1
|
Tregub PP, Komleva YK, Kukla MV, Averchuk AS, Vetchinova AS, Rozanova NA, Illarioshkin SN, Salmina AB. Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus. Cells 2025; 14:143. [PMID: 39851571 PMCID: PMC11763428 DOI: 10.3390/cells14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory. In addition, IEGs are involved in the regulation of brain cells' metabolism, proliferation, and survival, in the establishment of multicellular ensembles, and, presumably, in cell competition in the tissue. In this review, we analyze the current understanding of the role of IEGs (c-Fos, c-Myc, Arg3.1/Arc) in controlling brain plasticity in physiological and pathological conditions, including brain aging and neurodegeneration. This work might inspire new gene therapy strategies targeting IEGs to regulate synaptic plasticity, and potentially prevent or mitigate neurodegenerative diseases.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Research Center of Neurology, 125367 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | | - Anna S. Vetchinova
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | |
Collapse
|
2
|
Xing XX, Wu JJ, Qu J, Ma J, Xu R, Zhu Y, Zheng MX, Hua XY, Xu JG. Rewiring the disordered connectome with circuit-based paired stimulation after stroke-a randomized, double-blind and controlled Phase II trial. Brain Commun 2024; 6:fcae437. [PMID: 39697832 PMCID: PMC11653076 DOI: 10.1093/braincomms/fcae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
The cortico-cortical paired associative stimulation, a combined stimulation based on two brain regions, may be an effective strategy for stroke rehabilitation. Our aim was to confirm that the cortico-cortical paired associative stimulation strengthens the connection between brain regions in the motor circuit and promotes improvements in motor function. This was a randomized double-blind, controlled Phase II trial. 44 Stroke patients were treated in a rehabilitation hospital from October 2020 to January 2021 and were randomly assigned to the sham stimulation group and the cortico-cortical paired associative stimulation group. Patients in both groups received 12 days of rehabilitation therapy. Cortico-cortical paired associative stimulation group received one treatment of cortico-cortical paired associative stimulation invention. Both groups received behavioural assessments such as the Fugl-Meyer upper-extremity scale and resting-state functional MRI scans prior to the intervention and on Day 14. 40 patients completed the intervention session. The results of Fugl-Meyer upper-extremity scale showed a more significant improvement in motor function in the cortico-cortical paired associative stimulation group (6.33 ± 1.29) than in the sham stimulation group (3.16 ± 1.38) (P < 0.001). The functional connectivity showed that cortico-cortical paired associative stimulation strengthens connections between brain regions. Correlation analysis confirmed that the enhancement of functional connectivity was positively correlated with the recovery of Fugl-Meyer upper-extremity scale (r2 = 0.146, P = 0.034; r2 = 0.211, P = 0.0093). The results of functional connectivity suggest that cortico-cortical paired associative stimulation strengthens connections between brain regions. It is expected that this study will provide a positive viewpoint for the neurorehabilitation of stroke patients based on the circuit-level plasticity. (Chinese Clinical Trial Registry: ChiCTR2000036685).
Collapse
Affiliation(s)
- Xiang-Xin Xing
- Rehabilitation Center, Qilu Hospital of Shandong University, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiao Qu
- Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Xu
- YangZhi Rehabilitation Hospital, TongJi University, Shanghai 201600, China
| | - Yu Zhu
- Department of Physical Medicine and Rehabilitation, State University of New York Upstate Medical University, Syracuse 13290, USA
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopedics, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopedics, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Guang Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Goto T, Tsurugizawa T, Komaki Y, Takashima I, Iwaki S, Kunori N. Clemastine enhances exercise-induced motor improvement in hypoxic ischemic rats. Brain Res 2024; 1846:149257. [PMID: 39362477 DOI: 10.1016/j.brainres.2024.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Neonatal hypoxic ischemia (HI) occurs owing to reduced cerebral oxygen levels and perfusion during the perinatal period. Brain injury after HI triggers neurological manifestations such as motor impairment, and the improvement of impaired brain function remains challenging. Recent studies suggest that cortical myelination plays a role in motor learning, but its involvement in motor improvement after HI injury is not well understood. This study aimed to investigate the impact of myelination on motor improvement following neonatal HI injury. We employed a modified Rice-Vannucci model; the right common carotid artery of postnatal day 7 (P7) Wistar rats was isolated and divided, and the rats were then exposed to hypoxic condition (90 min, 8 % O2). A total of 101 rats (66 males) were divided into four groups: trained-HI (n = 38), trained-Sham (n = 16), untrained-HI (n = 31), and untrained-Sham (n = 16). The trained groups underwent rotarod-based exercise training from P22 to P41 (3 days per week). Structural analysis using magnetic resonance imaging and immunohistochemistry (n = 6 per group) revealed increased fractional anisotropy and myelin density in the primary somatosensory cortex of the trained-HI group. We further evaluated the effect of myelination promotion on rotarod performance by administering clemastine, a myelination-promoting drug, via daily intraperitoneal injections. Clemastine did not enhance motor improvement in untrained-HI rats. However, clemastine-administered trained-HI rats (n = 7) exhibited significantly improved motor performance compared to both saline-administered trained-HI rats (n = 11) and clemastine-administered untrained-HI rats (n = 7). These findings suggest that myelination may be a key mechanism in motor improvement after HI injury and that combining exercise training with clemastine administration could be an effective therapeutic strategy for motor improvement following HI injury.
Collapse
Affiliation(s)
- Taichi Goto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Research Fellow of Japan Society for the Promotion of Science (DC2), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Department of Information, Artificial Intelligence and Data Science, Daiichi Institute of Technology, 7-7-4 Ueno, Taito-ku, Tokyo 110-0005, Japan
| | - Sunao Iwaki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
4
|
Iwasaki Y, Bernou C, Gorda B, Colomb S, Ganesh G, Gaudin R. Organotypic culture of post-mortem adult human brain explants exhibits synaptic plasticity. Brain Stimul 2024; 17:1018-1023. [PMID: 39214185 DOI: 10.1016/j.brs.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Synaptic plasticity is an essential process encoding fine-tuned brain functions, but models to study this process in adult human systems are lacking. OBJECTIVE We aim to test whether ex vivo organotypic culture of post-mortem adult brain explants (OPABs) retain synaptic plasticity. METHODS OPABs were seeded on 3D microelectrode arrays to measure local field potential (LFP). Paired stimulation of distant electrodes was performed over three days to investigate our capacity to modulate specific neuronal connections. RESULTS Long-term potentiation (LTP) or depression (LTD) did not occur within a single day. In contrast, after two and three days of training, OPABs showed a significant modulation of the paired electrodes' response compared to the non-paired electrodes from the same array. This response was alleviated upon treatment with dopamine. CONCLUSION Our work highlights that adult human brain explants retain synaptic plasticity, offering novel approaches to neural circuitry in animal-free models.
Collapse
Affiliation(s)
- Yukiko Iwasaki
- Univ Montpellier, Montpellier, France; UM-CNRS Laboratoire D'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), 161, Rue Ada, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France
| | - Corentin Bernou
- Univ Montpellier, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France
| | - Barbara Gorda
- Univ Montpellier, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France
| | - Sophie Colomb
- Univ Montpellier, Montpellier, France; Equipe de droit pénal et sciences forensiques de Montpellier (EDPFM), Univ Montpellier, Département de médecine légale, Pôle Urgences, Centre Hospitalo-Universitaire de Montpellier, 371 Avenue du Doyen Gaston Giraud, Montpellier, France
| | - Gowrishankar Ganesh
- Univ Montpellier, Montpellier, France; UM-CNRS Laboratoire D'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), 161, Rue Ada, Montpellier, France.
| | - Raphael Gaudin
- Univ Montpellier, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France.
| |
Collapse
|
5
|
Aksic M, Jakovcevski I, Hamad MIK, Jakovljevic V, Stankovic S, Vulovic M. The Neuroprotective Effect of Neural Cell Adhesion Molecule L1 in the Hippocampus of Aged Alzheimer's Disease Model Mice. Biomedicines 2024; 12:1726. [PMID: 39200191 PMCID: PMC11351965 DOI: 10.3390/biomedicines12081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia, causing the loss of cognitive function. Our previous study has shown, using a doubly mutated mouse model of AD (APP/PS1), that the neural adhesion molecule L1 directly binds amyloid peptides and decreases plaque load and gliosis when injected as an adeno-associated virus construct (AAV-L1) into APP/PS1 mice. In this study, we microinjected AAV-L1, using a Hamilton syringe, directly into the 3-month-old APP/PS1 mouse hippocampus and waited for a year until significant neurodegeneration developed. We stereologically counted the principal neurons and parvalbumin-positive interneurons in the hippocampus, estimated the density of inhibitory synapses around principal cells, and compared the AAV-L1 injection models with control injections of green fluorescent protein (AAV-GFP) and the wild-type hippocampus. Our results show that there is a significant loss of granule cells in the dentate gyrus of the APP/PS1 mice, which was improved by AAV-L1 injection, compared with the AAV-GFP controls (p < 0.05). There is also a generalized loss of parvalbumin-positive interneurons in the hippocampus of APP/PS1 mice, which is ameliorated by AAV-L1 injection, compared with the AAV-GFP controls (p < 0.05). Additionally, AAV-L1 injection promotes the survival of inhibitory synapses around the principal cells compared with AAV-GFP controls in all three hippocampal subfields (p < 0.01). Our results indicate that L1 promotes neuronal survival and protects the synapses in an AD mouse model, which could have therapeutic implications.
Collapse
Affiliation(s)
- Miljana Aksic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.A.); (S.S.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr Universität Bochum, 44801 Bochum, Germany
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.A.); (S.S.)
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja Vulovic
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
6
|
Marchetta P, Dapper K, Hess M, Calis D, Singer W, Wertz J, Fink S, Hage SR, Alam M, Schwabe K, Lukowski R, Bourien J, Puel JL, Jacob MH, Munk MHJ, Land R, Rüttiger L, Knipper M. Dysfunction of specific auditory fibers impacts cortical oscillations, driving an autism phenotype despite near-normal hearing. FASEB J 2024; 38:e23411. [PMID: 38243766 DOI: 10.1096/fj.202301995r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dila Calis
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Steffen R Hage
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Mesbah Alam
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Jerome Bourien
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences Montpellier, Institut National de la Santé et de la Recherche Médical, University of Montpellier, Montpellier, France
| | - Michele H Jacob
- Department of Neuroscience, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Matthias H J Munk
- Department of Psychiatry & Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, Hannover, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Li J, Lei Y, Wang Z, Meng H, Zhang W, Li M, Tan Q, Li Z, Guo W, Wen S, Zhang J. High-Density Artificial Synapse Array Consisting of Homogeneous Electrolyte-Gated Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305430. [PMID: 38018350 PMCID: PMC10797465 DOI: 10.1002/advs.202305430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The artificial synapse array with an electrolyte-gated transistor (EGT) as an array unit presents considerable potential for neuromorphic computation. However, the integration of EGTs faces the drawback of the conflict between the polymer electrolytes and photo-lithography. This study presents a scheme based on a lateral-gate structure to realize high-density integration of EGTs and proposes the integration of 100 × 100 EGTs into a 2.5 × 2.5 cm2 glass, with a unit density of up to 1600 devices cm-2 . Furthermore, an electrolyte framework is developed to enhance the array performance, with ionic conductivity of up to 2.87 × 10-3 S cm-1 owing to the porosity of zeolitic imidazolate frameworks-67. The artificial synapse array realizes image processing functions, and exhibits high performance and homogeneity. The handwriting recognition accuracy of a representative device reaches 92.80%, with the standard deviation of all the devices being limited to 9.69%. The integrated array and its high performance demonstrate the feasibility of the scheme and provide a solid reference for the integration of EGTs.
Collapse
Affiliation(s)
- Jun Li
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
- Key Laboratory of Advanced Display and System ApplicationsMinistry of EducationShanghai UniversityShanghai200072P. R. China
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Yuxing Lei
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Zexin Wang
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Hu Meng
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Wenkui Zhang
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Mengjiao Li
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| | - Qiuyun Tan
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Zeyuan Li
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Wei Guo
- Central Research InstituteBOE Technology Group Company, Ltd.Beijing100176P. R. China
| | - Shengkai Wen
- School of Material Science and EngineeringShanghai UniversityJiadingShanghai201800P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System ApplicationsMinistry of EducationShanghai UniversityShanghai200072P. R. China
- School of MicroelectronicsShanghai UniversityJiadingShanghai201800P. R. China
| |
Collapse
|
8
|
Larsen B, Sydnor VJ, Keller AS, Yeo BTT, Satterthwaite TD. A critical period plasticity framework for the sensorimotor-association axis of cortical neurodevelopment. Trends Neurosci 2023; 46:847-862. [PMID: 37643932 PMCID: PMC10530452 DOI: 10.1016/j.tins.2023.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
To understand human brain development it is necessary to describe not only the spatiotemporal patterns of neurodevelopment but also the neurobiological mechanisms that underlie them. Human neuroimaging studies have provided evidence for a hierarchical sensorimotor-to-association (S-A) axis of cortical neurodevelopment. Understanding the biological mechanisms that underlie this program of development using traditional neuroimaging approaches has been challenging. Animal models have been used to identify periods of enhanced experience-dependent plasticity - 'critical periods' - that progress along cortical hierarchies and are governed by a conserved set of neurobiological mechanisms that promote and then restrict plasticity. In this review we hypothesize that the S-A axis of cortical development in humans is partly driven by the cascading maturation of critical period plasticity mechanisms. We then describe how recent advances in in vivo neuroimaging approaches provide a promising path toward testing this hypothesis by linking signals derived from non-invasive imaging to critical period mechanisms.
Collapse
Affiliation(s)
- Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B T Thomas Yeo
- Centre for Sleep and Cognition (CSC), and Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn-CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Spike timing-dependent plasticity and memory. Curr Opin Neurobiol 2023; 80:102707. [PMID: 36924615 DOI: 10.1016/j.conb.2023.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Spike timing-dependent plasticity (STDP) is a bidirectional form of synaptic plasticity discovered about 30 years ago and based on the relative timing of pre- and post-synaptic spiking activity with a millisecond precision. STDP is thought to be involved in the formation of memory but the millisecond-precision spike-timing required for STDP is difficult to reconcile with the much slower timescales of behavioral learning. This review therefore aims to expose and discuss recent findings about i) the multiple STDP learning rules at both excitatory and inhibitory synapses in vitro, ii) the contribution of STDP-like synaptic plasticity in the formation of memory in vivo and iii) the implementation of STDP rules in artificial neural networks and memristive devices.
Collapse
|
10
|
Itami C, Uesaka N, Huang JY, Lu HC, Sakimura K, Kano M, Kimura F. Endocannabinoid-dependent formation of columnar axonal projection in the mouse cerebral cortex. Proc Natl Acad Sci U S A 2022; 119:e2122700119. [PMID: 36067295 PMCID: PMC9477236 DOI: 10.1073/pnas.2122700119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Columnar structure is one of the most fundamental morphological features of the cerebral cortex and is thought to be the basis of information processing in higher animals. Yet, how such a topographically precise structure is formed is largely unknown. Formation of columnar projection of layer 4 (L4) axons is preceded by thalamocortical formation, in which type 1 cannabinoid receptors (CB1R) play an important role in shaping barrel-specific targeted projection by operating spike timing-dependent plasticity during development (Itami et al., J. Neurosci. 36, 7039-7054 [2016]; Kimura & Itami, J. Neurosci. 39, 3784-3791 [2019]). Right after the formation of thalamocortical projections, CB1Rs start to function at L4 axon terminals (Itami & Kimura, J. Neurosci. 32, 15000-15011 [2012]), which coincides with the timing of columnar shaping of L4 axons. Here, we show that the endocannabinoid 2-arachidonoylglycerol (2-AG) plays a crucial role in columnar shaping. We found that L4 axon projections were less organized until P12 and then became columnar after CB1Rs became functional. By contrast, the columnar organization of L4 axons was collapsed in mice genetically lacking diacylglycerol lipase α, the major enzyme for 2-AG synthesis. Intraperitoneally administered CB1R agonists shortened axon length, whereas knockout of CB1R in L4 neurons impaired columnar projection of their axons. Our results suggest that endocannabinoid signaling is crucial for shaping columnar axonal projection in the cerebral cortex.
Collapse
Affiliation(s)
- Chiaki Itami
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama 350-0495, Japan
- The Linda and Jack Gill Center for Biomolecular Sciences, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Present address, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Jui-Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Fumitaka Kimura
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory of Brain Neuroscience, Faculty of Medical Sciences, Jikei University of Health Care and Sciences, Osaka, 532-0003, Japan
| |
Collapse
|
11
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
12
|
Sherf N, Shamir M. STDP and the distribution of preferred phases in the whisker system. PLoS Comput Biol 2021; 17:e1009353. [PMID: 34534208 PMCID: PMC8480728 DOI: 10.1371/journal.pcbi.1009353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/29/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the whisker’s position. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike timing dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory. The distribution of preferred phases of whisking neurons in the somatosensory system of rats and mice presents a conundrum: a simple pooling model predicts a distribution that is an order of magnitude narrower than what is observed empirically. Here, we suggest that this non-trivial distribution may result from activity-dependent plasticity in the form of spike timing dependent plasticity (STDP). We show that under STDP, the synaptic weights do not converge to a fixed value, but rather remain dynamic. As a result, the preferred phases of the whisking neurons vary in time, hence inducing a non-trivial distribution of preferred phases, which is governed by the STDP rule. Our results imply that the considerable synaptic volatility which has long been viewed as a difficulty that needs to be overcome, may actually be an underlying principle of the organization of the central nervous system.
Collapse
Affiliation(s)
- Nimrod Sherf
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| | - Maoz Shamir
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Eckert P, Marchetta P, Manthey MK, Walter MH, Jovanovic S, Savitska D, Singer W, Jacob MH, Rüttiger L, Schimmang T, Milenkovic I, Pilz PKD, Knipper M. Deletion of BDNF in Pax2 Lineage-Derived Interneuron Precursors in the Hindbrain Hampers the Proportion of Excitation/Inhibition, Learning, and Behavior. Front Mol Neurosci 2021; 14:642679. [PMID: 33841098 PMCID: PMC8033028 DOI: 10.3389/fnmol.2021.642679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies indicate that deficits in the proper integration or migration of specific GABAergic precursor cells from the subpallium to the cortex can lead to severe cognitive dysfunctions and neurodevelopmental pathogenesis linked to intellectual disabilities. A different set of GABAergic precursors cells that express Pax2 migrate to hindbrain regions, targeting, for example auditory or somatosensory brainstem regions. We demonstrate that the absence of BDNF in Pax2-lineage descendants of BdnfPax2KOs causes severe cognitive disabilities. In BdnfPax2KOs, a normal number of parvalbumin-positive interneurons (PV-INs) was found in the auditory cortex (AC) and hippocampal regions, which went hand in hand with reduced PV-labeling in neuropil domains and elevated activity-regulated cytoskeleton-associated protein (Arc/Arg3.1; here: Arc) levels in pyramidal neurons in these same regions. This immaturity in the inhibitory/excitatory balance of the AC and hippocampus was accompanied by elevated LTP, reduced (sound-induced) LTP/LTD adjustment, impaired learning, elevated anxiety, and deficits in social behavior, overall representing an autistic-like phenotype. Reduced tonic inhibitory strength and elevated spontaneous firing rates in dorsal cochlear nucleus (DCN) brainstem neurons in otherwise nearly normal hearing BdnfPax2KOs suggests that diminished fine-grained auditory-specific brainstem activity has hampered activity-driven integration of inhibitory networks of the AC in functional (hippocampal) circuits. This leads to an inability to scale hippocampal post-synapses during LTP/LTD plasticity. BDNF in Pax2-lineage descendants in lower brain regions should thus be considered as a novel candidate for contributing to the development of brain disorders, including autism.
Collapse
Affiliation(s)
- Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marie K Manthey
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany.,Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Michael H Walter
- Department for Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Daria Savitska
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Michele H Jacob
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Peter K D Pilz
- Department for Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. J Neurosci 2021; 40:7190-7202. [PMID: 32938634 DOI: 10.1523/jneurosci.1314-19.2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous γ oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.
Collapse
|
15
|
Peixoto RT, Chantranupong L, Hakim R, Levasseur J, Wang W, Merchant T, Gorman K, Budnik B, Sabatini BL. Abnormal Striatal Development Underlies the Early Onset of Behavioral Deficits in Shank3B -/- Mice. Cell Rep 2020; 29:2016-2027.e4. [PMID: 31722214 PMCID: PMC6889826 DOI: 10.1016/j.celrep.2019.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022] Open
Abstract
The neural substrates and pathophysiological mechanisms underlying the onset of cognitive and motor deficits in autism spectrum disorders (ASDs) remain unclear. Mutations in ASD-associated SHANK3 in mice (Shank3B−/−) result in the accelerated maturation of corticostriatal circuits during the second and third postnatal weeks. Here, we show that during this period, there is extensive remodeling of the striatal synaptic proteome and a developmental switch in glutamatergic synaptic plasticity induced by cortical hyperactivity in striatal spiny projection neurons (SPNs). Behavioral abnormalities in Shank3B−/− mice emerge during this stage and are ameliorated by normalizing excitatory synapse connectivity in medial striatal regions by the downregulation of PKA activity. These results suggest that the abnormal postnatal development of striatal circuits is implicated in the onset of behavioral deficits in Shank3B−/− mice and that modulation of postsynaptic PKA activity can be used to regulate corticostriatal drive in developing SPNs of mouse models of ASDs and other neurodevelopmental disorders. Peixoto et al. show that the onset of behavioral deficits in Shank3B−/− mice occurs during early postnatal development and that these can be ameliorated by reducing the glutamatergic synaptic drive in medial regions of the striatum by the downregulation of PKA activity.
Collapse
Affiliation(s)
- Rui Tiago Peixoto
- Department of Psychiatry, University of Pittsburgh, 450 Technology Dr, Pittsburgh, PA 15219, USA; Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| | - Lynne Chantranupong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Richard Hakim
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - James Levasseur
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Tasha Merchant
- Department of Psychiatry, University of Pittsburgh, 450 Technology Dr, Pittsburgh, PA 15219, USA; Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Kelly Gorman
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomic Laboratory, FAS Division of Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Bernardo Luis Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|