1
|
Xu M, Liu F, Hu Y, Li H, Wei Y, Zhong S, Pei J, Deng L. Adaptive Synaptic Scaling in Spiking Networks for Continual Learning and Enhanced Robustness. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:5151-5165. [PMID: 38536699 DOI: 10.1109/tnnls.2024.3373599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current modeling of brain-inspired spiking neural networks (SNN), backpropagation through time is widely adopted because it can achieve high performance using a small number of time steps. Nevertheless, the synaptic scaling mechanism has not yet been well touched. In this work, we propose an experience-dependent adaptive synaptic scaling mechanism (AS-SNN) for spiking neural networks. The learning process has two stages: First, in the forward path, adaptive short-term potentiation or depression is triggered for each synapse according to afferent stimuli intensity accumulated by presynaptic historical neural activities. Second, in the backward path, long-term consolidation is executed through gradient signals regulated by the corresponding scaling factor. This mechanism shapes the pattern selectivity of synapses and the information transfer they mediate. We theoretically prove that the proposed adaptive synaptic scaling function follows a contraction map and finally converges to an expected fixed point, in accordance with state-of-the-art results in three tasks on perturbation resistance, continual learning, and graph learning. Specifically, for the perturbation resistance and continual learning tasks, our approach improves the accuracy on the N-MNIST benchmark over the baseline by 44% and 25%, respectively. An expected firing rate callback and sparse coding can be observed in graph learning. Extensive experiments on ablation study and cost evaluation evidence the effectiveness and efficiency of our nonparametric adaptive scaling method, which demonstrates the great potential of SNN in continual learning and robust learning.
Collapse
|
2
|
Weber FD, Supp GG, Klinzing JG, Mölle M, Engel AK, Born J. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study. Neuroimage 2020; 224:117452. [PMID: 33059050 DOI: 10.1016/j.neuroimage.2020.117452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sleep spindles are crucial to memory consolidation. Cortical gamma oscillations (30-100 Hz) are considered to reflect processing of memory in local cortical networks. The temporal and regulatory relationship between spindles and gamma activity might therefore provide clues into how sleep strengthens cortical memory representations. Here, combining EEG with MEG recordings during sleep in healthy humans (n = 12), we investigated the temporal relationships of cortical gamma band activity, always measured by MEG, during fast (12-16 Hz) and slow (8-12 Hz) sleep spindles detected in the EEG or MEG. Time-frequency distributions did not show a consistent coupling of gamma to the spindle oscillation, although activity in the low gamma (30-40 Hz) and neighboring beta range (<30 Hz) was generally increased during spindles. However, more fine-grained analyses of cross-frequency interactions revealed that both low and high gamma power (30-100 Hz) was coupled to the phase of slow and fast EEG spindles, importantly, with this coupling at a fixed phase only for the oscillations within an individual spindle, but with variable phase across spindles. We did not observe any coupling of gamma activity for spindles detected solely in the MEG and not in parallel EEG recordings, raising the possibility that these are more local spindles of different quality. Similar to fast spindle activity, low gamma band power followed a ~0.025 Hz infraslow rhythm during sleep whose frequency, however, was significantly faster than that of spindle activity. Our findings suggest a general function of fast and slow spindles that by spanning larger cortical networks might serve to synchronize gamma band activity occurring in more local but distributed networks. Thereby, spindles might help linking local memory processing between distributed networks.
Collapse
Affiliation(s)
- Frederik D Weber
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| | - Gernot G Supp
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jens G Klinzing
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany
| | - Matthias Mölle
- Department of Neuroendocrinology, University of Lübeck, 23538 Lübeck, Ratzeburger Allee 160, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany; Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| |
Collapse
|
3
|
Liou JY, Baird-Daniel E, Zhao M, Daniel A, Schevon CA, Ma H, Schwartz TH. Burst suppression uncovers rapid widespread alterations in network excitability caused by an acute seizure focus. Brain 2020; 142:3045-3058. [PMID: 31436790 DOI: 10.1093/brain/awz246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 01/25/2023] Open
Abstract
Burst suppression is an electroencephalogram pattern of globally symmetric alternating high amplitude activity and isoelectricity that can be induced by general anaesthetics. There is scattered evidence that burst suppression may become spatially non-uniform in the setting of underlying pathology. Here, we induced burst suppression with isoflurane in rodents and then created a neocortical acute seizure focus with injection of 4-aminopyridine (4-AP) in somatosensory cortex. Burst suppression events were recorded before and after creation of the focus using bihemispheric wide-field calcium imaging and multielectrode arrays. We find that the seizure focus elicits a rapid alteration in triggering, initiation, and propagation of burst suppression events. Compared with the non-seizing brain, bursts are triggered from the thalamus, initiate in regions uniquely outside the epileptic focus, elicit marked increases of multiunit activity and propagate towards the seizure focus. These findings support the rapid, widespread impact of focal epilepsy on the extended brain network.
Collapse
Affiliation(s)
- Jyun-You Liou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Department of Anesthesiology, Weill Cornell Medicine, New York, New York, NY, USA
| | - Eliza Baird-Daniel
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Andy Daniel
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
4
|
Bolay H, Vuralli D, Goadsby PJ. Aura and Head pain: relationship and gaps in the translational models. J Headache Pain 2019; 20:94. [PMID: 31481015 PMCID: PMC6734357 DOI: 10.1186/s10194-019-1042-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Migraine is a complex brain disorder and initiating events for acute attacks still remain unclear. It seems difficult to explain the development of migraine headache with one mechanism and/or a single anatomical location. Cortical spreading depression (CSD) is recognized as the biological substrate of migraine aura and experimental animal studies have provided mechanisms that possibly link CSD to the activation of trigeminal neurons mediating lateralized head pain. However, some CSD features do not match the clinical features of migraine headache and there are gaps in translating CSD to migraine with aura. Clinical features of migraine headache and results from research are critically evaluated; and consistent and inconsistent findings are discussed according to the known basic features of canonical CSD: typical SD limited to the cerebral cortex as it was originally defined. Alternatively, arguments related to the emergence of SD in other brain structures in addition to the cerebral cortex or CSD initiated dysfunction in the thalamocortical network are proposed. Accordingly, including thalamus, particularly reticular nucleus and higher order thalamic nuclei, which functions as a hub connecting the visual, somatosensory, language and motor cortical areas and subjects to modulation by brain stem projections into the CSD theory, would greatly improve our current understanding of migraine.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, 06510 Ankara, Turkey
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
| | - Doga Vuralli
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
- Department of Algology, Bakirkoy Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul, Turkey
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
5
|
Anatomical and physiological basis of continuous spike-wave of sleep syndrome after early thalamic lesions. Epilepsy Behav 2018; 78:243-255. [PMID: 29133062 DOI: 10.1016/j.yebeh.2017.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Early neonatal thalamic lesions account for about 14% of continuous spike-wave of sleep (CSWS) syndrome, representing the most common etiology in this epileptic encephalopathy in children, and promise useful insights into the pathophysiology of the disease. METHODS We describe nine patients with unilateral neonatal thalamic lesions which progressed to CSWS. Longitudinal whole-night and high-density electroencephalograms (EEGs) were performed, as well as detailed imaging and clinical evaluation. Visual evoked potentials were used to probe cortical excitability. RESULTS Thalamic volume loss ranged from 19% to 94%, predominantly on medial and dorsal nuclei and sparing the ventral thalamus. Lesions produced white matter loss and ventricle enlargement on the same hemisphere, which in four patients was associated with selective loss of thalamic-cortical fibers. Cortical thickness quantification failed to reveal hemispheric asymmetries. Impact on EEG rhythms was mild, with a volume-loss-related decrease in alpha power and preservation of sleep spindles. The sleep continuous spiking was lateralized to the hemisphere with the lesion. Visual cortex stimulation in five patients with posterior cortex spiking revealed an abnormal frequency-dependent excitability at 10-20Hz on the side of the lesion. SIGNIFICANCE Unilateral selective thalamic-cortical disconnection is a common feature in our patients and is associated with both a focal pattern of CSWS and a pathological type of frequency-dependent excitability (peak: 10-20Hz). We propose that this excitability represents an abnormal synaptic plasticity previously described as the augmenting response. This synaptic plasticity has been described as absent in the corticocortical interactions in healthy experimental animals, emerging after ablation of the thalamus and producing a frequency-dependent potentiation with a peak at 10-20Hz. Because this response is potentiated by sleep states of reduced brainstem activation and by appropriate stimulating rhythms, such as sleep spindles, the simultaneous occurrence of these two factors in nonrapid-eye-movement sleep is proposed as an explanation for CSWS in our patients.
Collapse
|
6
|
Ayoub A, Mölle M, Preissl H, Born J. Grouping of MEG gamma oscillations by EEG sleep spindles. Neuroimage 2012; 59:1491-500. [DOI: 10.1016/j.neuroimage.2011.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 11/26/2022] Open
|
7
|
Timofeev I. Neuronal plasticity and thalamocortical sleep and waking oscillations. PROGRESS IN BRAIN RESEARCH 2011; 193:121-44. [PMID: 21854960 DOI: 10.1016/b978-0-444-53839-0.00009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma.
Collapse
Affiliation(s)
- Igor Timofeev
- The Centre de recherche Université Laval Robert-Giffard (CRULRG), Laval University, Québec, Canada.
| |
Collapse
|
8
|
Huttunen J. In search of augmentation at human SI: Somatosensory cortical responses to stimulus trains and their modulation by motor activity. Brain Res 2010; 1331:74-9. [DOI: 10.1016/j.brainres.2010.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 11/28/2022]
|
9
|
Karameh FN, Massaquoi SG. Intracortical Augmenting Responses in Networks of Reduced Compartmental Models of Tufted Layer 5 Cells. J Neurophysiol 2009; 101:207-33. [DOI: 10.1152/jn.01280.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Augmenting responses (ARs) are characteristic recruitment phenomena that can be generated in target neural populations by repetitive intracortical or thalamic stimulation and that may facilitate activity transmission from thalamic nuclei to the cortex or between cortical areas. Experimental evidence suggests a role for cortical layer 5 in initiating at least one form of augmentation. We present a three-compartment model of tufted layer 5 (TL5) cells that faithfully reproduces a wide range of dynamics in these neurons that previously has been achieved only partially and in much more complex models. Using this model, the simplest network exhibiting AR was a single pair of TL5 and inhibitory (IN5) neurons. Intracellularly, AR initiation was controlled by low-threshold Ca2+ current ( IT), which promoted TL5 rebound firing, whereas AR strength was dictated by inward-rectifying current ( Ih), which regulated TL5 multiple-spike firing and also prevented excessive firing under high-amplitude stimuli. Synaptically, AR was significantly more salient under concurrent stimulus delivery to superficial and deep dendritic zones of TL5 cells than under conventional single-zone stimuli. Moreover, slow GABA-B–mediated inhibition in TL5 cells controlled AR strength and frequency range. Finally, a network model of two cortical populations interacting across functional hierarchy showed that intracortical AR occurred prominently upon exciting superficial cortical layers either directly or via intrinsic connections, with AR frequency dictated by connection strength and background activity. Overall, the investigation supports a central role for a TL5–IN5 skeleton network in low-frequency cortical dynamics in vivo, particularly across functional hierarchies, and presents neuronal models that facilitate accurate large-scale simulations.
Collapse
|
10
|
Quairiaux C, Armstrong-James M, Welker E. Modified Sensory Processing in the Barrel Cortex of the Adult Mouse After Chronic Whisker Stimulation. J Neurophysiol 2007; 97:2130-47. [PMID: 17122325 DOI: 10.1152/jn.00338.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic stimulation of a mystacial whisker follicle for 24 h induces structural and functional changes in layer IV of the corresponding barrel, with an insertion of new inhibitory synapses on spines and a depression of neuronal responses to the stimulated whisker. Under urethane anesthesia, we analyzed how sensory responses of single units are affected in layer IV and layers II & III of the stimulated barrel column as well as in adjacent columns. In the stimulated column, spatiotemporal characteristics of the activation evoked by the stimulated whisker are not altered, although spontaneous activity and response magnitude to the stimulated whisker are decreased. The sensitivity of neurons for the deflection of this whisker is not altered but the dynamic range of the response is reduced as tested by varying the amplitude and repetition rate of the deflection. Responses to deflection of nonstimulated whiskers remain unaltered with the exception of in-row whisker responses that are depressed in the column corresponding to the stimulated whisker. In adjacent nonstimulated columns, neuronal activity remains unaltered except for a diminished response of units in layer II/III to deflection of the stimulated whisker. From these results we propose that an increased inhibition within the stimulated barrel reduced the magnitude of its excitatory output and accordingly the flow of excitation toward layers II & III and the subsequent spread into adjacent columns. In addition, the period of uncorrelated activity between pathways from the stimulated and nonstimulated whiskers weakens synaptic inputs from in-row whiskers in the stimulated barrel column.
Collapse
Affiliation(s)
- Charles Quairiaux
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
11
|
Uhlrich DJ, Manning KA, O'Laughlin ML, Lytton WW. Photic-induced sensitization: acquisition of an augmenting spike-wave response in the adult rat through repeated strobe exposure. J Neurophysiol 2006; 94:3925-37. [PMID: 16293590 DOI: 10.1152/jn.00724.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that patterns of sensory input can affect neuroplastic changes during early development. The scope and consequences of experience-dependent plasticity in the adult are less well understood. We studied the possibility that repeated exposure to trains of stroboscopic stimuli could induce a sensitized and potentially aberrant response in ordinary individuals. Chronic electrocorticographic recording electrodes enabled measurement of responses in awake, freely moving animals. Normal adult rats, primarily Sprague-Dawley, were exposed to 20-40 strobe trains per day after a strobe-free adaptation period. The common response to strobe trains changed in 34/36 rats with development of a high-amplitude spike-wave response that emerged fully by the third day of photic exposure. Onset of this sensitized response was marked by short-term augmentation of response to successive strobe flashes. The waveform generalized across the brain, reflected characteristics of the visual stimulus, as well as an inherent 6- to 8-Hz pacing, and was suppressed with ethosuximide administration. Spike-wave episodes were self-limiting but could persist beyond the strobe period. Sensitization lasted 2-4 wk after last strobe exposure. The results indicate visual stimulation, by itself, can induce in adult rats an enduring sensitization of visual response with epileptiform characteristics. The results raise the question of the effects of such neuroplastic change on sensation and epileptiform events.
Collapse
Affiliation(s)
- D J Uhlrich
- Department of Anatomy, University of Wisconsin-Madison Medical School, 53706-1532, USA.
| | | | | | | |
Collapse
|
12
|
García-Junco-Clemente P, Linares-Clemente P, Fernández-Chacón R. Active zones for presynaptic plasticity in the brain. Mol Psychiatry 2005; 10:185-200; image 131. [PMID: 15630409 DOI: 10.1038/sj.mp.4001628] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Some of the most abundant synapses in the brain such as the synapses formed by the hippocampal mossy fibers, cerebellar parallel fibers and several types of cortical afferents express presynaptic forms of long-term potentiation (LTP), a putative cellular model for spatial, motor and fear learning. Those synapses often display presynaptic mechanisms of LTP induction, which are either NMDA receptor independent of dependent of presynaptic NMDA receptors. Recent investigations on the molecular mechanisms of neurotransmitter release modulation in short- and long-term synaptic plasticity in central synapses give a preponderant role to active zone proteins as Munc-13 and RIM1-alpha, and point toward the maturation process of synaptic vesicles prior to Ca(2+)-dependent fusion as a key regulatory step of presynaptic plasticity.
Collapse
Affiliation(s)
- P García-Junco-Clemente
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla. Avda. Sánchez-Pizjuán 4, Sevilla, Spain
| | | | | |
Collapse
|
13
|
Cissé Y, Crochet S, Timofeev I, Steriade M. Synaptic Enhancement Induced Through Callosal Pathways in Cat Association Cortex. J Neurophysiol 2004; 92:3221-32. [PMID: 15548635 DOI: 10.1152/jn.00537.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The corpus callosum plays a major role in synchronizing neocortical activities in the two hemispheres. We investigated the changes in callosally elicited excitatory postsynaptic potentials (EPSPs) of neurons from cortical association areas 5 and 7 of cats under barbiturate or ketamine-xylazine anesthesia. Single pulses to callosal pathway evoked control EPSPs; pulse-trains were subsequently applied at different frequencies to homotopic sites in the contralateral cortex, as conditioning stimulation; thereafter, the single pulses were applied again to test changes in synaptic responsiveness by comparing the amplitudes of control and conditioned EPSPs. In 41 of 42 neurons recorded under barbiturate anesthesia, all frequencies of conditioning callosal stimuli induced short-term (5–30 min) enhancement of test EPSPs elicited by single stimuli. Neurons tested with successive conditioning pulse-trains at different frequencies displayed stronger enhancement with high-frequency (40–100 Hz) than with low-frequency (10–20 Hz) rhythmic pulse-trains; >100 Hz, the potentiation saturated. In a neuronal sample, microdialysis of an N-methyl-d-aspartate (NMDA) receptor blocker in barbiturate-treated cats suppressed this potentiation, and potentiation of callosally evoked EPSPs was not detected in neurons recorded under ketamine-xylazine anesthesia, thus indicating that EPSPs' potentiation implicates, at least partially, NMDA receptors. These data suggest that callosal activities occurring within low-frequency and fast-frequency oscillations play a role in cortical synaptic plasticity.
Collapse
Affiliation(s)
- Youssouf Cissé
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada
| | | | | | | |
Collapse
|
14
|
Steriade M. Sleep and Neuronal Plasticity. Sleep 2004. [DOI: 10.1201/9780203496732.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Affiliation(s)
- Mircea Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4.
| |
Collapse
|
16
|
Abstract
Spontaneous brain oscillations during states of vigilance are associated with neuronal plasticity due to rhythmic spike bursts and spike trains fired by thalamic and neocortical neurons during low-frequency rhythms that characterize slow-wave sleep and fast rhythms occurring during waking and REM sleep. Intracellular recordings from thalamic and related cortical neurons in vivo demonstrate that, during natural slow-wave sleep oscillations or their experimental models, both thalamic and cortical neurons progressively enhance their responsiveness. This potentiation lasts for several minutes after the end of oscillatory periods. Cortical neurons display self-sustained activity, similar to responses evoked during previous epochs of stimulation, despite the fact that thalamic neurons remain under a powerful hyperpolarizing pressure. These data suggest that, far from being a quiescent state during which the cortex and subcortical structures are globally inhibited, slow-wave sleep may consolidate memory traces acquired during wakefulness in corticothalamic networks. Similar phenomena occur as a consequence of fast oscillations during brain-activated states.
Collapse
Affiliation(s)
- Mircea Steriade
- Laboratoire de Neurophysiologie, Faculté de Médicine, Université Laval, Québec, Canada G1K 7P4.
| | | |
Collapse
|
17
|
Tsatsanis KD, Rourke BP, Klin A, Volkmar FR, Cicchetti D, Schultz RT. Reduced thalamic volume in high-functioning individuals with autism. Biol Psychiatry 2003; 53:121-9. [PMID: 12547467 DOI: 10.1016/s0006-3223(02)01530-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND In this study, specific consideration is given to a role for the thalamus in autism. METHODS A volumetric analysis of the thalamus was conducted using magnetic resonance imaging, based on segmentation of continuous 1.2 mm(3) coronal images. The sample consisted of 12 high-functioning individuals with autism, mean age of 21.0 years (SD = 10.4) and mean IQ of 106.4 (SD = 18.3). Normal control subjects were selected to match this group; the mean age was 18.1 years (SD = 6.3); mean IQ was 108.8 (SD = 15.6). RESULTS Unadjusted mean thalamic volume was not significantly different; however, there were significant differences in the relationship between thalamic volume and total brain volume (TBV). The correlation was strong and positive in the control group but statistically nonsignificant in the autism group. Group differences were found when adjustments were made for TBV, achieved by grouping subjects' measurements on this variable using a split median procedure. Mean thalamic volume was significantly reduced in the autism group relative to normal control subjects, specifically within the high TBV group. CONCLUSION The increase in thalamic volume with increase in TBV was not seen in autism, suggesting underdeveloped connections between cortical and subcortical regions and indicating a need to examine this structure further.
Collapse
|
18
|
Timofeev I, Grenier F, Bazhenov M, Houweling AR, Sejnowski TJ, Steriade M. Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J Physiol 2002; 542:583-98. [PMID: 12122155 PMCID: PMC2290423 DOI: 10.1113/jphysiol.2001.013479] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Plastic changes in the synaptic responsiveness of neocortical neurones, which occur after rhythmic stimuli within the frequency range of sleep spindles (10 Hz), were investigated in isolated neocortical slabs and intact cortex of anaesthetized cats by means of single, dual and triple simultaneous intracellular recordings in conjunction with recordings of local field potential responses. In isolated cortical slabs (10 mm long, 6 mm wide and 4-5 mm deep), augmenting responses to pulse-trains at 10 Hz (responses with growing amplitudes from the second stimulus in a train) were elicited only by relatively high-intensity stimuli. At low intensities, responses were decremental. The largest augmenting responses were evoked in neurones located close to the stimulation site. Quantitative analyses of the number of action potentials and the amplitude and area of depolarization during augmenting responses in a population of neurones recorded from slabs showed that the most dramatic increases in the number of spikes with successive stimuli, and the greatest increase in depolarization amplitude, were found in conventional fast-spiking (FS) neurones. The largest increase in the area of depolarization was found in regular-spiking (RS) neurones. Dual intracellular recordings from a pair of FS and RS neurones in the slab revealed more action potentials in the FS neurone during augmenting responses and a significant increase in the depolarization area of the RS neurone that was dependent on the firing of the FS neurone. Self-sustained seizures could occur in the slab after rhythmic stimuli at 10 Hz. In the intact cortex, repeated sequences of stimuli generating augmenting responses or spontaneous spindles could induce an increased synaptic responsiveness to single stimuli, which lasted for several minutes. A similar time course of increased responsiveness was obtained with induction of cellular plasticity. These data suggest that augmenting responses elicited by stimulation, as well as spontaneously occurring spindles, may induce short- and medium-term plasticity of neuronal responses.
Collapse
Affiliation(s)
- Igor Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4.
| | | | | | | | | | | |
Collapse
|
19
|
Houweling AR, Bazhenov M, Timofeev I, Grenier F, Steriade M, Sejnowski TJ. Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. J Physiol 2002; 542:599-617. [PMID: 12122156 PMCID: PMC2316151 DOI: 10.1113/jphysiol.2001.012759] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Thalamic stimulation at frequencies between 5 and 15 Hz elicits incremental or 'augmenting' cortical responses. Augmenting responses can also be evoked in cortical slices and isolated cortical slabs in vivo. Here we show that a realistic network model of cortical pyramidal cells and interneurones including short-term plasticity of inhibitory and excitatory synapses replicates the main features of augmenting responses as obtained in isolated slabs in vivo. Repetitive stimulation of synaptic inputs at frequencies around 10 Hz produced postsynaptic potentials that grew in size and carried an increasing number of action potentials resulting from the depression of inhibitory synaptic currents. Frequency selectivity was obtained through the relatively weak depression of inhibitory synapses at low frequencies, and strong depression of excitatory synapses together with activation of a calcium-activated potassium current at high frequencies. This network resonance is a consequence of short-term synaptic plasticity in a network of neurones without intrinsic resonances. These results suggest that short-term plasticity of cortical synapses could shape the dynamics of synchronized oscillations in the brain.
Collapse
Affiliation(s)
- Arthur R Houweling
- Computational Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Knott GW, Quairiaux C, Genoud C, Welker E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 2002; 34:265-73. [PMID: 11970868 DOI: 10.1016/s0896-6273(02)00663-3] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex.
Collapse
Affiliation(s)
- Graham W Knott
- Institut de Biologie Cellulaire et Morphologie, Université de Lausanne, Rue du Bugnon 9, CH 1005, Lausanne, Switzerland
| | | | | | | |
Collapse
|
21
|
Castro-Alamancos MA. Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. J Physiol 2002; 539:567-78. [PMID: 11882688 PMCID: PMC2290158 DOI: 10.1113/jphysiol.2001.013283] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sensory inputs from the whiskers reach the primary somatosensory thalamus through the medial lemniscus tract. The main role of the thalamus is to relay these sensory inputs to the neocortex according to the regulations dictated by behavioural state. Intracellular recordings in urethane-anaesthetized rats show that whisker stimulation evokes EPSP-IPSP sequences in thalamic neurons. Both EPSPs and IPSPs depress with repetitive whisker stimulation at frequencies above 2 Hz. Single-unit recordings reveal that during quiescent states thalamic responses to repetitive whisker stimulation are suppressed at frequencies above 2 Hz, so that only low-frequency sensory stimulation is relayed to the neocortex. In contrast, during activated states, induced by stimulation of the brainstem reticular formation or application of acetylcholine in the thalamus, high-frequency whisker stimulation at up to 40 Hz is relayed to the neocortex. Sensory suppression is caused by the depression of lemniscal EPSPs in relatively hyperpolarized thalamocortical neurons. Sensory suppression is abolished during activated states because thalamocortical neurons depolarize and the depressed lemniscal EPSPs are able to reach firing threshold. Strong IPSPs may also contribute to sensory suppression by hyperpolarizing thalamocortical neurons, but during activated states IPSPs are strongly reduced altogether. The results indicate that the synaptic depression of lemniscal EPSPs and the level of depolarization of thalamocortical neurons work together in thalamic primary sensory pathways to suppress high-frequency sensory inputs during non-activated (quiescent) states while permitting the faithful relay of high-frequency sensory information during activated (processing) states.
Collapse
Affiliation(s)
- Manuel A Castro-Alamancos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada.
| |
Collapse
|
22
|
Abstract
Data from in vivo and in vitro experiments are discussed to emphasize that synaptic activities in neocortex and thalamus have a decisive impact on intrinsic neuronal properties in intact-brain preparations under anesthesia and even more so during natural states of vigilance. Thus the firing patterns of cortical neuronal types are not inflexible but may change with the level of membrane potential and during periods rich in synaptic activity. The incidences of some cortical cell classes (defined by their responses to depolarizing current pulses) are different in isolated cortical slabs in vivo or in slices maintained in vitro compared with the intact cortex of naturally awake animals. Network activities, which include the actions of generalized modulatory systems, have a profound influence on the membrane potential, apparent input resistance, and backpropagation of action potentials. The analysis of various oscillatory types leads to the conclusion that in the intact brain, there are no "pure" rhythms, generated in simple circuits, but complex wave sequences (consisting of different, low- and fast-frequency oscillations) that result from synaptic interactions in corticocortical and corticothalamic neuronal loops under the control of activating systems arising in the brain stem core or forebrain structures. As an illustration, it is shown that the neocortex governs the synchronization of network or intrinsically generated oscillations in the thalamus. The rhythmic recurrence of spike bursts and spike trains fired by thalamic and cortical neurons during states of decreased vigilance may lead to plasticity processes in neocortical neurons. If these phenomena, which may contribute to the consolidation of memory traces, are not constrained by inhibitory processes, they induce seizures in which the neocortex initiates the paroxysms and controls their thalamic reflection. The results indicate that intact-brain preparations are necessary to investigate global brain functions such as behavioral states of vigilance and paroxysmal activities.
Collapse
Affiliation(s)
- M Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada.
| |
Collapse
|
23
|
Castro-Alamancos MA, Calcagnotto ME. High-pass filtering of corticothalamic activity by neuromodulators released in the thalamus during arousal: in vitro and in vivo. J Neurophysiol 2001; 85:1489-97. [PMID: 11287472 DOI: 10.1152/jn.2001.85.4.1489] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thalamus is the principal relay station of sensory information to the neocortex. In return, the neocortex sends a massive feedback projection back to the thalamus. The thalamus also receives neuromodulatory inputs from the brain stem reticular formation, which is vigorously activated during arousal. We investigated the effects of two neuromodulators, acetylcholine and norepinephrine, on corticothalamic responses in vitro and in vivo. Results from rodent slices in vitro showed that acetylcholine and norepinephrine depress the efficacy of corticothalamic synapses while enhancing their frequency-dependent facilitation. This produces a stronger depression of low-frequency responses than of high-frequency responses. The effects of acetylcholine and norepinephrine were mimicked by muscarinic and alpha(2)-adrenergic receptor agonists and blocked by muscarinic and alpha-adrenergic antagonists, respectively. Stimulation of the brain stem reticular formation in vivo also strongly depressed corticothalamic responses. The suppression was very strong for low-frequency responses, which do not produce synaptic facilitation, but absent for high-frequency corticothalamic responses. As in vitro, application of muscarinic and alpha-adrenergic antagonists into the thalamus in vivo abolished the suppression of corticothalamic responses induced by stimulating the reticular formation. In conclusion, cholinergic and noradrenergic activation during arousal high-pass filters corticothalamic activity. Thus, during arousal only high-frequency inputs from the neocortex are allowed to reach the thalamus. Neuromodulators acting on corticothalamic synapses gate the flow of cortical activity to the thalamus as dictated by behavioral state.
Collapse
Affiliation(s)
- M A Castro-Alamancos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | | |
Collapse
|
24
|
Abstract
During various states of vigilance, brain oscillations are grouped together through reciprocal connections between the neocortex and thalamus. The coherent activity in corticothalamic networks, under the control of brainstem and forebrain modulatory systems, requires investigations in intact-brain animals. During behavioral states associated with brain disconnection from the external world, the large-scale synchronization of low-frequency oscillations is accompanied by the inhibition of synaptic transmission through thalamocortical neurons. Despite the coherent oscillatory activity, on the functional side there is dissociation between the thalamus and neocortex during slow-wave sleep. While dorsal thalamic neurons undergo inhibitory processes due to the prolonged spike-bursts of thalamic reticular neurons, the cortex displays, periodically, a rich spontaneous activity and preserves the capacity to process internally generated signals that dominate the state of sleep. In vivo experiments using simultaneous intracellular recordings from thalamic and cortical neurons show that short-term plasticity processes occur after prolonged and rhythmic spike-bursts fired by thalamic and cortical neurons during slow-wave sleep oscillations. This may serve to support resonant phenomena and reorganize corticothalamic circuitry, determine which synaptic modifications, formed during the waking state, are to be consolidated and generate a peculiar kind of dreaming mentation. In contrast to the long-range coherent oscillations that occur at low frequencies during slow-wave sleep, the sustained fast oscillations that characterize alert states are synchronized over restricted territories and are associated with discrete and differentiated patterns of conscious events.
Collapse
Affiliation(s)
- M Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, G1K 7P4, Quebec, Canada.
| |
Collapse
|
25
|
Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 2000; 23:1-37. [PMID: 10845057 DOI: 10.1146/annurev.neuro.23.1.1] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After manipulations of the periphery that reduce or enhance input to the somatosensory cortex, affected parts of the body representation will contract or expand, often over many millimeters. Various mechanisms, including divergence of preexisting connections, expression of latent synapses, and sprouting of new synapses, have been proposed to explain such phenomena, which probably underlie altered sensory experiences associated with limb amputation and peripheral nerve injury in humans. Putative cortical mechanisms have received the greatest emphasis but there is increasing evidence for substantial reorganization in subcortical structures, including the brainstem and thalamus, that may be of sufficient extent to account for or play a large part in representational plasticity in somatosensory cortex. Recent studies show that divergence of ascending connections is considerable and sufficient to ensure that small alterations in map topography at brainstem and thalamic levels will be amplified in the projection to the cortex. In the long term, slow, deafferentation-dependent transneuronal atrophy at brainstem, thalamic, and even cortical levels are operational in promoting reorganizational changes, and the extent to which surviving connections can maintain a map is a key to understanding differences between central and peripheral deafferentation.
Collapse
Affiliation(s)
- E G Jones
- Center for Neuroscience, University of California, Davis 95616, USA.
| |
Collapse
|
26
|
Timofeev I, Grenier F, Steriade M. Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. JOURNAL OF PHYSIOLOGY, PARIS 2000; 94:343-55. [PMID: 11165905 DOI: 10.1016/s0928-4257(00)01097-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the relative impact of intrinsic and synaptic factors in the maintenance of the membrane potential of cat neocortical neurons in various states of the network, we performed intracellular recordings in vivo. Experiments were done in the intact cortex and in isolated neocortical slabs of anesthetized animals, and in naturally sleeping and awake cats. There are at least four different electrophysiological cell classes in the neocortex. The responses of different neuronal classes to direct depolarization result in significantly different responses in postsynaptic cells. The activity patterns observed in the intact cortex of anesthetized cats depended mostly on the type of anesthesia. The intracellular activity in small neocortical slabs was composed of silent periods, lasting for tens of seconds, during which only small depolarizing potentials (SDPs, presumed miniature synaptic potentials) were present, and relatively short-lasting (a few hundred milliseconds) active periods. Our data suggest that minis might be amplified by intrinsically-bursting neurons and that the persistent Na+ current brings neurons to firing threshold, thus triggering active periods. The active periods in neurons were composed of the summation of synaptic events and intrinsic depolarizing currents. In chronically-implanted cats, slow-wave sleep was characterized by active (depolarizing) and silent (hyperpolarizing) periods. The silent periods were absent in awake cats. We propose that both intrinsic and synaptic factors are responsible for the transition from silent to active states found in naturally sleeping cats and that synaptic depression might be responsible for the termination of active states during sleep. In view of the unexpected high firing rates of neocortical neurons during the depolarizing epochs in slow-wave sleep, we suggest that cortical neurons are implicated in short-term plasticity processes during this state, in which the brain is disconnected from the outside world, and that memory traces acquired during wakefulness may be consolidated during sleep.
Collapse
Affiliation(s)
- I Timofeev
- Laboratory of Neurophysiology, Department of Anatomy and Physiology, School of Medicine, Laval University, PQ G1K 7P4, Québec, Canada.
| | | | | |
Collapse
|
27
|
Cudeiro J, Rivadulla C, Grieve KL. Visual response augmentation in cat (and macaque) LGN: potentiation by corticofugally mediated gain control in the temporal domain. Eur J Neurosci 2000; 12:1135-44. [PMID: 10762345 DOI: 10.1046/j.1460-9568.2000.00000.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visual responses of neurons are dependent on the context of a stimulus, not only in spatial terms but also temporally, although evidence for temporally separate visual influences is meagre, based mainly on studies in the higher cortex. Here we demonstrate temporally induced elevation of visual responsiveness in cells in the lateral geniculate nucleus (LGN) of cat and monkey following a period of high intensity (elevated contrast) stimulation. This augmentation is seen in 40-70% (monkey-cat) of cells tested and of all subtypes. Peaking at approximately 3 min following the period of intense stimulation, it can last for 10-12 min and can be repeated and summed in time. Furthermore, it is dependent on corticofugal input, is seen even when high contrast stimuli of orthogonal orientation are used and therefore results from a/any prior increase in activity in the retino-geniculo-striate pathway. We suggest that this reflects a general mechanism for control of visual responsiveness; both a flexible and dynamic means of changing effectiveness of thalamic activity as visual input changes, but also a mechanism which is an emergent property of the thalamo-cortico-thalamic loop.
Collapse
Affiliation(s)
- J Cudeiro
- Departamento de Medicina (E.U. Fisioterapia), Campus de Oza, 15006 A Coruña, Spain.
| | | | | |
Collapse
|
28
|
Marino J, Canedo A, Aguilar J. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat. Neuroscience 2000; 95:657-73. [PMID: 10670434 DOI: 10.1016/s0306-4522(99)00414-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work aimed to study whether the sensorimotor cerebral cortex spreads down its rhythmic patterns of activity to the dorsal column nuclei. Extracellular and intracellular recordings were obtained from the cuneate nucleus of chloralose-anesthetized cats. From a total of 140 neurons tested (106 cuneolemniscal), 72 showed spontaneous rhythmic activity within the slow (< 1 Hz), delta (1-4 Hz), spindle (5-15 Hz) and higher frequencies, with seven cells having the delta rhythm coupled to slow oscillations. The spindle activity recorded in the cuneate was tightly coupled to the thalamo-cortico-thalamic spindle rhythmicity. Bilateral or contralateral removal of the frontoparietal cortex abolished the cuneate slow and spindle oscillations. Oscillatory paroxysmal activity generated by fast electrical stimulation (50-100 Hz/1-2 s) of the sensorimotor cortex induced burst firing synchronized with the paroxysmal cortical "spike" on all the non-lemniscal neurons, and inhibitory responses also coincident with the cortical paroxysmal "spike" in the majority (71%) of the cuneolemniscal cells. The remaining lemniscal-projecting neurons showed bursting activity (11%) or sequences of excitation-inhibition (18%) also time-locked to the cortical paroxysmal "spike". Additionally, the cerebral cortex induced coherent oscillatory activity between thalamic ventroposterolateral and cuneate neurons. Electrolytic lesion of the pyramidal tract abolished the cortically induced effects on the contralateral cuneate nucleus, as well as on the ipsilateral medial lemniscus. The results demonstrate that the sensorimotor cortex imposes its rhythmic patterns on the cuneate nucleus through the pyramidal tract, and that the corticocuneate network can generate normal and abnormal patterns of synchronized activity, such as delta waves, spindles and spike-and-wave complexes. The cuneate neurons, however, are able to generate oscillatory activity above 1 Hz in the absence of cortical input, which implies that the cerebral cortex probably imposes its rhythmicity on the cuneate by matching the intrinsic preferred oscillatory frequency of cuneate neurons.
Collapse
Affiliation(s)
- J Marino
- Department of Physiology, Faculty of Medicine, Santiago de Compostela, Spain
| | | | | |
Collapse
|
29
|
Castro-Alamancos MA, Calcagnotto ME. Presynaptic long-term potentiation in corticothalamic synapses. J Neurosci 1999; 19:9090-7. [PMID: 10516326 PMCID: PMC6782786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The thalamus and neocortex are two highly organized and complex brain structures that work in concert with each other. The largest synaptic input to the thalamus arrives from the neocortex via corticothalamic fibers. Using brain slices, we describe long-term potentiation (LTP) in corticothalamic fibers contacting the ventrobasal thalamus. Corticothalamic LTP is input-specific, NMDA receptor-independent, and reversible. The induction of corticothalamic LTP is entirely presynaptic and Ca(2+)-dependent. The expression of corticothalamic LTP is associated with a decrease in paired-pulse facilitation (PPF) and blocked by an inhibitor of the cAMP-dependent protein kinase A (PKA). Consistent with an involvement of cAMP and PKA, activation of adenylyl cyclase induced a synaptic enhancement that was associated with a decrease in PPF and occluded LTP. Corticothalamic LTP may serve to enhance the efficacy of cortico-cortical communication via the thalamus and/or to mediate experience-dependent long-term modifications of thalamocortical receptive fields.
Collapse
Affiliation(s)
- M A Castro-Alamancos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A2B4, Canada
| | | |
Collapse
|
30
|
Abstract
The neocortex and thalamus are a unified oscillatory machine. Different types of brain rhythms, which characterize various behavioral states, are combined within complex wave-sequences. During the stage of sleep that is associated with low-frequency and high-amplitude brain rhythms, the excitatory component of a cortically generated slow oscillation is effective in triggering thalamically generated rhythms and in increasing their spatiotemporal coherence over widespread territories. Thus, the study of coherent oscillations, as they appear naturally during states of vigilance in animals and humans, requires intact-brain preparations in which the neocortex and thalamus engage in a permanent dialog. Sleep oscillations are associated with rhythmic spike-bursts or spike-trains in thalamic and cortical neurons, which lead to persistent excitability changes consisting of increased depolarizing responses and decreased inhibitory responses. These short-term plasticity processes could be used to consolidate memory traces acquired during wakefulness, but can also lead to paroxysmal (hypersynchronous) episodes, similar to those observed in some epileptic seizures.
Collapse
Affiliation(s)
- M Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4
| |
Collapse
|
31
|
Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Cortical and thalamic components of augmenting responses: A modeling study. Neurocomputing 1999. [DOI: 10.1016/s0925-2312(98)00142-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Grenier F, Timofeev I, Steriade M. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proc Natl Acad Sci U S A 1998; 95:13929-34. [PMID: 9811903 PMCID: PMC24971 DOI: 10.1073/pnas.95.23.13929] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The postinhibitory rebound excitation is an intrinsic property of thalamic and cortical neurons that is implicated in a variety of normal and abnormal operations of neuronal networks, such as slow or fast brain rhythms during different states of vigilance as well as seizures. We used dual simultaneous intracellular recordings of thalamocortical neurons from the ventrolateral nucleus and neurons from the motor cortex, together with thalamic and cortical field potentials, to investigate the temporal relations between thalamic and cortical events during the rebound excitation that follows prolonged periods of stimulus-induced inhibition. Invariably, the rebound spike-bursts in thalamocortical cells occurred before the rebound depolarization in cortical neurons and preceded the peak of the depth-negative, rebound field potential in cortical areas. Also, the inhibitory-rebound sequences were more pronounced and prolonged in cortical neurons when elicited by thalamic stimuli, compared with cortical stimuli. The role of thalamocortical loops in the rebound excitation of cortical neurons was shown further by the absence of rebound activity in isolated cortical slabs. However, whereas thalamocortical neurons remained hyperpolarized after rebound excitation, because of the prolonged spike-bursts in inhibitory thalamic reticular neurons, the rebound depolarization in cortical neurons was prolonged, suggesting the role of intracortical excitatory circuits in this sustained activity. The role of intrathalamic events in triggering rebound cortical activity should be taken into consideration when analyzing information processes at the cortical level; at each step, corticothalamic volleys can set into action thalamic inhibitory neurons, leading to rebound spike-bursts that are transferred back to the cortex, thus modifying cortical activities.
Collapse
Affiliation(s)
- F Grenier
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
33
|
Steriade M, Contreras D. Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J Neurophysiol 1998; 80:1439-55. [PMID: 9744951 DOI: 10.1152/jn.1998.80.3.1439] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explored the relative contributions of cortical and thalamic neuronal networks in the generation of electrical seizures that include spike-wave (SW) and polyspike-wave (PSW) complexes. Seizures were induced by systemic or local cortical injections of bicuculline, a gamma-aminobutyric acid-A (GABAA) antagonist, in cats under barbiturate anesthesia. Field potentials and extracellular neuronal discharges were recorded through arrays of eight tungsten electrodes (0.4 or 1 mm apart) placed over the cortical suprasylvian gyrus and within the thalamus. 1) Systemic injections of bicuculline induced SW/PSW seizures in cortex, whereas spindle sequences continued to be present in the thalamus. 2) Cortical suprasylvian injection of bicuculline induced focal paroxysmal single spikes that developed into full-blown seizures throughout the suprasylvian cortex. The seizures were characterized by highly synchronized SW or PSW complexes at 2-4 Hz, interspersed with runs of fast (10-15 Hz) activity. The intracellular aspects of this complex pattern in different types of neocortical neurons are described in the following paper. Complete decortication abolished the seizure, leaving intact thalamic spindles. Injections of bicuculline in the cortex of athalamic cats resulted in similar components as those occurring with an intact thalamus. 3) Injection of bicuculline in the thalamus decreased the frequency of barbiturate spindles and increased the synchrony of spike bursts fired by thalamocortical and thalamic reticular cells but did not induce seizures. Decortication did not modify the effects of bicuculline injection in the thalamus. Our results indicate that the minimal substrate that is necessary for the production of seizures consisting of SW/PSW complexes and runs of fast activity is the neocortex.
Collapse
Affiliation(s)
- M Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | |
Collapse
|
34
|
Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Computational models of thalamocortical augmenting responses. J Neurosci 1998; 18:6444-65. [PMID: 9698334 PMCID: PMC6793176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Revised: 05/11/1998] [Accepted: 05/29/1998] [Indexed: 02/08/2023] Open
Abstract
Repetitive stimulation of the dorsal thalamus at 7-14 Hz produces an increasing number of spikes at an increasing frequency in neocortical neurons during the first few stimuli. Possible mechanisms underlying these cortical augmenting responses were analyzed with a computer model that included populations of thalamocortical cells, thalamic reticular neurons, up to two layers of cortical pyramidal cells, and cortical inhibitory interneurons. Repetitive thalamic stimulation produced a low-threshold intrathalamic augmentation in the model based on the deinactivation of the low-threshold Ca2+ current in thalamocortical cells, which in turn induced cortical augmenting responses. In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. Thalamic stimulation was more effective in eliciting augmenting responses than cortical stimulation. Intracortical inhibition had an important influence on the genesis of augmenting responses in cortical neurons: A shift in the balance between intracortical excitation and inhibition toward excitation transformed an augmenting responses to long-lasting paroxysmal discharge. The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses.
Collapse
Affiliation(s)
- M Bazhenov
- Howard Hughes Medical Institute, The Salk Institute, Computational Neurobiology Laboratory, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
35
|
Steriade M, Timofeev I, Grenier F, Dürmüller N. Role of thalamic and cortical neurons in augmenting responses and self-sustained activity: dual intracellular recordings in vivo. J Neurosci 1998; 18:6425-43. [PMID: 9698333 PMCID: PMC6793197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Progressively increasing (augmenting) responses are elicited in thalamocortical systems by repetitive stimuli at approximately 10 Hz. Repeated pulse trains at this frequency lead to a form of short-term plasticity consisting of a persistent increase in depolarizing synaptic responses as well as a prolonged decrease in inhibitory responses. In this study, we have investigated the role of thalamocortical (TC) and neocortical neurons in the initiation of thalamically and cortically evoked augmenting responses. Dual intracellular recordings in anesthetized cats show that thalamically evoked augmenting responses of neocortical neurons stem from a secondary depolarization (mean onset latency of 11 msec) that develops in association with a diminution of the early EPSP. Two nonexclusive mechanisms may underlie the increased secondary depolarization during augmentation: the rebound spike bursts initiated in simultaneously recorded TC cells, which precede by approximately 3 msec the onset of augmenting responses in cortical neurons; and low-threshold responses, uncovered by hyperpolarization in cortical neurons, which may follow EPSPs triggered by TC volleys. Thalamic stimulation proved to be more efficient than cortical stimulation at producing augmenting responses. Stronger augmenting responses in neocortical neurons were found in deeply located (<0.8 mm, layers V-VI) regular-spiking and fast rhythmic-bursting neurons than in superficial neurons. Although cortical augmenting responses are preceded by rebound spike bursts in TC cells, the duration of the self-sustained postaugmenting oscillatory activity in cortical neurons exceeds that observed in TC neurons. These results emphasize the role of interconnected TC and cortical neurons in the production of augmenting responses leading to short-term plasticity processes.
Collapse
Affiliation(s)
- M Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
36
|
Turner JP, Salt TE. Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro. J Physiol 1998; 510 ( Pt 3):829-43. [PMID: 9660897 PMCID: PMC2231073 DOI: 10.1111/j.1469-7793.1998.829bj.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1. Using an in vitro slice preparation of the rat dorsal lateral geniculate nucleus (dLGN), the properties of retinogeniculate and corticothalamic inputs to thalamocortical (TC) neurones were examined in the absence of GABAergic inhibition. 2. The retinogeniculate EPSP evoked at low frequency (>= 0.1 Hz) consisted of one or two fast-rising (0.8 +/- 0.1 ms), large-amplitude (10.3 +/- 1.6 mV) unitary events, while the corticothalamic EPSP had a graded relationship with stimulus intensity, owing to its slower-rising (2.9 +/- 0.4 ms), smaller-amplitude (1.3 +/- 0.3 mV) estimated unitary components. 3. The retinogeniculate EPSP exhibited a paired-pulse depression of 60.3 +/- 5.6 % at 10 Hz, while the corticothalamic EPSP exhibited a paired-pulse facilitation of > 150 %. This frequency-dependent depression of the retinogeniculate EPSP was maximal after the second stimulus, while the frequency-dependent facilitation of the corticothalamic EPSP was maximal after the fourth or fifth stimulus, at interstimulus frequencies of 1-10 Hz. 4. There was a short-term enhancement of the >= 0.1 Hz corticothalamic EPSP (64.6 +/- 9.2 %), but not the retinogeniculate EPSP, following trains of stimuli at 50 Hz. 5. The >= 0.1 Hz corticothalamic EPSP was markedly depressed by the non-NMDA antagonist 1-(4-amino-phenyl)-4-methyl-7,8-methylene-dioxy-5H-2, 3-benzodiazepine (GYKI 52466), but only modestly by the NMDA antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid ((RS)-CPP), and completely blocked by the co-application of GYKI 52466, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), (RS)-CPP and (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801). Likewise, the corticothalamic responses to trains of stimuli (1-500 Hz) were greatly reduced by this combination of ionotropic glutamate receptor antagonists. 6. In the presence of GYKI 52466, CNQX, (RS)-CPP and MK-801, residual corticothalamic responses and slow EPSPs, with a time to peak of 2-10 s, could be generated following trains of five to fifty stimuli. Neither of these responses were occluded by 1S,3R-1-aminocyclopentane-1, 3-dicarboxylic acid (1S,3R-ACPD), suggesting they are not mediated via group I and II metabotropic glutamate receptors.
Collapse
Affiliation(s)
- J P Turner
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
37
|
Timofeev I, Steriade M. Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons. J Neurophysiol 1998; 79:2716-29. [PMID: 9582240 DOI: 10.1152/jn.1998.79.5.2716] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Augmenting (or incremental) responses are progressively growing potentials elicited by 5- to 15-Hz stimulation within the thalamus, cerebral cortex, or by setting into action reciprocal thalamocortical neuronal loops. These responses are associated with short-term plasticity processes in thalamic and cortical neurons. In the present study, in vivo intracellular recordings of thalamic reticular (RE) and thalamocortical (TC), as well as dual intracellular recordings, were used to explore the mechanisms of two types of intrathalamic augmenting responses elicited by thalamic stimuli at 10 Hz in decorticated cats. As recently described, after decortication, TC cells display incremental burst responses to thalamic stimuli that occur through either progressive depolarization (high threshold, HT) or progressive hyperpolarization leading to deinactivation of low-threshold (LT) spike bursts. Here, low-intensity stimuli (10 Hz) to dorsal thalamic nuclei elicited decremental responses in GABAergic RE cells, consisting of a progressive diminution in the number of action potentials in successive spike bursts, whereas higher stimulation (>50% of maximal strength) induced augmentation characterized by an increased number of spikes in repetitive responses. These opposing discharge patterns occurred in the absence of changes in the membrane potential of RE cells. In TC cells, augmentation depended on the thalamic site where testing volleys were applied. With stimuli applied closer to the site of impalement, augmenting resulted from a transformation from LT spike bursts into HT responses. Augmenting responses were followed by self-sustained oscillatory activity, within the frequency of spindles (7-14 Hz) or clock-like delta oscillation (1-4 Hz). As LT augmentation in TC cells results from their progressive hyperpolarization, we tested the effects exerted by the activating depolarizing system arising in the mesopontine cholinergic nuclei and found that such conditioning pulse-trains prevented the hyperpolarizing-rebound sequences as well as the LT augmenting in TC cells. We propose that the depolarization-dependent (HT) augmenting responses in TC cells result from decremental responses in RE neurons that are due to intra-RE inhibitory processes leading to disinhibition in target TC neurons, whereas LT-type augmenting in TC cells is produced mainly by incremental responses in GABAergic RE neurons.
Collapse
Affiliation(s)
- I Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada
| | | |
Collapse
|
38
|
Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. J Neurophysiol 1998; 79:2730-48. [PMID: 9582241 DOI: 10.1152/jn.1998.79.5.2730] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Repetitive stimulation of the thalamus at 7-14 Hz evokes responses of increasing amplitude in the thalamus and the areas of the neocortex to which the stimulated foci project. Possible mechanisms underlying the thalamic augmenting responses during repetitive stimulation were investigated with computer models of interacting thalamocortical (TC) and thalamic reticular (RE) cells. The ionic currents in these cells were modeled with Hodgkin-Huxley type of kinetics, and the results of the model were compared with in vivo thalamic recordings from decorticated cats. The simplest network model demonstrating an augmenting response was a single pair of coupled RE and TC cells, in which RE-induced inhibitory postsynaptic potentials (IPSPs) in the TC cell led to progressive deinactivation of a low-threshold Ca2+ current. The augmenting responses in two reciprocally interacting chains of RE and TC cells depended also on gamma-aminobutyric acid-B (GABAB) IPSPs. Lateral GABAA inhibition between identical RE cells, which weakened bursts in these cells, diminished GABAB IPSPs and delayed the augmenting response in TC cells. The results of these simulations show that the interplay between existing mechanisms in the thalamus explains the basic properties of the intrathalamic augmenting responses.
Collapse
Affiliation(s)
- M Bazhenov
- Howard Hughes Medical Institute, The Salk Institute, Computational Neurobiology Laboratory, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|