1
|
Panagiotou M, Meijer JH, Deboer T. The effects of diazepam on sleep depend on the photoperiod. Acta Pharmacol Sin 2025; 46:892-903. [PMID: 39753982 PMCID: PMC11950407 DOI: 10.1038/s41401-024-01440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/19/2024] [Indexed: 03/17/2025]
Abstract
Daylength (i.e., photoperiod) provides essential information for seasonal adaptations of organisms. Earlier studies have demonstrated that photoperiod influences sleep in several species. Notably, photoperiod can change the excitatory/inhibitory balance in the brain, with long photoperiod exhibiting increased γ-aminobutyric-acid (GABA)-mediated excitation. In this study, we first investigated whether different photoperiods influence sleep and the sleep electroencephalogram (EEG) in mice, and, subsequently, whether these photoperiods alter GABAergic functioning by treating mice with diazepam (3 mg/kg, i.p.). EEG and electromyogram (EMG) recordings were conducted in mice well-adapted to long or short photoperiod (16:8 vs. 8:16 light-dark cycle) in baseline conditions, after 4-h sleep deprivation, and following diazepam administration. Different photoperiods led to a redistribution of sleep and wakefulness in 24-h albeit without altering the overall amount of vigilance states; during darkness, mice exposed to the long photoperiod were more awake and showed very little rapid-eye-movement (REM) sleep compared to the short photoperiod. Furthermore, an overall lower EEG power density, across all vigilance states, was found in the long compared to short photoperiod. After diazepam treatment, slow-wave-activity (SWA) in NREM sleep was suppressed independent of the photoperiod. However, following diazepam administration, mice showed more REM sleep in the short photoperiod, and increased EEG power density in the slower frequencies (2.5-7 Hz), during wakefulness in the long photoperiod. These results demonstrate that photoperiod can affect the diazepam-induced changes on sleep architecture and EEG, suggesting that treatments with GABAA agonists exert dissimilar effects depending on the photoperiod. Future studies are warranted to explore potential photoperiod effects in humans which could have consequences for the treatment of anxiety and sleep disturbances.
Collapse
Affiliation(s)
- Maria Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands.
- Erasmus University College, Erasmus School of Social and Behavioural Sciences, Life Sciences Department, Erasmus University Rotterdam, Rotterdam, 3011, HP, the Netherlands.
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands
| |
Collapse
|
2
|
ElGrawani W, Sun G, Kliem FP, Sennhauser S, Pierre-Ferrer S, Rosi-Andersen A, Boccalaro I, Bethge P, Heo WD, Helmchen F, Adamantidis AR, Forger DB, Robles MS, Brown SA. BDNF-TrkB signaling orchestrates the buildup process of local sleep. Cell Rep 2024; 43:114500. [PMID: 39046880 DOI: 10.1016/j.celrep.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sleep debt accumulates during wakefulness, leading to increased slow wave activity (SWA) during sleep, an encephalographic marker for sleep need. The use-dependent demands of prior wakefulness increase sleep SWA locally. However, the circuitry and molecular identity of this "local sleep" remain unclear. Using pharmacology and optogenetic perturbations together with transcriptomics, we find that cortical brain-derived neurotrophic factor (BDNF) regulates SWA via the activation of tyrosine kinase B (TrkB) receptor and cAMP-response element-binding protein (CREB). We map BDNF/TrkB-induced sleep SWA to layer 5 (L5) pyramidal neurons of the cortex, independent of neuronal firing per se. Using mathematical modeling, we here propose a model of how BDNF's effects on synaptic strength can increase SWA in ways not achieved through increased firing alone. Proteomic analysis further reveals that TrkB activation enriches ubiquitin and proteasome subunits. Together, our study reveals that local SWA control is mediated by BDNF-TrkB-CREB signaling in L5 excitatory cortical neurons.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Guanhua Sun
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany
| | - Simon Sennhauser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sara Pierre-Ferrer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Alex Rosi-Andersen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Ida Boccalaro
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Philipp Bethge
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Hejazi NS, Duncan WC, Kheirkhah M, Kowalczyk A, Riedner B, Oppenheimer M, Momenan R, Yuan Q, Kerich M, Goldman D, Zarate CA. Sleep Delta power, age, and sex effects in treatment-resistant depression. J Psychiatr Res 2024; 174:332-339. [PMID: 38697012 PMCID: PMC11104557 DOI: 10.1016/j.jpsychires.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/04/2024]
Abstract
Electroencephalographic (EEG) deficits in slow wave activity or Delta power (0.5-4 Hz) indicate disturbed sleep homeostasis and are hallmarks of depression. Sleep homeostasis is linked to restorative sleep and potential antidepressant response via non-rapid eye movement (NREM) slow wave sleep (SWS) during which neurons undergo essential repair and rejuvenation. Decreased Low Delta power (0.5-2 Hz) was previously reported in individuals with depression. This study investigated power levels in the Low Delta (0.5-<2 Hz), High Delta (2-4 Hz), and Total Delta (0.5-4 Hz) bands and their association with age, sex, and disrupted sleep in treatment-resistant depression (TRD). Mann-Whitney U tests were used to compare the nightly progressions of Total Delta, Low Delta, and High Delta in 100 individuals with TRD and 24 healthy volunteers (HVs). Polysomnographic parameters were also examined, including Total Sleep Time (TST), Sleep Efficiency (SE), and Wake after Sleep Onset (WASO). Individuals with TRD had lower Delta power during the first NREM episode (NREM1) than HVs. The deficiency was observed in the Low Delta band versus High Delta. Females with TRD had higher Delta power than males during the first NREM1 episode, with the most noticeable sex difference observed in Low Delta. In individuals with TRD, Low Delta power correlated with WASO and SE, and High Delta correlated with WASO. Low Delta power deficits in NREM1 were observed in older males with TRD, but not females. These results provide compelling evidence for a link between age, sex, Low Delta power, sleep homeostasis, and non-restorative sleep in TRD.
Collapse
Affiliation(s)
- Nadia S Hejazi
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Wallace C Duncan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mina Kheirkhah
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Amanda Kowalczyk
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brady Riedner
- Department of Psychiatry, University of Wisconsin-Madison, USA
| | - Mark Oppenheimer
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Reza Momenan
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Qiaoping Yuan
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mike Kerich
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Beschorner N, Nedergaard M. Glymphatic system dysfunction in neurodegenerative diseases. Curr Opin Neurol 2024; 37:182-188. [PMID: 38345416 DOI: 10.1097/wco.0000000000001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Purpose of this review is to update the ongoing work in the field of glymphatic and neurodegenerative research and to highlight focus areas that are particularly promising. RECENT FINDINGS Multiple reports have over the past decade documented that glymphatic fluid transport is broadly suppressed in neurodegenerative diseases. Most studies have focused on Alzheimer's disease using a variety of preclinical disease models, whereas the clinical work is based on various neuroimaging approaches. It has consistently been reported that brain fluid transport is impaired in patients suffering from Alzheimer's disease compared with age-matched control subjects. SUMMARY An open question in the field is to define the mechanistic underpinning of why glymphatic function is suppressed. Other questions include the opportunities for using glymphatic imaging for diagnostic purposes and in treatment intended to prevent or slow Alzheimer disease progression.
Collapse
Affiliation(s)
- Natalie Beschorner
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen N, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, New York, USA
| |
Collapse
|
5
|
Wang T, Wang M, Wang J, Li Z, Yuan Y. Modulatory effects of low-intensity retinal ultrasound stimulation on rapid and non-rapid eye movement sleep. Cereb Cortex 2024; 34:bhae143. [PMID: 38602742 DOI: 10.1093/cercor/bhae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
Prior investigations have established that the manipulation of neural activity has the potential to influence both rapid eye movement and non-rapid eye movement sleep. Low-intensity retinal ultrasound stimulation has shown effectiveness in the modulation of neural activity. Nevertheless, the specific effects of retinal ultrasound stimulation on rapid eye movement and non-rapid eye movement sleep, as well as its potential to enhance overall sleep quality, remain to be elucidated. Here, we found that: In healthy mice, retinal ultrasound stimulation: (i) reduced total sleep time and non-rapid eye movement sleep ratio; (ii) changed relative power and sample entropy of the delta (0.5-4 Hz) in non-rapid eye movement sleep; and (iii) enhanced relative power of the theta (4-8 Hz) and reduced theta-gamma coupling strength in rapid eye movement sleep. In Alzheimer's disease mice with sleep disturbances, retinal ultrasound stimulation: (i) reduced the total sleep time; (ii) altered the relative power of the gamma band during rapid eye movement sleep; and (iii) enhanced the coupling strength of delta-gamma in non-rapid eye movement sleep and weakened the coupling strength of theta-fast gamma. The results indicate that retinal ultrasound stimulation can modulate rapid eye movement and non-rapid eye movement-related neural activity; however, it is not beneficial to the sleep quality of healthy and Alzheimer's disease mice.
Collapse
Affiliation(s)
- Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Jiawei Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhen Li
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Lizio R, Lopez S, Babiloni C, Del Percio C, Noce G, Losurdo A, Vernò L, De Tommaso M, Montemurno A, Dalfino G, Cirillo P, Soricelli A, Ferri R, Catania V, Nobili F, Giubilei F, Buttinelli C, Frisoni GB, Stocchi F, Scisci AM, Mastrofilippo N, Procaccini DA, Gesualdo L. Resting state EEG rhythms in different stages of chronic kidney disease with mild cognitive impairment. Neurobiol Aging 2023; 130:70-79. [PMID: 37473580 DOI: 10.1016/j.neurobiolaging.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Here, we tested that standard eyes-closed resting-state electroencephalographic (rsEEG) rhythms may characterize patients with mild cognitive impairment due to chronic kidney disease at stages 3-4 (CKDMCI-3&4) in relation to CKDMCI patients under hemodialysis (CKDMCI-H) and mild cognitive impairment (MCI) patients with cerebrovascular disease (CVMCI). Clinical and rsEEG data in 22 CKDMCI-3&4, 15 CKDMCI-H, 18 CVMCI, and 30 matched healthy control (HC) participants were available in a national archive. Spectral rsEEG power density was calculated from delta to gamma frequency bands at scalp electrodes. Results showed that (1) all MCI groups over the HC group showed decreased occipital rsEEG alpha power density; (2) compared to the HC and CVMCI groups, the 2 CKDMCI groups had higher rsEEG delta-theta power density; and (3) the CKDMCI-3&4 group showed the lowest parietal rsEEG alpha power density. The present rsEEG measures may be useful to monitor the impact of circulating uremic toxins on brain regulation of cortical arousal for quiet vigilance in CKDMCI patients.
Collapse
Affiliation(s)
- Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Antonia Losurdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Vernò
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marina De Tommaso
- Neurophysiopathology Unit, DiBrain Department, Aldo Moro University of Bari, Bari, Italy
| | - Anna Montemurno
- Neurophysiopathology Unit, DiBrain Department, Aldo Moro University of Bari, Bari, Italy
| | - Giuseppe Dalfino
- National Institute of Gastroenterology "Saverio de Bellis" - IRCCS, via Turi n. 27 - 70013 Castellana Grotte (BA)
| | - Pietro Cirillo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | | | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DiNOGMI), University of Genoa and IRCCS AOU S Martino-IST, Genoa, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Giovanni B Frisoni
- IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University, San Raffaele, Rome, Italy
| | - Anna Maria Scisci
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Mastrofilippo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Deni Aldo Procaccini
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
7
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
8
|
Jung J, Kang J, Kim T. Attenuation of homeostatic sleep response and rest-activity circadian rhythm in vitamin D deficient mice. Chronobiol Int 2023; 40:1097-1110. [PMID: 37661839 DOI: 10.1080/07420528.2023.2253299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The link between vitamin D deficiency (VDD) and sleep disturbances has long been suggested. However, the direct causality between VDD, sleep disturbances, and circadian rhythm remains unclear. We aimed to characterize sleep-wake behavior and circadian rhythms in an animal model of VDD. VDD was induced by feeding vitamin D-deficient chow, and we analyzed sleep and circadian rhythm parameters. During light period, VDD mice exhibited reduced wake with more frequent wake bouts and increased NREM sleep time. However, during dark period, the wake EEG power spectrum peaked at theta band frequency, and slow-wave energy was suppressed in mice with VDD. Rest-activity analyses revealed increased circadian period, lower wheel counts, and more frequent and short activity bouts during VDD. Combining sleep and circadian data, we found significantly suppressed activities during the hours with a wake duration shorter than 30 minutes. Moreover, mice in VDD state exhibited a negative correlation between wake theta power and hourly wheel-running counts during dark period. Our data point to a direct link between VDD and disturbances in sleep and rest-activity circadian rhythm, featuring frequent wake bouts during the sleeping phase, reduced sleep pressure build-up in dark period, and reduced activity levels due to increased susceptibility to sleepiness.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
9
|
Marmelshtein A, Eckerling A, Hadad B, Ben-Eliyahu S, Nir Y. Sleep-like changes in neural processing emerge during sleep deprivation in early auditory cortex. Curr Biol 2023; 33:2925-2940.e6. [PMID: 37385257 PMCID: PMC7617130 DOI: 10.1016/j.cub.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 03/30/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Insufficient sleep is commonplace in modern lifestyle and can lead to grave outcomes, yet the changes in neuronal activity accumulating over hours of extended wakefulness remain poorly understood. Specifically, which aspects of cortical processing are affected by sleep deprivation (SD), and whether they also affect early sensory regions, remain unclear. Here, we recorded spiking activity in the rat auditory cortex along with polysomnography while presenting sounds during SD followed by recovery sleep. We found that frequency tuning, onset responses, and spontaneous firing rates were largely unaffected by SD. By contrast, SD decreased entrainment to rapid (≥20 Hz) click trains, increased population synchrony, and increased the prevalence of sleep-like stimulus-induced silent periods, even when ongoing activity was similar. Recovery NREM sleep was associated with similar effects as SD with even greater magnitude, while auditory processing during REM sleep was similar to vigilant wakefulness. Our results show that processes akin to those in NREM sleep invade the activity of cortical circuits during SD, even in the early sensory cortex.
Collapse
Affiliation(s)
- Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anabel Eckerling
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hadad
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| |
Collapse
|
10
|
Nir Y, de Lecea L. Sleep and vigilance states: Embracing spatiotemporal dynamics. Neuron 2023; 111:1998-2011. [PMID: 37148873 DOI: 10.1016/j.neuron.2023.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The classic view of sleep and vigilance states is a global stationary perspective driven by the interaction between neuromodulators and thalamocortical systems. However, recent data are challenging this view by demonstrating that vigilance states are highly dynamic and regionally complex. Spatially, sleep- and wake-like states often co-occur across distinct brain regions, as in unihemispheric sleep, local sleep in wakefulness, and during development. Temporally, dynamic switching prevails around state transitions, during extended wakefulness, and in fragmented sleep. This knowledge, together with methods monitoring brain activity across multiple regions simultaneously at millisecond resolution with cell-type specificity, is rapidly shifting how we consider vigilance states. A new perspective incorporating multiple spatial and temporal scales may have important implications for considering the governing neuromodulatory mechanisms, the functional roles of vigilance states, and their behavioral manifestations. A modular and dynamic view highlights novel avenues for finer spatiotemporal interventions to improve sleep function.
Collapse
Affiliation(s)
- Yuval Nir
- Department of Physiology and Pharmacology, Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases. Int J Mol Sci 2023; 24:ijms24043221. [PMID: 36834631 PMCID: PMC9965491 DOI: 10.3390/ijms24043221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer's and Parkinson's diseases, intracranial hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is now being actively discussed in the scientific community: night stimulation of the BWRS might be an innovative and promising strategy for neurorehabilitation medicine. This review highlights new trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology for the effective removal of wastes and unnecessary compounds from the brain in order to increase the neuroprotection of the CNS as well as to prevent or delay various brain diseases.
Collapse
|
12
|
Zhang X, Smits M, Curfs L, Spruyt K. An investigation of the sleep macrostructure of girls with Rett syndrome. Sleep Med 2023; 101:77-86. [PMID: 36343395 DOI: 10.1016/j.sleep.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE/BACKGROUND Methyl-CpG-binding protein 2 (MeCP2) is of utmost importance in neuronal function. We aim to characterize phenotypic traits in the sleep of individuals with Rett Syndrome (RTT, OMIM # 312750), a rare disorder predominantly caused by mutations of the MECP2 gene. PATIENTS/METHODS An overnight polysomnographic recording was performed. Outcomes investigated were parameters of nocturnal sleep macrostructure, and sample stratification per genetic and clinical characteristics, and six key features of clinical severity was applied. RESULTS The sleep of our 21 RTT female subjects with a mutant MECP2 gene, aged 8.8 ± 5.4 years, showed no significant differences within strata. However, compared to a normative dataset, we found longer duration of wake time after sleep onset and total sleep time (TST) but shorter sleep onset latency, in RTT. Regarding the proportion of sleep stages per TST, higher stage N3 (%) with lower stage N2 (%) and REM (%) were generally seen. Such abnormalities became more uniformly expressed at the severe level of clinical features, particularly for hand functioning and walking. CONCLUSIONS RTT girls with MECP2 mutations in our study demonstrated an increased deep sleep and reduced rapid eye movement sleep proportion, which is mostly allied with their hand dysfunction severity. Poor sleep-on/off switching in RTT since embryogenesis is possibly linked to (psycho)motor impairment in the cases with MECP2 mutations.
Collapse
Affiliation(s)
- Xinyan Zhang
- Université de Paris, NeuroDiderot - INSERM, Paris, France.
| | - Marcel Smits
- Department of Sleep-wake Disorders and Chronobiology, Hospital Gelderse Vallei Ede, Netherlands. Governor Kremers Centre, Maastricht University Medical Centre, Netherlands.
| | - Leopold Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, Netherlands.
| | - Karen Spruyt
- Université de Paris, NeuroDiderot - INSERM, Paris, France.
| |
Collapse
|
13
|
Semyachkina-Glushkovskaya O, Karavaev A, Prokhorov M, Runnova A, Borovkova E, Yu.M. I, Hramkov A, Kulminskiy D, Semenova N, Sergeev K, Slepnev A, Yu. SE, Zhuravlev M, Fedosov I, Shirokov A, Blokhina I, Dubrovski A, Terskov A, Khorovodov A, Ageev V, Elovenko D, Evsukova A, Adushkina V, Telnova V, Postnov D, Penzel T, Kurths J. EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Comput Struct Biotechnol J 2022; 21:758-768. [PMID: 36698965 PMCID: PMC9841170 DOI: 10.1016/j.csbj.2022.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The lymphatic drainage system of the brain (LDSB) is the removal of metabolites and wastes from its tissues. A dysfunction of LDSB is an important sign of aging, brain oncology, the Alzheimer's and Parkinson's diseases. The development of new strategies for diagnosis of LDSB injuries can improve prevention of age-related cerebral amyloid angiopathy, neurodegenerative and cerebrovascular diseases. There are two conditions, such as deep sleep and opening of the blood-brain-barrier (OBBB) associated with the LDSB activation. A promising candidate for measurement of LDSB could be electroencephalography (EEG). In this pilot study on rats, we tested the hypothesis, whether deep sleep and OBBB can be an informative platform for an effective extracting of information about the LDSB functions. Using the nonlinear analysis of EEG dynamics and machine learning technology, we discovered that the LDSB activation during OBBB and sleep is associated with similar changes in the EEG θ-activity. The OBBB causes the higher LDSB activation vs. sleep that is accompanied by specific changes in the low frequency EEG activity extracted by the power spectra analysis of the EEG dynamics combined with the coherence function. Thus, our findings demonstrate a link between neural activity associated with the LDSB activation during sleep and OBBB that is an important informative platform for extraction of the EEG-biomarkers of the LDSB activity. These results open new perspectives for the development of technology for the LDSB diagnostics that would open a novel era in the prognosis of brain diseases caused by the LDSB disorders, including OBBB.
Collapse
Affiliation(s)
- O.V. Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany,Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Corresponding author at: Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany.
| | - A.S. Karavaev
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, (IHNA&NPh RAS), 5AButlerova St., Moscow 117485, Russia
| | - M.D. Prokhorov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia
| | - A.E. Runnova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - E.I. Borovkova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - Ishbulatov Yu.M.
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - A.N. Hramkov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.D. Kulminskiy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - N.I. Semenova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - K.S. Sergeev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.V. Slepnev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Sitnikova E. Yu.
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, (IHNA&NPh RAS), 5AButlerova St., Moscow 117485, Russia
| | - M.O. Zhuravlev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - I.V. Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.A. Shirokov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, ProspektEntuziastov13, Saratov 410049, Russia
| | - I.A. Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.I. Dubrovski
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.V. Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.P. Khorovodov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.B. Ageev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.A. Elovenko
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.S. Evsukova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.V. Adushkina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.V. Telnova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.E. Postnov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - T.U. Penzel
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - J.G. Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany,Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
14
|
Brodin ATS, Gabulya S, Wellfelt K, Karlsson TE. Five Hours Total Sleep Deprivation Does Not Affect CA1 Dendritic Length or Spine Density. Front Synaptic Neurosci 2022; 14:854160. [PMID: 35359703 PMCID: PMC8964138 DOI: 10.3389/fnsyn.2022.854160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is essential for long term memory function. However, the neuroanatomical consequences of sleep loss are disputed. Sleep deprivation has been reported to cause both decreases and increases of dendritic spine density. Here we use Thy1-GFP expressing transgenic mice to investigate the effects of acute sleep deprivation on the dendritic architecture of hippocampal CA1 pyramidal neurons. We found that 5 h of sleep deprivation had no effect on either dendritic length or dendritic spine density. Our work suggests that no major neuroanatomical changes result from a single episode of sleep deprivation.
Collapse
Affiliation(s)
| | - Sarolta Gabulya
- Institute of Neuroinformatics, University of Zurich and ETH, Zürich, Switzerland
| | - Katrin Wellfelt
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tobias E. Karlsson
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
- *Correspondence: Tobias E. Karlsson,
| |
Collapse
|
15
|
Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021; 81:4979-4993.e7. [PMID: 34798058 PMCID: PMC8688325 DOI: 10.1016/j.molcel.2021.10.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Noa Matosevich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Adir Monsonego
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
16
|
Fifel K, Deboer T. Heterogenous electrophysiological responses of functionally distinct striatal subregions to circadian and sleep-related homeostatic processes. Sleep 2021; 45:6369544. [PMID: 34516641 DOI: 10.1093/sleep/zsab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Basal Ganglia (BG) are a set of subcortical nuclei that are involved in the control of a wide variety of motor, cognitive and affective behaviors. Although many behavioral abnormalities associated with BG dysfunction overlap with the clinical picture precipitated by the lack of sleep, the impact of sleep alterations on neuronal activity in BG is unknown. Using wildtype C57BI mice, we investigated the circadian and sleep-related homeostatic modulation of neuronal activity in the 3 functional subdivisions of the striatum (i.e. sensorimotor, associative and limbic striatum). We found no circadian modulation of activity in both ventral and dorso-medial striatum while the dorso-lateral striatum displayed a significant circadian rhythm with increased firing rates during the subjective dark, active phase. By combining neuronal activity recordings with electroencephalogram (EEG) recordings, we found a strong modulation of neuronal activity by the nature of vigilance states with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in all striatal subregions. Depriving animals of sleep for 6 hours induced significant, but heterogenous alterations in the neuronal activity across striatal subregions. Notably, these alterations lasted for up to 48 hours in the sensorimotor striatum and persisted even after the normalization of cortical EEG power densities. Our results show that vigilance and sleep states as well as their disturbances significantly affect neuronal activity within the striatum. We propose that these changes in neuronal activity underlie both the well-established links between sleep alterations and several disorders involving BG dysfunction as well as the maladaptive changes in behavior induced in healthy subjects following sleep loss.
Collapse
Affiliation(s)
- Karim Fifel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Ricci S, Tatti E, Nelson AB, Panday P, Chen H, Tononi G, Cirelli C, Ghilardi MF. Extended Visual Sequence Learning Leaves a Local Trace in the Spontaneous EEG. Front Neurosci 2021; 15:707828. [PMID: 34335178 PMCID: PMC8322764 DOI: 10.3389/fnins.2021.707828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
We have previously demonstrated that, in rested subjects, extensive practice in a motor learning task increased both electroencephalographic (EEG) theta power in the areas involved in learning and improved the error rate in a motor test that shared similarities with the task. A nap normalized both EEG and performance changes. We now ascertain whether extensive visual declarative learning produces results similar to motor learning. Thus, during the morning, we recorded high-density EEG in well rested young healthy subjects that learned the order of different visual sequence task (VSEQ) for three one-hour blocks. Afterward, a group of subjects took a nap and another rested quietly. Between each VSEQ block, we recorded spontaneous EEG (sEEG) at rest and assessed performance in a motor test and a visual working memory test that shares similarities with VSEQ. We found that after the third block, VSEQ induced local theta power increases in the sEEG over a right temporo-parietal area that was engaged during the task. This local theta increase was preceded by increases in alpha and beta power over the same area and was paralleled by performance decline in the visual working memory test. Only after the nap, VSEQ learning rate improved and performance in the visual working memory test was restored, together with partial normalization of the local sEEG changes. These results suggest that intensive learning, like motor learning, produces local theta power increases, possibly reflecting local neuronal fatigue. Sleep may be necessary to resolve neuronal fatigue and its effects on learning and performance.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Elisa Tatti
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Aaron B Nelson
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Priya Panday
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Henry Chen
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - M Felice Ghilardi
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Truong MK, Berger M, Haba-Rubio J, Siclari F, Marques-Vidal P, Heinzer R. Impact of smoking on sleep macro- and microstructure. Sleep Med 2021; 84:86-92. [PMID: 34126401 DOI: 10.1016/j.sleep.2021.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Existing data suggest that smoking may be associated with sleep disturbances. This study aimed to determine the association between smoking and both subjective and objective sleep quality. METHODS Cross-sectional analysis of sleep characteristics in 3233 participants from the population-based CoLaus-HypnoLaus cohort (52.2% women, mean age 56.6 ± 10.2 years) who completed questionnaires on sleep quality, of whom 1489 (46%) had a full polysomnography. Smoking data were self-reported; participants were classified by smoking status as current, former or never smokers. Primary outcomes were subjective sleep quality assessed by sleep questionnaires, and objective sleep quality based on polysomnography (sleep macrostructure), including power spectral analysis of the electroencephalogram on C4 electrode (sleep microstructure), quantifying the relative amount of delta power (1-4 Hz), a marker of sleep depth, and arousal-associated alpha power (8-12 Hz). RESULTS Current smokers had a shift toward faster sleep electroencephalogram activity with lower delta power in non-REM sleep compared with former and never smokers (-2.8 ± 0.4% and -2.4 ± 0.4%, respectively; both p < 0.001) and higher alpha power (+0.8 ± 0.2%; p < 0.001) compared with never smokers. There was a dose-dependent negative association between electroencephalogram delta power and smoking intensity (r2 = -1.2 [-1.9, -0.5]; p = 0.001). Additionally, mean nocturnal oxygen saturation was lower in current smokers. CONCLUSIONS Current smokers had decreased objective sleep quality, with a dose-dependent association between smoking intensity and decrease in electroencephalogram delta power during non-REM sleep, in addition to an increase in alpha power. Considering the importance of sleep quality for wellbeing and health, these results provide further data to support smoking cessation.
Collapse
Affiliation(s)
- Minh Khoa Truong
- Department of Medicine, Service of Pulmonary Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Mathieu Berger
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - José Haba-Rubio
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Francesca Siclari
- Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland; Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Service of Internal Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Raphaël Heinzer
- Department of Medicine, Service of Pulmonary Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland; Center for Investigation and Research in Sleep (CIRS), Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
19
|
Miyamoto D, Marshall W, Tononi G, Cirelli C. Net decrease in spine-surface GluA1-containing AMPA receptors after post-learning sleep in the adult mouse cortex. Nat Commun 2021; 12:2881. [PMID: 34001888 PMCID: PMC8129120 DOI: 10.1038/s41467-021-23156-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
The mechanisms by which sleep benefits learning and memory remain unclear. Sleep may further strengthen the synapses potentiated by learning or promote broad synaptic weakening while protecting the newly potentiated synapses. We tested these ideas by combining a motor task whose consolidation is sleep-dependent, a marker of synaptic AMPA receptor plasticity, and repeated two-photon imaging to track hundreds of spines in vivo with single spine resolution. In mouse motor cortex, sleep leads to an overall net decrease in spine-surface GluA1-containing AMPA receptors, both before and after learning. Molecular changes in single spines during post-learning sleep are correlated with changes in performance after sleep. The spines in which learning leads to the largest increase in GluA1 expression have a relative advantage after post-learning sleep compared to sleep deprivation, because sleep weakens all remaining spines. These results are obtained in adult mice, showing that sleep-dependent synaptic down-selection also benefits the mature brain.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- University of Toyama, Toyama, Japan
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Nelson AB, Ricci S, Tatti E, Panday P, Girau E, Lin J, Thomson BO, Chen H, Marshall W, Tononi G, Cirelli C, Ghilardi MF. Neural fatigue due to intensive learning is reversed by a nap but not by quiet waking. Sleep 2021; 44:5880034. [PMID: 32745192 DOI: 10.1093/sleep/zsaa143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
Do brain circuits become fatigued due to intensive neural activity or plasticity? Is sleep necessary for recovery? Well-rested subjects trained extensively in a visuo-motor rotation learning task (ROT) or a visuo-motor task without rotation learning (MOT), followed by sleep or quiet wake. High-density electroencephalography showed that ROT training led to broad increases in EEG power over a frontal cluster of electrodes, with peaks in the theta (mean ± SE: 24% ± 6%, p = 0.0013) and beta ranges (10% ± 3%, p = 0.01). These traces persisted in the spontaneous EEG (sEEG) between sessions (theta: 42% ± 8%, p = 0.0001; beta: 35% ± 7%, p = 0.002) and were accompanied by increased errors in a motor test with kinematic characteristics and neural substrates similar to ROT (81.8% ± 0.8% vs. 68.2% ± 2.3%; two-tailed paired t-test: p = 0.00001; Cohen's d = 1.58), as well as by score increases of subjective task-specific fatigue (4.00 ± 0.39 vs. 5.36 ± 0.39; p = 0.0007; Cohen's d = 0.60). Intensive practice with MOT did not affect theta sEEG or the motor test. A nap, but not quiet wake, induced a local sEEG decrease of theta power by 33% (SE: 8%, p = 0.02), renormalized test performance (70.9% ± 2.9% vs 79.1% ± 2.7%, p = 0.018, Cohen's d = 0.85), and improved learning ability in ROT (adaptation rate: 71.2 ± 1.2 vs. 73.4 ± 0.9, p = 0.024; Cohen's d = 0.60). Thus, sleep is necessary to restore plasticity-induced fatigue and performance.
Collapse
Affiliation(s)
- Aaron B Nelson
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Serena Ricci
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York.,DIBRIS, Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genova, Genova, Italy
| | - Elisa Tatti
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Priya Panday
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Elisa Girau
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Jing Lin
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Brittany O Thomson
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Henry Chen
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - M Felice Ghilardi
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| |
Collapse
|
21
|
Yan T, Qiu Y, Yu X, Yang L. Glymphatic Dysfunction: A Bridge Between Sleep Disturbance and Mood Disorders. Front Psychiatry 2021; 12:658340. [PMID: 34025481 PMCID: PMC8138157 DOI: 10.3389/fpsyt.2021.658340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence demonstrates a close relationship between sleep disturbance and mood disorders, including major depression disorder (MDD) and bipolar disorder (BD). According to the classical two-process model of sleep regulation, circadian rhythms driven by the light-dark cycle, and sleep homeostasis modulated by the sleep-wake cycle are disrupted in mood disorders. However, the exact mechanism of interaction between sleep and mood disorders remains unclear. Recent discovery of the glymphatic system and its dynamic fluctuation with sleep provide a plausible explanation. The diurnal variation of the glymphatic circulation is dependent on the astrocytic activity and polarization of water channel protein aquaporin-4 (AQP4). Both animal and human studies have reported suppressed glymphatic transport, abnormal astrocytes, and depolarized AQP4 in mood disorders. In this study, the "glymphatic dysfunction" hypothesis which suggests that the dysfunctional glymphatic pathway serves as a bridge between sleep disturbance and mood disorders is proposed.
Collapse
Affiliation(s)
- Tao Yan
- Department of Psychiatry, Changxing People's Hospital, Huzhou, China
| | - Yuefeng Qiu
- Department of Psychiatry, Zhejiang Hospital, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linglin Yang
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Tan X, van Egmond LT, Cedernaes J, Benedict C. The role of exercise-induced peripheral factors in sleep regulation. Mol Metab 2020; 42:101096. [PMID: 33045432 PMCID: PMC7585947 DOI: 10.1016/j.molmet.2020.101096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recurrently disrupted sleep is a widespread phenomenon in our society. This is worrisome as chronically impaired sleep increases the risk of numerous diseases that place a heavy burden on health services worldwide, including type 2 diabetes, obesity, depression, cardiovascular disease, and dementia. Therefore, strategies mitigating the current societal sleep crisis are needed. SCOPE OF REVIEW Observational and interventional studies have found that regular moderate to intensive exercise is associated with better subjective and objective sleep in humans, with and without pre-existing sleep disturbances. Here, we summarize recent findings from clinical studies in humans and animal experiments suggesting that molecules that are expressed, produced, and released by the skeletal muscle in response to exercise may contribute to the sleep-improving effects of exercise. MAJOR CONCLUSIONS Exercise-induced skeletal muscle recruitment increases blood concentrations of signaling molecules, such as the myokine brain-derived neurotrophic factor (BDNF), which has been shown to increase the depth of sleep in animals. As reviewed herein, BDNF and other muscle-induced factors are likely to contribute to the sleep-promoting effects of exercise. Despite progress in the field, however, several fundamental questions remain. For example, one central question concerns the optimal time window for exercise to promote sleep. It is also unknown whether the production of muscle-induced peripheral factors promoting sleep is altered by acute and chronic sleep disturbances, which has become increasingly common in the modern 24/7 lifestyle.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
23
|
Facchin L, Schöne C, Mensen A, Bandarabadi M, Pilotto F, Saxena S, Libourel PA, Bassetti CLA, Adamantidis AR. Slow Waves Promote Sleep-Dependent Plasticity and Functional Recovery after Stroke. J Neurosci 2020; 40:8637-8651. [PMID: 33087472 PMCID: PMC7643301 DOI: 10.1523/jneurosci.0373-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 01/13/2023] Open
Abstract
Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with low-frequency, high-amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are reminiscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery; however, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5 ms optical activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200 ms silencing of Archeorhodopsin T-expressing pyramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous NREM SW in freely moving mice. Importantly, we found that single optogenetically evoked SW (SWopto) in the peri-infarct zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sensorimotor stroke lesion site compared with spontaneous recovery and control conditions, while motor strength remained unchanged. In contrast, SWopto during wakefulness had no effect. Furthermore, chronic SWopto during sleep were associated with local axonal sprouting as revealed by the increase of anatomic presynaptic and postsynaptic markers in the peri-infarct zone and corresponding contralesional areas to cortical circuit reorganization during stroke recovery. These results support a role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically relevant framework for rehabilitation strategies using neuromodulation during sleep.SIGNIFICANCE STATEMENT Brain stroke is one of the leading causes of death and major disabilities in the elderly worldwide. A better understanding of the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of rehabilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically induced sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for poststroke intervention that promotes neuroplasticity and facilitates sensorimotor recovery.
Collapse
Affiliation(s)
- Laura Facchin
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Cornelia Schöne
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Armand Mensen
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Mojtaba Bandarabadi
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Federica Pilotto
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, 3010, Switzerland
| | - Smita Saxena
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, 3010, Switzerland
| | - Paul Antoine Libourel
- Centre de Recherche en Neurosciences de Lyon, University of Lyon, Bron, 69500, France
| | - Claudio L A Bassetti
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Antoine R Adamantidis
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, 3010, Switzerland
- Department for BioMedical Research, University of Bern, Bern, 3010, Switzerland
| |
Collapse
|
24
|
Abstract
Sleep is evolutionarily conserved across all species, and impaired sleep is a common trait of the diseased brain. Sleep quality decreases as we age, and disruption of the regular sleep architecture is a frequent antecedent to the onset of dementia in neurodegenerative diseases. The glymphatic system, which clears the brain of protein waste products, is mostly active during sleep. Yet the glymphatic system degrades with age, suggesting a causal relationship between sleep disturbance and symptomatic progression in the neurodegenerative dementias. The ties that bind sleep, aging, glymphatic clearance, and protein aggregation have shed new light on the pathogenesis of a broad range of neurodegenerative diseases, for which glymphatic failure may constitute a therapeutically targetable final common pathway.
Collapse
Affiliation(s)
- Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Wen Y, Lv Y, Niu J, Xin C, Cui L, Vetrivelan R, Lu J. Roles of motor and cortical activity in sleep rebound in rat. Eur J Neurosci 2020; 52:4100-4114. [PMID: 32588491 DOI: 10.1111/ejn.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Sleep pressure that builds up gradually during the extended wakefulness results in sleep rebound. Several lines of evidence, however, suggest that wake per se may not be sufficient to drive sleep rebound and that rapid eye movement (REM) and non-rapid eye movement (NREM) sleep rebound may be differentially regulated. In this study, we investigated the relative contribution of brain versus physical activities in REM and NREM sleep rebound by four sets of experiments. First, we forced locomotion in rats in a rotating wheel for 4 hr and examined subsequent sleep rebound. Second, we exposed the rats lacking homeostatic sleep response after prolonged quiet wakefulness and arousal brain activity induced by chemoactivation of parabrachial nucleus to the same rotating wheel paradigm and tested if physical activity could rescue the sleep homeostasis. Third, we varied motor activity levels while concurrently inhibiting the cortical activity by administering ketamine or xylazine (motor inhibitor), or ketamine + xylazine mixture and investigated if motor activity in the absence of activated cortex can cause NREM sleep rebound. Fourth and finally, we manipulated cortical activity by administering ketamine (that induced active wakefulness and waking brain) alone or in combination with atropine (that selectively inhibits the cortex) and studied if cortical inhibition irrespective of motor activity levels can block REM sleep rebound. Our results demonstrate that motor activity but not cortical activity determines NREM sleep rebound whereas cortical activity but not motor activity determines REM sleep rebound.
Collapse
Affiliation(s)
- Yujun Wen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yudan Lv
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianguo Niu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ningxia Key Laboratory of Craniocerebral Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Christopher Xin
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Cui
- Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Thomas CW, Guillaumin MCC, McKillop LE, Achermann P, Vyazovskiy VV. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 2020; 9:e54148. [PMID: 32614324 PMCID: PMC7332296 DOI: 10.7554/elife.54148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.
Collapse
Affiliation(s)
- Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | | | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurichSwitzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
27
|
Chen PC, Whitehurst LN, Naji M, Mednick SC. Autonomic/central coupling benefits working memory in healthy young adults. Neurobiol Learn Mem 2020; 173:107267. [PMID: 32535198 DOI: 10.1016/j.nlm.2020.107267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/01/2023]
Abstract
Working memory (WM) is an executive function that can improve with training. However, the precise mechanism for this improvement is not known. Studies have shown greater WM gains after a period of sleep than a similar period of wake, and correlations between WM improvement and slow wave activity (SWA; 0.5-1 Hz) during slow wave sleep (SWS). A different body of literature has suggested an important role for autonomic activity during wake for WM. A recent study from our group reported that the temporal coupling of Autonomic/CentralEvents (ACEs) during sleep was associated with memory consolidation. We found that heart rate bursts (HR bursts) during non-rapid eye movement (NREM) sleep are accompanied by increases in SWA and sigma (12-15 Hz) power, as well as increases in the high-frequency (HF) component of the RR interval, reflecting vagal rebound. In addition, ACEs predict long-term, episodic memory improvement. Building on these previous results, we examined whether ACEs also contribute to gains in WM. We tested 104 young adults in an operation span task (OSPAN) in the morning and evening, with either a nap (n = 53; with electroencephalography (EEG) and electrocardiography (ECG)) or wake (n = 51) between testing sessions. We identified HR bursts in the ECG and replicated the increases in SWA and sigma prior to peak of the HR burst, as well as vagal rebound after the peak. Furthermore, we showed sleep-dependent WM improvement, which was predicted by ACE activity. Using regression analyses, we discovered that significantly more variance in WM improvement could be explained with ACE variables than with overall sleep activity not time-locked with ECG. These results provide the first evidence that coordinated autonomic and central events play a significant role in sleep-related WM improvement and implicate the potential of autonomic interventions during sleep for cognitive enhancement.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Department of Cognitive Science, University of California, Irvine USA
| | | | - Mohsen Naji
- Department of Medicine, University of California, San Diego, CA, USA
| | - Sara C Mednick
- Department of Cognitive Science, University of California, Irvine USA.
| |
Collapse
|
28
|
Hauglund NL, Pavan C, Nedergaard M. Cleaning the sleeping brain – the potential restorative function of the glymphatic system. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Miyazaki T, Kanda T, Tsujino N, Ishii R, Nakatsuka D, Kizuka M, Kasagi Y, Hino H, Yanagisawa M. Dynamics of Cortical Local Connectivity during Sleep-Wake States and the Homeostatic Process. Cereb Cortex 2020; 30:3977-3990. [PMID: 32037455 DOI: 10.1093/cercor/bhaa012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep exerts modulatory effects on the cerebral cortex. Whether sleep modulates local connectivity in the cortex or only individual neural activity, however, is poorly understood. Here we investigated functional connectivity, that is, covarying activity between neurons, during spontaneous sleep-wake states and during and after sleep deprivation using calcium imaging of identified excitatory/inhibitory neurons in the motor cortex. Functional connectivity was estimated with a statistical learning approach glasso and quantified by "the probability of establishing connectivity (sparse/dense)" and "the strength of the established connectivity (weak/strong)." Local cortical connectivity was sparse in non-rapid eye movement (NREM) sleep and dense in REM sleep, which was similar in both excitatory and inhibitory neurons. The overall mean strength of the connectivity did not differ largely across spontaneous sleep-wake states. Sleep deprivation induced strong excitatory/inhibitory and dense inhibitory, but not excitatory, connectivity. Subsequent NREM sleep after sleep deprivation exhibited weak excitatory/inhibitory, sparse excitatory, and dense inhibitory connectivity. These findings indicate that sleep-wake states modulate local cortical connectivity, and the modulation is large and compensatory for stability of local circuits during the homeostatic control of sleep, which contributes to plastic changes in neural information flow.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Kanda
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Natsuko Tsujino
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Ishii
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Daiki Nakatsuka
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Mariko Kizuka
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Kasagi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hideitsu Hino
- Department of Statistical Modeling, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA.,Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
30
|
Sanchez E, El-Khatib H, Arbour C, Bedetti C, Blais H, Marcotte K, Baril AA, Descoteaux M, Gilbert D, Carrier J, Gosselin N. Brain white matter damage and its association with neuronal synchrony during sleep. Brain 2020; 142:674-687. [PMID: 30698667 DOI: 10.1093/brain/awy348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/22/2018] [Accepted: 11/19/2018] [Indexed: 02/04/2023] Open
Abstract
The restorative function of sleep partly relies on its ability to deeply synchronize cerebral networks to create large slow oscillations observable with EEG. However, whether a brain can properly synchronize and produce a restorative sleep when it undergoes massive and widespread white matter damage is unknown. Here, we answer this question by testing 23 patients with various levels of white matter damage secondary to moderate to severe traumatic brain injuries (ages 18-56; 17 males, six females, 11-39 months post-injury) and compared them to 27 healthy subjects of similar age and sex. We used MRI and diffusion tensor imaging metrics (e.g. fractional anisotropy as well as mean, axial and radial diffusivities) to characterize voxel-wise white matter damage. We measured the following slow wave characteristics for all slow waves detected in N2 and N3 sleep stages: peak-to-peak amplitude, negative-to-positive slope, negative and positive phase durations, oscillation frequency, and slow wave density. Correlation analyses were performed in traumatic brain injury and control participants separately, with age as a covariate. Contrary to our hypotheses, we found that greater white matter damage mainly over the frontal and temporal brain regions was strongly correlated with a pattern of higher neuronal synchrony characterized by slow waves of larger amplitudes and steeper negative-to-positive slopes during non-rapid eye movement sleep. The same pattern of associations with white matter damage was also observed with markers of high homeostatic sleep pressure. More specifically, higher white matter damage was associated with higher slow-wave activity power, as well as with more severe complaints of cognitive fatigue. These associations between white matter damage and sleep were found only in our traumatic brain injured participants, with no such correlation in controls. Our results suggest that, contrary to previous observations in healthy controls, white matter damage does not prevent the expected high cerebral synchrony during sleep. Moreover, our observations challenge the current line of hypotheses that white matter microstructure deterioration reduces cerebral synchrony during sleep. Our results showed that the relationship between white matter and the brain's ability to synchronize during sleep is neither linear nor simple.
Collapse
Affiliation(s)
- Erlan Sanchez
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,Department of Neuroscience, Université de Montréal, Qc, Canada
| | - Héjar El-Khatib
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,Department of Psychology, Université de Montréal, Qc, Canada
| | - Caroline Arbour
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,Faculty of Nursing, Université de Montréal, Qc, Canada
| | - Christophe Bedetti
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,Research center of the Institut universitaire de gériatrie de Montréal, Qc, Canada
| | - Hélène Blais
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada
| | - Karine Marcotte
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,School of Speech Therapy and Audiology, Université de Montréal, Qc, Canada
| | - Andrée-Ann Baril
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,Department of Psychiatry, Université de Montréal, Qc, Canada
| | | | - Danielle Gilbert
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada
| | - Julie Carrier
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,Department of Psychology, Université de Montréal, Qc, Canada
| | - Nadia Gosselin
- Research center of the Hôpital du Sacré-Coeur de Montréal, Qc, Canada.,Department of Psychology, Université de Montréal, Qc, Canada
| |
Collapse
|
31
|
Dash MB. Infraslow coordination of slow wave activity through altered neuronal synchrony. Sleep 2019; 42:5540154. [PMID: 31353415 DOI: 10.1093/sleep/zsz170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Indexed: 11/14/2022] Open
Abstract
Slow wave activity (SWA; the EEG power between 0.5 and 4 Hz during non-rapid eye movement sleep [NREM]) is the best electrophysiological marker of sleep need; SWA dissipates across the night and increases following sleep deprivation. In addition to these well-documented homeostatic SWA trends, SWA exhibits extensive variability across shorter timescales (seconds to minutes) and between local cortical regions. The physiological underpinnings of SWA variability, however, remain poorly characterized. In male Sprague-Dawley rats, we observed that SWA exhibits pronounced infraslow fluctuations (~40- to 120-s periods) that are coordinated across disparate cortical locations. Peaks in SWA across infraslow cycles were associated with increased slope, amplitude, and duration of individual slow waves and a reduction in the total number of waves and proportion of multipeak waves. Using a freely available data set comprised of extracellular unit recordings during consolidated NREM episodes in male Long-Evans rats, we further show that infraslow SWA does not appear to arise as a consequence of firing rate modulation of putative excitatory or inhibitory neurons. Instead, infraslow SWA was associated with alterations in neuronal synchrony surrounding "On"/"Off" periods and changes in the number and duration of "Off" periods. Collectively, these data provide a mechanism by which SWA can be coordinated across disparate cortical locations and thereby connect local and global expression of this patterned neuronal activity. In doing so, infraslow SWA may contribute to the regulation of cortical circuits during sleep and thereby play a critical role in sleep function.
Collapse
Affiliation(s)
- Michael B Dash
- Department of Psychology, Middlebury College, Middlebury, VT
- Program in Neuroscience, Middlebury College, Middlebury, VT
| |
Collapse
|
32
|
Cajochen C, Reichert C, Maire M, Schlangen LJM, Schmidt C, Viola AU, Gabel V. Evidence That Homeostatic Sleep Regulation Depends on Ambient Lighting Conditions during Wakefulness. Clocks Sleep 2019; 1:517-531. [PMID: 33089184 PMCID: PMC7445844 DOI: 10.3390/clockssleep1040040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
We examined whether ambient lighting conditions during extended wakefulness modulate the homeostatic response to sleep loss as indexed by. slow wave sleep (SWS) and electroencephalographic (EEG) slow-wave activity (SWA) in healthy young and older volunteers. Thirty-eight young and older participants underwent 40 hours of extended wakefulness [i.e., sleep deprivation (SD)] once under dim light (DL: 8 lux, 2800 K), and once under either white light (WL: 250 lux, 2800 K) or blue-enriched white light (BL: 250 lux, 9000 K) exposure. Subjective sleepiness was assessed hourly and polysomnography was quantified during the baseline night prior to the 40-h SD and during the subsequent recovery night. Both the young and older participants responded with a higher homeostatic sleep response to 40-h SD after WL and BL than after DL. This was indexed by a significantly faster intra-night accumulation of SWS and a significantly higher response in relative EEG SWA during the recovery night after WL and BL than after DL for both age groups. No significant differences were observed between the WL and BL condition for these two particular SWS and SWA measures. Subjective sleepiness ratings during the 40-h SD were significantly reduced under both WL and BL compared to DL, but were not significantly associated with markers of sleep homeostasis in both age groups. Our data indicate that not only the duration of prior wakefulness, but also the experienced illuminance during wakefulness affects homeostatic sleep regulation in humans. Thus, working extended hours under low illuminance may negatively impact subsequent sleep intensity in humans.
Collapse
Affiliation(s)
- Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstr. 27, CH-4002 Basel, Switzerland;
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, CHF-4055 Basel, Switzerland
| | - Carolin Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstr. 27, CH-4002 Basel, Switzerland;
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, CHF-4055 Basel, Switzerland
| | - Micheline Maire
- Institute of Primary Health Care (BIHAM), University of Bern, 3012 Bern, Switzerland;
| | - Luc J M Schlangen
- Intelligent Lighting Institute, School of Innovation Sciences, Department of Human Technology Interaction, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Christina Schmidt
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, 4000 Liège, Belgium;
| | | | - Virginie Gabel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA;
| |
Collapse
|
33
|
Critical Dynamics and Coupling in Bursts of Cortical Rhythms Indicate Non-Homeostatic Mechanism for Sleep-Stage Transitions and Dual Role of VLPO Neurons in Both Sleep and Wake. J Neurosci 2019; 40:171-190. [PMID: 31694962 DOI: 10.1523/jneurosci.1278-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/07/2019] [Accepted: 10/07/2019] [Indexed: 11/21/2022] Open
Abstract
Origin and functions of intermittent transitions among sleep stages, including brief awakenings and arousals, constitute a challenge to the current homeostatic framework for sleep regulation, focusing on factors modulating sleep over large time scales. Here we propose that the complex micro-architecture characterizing sleep on scales of seconds and minutes results from intrinsic non-equilibrium critical dynamics. We investigate θ- and δ-wave dynamics in control rats and in rats where the sleep-promoting ventrolateral preoptic nucleus (VLPO) is lesioned (male Sprague-Dawley rats). We demonstrate that bursts in θ and δ cortical rhythms exhibit complex temporal organization, with long-range correlations and robust duality of power-law (θ-bursts, active phase) and exponential-like (δ-bursts, quiescent phase) duration distributions, features typical of non-equilibrium systems self-organizing at criticality. We show that such non-equilibrium behavior relates to anti-correlated coupling between θ- and δ-bursts, persists across a range of time scales, and is independent of the dominant physiologic state; indications of a basic principle in sleep regulation. Further, we find that VLPO lesions lead to a modulation of cortical dynamics resulting in altered dynamical parameters of θ- and δ-bursts and significant reduction in θ-δ coupling. Our empirical findings and model simulations demonstrate that θ-δ coupling is essential for the emerging non-equilibrium critical dynamics observed across the sleep-wake cycle, and indicate that VLPO neurons may have dual role for both sleep and arousal/brief wake activation. The uncovered critical behavior in sleep- and wake-related cortical rhythms indicates a mechanism essential for the micro-architecture of spontaneous sleep-stage and arousal transitions within a novel, non-homeostatic paradigm of sleep regulation.SIGNIFICANCE STATEMENT We show that the complex micro-architecture of sleep-stage/arousal transitions arises from intrinsic non-equilibrium critical dynamics, connecting the temporal organization of dominant cortical rhythms with empirical observations across scales. We link such behavior to sleep-promoting neuronal population, and demonstrate that VLPO lesion (model of insomnia) alters dynamical features of θ and δ rhythms, and leads to significant reduction in θ-δ coupling. This indicates that VLPO neurons may have dual role for both sleep and arousal/brief wake control. The reported empirical findings and modeling simulations constitute first evidences of a neurophysiological fingerprint of self-organization and criticality in sleep- and wake-related cortical rhythms; a mechanism essential for spontaneous sleep-stage and arousal transitions that lays the bases for a novel, non-homeostatic paradigm of sleep regulation.
Collapse
|
34
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
35
|
Kirszenblat L, Yaun R, van Swinderen B. Visual experience drives sleep need in Drosophila. Sleep 2019; 42:zsz102. [PMID: 31100151 PMCID: PMC6612675 DOI: 10.1093/sleep/zsz102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Sleep optimizes waking behavior, however, waking experience may also influence sleep. We used the fruit fly Drosophila melanogaster to investigate the relationship between visual experience and sleep in wild-type and mutant flies. We found that the classical visual mutant, optomotor-blind (omb), which has undeveloped horizontal system/vertical system (HS/VS) motion-processing cells and are defective in motion and visual salience perception, showed dramatically reduced and less consolidated sleep compared to wild-type flies. In contrast, optogenetic activation of the HS/VS motion-processing neurons in wild-type flies led to an increase in sleep following the activation, suggesting an increase in sleep pressure. Surprisingly, exposing wild-type flies to repetitive motion stimuli for extended periods did not increase sleep pressure. However, we observed that exposing flies to more complex image sequences from a movie led to more consolidated sleep, particularly when images were randomly shuffled through time. Our results suggest that specific forms of visual experience that involve motion circuits and complex, nonrepetitive imagery, drive sleep need in Drosophila.
Collapse
Affiliation(s)
- Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Rebecca Yaun
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
36
|
Schoonakker M, Meijer JH, Deboer T, Fifel K. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus. Sleep 2019. [PMID: 29522210 DOI: 10.1093/sleep/zsy051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lateral hypothalamus (LH) is a relatively large hypothalamic structure containing several neurochemically different, but spatially intermingled, neuronal populations. While the role of these neurons in the homeostatic regulation of diverse physiological and behavioral functions such as sleep/wake cycle has been studied extensively, the impact of sleep history on the electrophysiology of the LH and whether this effect is homogenous across LH is unknown. By combining multiunit activity (MUA) recordings in different regions of LH with electroencephalogram recordings in freely moving rats, we unravelled a heterogeneity of neural-activity patterns within different subregions of LH. This heterogeneity was evident in both the circadian and the vigilance state-dependent modulation of MUA. Interestingly, and consistent with this heterogeneity under baseline conditions, the magnitude of MUA suppression following 6 hr of sleep deprivation (SD) was also different within different locations of LH. Unlike the cortex and in contrast to the predictions of the synaptic homeostatic hypothesis, no correlation was found between the magnitude of activity increase during SD and the percentage of suppression of MUA during recovery sleep. These data provide in vivo evidence of a functional heterogeneity in the circadian and homeostatic modulation of neuronal activity in LH.
Collapse
Affiliation(s)
- Marjolein Schoonakker
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Deboer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karim Fifel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Ferrarelli F, Kaskie R, Laxminarayan S, Ramakrishnan S, Reifman J, Germain A. An increase in sleep slow waves predicts better working memory performance in healthy individuals. Neuroimage 2019; 191:1-9. [DOI: 10.1016/j.neuroimage.2019.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
|
38
|
Munro Krull E, Sakata S, Toyoizumi T. Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States. Front Neurosci 2019; 13:316. [PMID: 31037053 PMCID: PMC6476345 DOI: 10.3389/fnins.2019.00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5-4 Hz) and slow oscillations (<1 Hz) in the neocortex and large- and small- irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis to parse which populations are involved in different kinds of neocortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects neocortical deep layers, and is associated with larger amplitude slower neocortical oscillations. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the neocortex, suggesting hippocampal origin, and are associated with smaller amplitude faster neocortical oscillations. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states.
Collapse
Affiliation(s)
- Erin Munro Krull
- RIKEN Center for Brain Science, Tokyo, Japan
- Beloit College, Beloit, WI, United States
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
39
|
Wirz-Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci 2019; 51:346-365. [PMID: 30702783 DOI: 10.1111/ejn.14362] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/30/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Mood disorders are often characterised by alterations in circadian rhythms, sleep disturbances and seasonal exacerbation. Conversely, chronobiological treatments utilise zeitgebers for circadian rhythms such as light to improve mood and stabilise sleep, and manipulations of sleep timing and duration as rapid antidepressant modalities. Although sleep deprivation ("wake therapy") can act within hours, and its mood-elevating effects be maintained by regular morning light administration/medication/earlier sleep, it has not entered the regular guidelines for treating affective disorders as a first-line treatment. The hindrances to using chronotherapeutics may lie in their lack of patentability, few sponsors to carry out large multi-centre trials, non-reimbursement by medical insurance and their perceived difficulty or exotic "alternative" nature. Future use can be promoted by new technology (single-sample phase measurements, phone apps, movement and sleep trackers) that provides ambulatory documentation over long periods and feedback to therapist and patient. Light combinations with cognitive behavioural therapy and sleep hygiene practice may speed up and also maintain response. The urgent need for new antidepressants should hopefully lead to reconsideration and implementation of these non-pharmacological methods, as well as further clinical trials. We review the putative neurochemical mechanisms underlying the antidepressant effect of sleep deprivation and light therapy, and current knowledge linking clocks and sleep with affective disorders: neurotransmitter switching, stress and cortico-limbic reactivity, clock genes, cortical neuroplasticity, connectomics and neuroinflammation. Despite the complexity of multi-system mechanisms, more insight will lead to fine tuning and better application of circadian and sleep-related treatments of depression.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milano, Italy.,Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
40
|
Gottshall JL, Adams ZM, Forgacs PB, Schiff ND. Daytime Central Thalamic Deep Brain Stimulation Modulates Sleep Dynamics in the Severely Injured Brain: Mechanistic Insights and a Novel Framework for Alpha-Delta Sleep Generation. Front Neurol 2019; 10:20. [PMID: 30778326 PMCID: PMC6369150 DOI: 10.3389/fneur.2019.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Loss of organized sleep electrophysiology is a characteristic finding following severe brain injury. The return of structured elements of sleep architecture has been associated with positive prognosis across injury etiologies, suggesting a role for sleep dynamics as biomarkers of wakeful neuronal circuit function. In a continuing study of one minimally conscious state patient studied over the course of ~8½ years, we sought to investigate whether changes in daytime brain activation induced by central thalamic deep brain stimulation (CT-DBS) influenced sleep electrophysiology. In this patient subject, we previously reported significant improvements in sleep electrophysiology during 5½ years of CT-DBS treatment, including increased sleep spindle frequency and SWS delta power. We now present novel findings that many of these improvements in sleep electrophysiology regress following CT-DBS discontinuation; these regressions in sleep features correlate with a significant decrease in behavioral responsiveness. We also observe the re-emergence of alpha-delta sleep, which had been previously suppressed by daytime CT-DBS in this patient subject. Importantly, CT-DBS was only active during the daytime and has been proposed to mediate recovery of consciousness by driving synaptic activity across frontostriatal systems through the enhancement of thalamocortical output. Accordingly, the improvement of sleep dynamics during daytime CT-DBS and their subsequent regression following CT-DBS discontinuation implicates wakeful synaptic activity as a robust modulator of sleep electrophysiology. We interpret these findings in the context of the “synaptic homeostasis hypothesis,” whereby we propose that daytime upregulation of thalamocortical output in the severely injured brain may facilitate organized frontocortical circuit activation and yield net synaptic potentiation during wakefulness, providing a homeostatic drive that reconstitutes sleep dynamics over time. Furthermore, we consider common large-scale network dynamics across several neuropsychiatric disorders in which alpha-delta sleep has been documented, allowing us to formulate a novel mechanistic framework for alpha-delta sleep generation. We conclude that the bi-directional modulation of sleep electrophysiology by daytime thalamocortical activity in the severely injured brain: (1) emphasizes the cyclical carry-over effects of state-dependent circuit activation on large-scale brain dynamics, and (2) further implicates sleep electrophysiology as a sensitive indicator of wakeful brain activation and covert functional recovery in the severely injured brain.
Collapse
Affiliation(s)
- Jackie L Gottshall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Zoe M Adams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Peter B Forgacs
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.,Department of Neurology, Weill Cornell Medicine, New York, NY, United States.,Rockefeller University Hospital, New York, NY, United States
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.,Department of Neurology, Weill Cornell Medicine, New York, NY, United States.,Rockefeller University Hospital, New York, NY, United States
| |
Collapse
|
41
|
Hablitz LM, Vinitsky HS, Sun Q, Stæger FF, Sigurdsson B, Mortensen KN, Lilius TO, Nedergaard M. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. SCIENCE ADVANCES 2019; 5:eaav5447. [PMID: 30820460 PMCID: PMC6392807 DOI: 10.1126/sciadv.aav5447] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/14/2019] [Indexed: 05/15/2023]
Abstract
The glymphatic system is responsible for brain-wide delivery of nutrients and clearance of waste via influx of cerebrospinal fluid (CSF) alongside perivascular spaces and through the brain. Glymphatic system activity increases during sleep or ketamine/xylazine (K/X) anesthesia, yet the mechanism(s) facilitating CSF influx are poorly understood. Here, we correlated influx of a CSF tracer into the brain with electroencephalogram (EEG) power, heart rate, blood pressure, and respiratory rate in wild-type mice under six different anesthesia regimens. We found that glymphatic CSF tracer influx was highest under K/X followed by isoflurane (ISO) supplemented with dexmedetomidine and pentobarbital. Mice anesthetized with α-chloralose, Avertin, or ISO exhibited low CSF tracer influx. This is the first study to show that glymphatic influx correlates positively with cortical delta power in EEG recordings and negatively with beta power and heart rate.
Collapse
Affiliation(s)
- Lauren M. Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hanna S. Vinitsky
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qian Sun
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Frederik Filip Stæger
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Björn Sigurdsson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian N. Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tuomas O. Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Corresponding author.
| |
Collapse
|
42
|
Mathematical Models of Sleep and Circadian Rhythms: A Case for Using the 2-Process Model in Neuroscience Nursing. J Neurosci Nurs 2018; 51:48-53. [PMID: 30489418 DOI: 10.1097/jnn.0000000000000408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute and chronic neurological disorders impair sleep. Despite the availability of theoretical/mathematical frameworks about sleep, the nursing profession rarely incorporates these models. The purpose of this article was to analyze the 2-process model of sleep regulation using Fawcett and DeSanto-Madeya's method, a systematic approach for determining whether a theory is relevant to nursing. The 2-process model has 3 concepts: process S (sleep-dependent process), process C (circadian-timing-dependent process), and total sleep propensity (summation of processes S and C). Nonnursing theories do not explicitly incorporate nursing metaparadigm concepts-person, health, environment, and nursing-but the 2-process model is congruent with nursing's philosophy. The model guided studies quantifying sleep and circadian patterns in other fields, and nurses could use this framework to measure the impact of nursing interventions. Strengths of the 2-process model include parsimony (conciseness without oversimplification) and the ability to empirically test propositions related to processes S and C. The 2-process model is relevant to neuroscience nursing-by measuring sleep/circadian-related variables (electroencephalogram, core body temperature, salivary melatonin). Nurses have opportunities to design, test, and use interventions that improve sleep in patients with neurological conditions.
Collapse
|
43
|
Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR. Thalamic dual control of sleep and wakefulness. Nat Neurosci 2018; 21:974-984. [PMID: 29892048 PMCID: PMC6438460 DOI: 10.1038/s41593-018-0164-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/28/2018] [Indexed: 12/31/2022]
Abstract
Slow-waves (0.5 - 4 Hz) predominate in the cortical electroencephalogram during non-rapid eye movement (NREM) sleep in mammals. They reflect the synchronization of large neuronal ensembles alternating between active (UP) and quiescent (Down) states and propagating along the neocortex. The thalamic contribution to cortical UP-states and sleep modulation remains unclear. Here we show that spontaneous firing of centromedial thalamus (CMT) neurons in mice is phase advanced to global cortical UP-states and NREM–wake transitions. Tonic optogenetic activation of CMT neurons induces NREM–wake transitions, whereas burst activation mimics UP-states in the cingulate cortex (CING) and enhances brain-wide synchrony of cortical slow-waves during sleep, through a relay in the antero-dorsal thalamus (AD). Finally, we demonstrate that CMT and AD relay neurons promote sleep recovery. These findings suggest that the firing pattern of CMT neurons can modulate brain-wide cortical activity during sleep and provides dual control of sleep-wake states.
Collapse
Affiliation(s)
- Thomas C Gent
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Carolina Gutierrez Herrera
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland. .,Department of Biomedical Research (DBMR), Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
44
|
Fifel K, Meijer JH, Deboer T. Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures. Sci Rep 2018; 8:7765. [PMID: 29773830 PMCID: PMC5958140 DOI: 10.1038/s41598-018-25770-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Although the link between sleep disturbances and dopamine (DA)-related neurological and neuropsychiatric disorders is well established, the impact of sleep alterations on neuronal activity of midbrain DA-ergic structures is currently unknown. Here, using wildtype C57Bl mice, we investigated the circadian- and sleep-related modulation of electrical neuronal activity in midbrain ventral-tegmental-area (VTA) and substantia nigra (SN). We found no significant circadian modulation of activity in SN while VTA displayed a low amplitude but significant circadian modulation with increased firing rates during the active phase. Combining neural activity recordings with electroencephalogram (EEG) recordings revealed a strong vigilance state dependent modulation of neuronal activity with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in both SN and VTA. Six-hours of sleep deprivation induced a significant depression of neuronal activity in both areas. Surprisingly, these alterations lasted for up to 48 hours and persisted even after the normalization of cortical EEG waves. Our results show that sleep and sleep disturbances significantly affect neuronal activity in midbrain DA structures. We propose that these changes in neuronal activity underlie the well-known relationship between sleep alterations and several disorders involving dysfunction of the DA circuitry such as addiction and depression.
Collapse
Affiliation(s)
- Karim Fifel
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Tom Deboer
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
45
|
Saberi-Moghadam S, Simi A, Setareh H, Mikhail C, Tafti M. In vitro Cortical Network Firing is Homeostatically Regulated: A Model for Sleep Regulation. Sci Rep 2018; 8:6297. [PMID: 29674729 PMCID: PMC5908861 DOI: 10.1038/s41598-018-24339-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Prolonged wakefulness leads to a homeostatic response manifested in increased amplitude and number of electroencephalogram (EEG) slow waves during recovery sleep. Cortical networks show a slow oscillation when the excitatory inputs are reduced (during slow wave sleep, anesthesia), or absent (in vitro preparations). It was recently shown that a homeostatic response to electrical stimulation can be induced in cortical cultures. Here we used cortical cultures grown on microelectrode arrays and stimulated them with a cocktail of waking neuromodulators. We found that recovery from stimulation resulted in a dose-dependent homeostatic response. Specifically, the inter-burst intervals decreased, the burst duration increased, the network showed higher cross-correlation and strong phasic synchronized burst activity. Spectral power below <1.75 Hz significantly increased and the increase was related to steeper slopes of bursts. Computer simulation suggested that a small number of clustered neurons could potently drive the behavior of the network both at baseline and during recovery. Thus, this in vitro model appears valuable for dissecting network mechanisms of sleep homeostasis.
Collapse
Affiliation(s)
- Sohrab Saberi-Moghadam
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Alessandro Simi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Hesam Setareh
- Laboratory of Computational Neuroscience, School of Computer and Communication Sciences, EPFL, 1015, Lausanne, Switzerland
| | - Cyril Mikhail
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Mehdi Tafti
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, 1015, Lausanne, Switzerland. .,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, 1005, Lausanne, Switzerland.
| |
Collapse
|
46
|
Quercia A, Zappasodi F, Committeri G, Ferrara M. Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning. Front Hum Neurosci 2018; 12:122. [PMID: 29666574 PMCID: PMC5891895 DOI: 10.3389/fnhum.2018.00122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/12/2018] [Indexed: 01/10/2023] Open
Abstract
Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in wakefulness, associated with performance failures, could be functionally linked to learning-related cortical plasticity.
Collapse
Affiliation(s)
- Angelica Quercia
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Coppito, Italy
| |
Collapse
|
47
|
Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018; 222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Knowledge regarding the cellular mechanisms of sleep regulation is accumulating rapidly. In addition to neurones, also non-neuronal brain cells (astrocytes and microglia) are emerging as potential players. New techniques, particularly optogenetics and designed receptors activated by artificial ligands (DREADD), have provided also sleep research with important additional tools to study the effect of either silencing or activating specific neuronal groups/neuronal networks by opening or shutting ion channels on cells. The advantages of these strategies are the possibility to genetically target specific cell populations and the possibility to either activate or inhibit them with inducing light signal into the brain. Studies probing circuits of NREM and REM sleep regulation, as well as their role in memory consolidation, have been conducted recently. In addition, fundamentally new thoughts and potential mechanisms have been introduced to the field. The role of non-neuronal tissues in the regulation of many brain functions has become evident. These non-neuronal cells, particularly astrocytes, integrate large number of neurones, and it has been suggested that one of their functions is to integrate the (neural) activity in larger brain areas-a feature that is one of the prominent features of also the state of sleep.
Collapse
Affiliation(s)
- H.-K. Wigren
- Department of Physiology; University of Helsinki; Helsinki Finland
| | | |
Collapse
|
48
|
Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice. J Neurosci 2018; 38:3911-3928. [PMID: 29581380 PMCID: PMC5907054 DOI: 10.1523/jneurosci.2513-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.
Collapse
|
49
|
Corticothalamic network dysfunction and Alzheimer's disease. Brain Res 2017; 1702:38-45. [PMID: 28919464 DOI: 10.1016/j.brainres.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that is characterized by progressive cognitive decline and a prominent loss of hippocampal-dependent memory. Therefore, much focus has been placed on understanding the function and dysfunction of the hippocampus in AD. However, AD is also accompanied by a number of other debilitating cognitive and behavioral alterations including deficits in attention, cognitive processing, and sleep maintenance. The underlying mechanisms that give rise to impairments in such diverse behavioral domains are unknown, and identifying them would shed insight into the multifactorial nature of AD as well as reveal potential new therapeutic targets to improve overall function in AD. We present here several lines of evidence that suggest that dysregulation of the corticothalamic network may be a common denominator that contributes to the diverse cognitive and behavioral alterations in AD. First, we will review the mechanisms by which this network regulates processes that include attention, cognitive processing, learning and memory, and sleep maintenance. Then we will review how these behavioral and cognitive domains are altered in AD. We will also discuss how dysregulation of tightly regulated activity in the corticothalamic network can give rise to non-convulsive seizures and other forms of epileptiform activity that have also been documented in both AD patients and transgenic mouse models of AD. In summary, the corticothalamic network has the potential to be a master regulator of diverse cognitive and behavioral domains that are affected in AD.
Collapse
|
50
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|