1
|
Butler K, Cruz L. Neuronal traveling waves form preferred pathways using synaptic plasticity. J Comput Neurosci 2025; 53:181-198. [PMID: 39729255 PMCID: PMC11868204 DOI: 10.1007/s10827-024-00890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves. This will create a feedback loop where both the traveling waves and the strengths of the available synaptic pathways will change. To computationally investigate this, we model a sheet of cortical tissue by considering a quasi two-dimensional network of model neurons locally connected with plastic synaptic weights using Spike-Timing Dependent Plasticity (STDP). By using different stimulation conditions (central, stochastic, and alternating stimulation), we demonstrate that starting from a random network, traveling waves with STDP will form and strengthen propagation pathways. With progressive formation of traveling waves, we observe increases in synaptic weight along the direction of wave propagation, increases in propagation speed when pathways are strengthened over time, and an increase in the local order of synaptic weights. We also present evidence that the interaction between traveling waves and plasticity can serve as a mechanism of network-wide competition between available pathways. With an improved understanding of the interactions between traveling waves and synaptic plasticity, we can approach a fuller understanding of mechanisms of learning, computation, and processing within the brain.
Collapse
Affiliation(s)
- Kendall Butler
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Luis Cruz
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA.
| |
Collapse
|
2
|
Sihn D, Kim J, Kim MJ, Kim SP. The intrinsic propagation directionality of fMRI infra-slow activity during visual tasks. Neuroscience 2025; 564:52-59. [PMID: 39561955 DOI: 10.1016/j.neuroscience.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The temporal order of propagation in the blood-oxygen-level-dependent (BOLD) infra-slow activity (ISA, 0.01-0.1 Hz) of functional magnetic resonance imaging (fMRI) can indicate the functional organization of the brain. While prior studies have revealed the temporal order of propagation of BOLD ISA during rest, how it emerges during cognitive tasks remains unclear. Furthermore, its differences between the gray and white matters at the whole-brain scale are unexplored. In this study, we probed the propagation of BOLD ISA using a publicly available fMRI dataset from participants performing visual detection and discrimination tasks (N = 46, 29 females). We examined the temporal order of propagation based on ISA oscillatory phase differences among brain parcels. During visual task performance, ISA in both the gray and white matters propagated in a direction from the visual cortex to the association cortex, including the default mode network (DMN). This result differs from the previously reported propagation direction during rest that traveled from the visual and somatosensory cortices to the DMN, suggesting that the functional organization may change when performing cognitive tasks. In addition, the propagation in the white matter represented more complex patterns than that in the gray matter, exhibiting that the cingulum preceded DMN. Our results may help the understanding of how task performance alters the sensory-DMN propagation according of ISA.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junsuk Kim
- School of Information Convergence, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Myung Joon Kim
- Department of Big Data Application, Hannam University, Daejeon 34430, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Yao Z, Xia T, Wei J, Zhang Z, Lin X, Zhang D, Qin P, Ma Y, Hu X. Reactivating cue approached positive personality traits during sleep promotes positive self-referential processing. iScience 2024; 27:110341. [PMID: 39055925 PMCID: PMC11269284 DOI: 10.1016/j.isci.2024.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
People preferentially endorse positive personality traits as more self-descriptive than negative ones, a positivity self-referential bias. Here, we investigated how to enhance positive self-referential processing, integrating wakeful cue-approach training task (CAT) and sleep-based targeted memory reactivation (TMR). In the CAT, participants gave speeded motor responses to cued positive personality traits. In a subsequent nap, we unobtrusively re-played half of the trained positive traits during slow-wave sleep (TMR). Upon awakening, CAT+TMR facilitated participants' speed in endorsing positive traits in immediate tests, and rendered participants endorse more positive traits as self-descriptive after one week. Notably, these enhancements were associated with the directionality of cue-related 1-4 Hz slow traveling waves (STW) that propagate across brain regions. Specifically, anterior-to-posterior backward STW was positively associated with these benefits, whereas forward STW showed negative associations. These findings demonstrate the potential benefits of integrated wakeful cue-approach training and sleep-based memory reactivation in strengthening positive self-referential processing.
Collapse
Affiliation(s)
- Ziqing Yao
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tao Xia
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jinwen Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Xuanyi Lin
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Center for Sleep & Circadian Biology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiaoqing Hu
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
4
|
Horváth C, Ulbert I, Fiáth R. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents. Neuroimage 2024; 285:120484. [PMID: 38061688 DOI: 10.1016/j.neuroimage.2023.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
5
|
Sakakura K, Kuroda N, Sonoda M, Mitsuhashi T, Firestone E, Luat AF, Marupudi NI, Sood S, Asano E. Developmental atlas of phase-amplitude coupling between physiologic high-frequency oscillations and slow waves. Nat Commun 2023; 14:6435. [PMID: 37833252 PMCID: PMC10575956 DOI: 10.1038/s41467-023-42091-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
We investigated the developmental changes in high-frequency oscillation (HFO) and Modulation Index (MI) - the coupling measure between HFO and slow-wave phase. We generated normative brain atlases, using subdural EEG signals from 8251 nonepileptic electrode sites in 114 patients (ages 1.0-41.5 years) who achieved seizure control following resective epilepsy surgery. We observed a higher MI in the occipital lobe across all ages, and occipital MI increased notably during early childhood. The cortical areas exhibiting MI co-growth were connected via the vertical occipital fasciculi and posterior callosal fibers. While occipital HFO rate showed no significant age-association, the temporal, frontal, and parietal lobes exhibited an age-inversed HFO rate. Assessment of 1006 seizure onset sites revealed that z-score normalized MI and HFO rate were higher at seizure onset versus nonepileptic electrode sites. We have publicly shared our intracranial EEG data to enable investigators to validate MI and HFO-centric presurgical evaluations to identify the epileptogenic zone.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama-shi, 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI, 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
- Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Visual evoked feedforward-feedback traveling waves organize neural activity across the cortical hierarchy in mice. Nat Commun 2022; 13:4754. [PMID: 35963850 PMCID: PMC9376099 DOI: 10.1038/s41467-022-32378-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/27/2022] [Indexed: 12/26/2022] Open
Abstract
Sensory processing is distributed among many brain regions that interact via feedforward and feedback signaling. Neuronal oscillations have been shown to mediate intercortical feedforward and feedback interactions. Yet, the macroscopic structure of the multitude of such oscillations remains unclear. Here, we show that simple visual stimuli reliably evoke two traveling waves with spatial wavelengths that cover much of the cerebral hemisphere in awake mice. 30-50 Hz feedforward waves arise in primary visual cortex (V1) and propagate rostrally, while 3-6 Hz feedback waves originate in the association cortex and flow caudally. The phase of the feedback wave modulates the amplitude of the feedforward wave and synchronizes firing between V1 and parietal cortex. Altogether, these results provide direct experimental evidence that visual evoked traveling waves percolate through the cerebral cortex and coordinate neuronal activity across broadly distributed networks mediating visual processing.
Collapse
|
7
|
Das A, Myers J, Mathura R, Shofty B, Metzger BA, Bijanki K, Wu C, Jacobs J, Sheth SA. Spontaneous neuronal oscillations in the human insula are hierarchically organized traveling waves. eLife 2022; 11:76702. [PMID: 35616527 PMCID: PMC9200407 DOI: 10.7554/elife.76702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The insula plays a fundamental role in a wide range of adaptive human behaviors, but its electrophysiological dynamics are poorly understood. Here, we used human intracranial electroencephalographic recordings to investigate the electrophysiological properties and hierarchical organization of spontaneous neuronal oscillations within the insula. We analyzed the neuronal oscillations of the insula directly and found that rhythms in the theta and beta frequency oscillations are widespread and spontaneously present. These oscillations are largely organized along the anterior–posterior (AP) axis of the insula. Both the left and right insula showed anterior-to-posterior decreasing gradients for the power of oscillations in the beta frequency band. The left insula also showed a posterior-to-anterior decreasing frequency gradient and an anterior-to-posterior decreasing power gradient in the theta frequency band. In addition to measuring the power of these oscillations, we also examined the phase of these signals across simultaneous recording channels and found that the insula oscillations in the theta and beta bands are traveling waves. The strength of the traveling waves in each frequency was positively correlated with the amplitude of each oscillation. However, the theta and beta traveling waves were uncoupled to each other in terms of phase and amplitude, which suggested that insular traveling waves in the theta and beta bands operate independently. Our findings provide new insights into the spatiotemporal dynamics and hierarchical organization of neuronal oscillations within the insula, which, given its rich connectivity with widespread cortical regions, indicates that oscillations and traveling waves have an important role in intrainsular and interinsular communications.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia University, New York, United States
| | - John Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Raissa Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Brian A Metzger
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Kelly Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, United States
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, United States
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| |
Collapse
|
8
|
Timofeev I, Schoch SF, LeBourgeois MK, Huber R, Riedner BA, Kurth S. Spatio-temporal properties of sleep slow waves and implications for development. CURRENT OPINION IN PHYSIOLOGY 2020; 15:172-182. [PMID: 32455180 DOI: 10.1016/j.cophys.2020.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective sleep quality can be measured by electroencephalography (EEG), a non-invasive technique to quantify electrical activity generated by the brain. With EEG, sleep depth is measured by appearance and an increase in slow wave activity (scalp-SWA). EEG slow waves (scalp-SW) are the manifestation of underlying synchronous membrane potential transitions between silent (DOWN) and active (UP) states. This bistable periodic rhythm is defined as slow oscillation (SO). During its "silent state" cortical neurons are hyperpolarized and appear inactive, while during its "active state" cortical neurons are depolarized, fire spikes and exhibit continuous synaptic activity, excitatory and inhibitory. In adults, data from high-density EEG revealed that scalp-SW propagate across the cortical mantle in complex patterns. However, scalp-SW propagation undergoes modifications across development. We present novel data from children, indicating that scalp-SW originate centro-parietally, and emerge more frontally by adolescence. Based on the concept that SO and SW could actively modify neuronal connectivity, we discuss whether they fulfill a key purpose in brain development by actively conveying modifications of the maturing brain.
Collapse
Affiliation(s)
- Igor Timofeev
- CERVO Brain Research Centre, Québec, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, CH
| | - Monique K LeBourgeois
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, CH.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital Zurich, Zurich, CH
| | - Brady A Riedner
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zurich, Zurich, CH.,Department of Psychology, University of Fribourg, Fribourg, CH
| |
Collapse
|
9
|
Tisdale RK, Lesku JA, Beckers GJL, Rattenborg NC. Bird-like propagating brain activity in anesthetized Nile crocodiles. Sleep 2019; 41:5003083. [PMID: 29955880 DOI: 10.1093/sleep/zsy105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Indexed: 11/14/2022] Open
Abstract
Study Objectives The changes in electroencephalogram (EEG) activity that characterize sleep and its sub-states-slow-wave sleep (SWS) and rapid eye movement (REM) sleep-are similar in mammals and birds. SWS is characterized by EEG slow waves resulting from the synchronous alternation of neuronal membrane potentials between hyperpolarized down-states with neuronal quiescence and depolarized up-states associated with action potentials. By contrast, studies of non-avian reptiles report the presence of high-voltage sharp waves (HShW) during sleep. How HShW relate to EEG phenomena occurring during mammalian and avian sleep is unclear. We investigated the spatiotemporal patterns of electrophysiological phenomena in Nile crocodiles (Crocodylus niloticus) anesthetized with isoflurane to determine whether they share similar spatiotemporal patterns to mammalian and avian slow waves. Methods Recordings of anesthetized crocodiles were made using 64-channel penetrating arrays with electrodes arranged in an 8 × 8 equally spaced grid. The arrays were placed in the dorsal ventricular ridge (DVR), a region implicated in the genesis of HShW. Various aspects of the spatiotemporal distribution of recorded signals were investigated. Results Recorded signals revealed the presence of HShW resembling those reported in earlier studies of naturally sleeping reptiles. HShW propagated in complex and variable patterns across the DVR. Conclusions We demonstrate that HShW within the DVR propagate in complex patterns similar to those observed for avian slow waves recorded from homologous brain regions. Consequently, sleep with HShW may represent an ancestral form of SWS, characterized by up-states occurring less often and for a shorter duration than in mammals and birds.
Collapse
Affiliation(s)
- Ryan K Tisdale
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Gabriel J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
10
|
Inhibition and oscillations in the human brain tissue in vitro. Neurobiol Dis 2019; 125:198-210. [DOI: 10.1016/j.nbd.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
|
11
|
High-Density Porous Graphene Arrays Enable Detection and Analysis of Propagating Cortical Waves and Spirals. Sci Rep 2018; 8:17089. [PMID: 30459464 PMCID: PMC6244298 DOI: 10.1038/s41598-018-35613-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/07/2018] [Indexed: 11/08/2022] Open
Abstract
Cortical propagating waves have recently attracted significant attention by the neuroscience community. These travelling waves have been suggested to coordinate different brain areas and play roles in assisting neural plasticity and learning. However, it is extremely challenging to record them with very fine spatial scales over large areas to investigate their effect on neural dynamics or network connectivity changes. In this work, we employ high-density porous graphene microelectrode arrays fabricated using laser pyrolysis on flexible substrates to study the functional network connectivity during cortical propagating waves. The low-impedance porous graphene arrays are used to record cortical potentials during theta oscillations and drug-induced seizures in vivo. Spatiotemporal analysis on the neural recordings reveal that theta oscillations and epileptiform activities have distinct characteristics in terms of both synchronization and resulting propagating wave patterns. To investigate the network connectivity during the propagating waves, we perform network analysis. The results show that the propagating waves are consistent with the functional connectivity changes in the neural circuits, suggesting that the underlying network states are reflected by the cortical potential propagation patterns.
Collapse
|
12
|
Liu X, Lu Y, Kuzum D. Investigation of Propagating Cortical Waves and Spirals Recorded by High Density Porous Graphene Arrays. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:995-998. [PMID: 30440558 DOI: 10.1109/embc.2018.8512428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Propagating waves along the cortical surface have recently attracted significant attention by the neuroscience community. However, whether these propagating waves imply network connectivity changes for the neural circuits is not known. In this work, we employ a high density porous graphene microelectrode array and perform in vivo experiments with rodents to investigate network connectivity during cortical propagating waves. The spatial-temporal analysis of the cortical recordings reveals various types of propagating waves across the recording area. Network analysis results show that these propagating waves are consistent with the functional connectivity changes in the neural circuits, suggesting that the underlying network states are reflected by the cortical potential propagation patterns.
Collapse
|
13
|
Muller L, Chavane F, Reynolds J, Sejnowski TJ. Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 2018; 19:255-268. [PMID: 29563572 DOI: 10.1038/nrn.2018.20] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.
Collapse
Affiliation(s)
- Lyle Muller
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France
| | - John Reynolds
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Terrence J Sejnowski
- Salk Institute for Biological Studies, La Jolla, CA, USA.,Division of Biological Sciences, University of California, La Jolla, CA, USA
| |
Collapse
|
14
|
New waves: Rhythmic electrical field stimulation systematically alters spontaneous slow dynamics across mouse neocortex. Neuroimage 2018. [PMID: 29535027 DOI: 10.1016/j.neuroimage.2018.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral - posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrains and alters ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes.
Collapse
|
15
|
Abstract
Declarative memory consolidation is hypothesized to require a two-stage, reciprocal cortical-hippocampal dialogue. According to this model, higher frequency signals convey information from the cortex to hippocampus during wakefulness, but in the reverse direction during slow-wave sleep (SWS). Conversely, lower-frequency activity propagates from the information "receiver" to the "sender" to coordinate the timing of information transfer. Reversal of sender/receiver roles across wake and SWS implies that higher- and lower-frequency signaling should reverse direction between the cortex and hippocampus. However, direct evidence of such a reversal has been lacking in humans. Here, we use human resting-state fMRI and electrocorticography to demonstrate that δ-band activity and infraslow activity propagate in opposite directions between the hippocampus and cerebral cortex. Moreover, both δ activity and infraslow activity reverse propagation directions between the hippocampus and cerebral cortex across wake and SWS. These findings provide direct evidence for state-dependent reversals in human cortical-hippocampal communication.
Collapse
|
16
|
Pahwa M, Kusner M, Hacker CD, Bundy DT, Weinberger KQ, Leuthardt EC. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications. PLoS One 2015; 10:e0142947. [PMID: 26562013 PMCID: PMC4643046 DOI: 10.1371/journal.pone.0142947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/28/2015] [Indexed: 11/18/2022] Open
Abstract
Previous studies suggest stable and robust control of a brain-computer interface (BCI) can be achieved using electrocorticography (ECoG). Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia) due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92%) in pseudo real-time using high gamma (70-110 Hz) band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm) located above the precentral and posterior superior temporal gyrus.
Collapse
Affiliation(s)
- Mrinal Pahwa
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| | - Matthew Kusner
- Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Carl D. Hacker
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - David T. Bundy
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Kilian Q. Weinberger
- Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Eric C. Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- School of Medicine, Washington University, St. Louis, Missouri, United States of America
- Department of Neurological Surgery, Washington University, St. Louis, Missouri, United States of America
- Center for Innovation in Neuroscience and Technology, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
17
|
Distribution, Amplitude, Incidence, Co-Occurrence, and Propagation of Human K-Complexes in Focal Transcortical Recordings. eNeuro 2015; 2:eN-NWR-0028-15. [PMID: 26465003 PMCID: PMC4596022 DOI: 10.1523/eneuro.0028-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/09/2015] [Accepted: 07/24/2015] [Indexed: 11/21/2022] Open
Abstract
K-complexes (KCs) are thought to play a key role in sleep homeostasis and memory consolidation; however, their generation and propagation remain unclear. The commonly held view from scalp EEG findings is that KCs are primarily generated in medial frontal cortex and propagate parietally, whereas an electrocorticography (ECOG) study suggested dorsolateral prefrontal generators and an absence of KCs in many areas. In order to resolve these differing views, we used unambiguously focal bipolar depth electrode recordings in patients with intractable epilepsy to investigate spatiotemporal relationships of human KCs. KCs were marked manually on each channel, and local generation was confirmed with decreased gamma power. In most cases (76%), KCs occurred in a single location, and rarely (1%) in all locations. However, if automatically detected KC-like phenomena were included, only 15% occurred in a single location, and 27% occurred in all recorded locations. Locally generated KCs were found in all sampled areas, including cingulate, ventral temporal, and occipital cortices. Surprisingly, KCs were smallest and occurred least frequently in anterior prefrontal channels. When KCs occur on two channels, their peak order is consistent in only 13% of cases, usually from prefrontal to lateral temporal. Overall, the anterior-posterior separation of electrode pairs explained only 2% of the variance in their latencies. KCs in stages 2 and 3 had similar characteristics. These results open a novel view where KCs overall are universal cortical phenomena, but each KC may variably involve small or large cortical regions and spread in variable directions, allowing flexible and heterogeneous contributions to sleep homeostasis and memory consolidation.
Collapse
|
18
|
Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep. Neuroimage 2015; 112:105-113. [PMID: 25747918 DOI: 10.1016/j.neuroimage.2015.02.056] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/09/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022] Open
Abstract
During non-rapid eye movement (NREM) sleep (stage N3), when consciousness fades, cortico-cortical interactions are impaired while neurons are still active and reactive. Why is this? We compared cortico-cortical evoked-potentials recorded during wakefulness and NREM by means of time-frequency analysis and phase-locking measures in 8 epileptic patients undergoing intra-cerebral stimulations/recordings for clinical evaluation. We observed that, while during wakefulness electrical stimulation triggers a chain of deterministic phase-locked activations in its cortical targets, during NREM the same input induces a slow wave associated with an OFF-period (suppression of power>20Hz), possibly reflecting a neuronal down-state. Crucially, after the OFF-period, cortical activity resumes to wakefulness-like levels, but the deterministic effects of the initial input are lost, as indicated by a sharp drop of phase-locked activity. These findings suggest that the intrinsic tendency of cortical neurons to fall into a down-state after a transient activation (i.e. bistability) prevents the emergence of stable patterns of causal interactions among cortical areas during NREM. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions in which thalamo-cortical information integration and consciousness are impaired in spite of preserved neuronal activity.
Collapse
|
19
|
An in depth view of avian sleep. Neurosci Biobehav Rev 2015; 50:120-7. [DOI: 10.1016/j.neubiorev.2014.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 11/23/2022]
|
20
|
Entz L, Tóth E, Keller CJ, Bickel S, Groppe DM, Fabó D, Kozák LR, Erőss L, Ulbert I, Mehta AD. Evoked effective connectivity of the human neocortex. Hum Brain Mapp 2014; 35:5736-53. [PMID: 25044884 DOI: 10.1002/hbm.22581] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/04/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022] Open
Abstract
The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico-cortical evoked potential (CCEP) mapping using single pulse electrical stimulation in 25 patients undergoing seizure monitoring with subdural electrode arrays. Mapping was performed by stimulating adjacent electrode pairs and recording CCEPs from the remainder of the electrode array. CCEPs reliably revealed functional networks and showed an inverse relationship to distance between sites. Coregistration to Brodmann areas (BA) permitted group analysis. Connections were frequently directional with 43% of early responses and 50% of late responses of connections reflecting relative dominance of incoming or outgoing connections. The most consistent connections were seen as outgoing from motor cortex, BA6-BA9, somatosensory (SS) cortex, anterior cingulate cortex, and Broca's area. Network topology revealed motor, SS, and premotor cortices along with BA9 and BA10 and language areas to serve as hubs for cortical connections. BA20 and BA39 demonstrated the most consistent dominance of outdegree connections, while BA5, BA7, auditory cortex, and anterior cingulum demonstrated relatively greater indegree. This multicenter, large-scale, directional study of local and long-range cortical connectivity using direct recordings from awake, humans will aid the interpretation of noninvasive functional connectome studies.
Collapse
Affiliation(s)
- László Entz
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, Manhasset, New York, 11030; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1132, Hungary; Department of Functional Neurosurgery and Department of Epilepsy, National Institute of Clinical Neuroscience, Budapest, 1145, Hungary; Péter Pázmány Catholic University, Faculty of Information Technology and Bionics, Budapest, 1083, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gardner RJ, Kersanté F, Jones MW, Bartsch U. Neural oscillations during non-rapid eye movement sleep as biomarkers of circuit dysfunction in schizophrenia. Eur J Neurosci 2014; 39:1091-106. [DOI: 10.1111/ejn.12533] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/29/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Richard J. Gardner
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Flavie Kersanté
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Matthew W. Jones
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Ullrich Bartsch
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| |
Collapse
|
22
|
Beckers GJL, van der Meij J, Lesku JA, Rattenborg NC. Plumes of neuronal activity propagate in three dimensions through the nuclear avian brain. BMC Biol 2014; 12:16. [PMID: 24580797 PMCID: PMC4015294 DOI: 10.1186/1741-7007-12-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In mammals, the slow-oscillations of neuronal membrane potentials (reflected in the electroencephalogram as high-amplitude, slow-waves), which occur during non-rapid eye movement sleep and anesthesia, propagate across the neocortex largely as two-dimensional traveling waves. However, it remains unknown if the traveling nature of slow-waves is unique to the laminar cytoarchitecture and associated computational properties of the neocortex. RESULTS We demonstrate that local field potential slow-waves and correlated multiunit activity propagate as complex three-dimensional plumes of neuronal activity through the avian brain, owing to its non-laminar, nuclear neuronal cytoarchitecture. CONCLUSIONS The traveling nature of slow-waves is not dependent upon the laminar organization of the neocortex, and is unlikely to subserve functions unique to this pattern of neuronal organization. Finally, the three-dimensional geometry of propagating plumes may reflect computational properties not found in mammals that contributed to the evolution of nuclear neuronal organization and complex cognition in birds.
Collapse
Affiliation(s)
- Gabriël JL Beckers
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 11, 82319 Seewiesen, Germany
- Cognitive Neurobiology and Helmholtz Institute, Departments of Psychology and Biology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Jacqueline van der Meij
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 11, 82319 Seewiesen, Germany
| | - John A Lesku
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 11, 82319 Seewiesen, Germany
- Department of Zoology, La Trobe University, Kingsbury Drive, Melbourne VIC 3086, Australia
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 11, 82319 Seewiesen, Germany
| |
Collapse
|
23
|
Dadok VM, Kirsch HE, Sleigh JW, Lopour BA, Szeri AJ. A probabilistic framework for a physiological representation of dynamically evolving sleep state. J Comput Neurosci 2013; 37:105-24. [PMID: 24363031 DOI: 10.1007/s10827-013-0489-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/19/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
Abstract
This work presents a probabilistic method for mapping human sleep electroencephalogram (EEG) signals onto a state space based on a biologically plausible mathematical model of the cortex. From a noninvasive EEG signal, this method produces physiologically meaningful pathways of the cortical state over a night of sleep. We propose ways in which these pathways offer insights into sleep-related conditions, functions, and complex pathologies. To address explicitly the noisiness of the EEG signal and the stochastic nature of the mathematical model, we use a probabilistic Bayesian framework to map each EEG epoch to a distribution of likelihoods over all model sleep states. We show that the mapping produced from human data robustly separates rapid eye movement sleep (REM) from slow wave sleep (SWS). A Hidden Markov Model (HMM) is incorporated to improve the path results using the prior knowledge that cortical physiology has temporal continuity.
Collapse
Affiliation(s)
- Vera M Dadok
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA,
| | | | | | | | | |
Collapse
|
24
|
Corner MA. From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system. Brain Sci 2013; 3:800-20. [PMID: 24961426 PMCID: PMC4061857 DOI: 10.3390/brainsci3020800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, 1071-TC, The Netherlands.
| |
Collapse
|
25
|
Wu W, Sheth BR. Sound-induced perturbations of the brain network in non-REM sleep, and network oscillations in wake. Psychophysiology 2013; 50:274-86. [PMID: 23316945 DOI: 10.1111/psyp.12011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 10/22/2012] [Indexed: 12/01/2022]
Abstract
During sleep, the brain network processes sensory stimuli without awareness. Stimulation must affect differently brain networks in sleep versus wake, but these differences have yet to be quantified. We recorded cortical activity in stage 2 (SII) sleep and wake using EEG while a tone was intermittently played. Zero-lag correlation measured input to pairs of sensors in the network; cross-correlation and phase-lag index measured pairwise corticocortical connectivity. Our analysis revealed that under baseline conditions, the cortical network, in particular the central regions of the frontoparietal cortex, interact at a characteristic latency of 50 ms, but only during wake, not sleep. Nonsalient auditory stimulation causes far greater perturbation of connectivity from baseline in sleep than wake, both in the response to common input and corticocortical connectivity. The findings have key implications for sensory processing.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204-4005, USA
| | | |
Collapse
|
26
|
Nobili L, De Gennaro L, Proserpio P, Moroni F, Sarasso S, Pigorini A, De Carli F, Ferrara M. Local aspects of sleep. PROGRESS IN BRAIN RESEARCH 2012; 199:219-232. [DOI: 10.1016/b978-0-444-59427-3.00013-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|