an imbalance in their expression and the associated PTMs leads to a disruption in their physiological function through the formation of neurofibrillary tangles that accumulate in various regions of the brain and contribute to several types of tauopathies.
Collapse
Affiliation(s)
- Zuha Waheed
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Jawaria Choudhary
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Fatimah
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan.
| | - Inga Zerr
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
9
|
Wu T, Deger JM, Ye H, Guo C, Dhindsa J, Pekarek BT, Al-Ouran R, Liu Z, Al-Ramahi I, Botas J, Shulman JM. Tau polarizes an aging transcriptional signature to excitatory neurons and glia. eLife 2023; 12:e85251. [PMID: 37219079 PMCID: PMC10259480 DOI: 10.7554/elife.85251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell-type-specific manner. Integration of cellular abundance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.
Collapse
Affiliation(s)
- Timothy Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Jennifer M Deger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Hui Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
| | - Caiwei Guo
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Justin Dhindsa
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Brandon T Pekarek
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Rami Al-Ouran
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of MedicineHoustonUnited States
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of MedicineHoustonUnited States
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of MedicineHoustonUnited States
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Neurology, Baylor College of MedicineHoustonUnited States
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
10
|
Vourkou E, Rouiz Ortega ED, Mahajan S, Mudher A, Skoulakis EMC. Human Tau Aggregates Are Permissive to Protein Synthesis-Dependent Memory in Drosophila Tauopathy Models. J Neurosci 2023; 43:2988-3006. [PMID: 36868851 PMCID: PMC10124960 DOI: 10.1523/jneurosci.1374-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/22/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Tauopathies including Alzheimer's disease, are characterized by progressive cognitive decline, neurodegeneration, and intraneuronal aggregates comprised largely of the axonal protein Tau. It has been unclear whether cognitive deficits are a consequence of aggregate accumulation thought to compromise neuronal health and eventually lead to neurodegeneration. We use the Drosophila tauopathy model and mixed-sex populations to reveal an adult onset pan-neuronal Tau accumulation-dependent decline in learning efficacy and a specific defect in protein synthesis-dependent memory (PSD-M), but not in its protein synthesis-independent variant. We demonstrate that these neuroplasticity defects are reversible on suppression of new transgenic human Tau expression and surprisingly correlate with an increase in Tau aggregates. Inhibition of aggregate formation via acute oral administration of methylene blue results in re-emergence of deficient memory in animals with suppressed human Tau (hTau)0N4R expression. Significantly, aggregate inhibition results in PSD-M deficits in hTau0N3R-expressing animals, which present elevated aggregates and normal memory if untreated with methylene blue. Moreover, methylene blue-dependent hTau0N4R aggregate suppression within adult mushroom body neurons also resulted in emergence of memory deficits. Therefore, deficient PSD-M on human Tau expression in the Drosophila CNS is not a consequence of toxicity and neuronal loss because it is reversible. Furthermore, PSD-M deficits do not result from aggregate accumulation, which appears permissive, if not protective of processes underlying this memory variant.SIGNIFICANCE STATEMENT Intraneuronal Tau aggregate accumulation has been proposed to underlie the cognitive decline and eventual neurotoxicity that characterizes the neurodegenerative dementias known as tauopathies. However, we show in three experimental settings that Tau aggregates in the Drosophila CNS do not impair but rather appear to facilitate processes underlying protein synthesis-dependent memory within affected neurons.
Collapse
Affiliation(s)
- Ergina Vourkou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| | - Eva D Rouiz Ortega
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Sumeet Mahajan
- School of Chemistry, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Amrit Mudher
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| |
Collapse
|
11
|
Oliveira AC, Santos M, Pinho M, Lopes CS. String/Cdc25 phosphatase is a suppressor of Tau-associated neurodegeneration. Dis Model Mech 2023; 16:286255. [PMID: 36601903 PMCID: PMC9903143 DOI: 10.1242/dmm.049693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Tau pathology is defined by the intracellular accumulation of abnormally phosphorylated Tau (MAPT) and is prevalent in several neurodegenerative disorders. The identification of modulators of Tau abnormal phosphorylation and aggregation is key to understanding disease progression and developing targeted therapeutic approaches. In this study, we identified String (Stg)/Cdc25 phosphatase as a suppressor of abnormal Tau phosphorylation and associated toxicity. Using a Drosophila model of tauopathy, we showed that Tau dephosphorylation by Stg/Cdc25 correlates with reduced Tau oligomerization, brain vacuolization and locomotor deficits in flies. Moreover, using a disease mimetic model, we provided evidence that Stg/Cdc25 reduces Tau phosphorylation levels independently of Tau aggregation status and delays neurodegeneration progression in the fly. These findings uncover a role for Stg/Cdc25 phosphatases as regulators of Tau biology that extends beyond their well-characterized function as cell-cycle regulators during cell proliferation, and indicate Stg/Cdc25-based approaches as promising entry points to target abnormal Tau phosphorylation.
Collapse
Affiliation(s)
- Andreia C. Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- PhD Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Madalena Santos
- Department of Anatomy, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, 4200-072 Porto, Portugal
| | - Mafalda Pinho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla S. Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Author for correspondence ()
| |
Collapse
|
12
|
Veselkina ER, Trostnikov MV, Roshina NV, Pasyukova EG. The Effect of the Tau Protein on D. melanogaster Lifespan Depends on GSK3 Expression and Sex. Int J Mol Sci 2023; 24:2166. [PMID: 36768490 PMCID: PMC9916465 DOI: 10.3390/ijms24032166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The microtubule-associated conserved protein tau has attracted significant attention because of its essential role in the formation of pathological changes in the nervous system, which can reduce longevity. The study of the effects caused by tau dysfunction and the molecular mechanisms underlying them is complicated because different forms of tau exist in humans and model organisms, and the changes in protein expression can be multidirectional. In this article, we show that an increase in the expression of the main isoform of the Drosophila melanogaster tau protein in the nervous system has differing effects on lifespan depending on the sex of individuals but has no effect on the properties of the nervous system, in particular, the synaptic activity and distribution of another microtubule-associated protein, Futsch, in neuromuscular junctions. Reduced expression of tau in the nervous system does not affect the lifespan of wild-type flies, but it does increase the lifespan dramatically shortened by overexpression of the shaggy gene encoding the GSK3 (Glycogen Synthase Kinase 3) protein kinase, which is one of the key regulators of tau phosphorylation levels. This effect is accompanied by the normalization of the Futsch protein distribution impaired by shaggy overexpression. The results presented in this article demonstrate that multidirectional changes in tau expression can lead to effects that depend on the sex of individuals and the expression level of GSK3.
Collapse
Affiliation(s)
- Ekaterina R. Veselkina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Mikhail V. Trostnikov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Natalia V. Roshina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena G. Pasyukova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
13
|
Zhu B, Parsons T, Foley C, Shaw Y, Dunckley T, Hulme C, Hodge JJL. DYRK1A antagonists rescue degeneration and behavioural deficits of in vivo models based on amyloid-β, Tau and DYRK1A neurotoxicity. Sci Rep 2022; 12:15847. [PMID: 36151233 PMCID: PMC9508268 DOI: 10.1038/s41598-022-19967-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) involves pathological processing of amyloid precursor protein (APP) into amyloid-β and microtubule associated protein Tau (MAPT) into hyperphosphorylated Tau tangles leading to neurodegeneration. Only 5% of AD cases are familial making it difficult to predict who will develop the disease thereby hindering our ability to treat the causes of the disease. A large population who almost certainly will, are those with Down syndrome (DS), who have a 90% lifetime incidence of AD. DS is caused by trisomy of chromosome 21 resulting in three copies of APP and other AD-associated genes, like dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) overexpression. This implies that DYRK1a inhibitors may have therapeutic potential for DS and AD, however It is not clear how overexpression of each of these genes contributes to the pathology of each disease as well as how effective a DYRK1A inhibitor would be at suppressing any of these. To address this knowledge gap, we used Drosophila models with human Tau, human amyloid-β or fly DYRK1A (minibrain (mnb)) neuronal overexpression resulting in photoreceptor neuron degeneration, premature death, decreased locomotion, sleep and memory loss. DYRK1A small molecule Type 1 kinase inhibitors (DYR219 and DYR533) were effective at suppressing these disease relevant phenotypes confirming their therapeutic potential.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Tom Parsons
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Christopher Foley
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA
| | - Yeng Shaw
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Travis Dunckley
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA.,Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
14
|
Guha S, Cheng A, Carroll T, King D, Koren SA, Swords S, Nehrke K, Johnson GVW. Selective disruption of Drp1-independent mitophagy and mitolysosome trafficking by an Alzheimer's disease relevant tau modification in a novel Caenorhabditis elegans model. Genetics 2022; 222:iyac104. [PMID: 35916724 PMCID: PMC9434186 DOI: 10.1093/genetics/iyac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles is a defining feature of Alzheimer's disease, with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in Caenorhabditis elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild-type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator dynamin-related protein 1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to Alzheimer's disease pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and mitolysosome neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress-induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for dynamin-related protein 1-independent, Pink1-dependent, perhaps adaptive, and mitophagy.
Collapse
Affiliation(s)
- Sanjib Guha
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Anson Cheng
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Trae Carroll
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Dennisha King
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Shon A Koren
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, NJ 08901, USA
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Zhu B, Parsons T, Stensen W, Mjøen Svendsen JS, Fugelli A, Hodge JJL. DYRK1a Inhibitor Mediated Rescue of Drosophila Models of Alzheimer’s Disease-Down Syndrome Phenotypes. Front Pharmacol 2022; 13:881385. [PMID: 35928283 PMCID: PMC9345315 DOI: 10.3389/fphar.2022.881385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease which is becoming increasingly prevalent due to ageing populations resulting in huge social, economic, and health costs to the community. Despite the pathological processing of genes such as Amyloid Precursor Protein (APP) into Amyloid-β and Microtubule Associated Protein Tau (MAPT) gene, into hyperphosphorylated Tau tangles being known for decades, there remains no treatments to halt disease progression. One population with increased risk of AD are people with Down syndrome (DS), who have a 90% lifetime incidence of AD, due to trisomy of human chromosome 21 (HSA21) resulting in three copies of APP and other AD-associated genes, such as DYRK1A (Dual specificity tyrosine-phosphorylation-regulated kinase 1A) overexpression. This suggests that blocking DYRK1A might have therapeutic potential. However, it is still not clear to what extent DYRK1A overexpression by itself leads to AD-like phenotypes and how these compare to Tau and Amyloid-β mediated pathology. Likewise, it is still not known how effective a DYRK1A antagonist may be at preventing or improving any Tau, Amyloid-β and DYRK1a mediated phenotype. To address these outstanding questions, we characterised Drosophila models with targeted overexpression of human Tau, human Amyloid-β or the fly orthologue of DYRK1A, called minibrain (mnb). We found targeted overexpression of these AD-associated genes caused degeneration of photoreceptor neurons, shortened lifespan, as well as causing loss of locomotor performance, sleep, and memory. Treatment with the experimental DYRK1A inhibitor PST-001 decreased pathological phosphorylation of human Tau [at serine (S) 262]. PST-001 reduced degeneration caused by human Tau, Amyloid-β or mnb lengthening lifespan as well as improving locomotion, sleep and memory loss caused by expression of these AD and DS genes. This demonstrated PST-001 effectiveness as a potential new therapeutic targeting AD and DS pathology.
Collapse
Affiliation(s)
- Bangfu Zhu
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Tom Parsons
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Wenche Stensen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - John S. Mjøen Svendsen
- Department of Chemistry, The Arctic University of Norway, Tromsø, Norway
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - Anders Fugelli
- Pharmasum Therapeutics AS, ShareLab, Forskningsparken i Oslo, Oslo, Norway
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
- *Correspondence: James J. L. Hodge,
| |
Collapse
|
16
|
Prifti E, Tsakiri EN, Vourkou E, Stamatakis G, Samiotaki M, Skoulakis EMC, Papanikolopoulou K. Mical modulates Tau toxicity via cysteine oxidation in vivo. Acta Neuropathol Commun 2022; 10:44. [PMID: 35379354 PMCID: PMC8981811 DOI: 10.1186/s40478-022-01348-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tau accumulation is clearly linked to pathogenesis in Alzheimer’s disease and other Tauopathies. However, processes leading to Tau fibrillization and reasons for its pathogenicity remain largely elusive. Mical emerged as a novel interacting protein of human Tau expressed in Drosophila brains. Mical is characterized by the presence of a flavoprotein monooxygenase domain that generates redox potential with which it can oxidize target proteins. In the well-established Drosophila Tauopathy model, we use genetic interactions to show that Mical alters Tau interactions with microtubules and the Actin cytoskeleton and greatly affects Tau aggregation propensity and Tau-associated toxicity and dysfunction. Exploration of the mechanism was pursued using a Mical inhibitor, a mutation in Mical that selectively disrupts its monooxygenase domain, Tau transgenes mutated at cysteine residues targeted by Mical and mass spectrometry analysis to quantify cysteine oxidation. The collective evidence strongly indicates that Mical’s redox activity mediates the effects on Tau via oxidation of Cys322. Importantly, we also validate results from the fly model in human Tauopathy samples by showing that MICAL1 is up-regulated in patient brains and co-localizes with Tau in Pick bodies. Our work provides mechanistic insights into the role of the Tau cysteine residues as redox-switches regulating the process of Tau self-assembly into inclusions in vivo, its function as a cytoskeletal protein and its effect on neuronal toxicity and dysfunction.
Collapse
|
17
|
Ismael S, Sindi G, Colvin RA, Lee D. Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. J Biol Chem 2021; 297:101108. [PMID: 34473990 PMCID: PMC8455371 DOI: 10.1016/j.jbc.2021.101108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTauS11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTauE14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.
Collapse
Affiliation(s)
- Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ghadir Sindi
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
18
|
Giong HK, Subramanian M, Yu K, Lee JS. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. Int J Mol Sci 2021; 22:8465. [PMID: 34445171 PMCID: PMC8395099 DOI: 10.3390/ijms22168465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathy refers to a group of progressive neurodegenerative diseases, including frontotemporal lobar degeneration and Alzheimer's disease, which correlate with the malfunction of microtubule-associated protein Tau (MAPT) due to abnormal hyperphosphorylation, leading to the formation of intracellular aggregates in the brain. Despite extensive efforts to understand tauopathy and develop an efficient therapy, our knowledge is still far from complete. To find a solution for this group of devastating diseases, several animal models that mimic diverse disease phenotypes of tauopathy have been developed. Rodents are the dominating tauopathy models because of their similarity to humans and established disease lines, as well as experimental approaches. However, powerful genetic animal models using Drosophila, zebrafish, and C. elegans have also been developed for modeling tauopathy and have contributed to understanding the pathophysiology of tauopathy. The success of these models stems from the short lifespans, versatile genetic tools, real-time in-vivo imaging, low maintenance costs, and the capability for high-throughput screening. In this review, we summarize the main findings on mechanisms of tauopathy and discuss the current tauopathy models of these non-rodent genetic animals, highlighting their key advantages and limitations in tauopathy research.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Manivannan Subramanian
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kweon Yu
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
19
|
Subramanian M, Hyeon SJ, Das T, Suh YS, Kim YK, Lee JS, Song EJ, Ryu H, Yu K. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun 2021; 12:3291. [PMID: 34078905 PMCID: PMC8172564 DOI: 10.1038/s41467-021-23597-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of hyperphosphorylated intracellular Tau tangles in the brain is a hallmark of Alzheimer's disease (AD). Tau hyperphosphorylation destabilizes microtubules, promoting neurodegeneration in AD patients. To identify suppressors of tau-mediated AD, we perform a screen using a microRNA (miR) library in Drosophila and identify the miR-9 family as suppressors of human tau overexpression phenotypes. CG11070, a miR-9a target gene, and its mammalian orthologue UBE4B, an E3/E4 ubiquitin ligase, alleviate eye neurodegeneration, synaptic bouton defects, and crawling phenotypes in Drosophila human tau overexpression models. Total and phosphorylated Tau levels also decrease upon CG11070 or UBE4B overexpression. In mammalian neuroblastoma cells, overexpression of UBE4B and STUB1, which encodes the E3 ligase CHIP, increases the ubiquitination and degradation of Tau. In the Tau-BiFC mouse model, UBE4B and STUB1 overexpression also increase oligomeric Tau degradation. Inhibitor assays of the autophagy and proteasome systems reveal that the autophagy-lysosome system is the major pathway for Tau degradation in this context. These results demonstrate that UBE4B, a miR-9 target gene, promotes autophagy-mediated Tau degradation together with STUB1, and is thus an innovative therapeutic approach for AD.
Collapse
Affiliation(s)
- Manivannan Subramanian
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Seung Jae Hyeon
- grid.35541.360000000121053345Center for Neuroscience, Brain Science Institute, KIST, Seoul, Korea
| | - Tanuza Das
- grid.35541.360000000121053345Biomedical Research Institute, KIST, Seoul, Korea
| | - Yoon Seok Suh
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea
| | - Yun Kyung Kim
- grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Jeong-Soo Lee
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Eun Joo Song
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hoon Ryu
- grid.35541.360000000121053345Center for Neuroscience, Brain Science Institute, KIST, Seoul, Korea
| | - Kweon Yu
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, UST, Daejeon, Korea
| |
Collapse
|
20
|
Zarini-Gakiye E, Sanadgol N, Parivar K, Vaezi G. Alpha-lipoic acid ameliorates tauopathy-induced oxidative stress, apoptosis, and behavioral deficits through the balance of DIAP1/DrICE ratio and redox homeostasis: Age is a determinant factor. Metab Brain Dis 2021; 36:669-683. [PMID: 33547995 DOI: 10.1007/s11011-021-00679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Tauopathies belong to a heterogeneous class of neuronal diseases resulting in the metabolic disturbance. A disulfide natural compound of Alpha-Lipoic acid (ALA) has shown numerous pharmacologic, antioxidant, and neuroprotective activities under neuropathological conditions. The aim of this study was to investigate the neuroprotective effects of ALA on the tauopathy-induced oxidative disturbance and behavioral deficits. The transgenic Drosophila model of tauopathy induced by human tauR406W using GAL4/UAS system and effects of ALA (0.001, 0.005, and 0.025 % w/w of diet) on the neuropathology of tau in younger (20 days) and older (30 days) adults were investigated via biochemical, molecular, behavioral and in-situ tissue analyses. Expression of apoptosis-related proteins involving Drosophila Cyt-c-d (trigger of intrinsic apoptosis) and DrICE (effector caspase) were upregulated in both ages (20 and 30 days) and DIAP1 (caspase inhibitor) has reduced only in older model flies compared to the controls. Remarkably, all doses of ALA increased DIAP1 and glutathione (GSH) as well as reducing Cyt-c-d and lipid peroxidation (LPO) in the younger flies compared to the model flies. Moreover, the higher doses of ALA were able to decrease thiol concentrations, to increase total antioxidant capacity, and to improve the behavioral deficits (locomotor function, olfactory memory, and ethanol sensitivity) in the younger flies. On the other hand, only a higher dose of ALA was able to decrease DrICE, Cyt-c-d, LPO, and thiol as well as increasing antioxidant capacity and decreasing ethanol sensitivity (ST50, RT50) in the older flies. TUNEL assay showed that all doses of ALA could potentially increase the DIAP1/DrICE ratio and exert anti-apoptotic effects on younger, but not on the older adults. Furthermore, data obtained from the in-situ ROS assay confirmed that only a higher dose of ALA significantly decreased the ROS level at both ages. Our data showed that an effective neuroprotective dose of ALA and its mechanism of action on this model of tauopathy could potentially be influenced by longevity. Moreover, it was shown that ALA prevents apoptosis and decreases the redox homeostasis, and this partially explains the mechanism by which ALA diminishes behavioral deficits.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Zarini-Gakiye E, Vaezi G, Parivar K, Sanadgol N. Age and Dose-Dependent Effects of Alpha-Lipoic Acid on Human Microtubule- Associated Protein Tau-Induced Endoplasmic Reticulum Unfolded Protein Response: Implications for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:451-464. [PMID: 33573583 DOI: 10.2174/1871527320666210126114442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In human tauopathies, pathological aggregation of misfolded/unfolded proteins, particularly microtubule-associated protein tau (MAPT, tau) is considered to be an essential mechanism that triggers the induction of endoplasmic reticulum (ER) stress. OBJECTIVE Here, we assessed the molecular effects of natural antioxidant alpha-lipoic acid (ALA) in human tauR406W (hTau)-induced ER unfolded protein response (ERUPR) in fruit flies. METHODS In order to reduce hTau neurotoxicity during brain development, we used a transgenic model of tauopathy where the maximum toxicity was observed in adult flies. Then, the effects of ALA (0.001, 0.005, and 0.025% w/w of diet) in htau-induced ERUPR and behavioral dysfunctions in the ages 20 and 30 days were evaluated in Drosophila melanogaster. RESULTS Data from expression (mRNA and protein) patterns of htau, analysis of eyes external morphology as well as larvae olfactory memory were confirmed by our tauopathy model. Moreover, the expression of ERUPR-related proteins involving Activating Transcription Factor 6 (ATF6), inositol regulating enzyme 1 (IRE1), and protein kinase RNA-like ER kinase (PERK) wase upregulated and locomotor function decreased in both ages of the model flies. Remarkably, the lower dose of ALA modified ERUPR and supported the reduction of behavioral deficits in youngest adults through the enhancement of GRP87/Bip, reduction of ATF6, downregulation of PERK-ATF4 pathway, and activation of the IRE1-XBP1 pathway. On the other hand, only a higher dose of ALA affected the ERUPR via moderation of PERK-ATF4 signaling in the oldest adults. As ALA also exerts higher protective effects on the locomotor function of younger adults when htauR406Wis expressed in all neurons (htau-elav) and mushroom body neurons (htau-ok), we proposed that ALA has age-dependent effects in this model. CONCLUSION Taken together, based on our results, we conclude that aging potentially influences the ALA effective dose and mechanism of action on tau-induced ERUPR. Further molecular studies will warrant possible therapeutic applications of ALA in age-related tauopathies.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
22
|
The Two Cysteines of Tau Protein Are Functionally Distinct and Contribute Differentially to Its Pathogenicity in Vivo. J Neurosci 2020; 41:797-810. [PMID: 33334867 DOI: 10.1523/jneurosci.1920-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
Although Tau accumulation is clearly linked to pathogenesis in Alzheimer's disease and other Tauopathies, the mechanism that initiates the aggregation of this highly soluble protein in vivo remains largely unanswered. Interestingly, in vitro Tau can be induced to form fibrillar filaments by oxidation of its two cysteine residues, generating an intermolecular disulfide bond that promotes dimerization and fibrillization. The recently solved structures of Tau filaments revealed that the two cysteine residues are not structurally equivalent since Cys-322 is incorporated into the core of the fibril, whereas Cys-291 projects away from the core to form the fuzzy coat. Here, we examined whether mutation of these cysteines to alanine affects differentially Tau mediated toxicity and dysfunction in the well-established Drosophila Tauopathy model. Experiments were conducted with both sexes, or with either sex. Each cysteine residue contributes differentially to Tau stability, phosphorylation status, aggregation propensity, resistance to stress, learning, and memory. Importantly, our work uncovers a critical role of Cys-322 in determining Tau toxicity and dysfunction.SIGNIFICANCE STATEMENT Cysteine-291 and Cysteine-322, the only two cysteine residues of Tau present in only 4-Repeat or all isoforms, respectively, have competing functions: as the key residues in the catalytic center, they enable Tau auto-acetylation; and as residues within the microtubule-binding repeat region are important not only for Tau function but also instrumental in the initiation of Tau aggregation. In this study, we present the first in vivo evidence that their substitution leads to differential consequences on Tau's physiological and pathophysiological functions. These differences raise the possibility that cysteine residues play a potential role in determining the functional diversity between isoforms.
Collapse
|
23
|
Guha S, Johnson GVW, Nehrke K. The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer's Disease. Mol Neurobiol 2020; 57:5103-5120. [PMID: 32851560 PMCID: PMC7544674 DOI: 10.1007/s12035-020-02084-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder. A defining hallmark of the AD brain is the presence of intraneuronal neurofibrillary tangles (NFTs) which are made up of abnormally modified tau, with aberrant phosphorylation being the most studied posttranslational modification (PTM). Although the accumulation of tau as NFTs is an invariant feature of the AD brain, it has become evident that these insoluble aggregates are likely not the primary pathogenic form of tau, rather soluble forms of tau with abnormal PTMs are the mediators of toxicity. The most prevalent PTM on tau is phosphorylation, with the abnormal modification of specific residues on tau playing a key role in its toxicity. Even though it is widely accepted that tau with aberrant PTMs facilitates neurodegeneration, the precise cellular mechanisms remain unknown. Nonetheless, there is an evolving conceptual framework that an important contributing factor may be selective pathological tau species compromising mitochondrial biology. Understanding the mechanisms by which tau with site-specific PTM impacts mitochondria is crucial for understanding the role tau plays in AD. Here, we provide a brief introduction to tau and its phosphorylation and function in a physiological context, followed by a discussion of the impact of soluble phosphorylated tau species on neuronal processes in general and mitochondria more specifically. We also discuss how therapeutic strategies that attenuate pathological tau species in combination with treatments that improve mitochondrial biology could be a potential therapeutic avenue to mitigate disease progression in AD and other tauopathies.
Collapse
Affiliation(s)
- Sanjib Guha
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Gail V W Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester, Rochester, 14642, NY, USA
| |
Collapse
|
24
|
Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model. Mol Neurodegener 2020; 15:65. [PMID: 33168053 PMCID: PMC7654055 DOI: 10.1186/s13024-020-00410-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background A defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear. Methods Human 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E, to mimic phosphorylation of a commonly observed pathological epitope, and K274/281Q, to mimic disease-associated lysine acetylation – collectively referred as “PTM-mimetics” – as well as a T231A phosphoablation mutant. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age. Genetically-encoded fluorescent biosensors were expressed in touch neurons and used to measure neuronal morphology, mitochondrial morphology, mitophagy, and macro autophagy. Results Unlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and neuronal morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage neuronal mitophagy in response to mitochondrial stress. Conclusions Limiting the expression of tau results in a genetic model where modifications that mimic pathologic tauopathy-associated PTMs contribute to cryptic, stress-inducible phenotypes that evolve with age. These findings and their relationship to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD. Supplementary information The online version contains supplementary material available at 10.1186/s13024-020-00410-7.
Collapse
|
25
|
Keramidis I, Vourkou E, Papanikolopoulou K, Skoulakis EMC. Functional Interactions of Tau Phosphorylation Sites That Mediate Toxicity and Deficient Learning in Drosophila melanogaster. Front Mol Neurosci 2020; 13:569520. [PMID: 33192295 PMCID: PMC7609872 DOI: 10.3389/fnmol.2020.569520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023] Open
Abstract
Hyperphosphorylated Tau protein is the main component of the neurofibrillary tangles, characterizing degenerating neurons in Alzheimer’s disease and other Tauopathies. Expression of human Tau protein in Drosophila CNS results in increased toxicity, premature mortality and learning and memory deficits. Herein we use novel transgenic lines to investigate the contribution of specific phosphorylation sites previously implicated in Tau toxicity. These three different sites, Ser238, Thr245, and Ser262 were tested either by blocking their phosphorylation, by Ser/Thr to Ala substitution, or pseudophosphorylation, by changing Ser/Thr to Glu. We validate the hypothesis that phosphorylation at Ser262 is necessary for Tau-dependent learning deficits and a “facilitatory gatekeeper” to Ser238 occupation, which is linked to Tau toxicity. Importantly we reveal that phosphorylation at Thr245 acts as a “suppressive gatekeeper”, preventing phosphorylation of many sites including Ser262 and consequently of Ser238. Therefore, we elucidate novel interactions among phosphosites central to Tau mediated neuronal dysfunction and toxicity, likely driven by phosphorylation-dependent conformational plasticity.
Collapse
Affiliation(s)
- Iason Keramidis
- Biomedical Sciences Research Centre "Alexander Fleming", Institute for Fundamental Biomedical Research, Vari, Greece
| | - Ergina Vourkou
- Biomedical Sciences Research Centre "Alexander Fleming", Institute for Fundamental Biomedical Research, Vari, Greece.,1st Department of Neurology, Memory and Movement Disorders Clinic, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Biomedical Sciences Research Centre "Alexander Fleming", Institute for Fundamental Biomedical Research, Vari, Greece
| | - Efthimios M C Skoulakis
- Biomedical Sciences Research Centre "Alexander Fleming", Institute for Fundamental Biomedical Research, Vari, Greece
| |
Collapse
|
26
|
Matiytsiv NP, Chernyk YI. Drosophila melanogaster as a Model System for the Study of Human Neuropathy and the Testing of Neuroprotectors. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
28
|
Higham JP, Hidalgo S, Buhl E, Hodge JJL. Restoration of Olfactory Memory in Drosophila Overexpressing Human Alzheimer's Disease Associated Tau by Manipulation of L-Type Ca 2+ Channels. Front Cell Neurosci 2019; 13:409. [PMID: 31551716 PMCID: PMC6746915 DOI: 10.3389/fncel.2019.00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023] Open
Abstract
The cellular underpinnings of memory deficits in Alzheimer’s disease (AD) are poorly understood. We utilized the tractable neural circuits sub-serving memory in Drosophila to investigate the role of impaired Ca2+ handling in memory deficits caused by expression of human 0N4R isoform of tau which is associated with AD. Expression of tau in mushroom body neuropils, or a subset of mushroom body output neurons, led to impaired memory. By using the Ca2+ reporter GCaMP6f, we observed changes in Ca2+ signaling when tau was expressed in these neurons, an effect that could be blocked by the L-type Ca2+ channel antagonist nimodipine or reversed by RNAi knock-down of the L-type channel gene. The L-type Ca2+ channel itself is required for memory formation, however, RNAi knock-down of the L-type Ca2+ channel in neurons overexpressing human tau resulted in flies whose memory is restored to levels equivalent to wild-type. Expression data suggest that Drosophila L-type Ca2+ channel mRNA levels are increased upon tau expression in neurons, thus contributing to the effects observed on memory and intracellular Ca2+ homeostasis. Together, our Ca2+ imaging and memory experiments suggest that expression of the 0N4R isoform of human tau increases the number of L-type Ca2+ channels in the membrane resulting in changes in neuronal excitability that can be ameliorated by RNAi knockdown or pharmacological blockade of L-type Ca2+ channels. This highlights a role for L-type Ca2+ channels in tauopathy and their potential as a therapeutic target for AD.
Collapse
Affiliation(s)
- James P Higham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Sergio Hidalgo
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
29
|
Drosophila Tau Negatively Regulates Translation and Olfactory Long-Term Memory, But Facilitates Footshock Habituation and Cytoskeletal Homeostasis. J Neurosci 2019; 39:8315-8329. [PMID: 31488613 DOI: 10.1523/jneurosci.0391-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Although the involvement of pathological tau in neurodegenerative dementias is indisputable, its physiological roles have remained elusive in part because its abrogation has been reported without overt phenotypes in mice and Drosophila This was addressed using the recently described Drosophila tauKO and Mi{MIC} mutants and focused on molecular and behavioral analyses. Initially, we show that Drosophila tau (dTau) loss precipitates dynamic cytoskeletal changes in the adult Drosophila CNS and translation upregulation. Significantly, we demonstrate for the first time distinct roles for dTau in adult mushroom body (MB)-dependent neuroplasticity as its downregulation within α'β'neurons impairs habituation. In accord with its negative regulation of translation, dTau loss specifically enhances protein synthesis-dependent long-term memory (PSD-LTM), but not anesthesia-resistant memory. In contrast, elevation of the protein in the MBs yielded premature habituation and depressed PSD-LTM. Therefore, tau loss in Drosophila dynamically alters brain cytoskeletal dynamics and profoundly affects neuronal proteostasis and plasticity.SIGNIFICANCE STATEMENT We demonstrate that despite modest sequence divergence, the Drosophila tau (dTau) is a true vertebrate tau ortholog as it interacts with the neuronal microtubule and actin cytoskeleton. Novel physiological roles for dTau in regulation of translation, long-term memory, and footshock habituation are also revealed. These emerging insights on tau physiological functions are invaluable for understanding the molecular pathways and processes perturbed in tauopathies.
Collapse
|
30
|
Buhl E, Higham JP, Hodge JJL. Alzheimer's disease-associated tau alters Drosophila circadian activity, sleep and clock neuron electrophysiology. Neurobiol Dis 2019; 130:104507. [PMID: 31207389 DOI: 10.1016/j.nbd.2019.104507] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which is associated with an enormous personal, social and economic burden worldwide. However, there are few current treatments with none of them targeting the underlying causes of the disease. Sleep and circadian rhythm defects are not only distressing symptoms of AD and other tauopathies and are a leading cause of care home admission but are also thought to accelerate AD pathology. Despite this, little is understood about the underlying causes of these behavioural changes. Expression of the 0N4R isoform of tau has been associated with AD pathology and we show that expressing it in the Drosophila clock network gives rise to circadian and sleep phenotypes which closely match the behavioural changes seen in human AD patients. Tauopathic flies exhibited greater locomotor activity throughout the day and night and displayed a loss of sleep, particularly at night. Under constant darkness, the locomotor behaviour of tau-expressing flies was less rhythmic than controls indicating a defect in their intrinsic circadian rhythm. Current clamp recordings from wake-promoting, pigment dispersing factor (PDF)-positive large lateral ventral clock neurons (l-LNvs) revealed elevated spontaneous firing throughout the day and night which likely underlies the observed hyperactive circadian phenotype. Interestingly, expression of tau in only the PDF-positive pacemaker neurons, which are thought to be the most important for behaviour under constant conditions, was not sufficient or even necessary to affect circadian rhythmicity. This work establishes Drosophila as a model to investigate interactions between human pathological versions of tau and the machinery that controls neuronal excitability, allowing the identification of underlying mechanisms of disease that may reveal new therapeutic targets.
Collapse
Affiliation(s)
- Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - James P Higham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
31
|
Higham JP, Malik BR, Buhl E, Dawson JM, Ogier AS, Lunnon K, Hodge JJL. Alzheimer's Disease Associated Genes Ankyrin and Tau Cause Shortened Lifespan and Memory Loss in Drosophila. Front Cell Neurosci 2019; 13:260. [PMID: 31244615 PMCID: PMC6581016 DOI: 10.3389/fncel.2019.00260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by intracellular neurofibrillary tangles of hyperphosphorylated Tau, including the 0N4R isoform and accumulation of extracellular amyloid beta (Aβ) plaques. However, less than 5% of AD cases are familial, with many additional risk factors contributing to AD including aging, lifestyle, the environment and epigenetics. Recent epigenome-wide association studies (EWAS) of AD have identified a number of loci that are differentially methylated in the AD cortex. Indeed, hypermethylation and reduced expression of the Ankyrin 1 (ANK1) gene in AD has been reported in the cortex in numerous different post-mortem brain cohorts. Little is known about the normal function of ANK1 in the healthy brain, nor the role it may play in AD. We have generated Drosophila models to allow us to functionally characterize Drosophila Ank2, the ortholog of human ANK1 and to determine its interaction with human Tau and Aβ. We show expression of human Tau 0N4R or the oligomerizing Aβ 42 amino acid peptide caused shortened lifespan, degeneration, disrupted movement, memory loss, and decreased excitability of memory neurons with co-expression tending to make the pathology worse. We find that Drosophila with reduced neuronal Ank2 expression have shortened lifespan, reduced locomotion, reduced memory and reduced neuronal excitability similar to flies overexpressing either human Tau 0N4R or Aβ42. Therefore, we show that the mis-expression of Ank2 can drive disease relevant processes and phenocopy some features of AD. Therefore, we propose targeting human ANK1 may have therapeutic potential. This represents the first study to characterize an AD-relevant gene nominated from EWAS.
Collapse
Affiliation(s)
- James P. Higham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bilal R. Malik
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jennifer M. Dawson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Anna S. Ogier
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
32
|
Papanikolopoulou K, Grammenoudi S, Samiotaki M, Skoulakis EMC. Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Hum Mol Genet 2019; 27:2244-2261. [PMID: 29659825 DOI: 10.1093/hmg/ddy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative dementias collectively known as Tauopathies involve aberrant phosphorylation and aggregation of the neuronal protein Tau. The largely neuronal 14-3-3 proteins are also elevated in the central nervous system (CNS) and cerebrospinal fluid of Tauopathy patients, suggesting functional linkage. We use the simplicity and genetic facility of the Drosophila system to investigate in vivo whether 14-3-3s are causal or synergistic with Tau accumulation in precipitating pathogenesis. Proteomic, biochemical and genetic evidence demonstrate that both Drosophila 14-3-3 proteins interact with human wild-type and mutant Tau on multiple sites irrespective of their phosphorylation state. 14-3-3 dimers regulate steady-state phosphorylation of both wild-type and the R406W mutant Tau, but they are not essential for toxicity of either variant. Moreover, 14-3-3 elevation itself is not pathogenic, but recruitment of dimers on accumulating wild-type Tau increases its steady-state levels ostensibly by occluding access to proteases in a phosphorylation-dependent manner. In contrast, the R406W mutant, which lacks a putative 14-3-3 binding site, responds differentially to elevation of each 14-3-3 isoform. Although excess 14-3-3ζ stabilizes the mutant protein, elevated D14-3-3ɛ has a destabilizing effect probably because of altered 14-3-3 dimer composition. Our collective data demonstrate the complexity of 14-3-3/Tau interactions in vivo and suggest that 14-3-3 attenuation is not appropriate ameliorative treatment of Tauopathies. Finally, we suggest that 'bystander' 14-3-3s are recruited by accumulating Tau with the consequences depending on the composition of available dimers within particular neurons and the Tau variant.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Sofia Grammenoudi
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Martina Samiotaki
- Proteomics Facility, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| |
Collapse
|
33
|
Papanikolopoulou K, Mudher A, Skoulakis E. An assessment of the translational relevance of Drosophila in drug discovery. Expert Opin Drug Discov 2019; 14:303-313. [PMID: 30664368 DOI: 10.1080/17460441.2019.1569624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Drosophila melanogaster offers a powerful expedient and economical system with facile genetics. Because of the high sequence and functional conservation with human disease-associated genes, it has been cardinal in deciphering disease mechanisms at the genetic and molecular level. Drosophila are amenable to and respond well to pharmaceutical treatment which coupled to their genetic tractability has led to discovery, repositioning, and validation of a number of compounds. Areas covered: This review summarizes the generation of fly models of human diseases, their advantages and use in elucidation of human disease mechanisms. Representative studies provide examples of the utility of this system in modeling diseases and the discovery, repositioning and testing on pharmaceuticals to ameliorate them. Expert opinion: Drosophila offers a facile and economical whole animal system with many homologous organs to humans, high functional conservation and established methods of generating and validating human disease models. Nevertheless, it remains relatively underused as a drug discovery tool probably because its relevance to mammalian systems remains under question. However, recent exciting success stories using Drosophila disease models for drug screening, repositioning and validation strongly suggest that fly models should figure prominently in the drug discovery pipeline from bench to bedside.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| | - Amrit Mudher
- b Centre for Biological Sciences , University of Southampton , Southampton , UK
| | - Efthimios Skoulakis
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| |
Collapse
|
34
|
Sivanantharajah L, Mudher A, Shepherd D. An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer's disease. J Neurosci Methods 2019; 319:77-88. [PMID: 30633936 DOI: 10.1016/j.jneumeth.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Work spanning almost two decades using the fruit fly, Drosophila melanogaster, to study tau-mediated neurodegeneration has provided valuable and novel insights into the causes and mechanisms of tau-mediated toxicity and dysfunction in tauopathies such as Alzheimer's disease (AD). The fly has proven to be an excellent model for human diseases because of its cost efficiency, and the availability of powerful genetic tools for use in a comparatively less-complicated, but evolutionarily conserved, in vivo system. In this review, we provide a critical evaluation of the insights provided by fly models, highlighting both the advantages and limitations of the system. The fly has contributed to a greater understanding of the causes of tau abnormalities, the role of these abnormalities in mediating toxicity and/or dysfunction, and the nature of causative species mediating tau-toxicity. However, it is not possible to perfectly model all aspects of human degenerative diseases. What sets the fly apart from other animal models is its genetic tractability, which makes it highly amenable to overcoming experimental limitations. The explosion of genetic technology since the first fly disease models were established has translated into fly lines that allow for greater temporal control in restricting tau expression to single neuron types, and lines that can label and monitor the function of subcellular structures and components; thus, fly models offer an unprecedented view of the neurodegenerative process. Emerging genetic technology means that the fly provides an ever-evolving experimental platform for studying disease.
Collapse
Affiliation(s)
| | - Amritpal Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - David Shepherd
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
35
|
Kadas D, Papanikolopoulou K, Xirou S, Consoulas C, Skoulakis EMC. Human Tau isoform-specific presynaptic deficits in a Drosophila Central Nervous System circuit. Neurobiol Dis 2018; 124:311-321. [PMID: 30529489 DOI: 10.1016/j.nbd.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023] Open
Abstract
Accumulation of normal or mutant human Tau isoforms in Central Nervous System (CNS) neurons of vertebrate and invertebrate models underlies pathologies ranging from behavioral deficits to neurodegeneration that broadly recapitulate human Tauopathies. Although some functional differences have begun to emerge, it is still largely unclear whether normal and mutant Tau isoforms induce differential effects on the synaptic physiology of CNS neurons. We use the oligosynaptic Giant Fiber System in the adult Drosophila CNS to address this question and reveal that 3R and 4R isoforms affect distinct synaptic parameters. Whereas 0N3R increased failure rate upon high frequency stimulation, 0N4R compromised stimulus conduction and response speed at a specific cholinergic synapse in an age-dependent manner. In contrast, accumulation of the R406W mutant of 0N4R induced mild, age-dependent conduction velocity defects. Because 0N4R and its mutant isoform are expressed equivalently, this demonstrates that the defects are not merely consequent of exogenous human Tau accumulation and suggests distinct functional properties of 3R and 4R isoforms in cholinergic presynapses.
Collapse
Affiliation(s)
- Dimitrios Kadas
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming str, Vari 16672, Greece
| | - Sofia Xirou
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Consoulas
- Laboratory of Experimental Physiology, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming str, Vari 16672, Greece.
| |
Collapse
|
36
|
Engineered Hsp70 chaperones prevent Aβ42-induced memory impairments in a Drosophila model of Alzheimer's disease. Sci Rep 2018; 8:9915. [PMID: 29967544 PMCID: PMC6028656 DOI: 10.1038/s41598-018-28341-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/14/2018] [Indexed: 11/09/2022] Open
Abstract
Proteinopathies constitute a group of diseases in which certain proteins are abnormally folded leading to aggregation and eventual cell failure. Most neurodegenerative diseases belong to protein misfolding disorders and, among them, Alzheimer’s disease (AD) is the most prevalent. AD is characterized by accumulation of the amyloid-β42 (Aβ42) peptide in the extracellular space. Hence, we genetically engineered a molecular chaperone that was selectively delivered to this cellular location. It has been reported that the heat shock protein 70 (Hsp70) binds Aβ42 preventing self-aggregation. Here, we employed two isoforms of the Hsp70, cytosolic and extracellular, to evaluate their potential protective effect against the memory decline triggered by extracellular deposition of Aβ42. Both Hsp70 isoforms significantly improved memory performance of flies expressing Aβ42, irrespective of their age or the level of Aβ42 load. Using olfactory classical conditioning, we established a Drosophila model of AD based on Aβ42 neurotoxicity and monitored memory decline through aging. The onset of the memory impairment observed was proportional to the cumulative level of Aβ42 in the Drosophila brain. These data support the use of this Drosophila model of AD to further investigate molecules with a protective activity against Aβ42-induced memory loss, contributing to the development of palliative therapies for AD.
Collapse
|
37
|
Anti-Aβ single-chain variable fragment antibodies restore memory acquisition in a Drosophila model of Alzheimer's disease. Sci Rep 2017; 7:11268. [PMID: 28900185 PMCID: PMC5595865 DOI: 10.1038/s41598-017-11594-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder triggered by the accumulation of soluble assemblies of the amyloid-β42 (Aβ42) peptide. Despite remarkable advances in understanding the pathogenesis of AD, the development of palliative therapies is still lacking. Engineered anti-Aβ42 antibodies are a promising strategy to stall the progression of the disease. Single-chain variable fragment (scFv) antibodies increase brain penetration and offer flexible options for delivery while maintaining the epitope targeting of full antibodies. Here, we examined the ability of two anti-Aβ scFv antibodies targeting the N-terminal (scFv9) and C-terminal (scFv42.2) regions of Aβ42 to suppress the progressive memory decline induced by extracellular deposition of Aβ42 in Drosophila. Using olfactory classical conditioning, we observe that both scFv antibodies significantly improve memory performance in flies expressing Aβ42 in the mushroom body neurons, which are intimately involved in the coding and storage of olfactory memories. The scFvs effectively restore memory at all ages, from one-day post-eclosion to thirty-day-old flies, proving their ability to prevent the toxicity of different pathogenic assemblies. These data support the application of this paradigm of Aβ42-induced memory loss in Drosophila to investigate the protective activity of Aβ42–binding agents in an AD-relevant functional assay.
Collapse
|
38
|
Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiol Dis 2017; 105:74-83. [DOI: 10.1016/j.nbd.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/12/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
|
39
|
Fernius J, Starkenberg A, Pokrzywa M, Thor S. Human TTBK1, TTBK2 and MARK1 kinase toxicity in Drosophila melanogaster is exacerbated by co-expression of human Tau. Biol Open 2017; 6:1013-1023. [PMID: 28711868 PMCID: PMC5550906 DOI: 10.1242/bio.022749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tau protein is involved in numerous human neurodegenerative diseases, and Tau hyper-phosphorylation has been linked to Tau aggregation and toxicity. Previous studies have addressed toxicity and phospho-biology of human Tau (hTau) in Drosophila melanogaster. However, hTau transgenes have most often been randomly inserted in the genome, thus making it difficult to compare between different hTau isoforms and phospho-mutants. In addition, many studies have expressed hTau also in mitotic cells, causing non-physiological toxic effects. Here, we overcome these confounds by integrating UAS-hTau isoform transgenes into specific genomic loci, and express hTau post-mitotically in the Drosophila nervous system. Lifespan and locomotor analyses show that all six of the hTau isoforms elicit similar toxicity in flies, although hTau2N3R showed somewhat elevated toxicity. To determine if Tau phosphorylation is responsible for toxicity, we analyzed the effects of co-expressing hTau isoforms together with Tau-kinases, focusing on TTBK1, TTBK2 and MARK1. We observed toxicity when expressing each of the three kinases alone, or in combination. Kinase toxicity was enhanced by hTau co-expression, with strongest co-toxicity for TTBK1. Mutagenesis and phosphorylation analysis indicates that hTau-MARK1 combinatorial toxicity may be due to direct phosphorylation of hTau, while hTau-TTBK1/2 combinatorial toxicity may result from independent toxicity mechanisms. Summary: Tau hyper-phosphorylation has been linked to toxicity, but the Tau isoforms, kinases and residues remain unclear. Using the Drosophila model, we find evidence for involvement of TTBK and MARK kinases.
Collapse
Affiliation(s)
- Josefin Fernius
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-581 85, Sweden
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-581 85, Sweden
| | - Malgorzata Pokrzywa
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-581 85, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-581 85, Sweden
| |
Collapse
|
40
|
Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. PLoS One 2017; 12:e0178933. [PMID: 28575131 PMCID: PMC5456370 DOI: 10.1371/journal.pone.0178933] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA) phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau) are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods.
Collapse
|
41
|
Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy in Drosophila Tauopathy Models. Sci Rep 2017; 7:40764. [PMID: 28112163 PMCID: PMC5256094 DOI: 10.1038/srep40764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023] Open
Abstract
Tau-mediated neurodegeneration in Alzheimer’s disease and tauopathies is generally assumed to start in a normally developed brain. However, several lines of evidence suggest that impaired Tau isoform expression during development could affect mitosis and ploidy in post-mitotic differentiated tissue. Interestingly, the relative expression levels of Tau isoforms containing either 3 (3R-Tau) or 4 repeats (4R-Tau) play an important role both during brain development and neurodegeneration. Here, we used genetic and cellular tools to study the link between 3R and 4R-Tau isoform expression, mitotic progression in neuronal progenitors and post-mitotic neuronal survival. Our results illustrated that the severity of Tau-induced adult phenotypes depends on 4R-Tau isoform expression during development. As recently described, we observed a mitotic delay in 4R-Tau expressing cells of larval eye discs and brains. Live imaging revealed that the spindle undergoes a cycle of collapse and recovery before proceeding to anaphase. Furthermore, we found a high level of aneuploidy in post-mitotic differentiated tissue. Finally, we showed that overexpression of wild type and mutant 4R-Tau isoform in neuroblastoma SH-SY5Y cell lines is sufficient to induce monopolar spindles. Taken together, our results suggested that neurodegeneration could be in part linked to neuronal aneuploidy caused by 4R-Tau expression during brain development.
Collapse
|
42
|
|
43
|
Haddadi M, Jahromi SR, Nongthomba U, Shivanandappa T, Ramesh SR. 4-Hydroxyisophthalic acid from Decalepis hamiltonii rescues the neurobehavioral deficit in transgenic Drosophila model of taupathies. Neurochem Int 2016; 100:78-90. [PMID: 27615061 DOI: 10.1016/j.neuint.2016.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022]
Abstract
Oxidative stress is one of the major etiological factors implicated in pathogenesis of neurodegenerative diseases. Since neurons are more sensitive to oxidative damage there is an increasing interest in developing novel antioxidant therapies, especially herbal preparations due to their safety profile and high efficiency. In this regard, the neuroprotective potential of a novel antioxidant compound, 4-hydroxyisophthalic acid (4-HIPA) isolated from aqueous extract of Decalepis hamiltonii roots was examined using transgenic Drosophila model of taupathy expressing wild-type and mutant forms of 2N4R isoform of human microtubule associated protein tau (MAPT). Taupathy model flies showed cognitive deficits in olfactory memory and deteriorated circadian rhythm of locomotory activities. Administration of 0.1 mg/ml 4-HIPA, markedly enhanced their olfactory memory performance and restored circadian rhythmicity of the transgenic flies locomotory behavior to the normal range. The mechanism of action that underlies 4-HIPA neuroprotection involves enhancement in efficiency of cellular antioxidant defense system by means of elevation in antioxidant enzyme activities and attenuation of oxidative stress. The molecule could positively affect the activity of neurotransmitter enzymes, which in turn enhances neuronal function and ameliorates the Tau-induced neurobehavioral deficits. Our findings showed that 4-HIPA can be considered as a suitable therapeutic candidate for drug development towards treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - T Shivanandappa
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - S R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India.
| |
Collapse
|
44
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
45
|
Chouhan AK, Guo C, Hsieh YC, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson GR, Bellen HJ, Shulman JM. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathol Commun 2016; 4:62. [PMID: 27338814 PMCID: PMC4918017 DOI: 10.1186/s40478-016-0333-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 02/04/2023] Open
Abstract
Common neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest that Drosophila may be useful for revealing determinants of neuronal dysfunction that precede cell loss, including synaptic changes, in the adult nervous system.
Collapse
|
46
|
Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet 2016; 12:e1005917. [PMID: 27023670 PMCID: PMC4811436 DOI: 10.1371/journal.pgen.1005917] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. Alzheimer’s disease (AD) is the most common cause of dementia resulting from progressive neuron loss. Two proteins, β-amyloid (Aβ) and tau, accumulate in AD brains and are involved in AD pathogenesis. In healthy neurons, tau binds to microtubules to regulate its stability; in AD brains, however, tau is detached from microtubules and phosphorylated at multiple sites. Such abnormal tau behavior, which is likely to be triggered by Aβ, results in generation of pathological tau species that mediate neuron loss. However, the detailed mechanisms underlying this event remain incompletely understood. Using transgenic flies expressing human tau and Aβ as a model system, we found that tau phosphorylation at specific AD-related sites stabilized microtubule-unbound tau in the early phase of tau mismetabolism to generate toxic tau species. Moreover, this process is critical for Aβ to promote subsequent tau phosphorylation and neurodegeneration. Our results reveal a critical step in the initiation of tau mismetabolism, and this process may represent a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KA); (KMI)
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Motoki Hayashishita
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail: (KA); (KMI)
| |
Collapse
|
47
|
Sheik Mohideen S, Yamasaki Y, Omata Y, Tsuda L, Yoshiike Y. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Sci Rep 2015; 5:10821. [PMID: 26027742 PMCID: PMC4450544 DOI: 10.1038/srep10821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/30/2015] [Indexed: 11/09/2022] Open
Abstract
Methylene blue (MB) inhibits the aggregation of tau, a main constituent of neurofibrillary tangles. However, MB's mode of action in vivo is not fully understood. MB treatment reduced the amount of sarkosyl-insoluble tau in Drosophila that express human wild-type tau. MB concurrently ameliorated the climbing deficits of transgenic tau flies to a limited extent and diminished the climbing activity of wild-type flies. MB also decreased the survival rate of wild-type flies. Based on its photosensitive efficacies, we surmised that singlet oxygen generated through MB under light might contribute to both the beneficial and toxic effects of MB in vivo. We identified rose bengal (RB) that suppressed tau accumulation and ameliorated the behavioral deficits to a lesser extent than MB. Unlike MB, RB did not reduce the survival rate of flies. Our findings indicate that singlet oxygen generators with little toxicity may be suitable drug candidates for treating tauopathies.
Collapse
Affiliation(s)
- Sahabudeen Sheik Mohideen
- Alzheimer's Disease Project Team, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, Japan 474-8511
| | - Yasutoyo Yamasaki
- Department of Drug Discovery, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, Japan 474-8511
| | - Yasuhiro Omata
- Department of Occupational and Environmental Health, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan 466-8550
| | - Leo Tsuda
- Animal Models of Aging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, Japan 474-8511
| | - Yuji Yoshiike
- Alzheimer's Disease Project Team, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, Japan 474-8511
| |
Collapse
|
48
|
Modeling the complex pathology of Alzheimer's disease in Drosophila. Exp Neurol 2015; 274:58-71. [PMID: 26024860 DOI: 10.1016/j.expneurol.2015.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disorder. AD is mostly a sporadic disorder and its main risk factor is age, but mutations in three genes that promote the accumulation of the amyloid-β (Aβ42) peptide revealed the critical role of amyloid precursor protein (APP) processing in AD. Neurofibrillary tangles enriched in tau are the other pathological hallmark of AD, but the lack of causative tau mutations still puzzles researchers. Here, we describe the contribution of a powerful invertebrate model, the fruit fly Drosophila melanogaster, to uncover the function and pathogenesis of human APP, Aβ42, and tau. APP and tau participate in many complex cellular processes, although their main function is microtubule stabilization and the to-and-fro transport of axonal vesicles. Additionally, expression of secreted Aβ42 induces prominent neuronal death in Drosophila, a critical feature of AD, making this model a popular choice for identifying intrinsic and extrinsic factors mediating Aβ42 neurotoxicity. Overall, Drosophila has made significant contributions to better understand the complex pathology of AD, although additional insight can be expected from combining multiple transgenes, performing genome-wide loss-of-function screens, and testing anti-tau therapies alone or in combination with Aβ42.
Collapse
|
49
|
Sun M, Chen L. Studying tauopathies in Drosophila: A fruitful model. Exp Neurol 2015; 274:52-7. [PMID: 25862286 DOI: 10.1016/j.expneurol.2015.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/06/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
Abstract
Tauopathies are a group of neurodegenerative disorders that include hereditary frontotemporal dementias (FTDs) such as FTD with parkinsonism linked to chromosome 17 (FTDP-17), as well as sporadic variants of FTDs like progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease. These diverse diseases all have in common the presence of abnormally phosphorylated tau aggregates. In this review, we will summarize key features of transgenic Drosophila models of tauopathies and a number of insights into disease mechanisms as well as therapeutic implications gained from the fruit fly models.
Collapse
Affiliation(s)
- Mingkuan Sun
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Science, Southeast University, Nanjing 210009, China
| | - Liam Chen
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Baker S, Götz J. What we can learn from animal models about cerebral multi-morbidity. ALZHEIMERS RESEARCH & THERAPY 2015; 7:11. [PMID: 25810783 PMCID: PMC4373088 DOI: 10.1186/s13195-015-0097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Late-onset diseases such as Alzheimer's disease, Parkinson's disease, or frontotemporal lobar degeneration are considered to be protein-folding disorders, with the accumulation of protein deposits causing a gain-of-toxic function. Alzheimer's disease is characterized by two histological hallmark lesions: amyloid-β-containing plaques and tau-containing neurofibrillary tangles. However, signature proteins, including α-synuclein, which are found in an aggregated fibrillar form in the Lewy bodies of Parkinson's disease brains, are also frequently found in Alzheimer's disease. This highlights the fact that, although specific aggregates form the basis for diagnosis, there is a high prevalence of clinical overlap between neuropathological lesions linked to different diseases, a finding known as cerebral co- or multi-morbidity. Furthermore, the proteins forming these lesions interact, and this interaction accelerates an ongoing degenerative process. Here, we review the contribution that transgenic animal models have made to a better mechanistic understanding of the causes and consequences of co- or multi-morbidity. We discuss selected vertebrate and invertebrate models as well as the insight gained from non-transgenic senescence-accelerated mouse-prone mice. This article is part of a series on 'Cerebral multi-morbidity of the aging brain'.
Collapse
Affiliation(s)
- Siân Baker
- Clem Jones Centre for Aging Dementia Research, Queensland Brain Institute, The University of Queensland, Upland Road, Building 79, St Lucia Campus, Brisbane, QLD 4072 Australia
| | - Jürgen Götz
- Clem Jones Centre for Aging Dementia Research, Queensland Brain Institute, The University of Queensland, Upland Road, Building 79, St Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|