1
|
Lin M, Liu M, Huang C, Shen S, Chen Z, Lai K. Multiple Neural Networks Originating from the Lateral Parabrachial Nucleus Modulate Cough-like Behavior and Coordinate Cough with Pain. Am J Respir Cell Mol Biol 2025; 72:272-284. [PMID: 39417744 DOI: 10.1165/rcmb.2024-0084oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
It has been reported that experimental pain can diminish cough sensitivity and that the lateral parabrachial nucleus (LPBN) coordinates pain with breathing, but whether the LPBN regulates cough-like behaviors and pain-induced changes in cough sensitivity remains elusive. We investigated the roles of LPBN γ-aminobutyric acidergic (GABAergic) and glutamatergic neurons in the regulation of cough sensitivity and its relationship with pain in mice via chemogenetic approaches. Adenovirus-associated virus tracing combined with chemogenetics was used to map the projections of LPBN GABAergic and glutamatergic neurons to the periaqueductal gray. LPBN neurons were activated by cough challenge, and nonspecific inhibition of LPBN neurons suppressed cough-like behavior. Chemogenetic suppression of LPBN GABAergic neurons reduced cough sensitivity in mice, whereas suppression of LPBN glutamatergic neurons counteracted the pain-driven decrease in cough sensitivity, and so did silencing LPBN glutamatergic neurons projecting to the periaqueductal gray. Our data suggest that GABAergic and glutamatergic neurons in the LPBN critically are involved in cough sensitivity and coordinate pain with cough through inhibitory or activating mechanisms at the midbrain level.
Collapse
Affiliation(s)
- Mingtong Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Mingzhe Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Chuqin Huang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Shuirong Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Zhe Chen
- Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Kefang Lai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| |
Collapse
|
2
|
Chen Z, Lin MT, Zhan C, Zhong NS, Mu D, Lai KF, Liu MJ. A descending pathway emanating from the periaqueductal gray mediates the development of cough-like hypersensitivity. iScience 2022; 25:103641. [PMID: 35028531 PMCID: PMC8741493 DOI: 10.1016/j.isci.2021.103641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic cough is a common refractory symptom of various respiratory diseases. However, the neural mechanisms that modulate the cough sensitivity and mediate chronic cough remain elusive. Here, we report that GABAergic neurons in the lateral/ventrolateral periaqueductal gray (l/vlPAG) suppress cough processing via a descending pathway. We found that l/vlPAG neurons are activated by coughing-like behaviors and that tussive agent-evoked coughing-like behaviors are impaired after activation of l/vlPAG neurons. In addition, we showed that l/vlPAG neurons form inhibitory synapses with the nucleus of the solitary tract (NTS) neurons. The synaptic strength of these inhibitory projections is weaker in cough hypersensitivity model mice than in naïve mice. Important, activation of l/vlPAG GABAergic neurons projecting to the NTS decreases coughing-like behaviors. In contrast, suppressing these neurons enhances cough sensitivity. These results support the notion that l/vlPAG GABAergic neurons play important roles in cough hypersensitivity and chronic cough through disinhibition of cough processing at the medullary level. GABAergic neurons in the l/vlPAG inhibit coughing-like behaviors The l/vlPAG sends predominately inhibitory projections to the NTS l/vlPAG GABAergic neurons modulate coughing-like behaviors via descending projections l/vlPAG-NTS projections mediate cough hypersensitivity via disinhibitory mechanisms
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China.,Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, China
| | - Ming-Tong Lin
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Ke-Fang Lai
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Mingzhe J Liu
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| |
Collapse
|
3
|
Fuse S, Sugiyama Y, Dhingra RR, Hirano S, Dutschmann M, Oku Y. Effects of pharmacological lesion of the nucleus retroambiguus region on the pharyngeal phase of swallowing. Respir Physiol Neurobiol 2019; 268:103244. [PMID: 31226424 DOI: 10.1016/j.resp.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 11/16/2022]
Abstract
Pharyngeal swallowing is controlled by synaptic interactions within a swallowing central pattern generator (sw-CPG) that is composed of a dorsal and a ventral swallowing group (VSG). Here, we used electrical stimulation (10 s) of the superior laryngeal nerve (SLN; 20 Hz; pulse width: 100 μs) to explore the role of the VSG in an arterially-perfused brainstem preparation of rats. To investigate the effects of pharmacological lesion (local microinjection of an GABA(A)-R agonist) of the nucleus retroambiguus (NRA), a designated component of the VSG, we recorded phrenic (PNA) and vagal nerve (VNA) activities. Control SLN stimulation with stepwise increasing stimulus intensities (from 20 μA to 160 μA) elicited robust suppression of PNA and evoked sequential swallowing activity in the VNA. Lesioning of the NRA had no effect on the pattern of pharyngeal swallowing, but significantly increased the sensory gating of SLN inputs. We conclude that the NRA is not part of the VSG, but appears to have important roles for the central gating of swallowing.
Collapse
Affiliation(s)
- S Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Y Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - R R Dhingra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - S Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - M Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
| | - Y Oku
- Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
4
|
Saper CB, Kaur S. Brain Circuitry for Arousal from Apnea. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:63-69. [PMID: 31015281 DOI: 10.1101/sqb.2018.83.038125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We wanted to understand the brain circuitry that awakens the individual when there is elevated CO2 or low O2 (e.g., during sleep apnea or asphyxia). The sensory signals for high CO2 and low O2 all converge on the parabrachial nucleus (PB) of the pons, which contains neurons that project to the forebrain. So, we first deleted the vesicular glutamate transporter 2, necessary to load glutamate into synaptic vesicles, from neurons in the PB, and showed that this prevents awakening to high CO2 or low O2 We then showed that PB neurons that express calcitonin gene-related peptide (CGRP) show cFos staining during high CO2 Using CGRP-Cre-ER mice, we expressed the inhibitory opsin archaerhodopsin just in the PBCGRP neurons. Photoinhibition of the PBCGRP neurons effectively prevented awakening to high CO2, as did photoinhibition of their terminals in the basal forebrain, amygdala, and lateral hypothalamus. The PBCGRP neurons are a key mediator of the wakening response to apnea.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Satvinder Kaur
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Bautista TG, Leech J, Mazzone SB, Farrell MJ. Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. J Neurophysiol 2019; 121:1171-1182. [DOI: 10.1152/jn.00547.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coughing is an airway protective behavior elicited by airway irritation. Animal studies show that airway sensory information is relayed via vagal sensory fibers to termination sites within dorsal caudal brain stem and thereafter relayed to more rostral sites. Using functional magnetic resonance imaging (fMRI) in humans, we previously reported that inhalation of the tussigenic stimulus capsaicin evokes a perception of airway irritation (“urge to cough”) accompanied by activations in a widely distributed brain network including the primary sensorimotor, insular, prefrontal, and posterior parietal cortices. Here we refine our imaging approach to provide a directed survey of brain stem areas activated by airway irritation. In 15 healthy participants, inhalation of capsaicin at a maximal dose that elicits a strong urge to cough without behavioral coughing was associated with activation of medullary regions overlapping with the nucleus of the solitary tract, paratrigeminal nucleus, spinal trigeminal nucleus and tract, cardiorespiratory regulatory areas homologous to the ventrolateral medulla in animals, and the midline raphe. Interestingly, the magnitude of activation within two cardiorespiratory regulatory areas was positively correlated ( r2 = 0.47, 0.48) with participants’ subjective ratings of their urge to cough. Capsaicin-related activations were also observed within the pons and midbrain. The current results add to knowledge of the representation and processing of information regarding airway irritation in the human brain, which is pertinent to the pursuit of novel cough therapies. NEW & NOTEWORTHY Functional brain imaging in humans was optimized for the brain stem. We provide the first detailed description of brain stem sites activated in response to airway irritation. The results are consistent with findings in animal studies and extend our foundational knowledge of brain processing of airway irritation in humans.
Collapse
Affiliation(s)
- Tara G. Bautista
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennifer Leech
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Mazzone
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Chen Z, Gu D, Fan L, Zhang W, Sun L, Chen H, Dong R, Lai K. Neuronal Activity of the Medulla Oblongata Revealed by Manganese-Enhanced Magnetic Resonance Imaging in a Rat Model of Gastroesophageal Reflux-Related Cough. Physiol Res 2018; 68:119-127. [PMID: 30433807 DOI: 10.33549/physiolres.933791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated neuronal activity of the medulla oblongata during gastroesophageal reflux-related cough (GERC). A rat model of GERC was generated by perfusing HCl into lower esophagus and inducing cough with citric acid. The HCl group rat was received HCl perfusion without citric acid-induced cough. The saline control rat was perfused with saline instead and cough was induced. Citric acid-induced cough rat was only induced by citric acid. Blank group rats were fed normally. Fos expressions were observed in medulla oblongata nuclei using immunohistochemistry. Manganese-enhanced magnetic resonance imaging (MEMRI) was performed to detect the Mn(2+) signal following intraperitoneal injection of MnCl(2). HCl perfusion and citric acid-induced cough caused Fos expressions in the nucleus of solitary tract (nTS), dorsal motor nucleus of the vagus (DMV), paratrigeminal nucleus (Pa5), and intermediate reticular nucleus (IRt), which was higher than HCl group, saline control group, citric acid-induced cough group, and blank group. A high Mn(2+) signal was also observed in most of these nuclei in model rats, compared with blank group animals. The Mn(2+) signal was also higher in the HCl, saline and citric acid-induced cough group animals, compared with blank group animals. The study showed medulla oblongata neurons were excited in a HCl perfusion and citric acid-induced cough rat model, and nTS, DMV, Pa5 and IRt neurons maybe involved in the cough process and signal integrate.
Collapse
Affiliation(s)
- Zhe Chen
- The First People's Hospital of Kunshan, Jiangsu University, Suzhou, China
| | - Dachuan Gu
- Fu Wai Hospital, Peking Union Medical College, Beijing, China
| | - Linfeng Fan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weitao Zhang
- Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lejia Sun
- Peking Union Medical College, Beijing, China
| | - Hui Chen
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Dong
- Medical School of Southeast University, Nanjing, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
7
|
Chen Z, Sun L, Chen H, Gu D, Zhang W, Yang Z, Peng T, Dong R, Lai K. Dorsal Vagal Complex Modulates Neurogenic Airway Inflammation in a Guinea Pig Model With Esophageal Perfusion of HCl. Front Physiol 2018; 9:536. [PMID: 29867575 PMCID: PMC5962767 DOI: 10.3389/fphys.2018.00536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
Neurogenic airway inflammation in chronic cough and bronchial asthma related to gastroesophageal reflux (GER) is involved in the esophageal–bronchial reflex, but it is unclear whether this reflex is mediated by central neurons. This study aimed to investigate the regulatory effects of the dorsal vagal complex (DVC) on airway inflammation induced by the esophageal perfusion of hydrochloric acid (HCl) following the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was evaluated by measuring the extravasation of Evans blue dye (EBD) and substance P (SP) expression in the airway. Neuronal activity was indicated by Fos expression in the DVC. The neural pathways from the lower esophagus to the DVC and the DVC to the airway were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha) retrograde tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP expression in the trachea, and the expression of SP and Fos in the medulla oblongata nuclei, including the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). The microinjection of glutamic acid (Glu) or exogenous SP to enhance neuronal activity in the DVC significantly potentiated plasma extravasation and SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric acid (GABA), lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated plasma extravasation and SP release. In conclusion, airway inflammation induced by the esophageal perfusion of HCl is regulated by DVC. This study provides new insight for the mechanism of airway neurogenic inflammation related to GER.
Collapse
Affiliation(s)
- Zhe Chen
- The First People's Hospital of Kunshan, Jiangsu University, Kunshan, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lejia Sun
- Department of Hepatobiliary Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hui Chen
- ICU, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dachuan Gu
- Department of Cardiothoracic Surgery, Fu Wai Hospital, Beijing, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Dong
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Inhibitory modulation of the cough reflex by acetylcholine in the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol 2018; 257:93-99. [PMID: 29369803 DOI: 10.1016/j.resp.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
A cholinergic system has been described in the nucleus tractus solitarii (NTS). However, no information is available on the role played by acetylcholine (ACh) in the modulation of the cough reflex within the caudal NTS that has an important function in cough regulation. We addressed this issue making use of bilateral microinjections (30-50 nl) of 10 mM ACh combined with 5 mM physostigmine as well as of 10 mM mecamylamine or 10 mM scopolamine into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Microinjections of ACh/physostigmine caused depressant effects on the cough reflex induced by mechanical and chemical stimulation of the tracheobronchial tree. They also elicited transient increases in respiratory frequency and decreases in abdominal activity. These effects were prevented by scopolamine, but not by mecamylamine. The results show for the first time that ACh exerts an inhibitory modulation of the cough reflex through muscarinic receptors within the caudal NTS. They also may provide hints for novel antitussive approaches.
Collapse
|
9
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
10
|
Poliacek I, Simera M, Veternik M, Kotmanova Z, Bolser DC, Machac P, Jakus J. Role of the dorsomedial medulla in suppression of cough by codeine in cats. Respir Physiol Neurobiol 2017; 246:59-66. [PMID: 28778649 DOI: 10.1016/j.resp.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
The modulation of cough by microinjections of codeine in 3 medullary regions, the solitary tract nucleus rostral to the obex (rNTS), caudal to the obex (cNTS) and the lateral tegmental field (FTL) was studied. Experiments were performed on 27 anesthetized spontaneously breathing cats. Electromyograms (EMG) were recorded from the sternal diaphragm and expiratory muscles (transversus abdominis and/or obliquus externus; ABD). Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Bilateral microinjections of codeine (3.3 or 33mM, 54±16nl per injection) in the cNTS had no effect on cough, while those in the rNTS and in the FTL reduced coughing. Bilateral microinjections into the rNTS (3.3mM codeine, 34±1 nl per injection) reduced the number of cough responses by 24% (P<0.05), amplitudes of diaphragm EMG by 19% (P<0.01), of ABD EMG by 49% (P<0.001) and of expiratory esophageal pressure by 56% (P<0.001). Bilateral microinjections into the FTL (33mM codeine, 33±3 nl per injection) induced reductions in cough expiratory as well as inspiratory EMG amplitudes (ABD by 60% and diaphragm by 34%; P<0.01) and esophageal pressure amplitudes (expiratory by 55% and inspiratory by 26%; P<0.001 and 0.01, respectively). Microinjections of vehicle did not significantly alter coughing. Breathing was not affected by microinjections of codeine. These results suggest that: 1) codeine acts within the rNTS and the FTL to reduce cough in the cat, 2) the neuronal circuits in these target areas have unequal sensitivity to codeine and/or they have differential effects on spatiotemporal control of cough, 3) the cNTS has a limited role in the cough suppression induced by codeine in cats.
Collapse
Affiliation(s)
- Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Peter Machac
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Jakus
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| |
Collapse
|
11
|
Abstract
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and be more integrative. For voice production, a separation of the nonhuman vocalization system from the human learned voice production system has been posited based primarily on studies of nonhuman primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production have shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech involve a common integrative system. However, recent studies of nonhuman primates have provided evidence that some cortical activity vocalization and cortical changes occur with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and nonhuman primates.
Collapse
|
12
|
Abstract
This review examines the current level of knowledge and techniques available for the study of laryngeal reflexes. Overall, the larynx is under constant control of several systems (including respiration, swallowing and cough) as well as sensory motor reflex responses involving glossopharyngeal, pharyngeal, laryngeal, and tracheobronchial sensory receptors. Techniques for the clinical assessment of these reflexes are emerging and need to be examined for sensitivity and specificity in identifying laryngeal sensory disorders. Quantitative assessment methods for the diagnosis of sensory reductions and sensory hypersensitivity may account for laryngeal disorders, such as chronic cough, paradoxical vocal fold disorder, and muscular tension dysphonia. The development of accurate assessment techniques could improve our understanding of the mechanisms involved in these disorders.
Collapse
|
13
|
Wang X, Guo R, Zhao W, Pilowsky PM. Medullary mediation of the laryngeal adductor reflex: A possible role in sudden infant death syndrome. Respir Physiol Neurobiol 2016; 226:121-7. [PMID: 26774498 DOI: 10.1016/j.resp.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
The laryngeal adductor reflex (LAR) is a laryngeal protective reflex. Vagal afferent polymodal sensory fibres that have cell bodies in the nodose ganglion, originate in the sub-glottal area of the larynx and upper trachea. These polymodal sensory fibres respond to mechanical or chemical stimuli. The central axons of these sensory vagal neurons terminate in the dorsolateral subnuclei of the tractus solitarius in the medulla oblongata. The LAR is a critical, reflex in the pathways that play a protective role in the process of ventilation, and the sychronisation of ventilation with other activities that are undertaken by the oropharyngeal systems including: eating, speaking and singing. Failure of the LAR to operate properly at any time after birth can lead to SIDS, pneumonia or death. Despite the critical nature of this reflex, very little is known about the central pathways and neurotransmitters involved in the management of the LAR and any disorders associated with its failure to act properly. Here, we review current knowledge concerning the medullary nuclei and neurochemicals involved in the LAR and propose a potential neural pathway that may facilitate future SIDS research.
Collapse
Affiliation(s)
- Xiaolu Wang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia
| | - Paul M Pilowsky
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia.
| |
Collapse
|
14
|
Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat. Brain Struct Funct 2015; 221:4353-4368. [DOI: 10.1007/s00429-015-1165-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022]
|
15
|
Holstege G, Subramanian HH. Two different motor systems are needed to generate human speech. J Comp Neurol 2015; 524:1558-77. [DOI: 10.1002/cne.23898] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Gert Holstege
- Asia-Pacific Centre for Neuromodulation; Queensland Brain Institute; The University of Queensland; Brisbane 4072 Australia
| | - Hari H. Subramanian
- Asia-Pacific Centre for Neuromodulation; Queensland Brain Institute; The University of Queensland; Brisbane 4072 Australia
| |
Collapse
|
16
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Sakaguchi H, Hisa Y. Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs. J Neurophysiol 2015. [PMID: 26203106 DOI: 10.1152/jn.00332.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consistently halted, we recorded extracellular activity from RTN/pFRG neurons during these fictive behaviors in decerebrate, paralyzed, and artificially ventilated guinea pigs. The activity of the majority of recorded respiratory neurons was changed in synchrony with coughing and swallowing. To further evaluate the contribution of RTN/pFRG neurons to these nonrespiratory behaviors, the motor output patterns during breathing, coughing, and swallowing were compared before and after brain stem transection at the caudal margin of RTN/pFRG region. In addition, the effects of transection at its rostral margin were also investigated to evaluate pontine contribution to these behaviors. During respiration, transection at the rostral margin attenuated the postinspiratory activity of the recurrent laryngeal nerve. Meanwhile, the late expiratory activity of the abdominal nerve was abolished after caudal transection. The caudal transection also decreased the amplitude of the coughing-related abdominal nerve discharge but did not abolish the activity. Swallowing could be elicited even after the caudal end transection. These findings raise the prospect that the RTN/pFRG contributes to expiratory regulation during normal respiration, although this region is not an essential element of the neuronal networks involved in coughing and swallowing.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan; and
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Wang X, Guo R, Zhao W. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats. PLoS One 2015; 10:e0130822. [PMID: 26087133 PMCID: PMC4473071 DOI: 10.1371/journal.pone.0130822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/26/2015] [Indexed: 01/17/2023] Open
Abstract
The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.
Collapse
Affiliation(s)
- Xiaolu Wang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail: (RCG); (WJZ)
| | - Wenjing Zhao
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, China
- * E-mail: (RCG); (WJZ)
| |
Collapse
|
18
|
Troche MS, Brandimore AE, Godoy J, Hegland KW. A framework for understanding shared substrates of airway protection. J Appl Oral Sci 2014; 22:251-60. [PMID: 25141195 PMCID: PMC4126819 DOI: 10.1590/1678-775720140132] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/06/2014] [Indexed: 02/01/2023] Open
Abstract
Deficits of airway protection can have deleterious effects to health and quality of
life. Effective airway protection requires a continuum of behaviors including
swallowing and cough. Swallowing prevents material from entering the airway and
coughing ejects endogenous material from the airway. There is significant overlap
between the control mechanisms for swallowing and cough. In this review we will
present the existing literature to support a novel framework for understanding shared
substrates of airway protection. This framework was originally adapted from Eccles'
model of cough28 (2009) by Hegland,
et al.42 (2012). It will serve to
provide a basis from which to develop future studies and test specific hypotheses
that advance our field and ultimately improve outcomes for people with airway
protective deficits.
Collapse
Affiliation(s)
- Michelle Shevon Troche
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | | | - Juliana Godoy
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Karen Wheeler Hegland
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Mutolo D, Cinelli E, Bongianni F, Pantaleo T. Inhibitory control of the cough reflex by galanin receptors in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1358-67. [DOI: 10.1152/ajpregu.00237.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The caudal nucleus tractus solitarii (NTS) is the main central station of cough-related afferents and a strategic site for the modulation of the cough reflex. The similarities between the characteristics of central processing of nociceptive and cough-related inputs led us to hypothesize that galanin, a neuropeptide implicated in the control of pain, could also be involved in the regulation of the cough reflex at the level of the NTS, where galanin receptors have been found. We investigated the effects of galanin and galnon, a nonpeptide agonist at galanin receptors, on cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nl) into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Galnon antitussive effects on cough responses to the mechanical stimulation of the airway mucosa via a custom-built device were also investigated. Bilateral microinjections of 1 mM galanin markedly decreased cough number, peak abdominal activity, and increased cough-related total cycle duration. Bilateral microinjections of 1 mM galnon induced mild depressant effects on cough, whereas bilateral microinjections of 10 mM galnon caused marked antitussive effects consistent with those produced by galanin. Galnon effects were confirmed by using the cough-inducing device. The results indicate that galanin receptors play a role in the inhibitory control of the cough reflex at the level of the caudal NTS and provide hints for the development of novel antitussive strategies.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
20
|
Ando A, Farrell MJ, Mazzone SB. Cough-related neural processing in the brain: A roadmap for cough dysfunction? Neurosci Biobehav Rev 2014; 47:457-68. [DOI: 10.1016/j.neubiorev.2014.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/29/2014] [Accepted: 09/25/2014] [Indexed: 01/05/2023]
|
21
|
Interactions of mechanically induced coughing and sneezing in cat. Respir Physiol Neurobiol 2014; 205:21-7. [PMID: 25262583 DOI: 10.1016/j.resp.2014.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/10/2014] [Accepted: 09/19/2014] [Indexed: 11/21/2022]
Abstract
Mutual interactions of cough and sneeze were studied in 12 spontaneously breathing pentobarbitone anesthetized cats. Reflexes were induced by mechanical stimulation of the tracheobronchial and nasal airways, respectively. The amplitude of the styloglossus muscle EMG moving average during the sneeze expulsion was 16-fold higher than that during cough (p<0.01). Larger inspiratory efforts occurred during coughing (p<0.01) vs. those in sneeze. The number of reflexes during simultaneous mechanical stimulation of the nasal and tracheal airways was not altered significantly compared to controls (p>0.05) and there was no modulation in temporal characteristics of the behaviors. When both reflexes occurred during simultaneous stimuli the responses were classified as either sneeze or cough (no hybrid responses occurred). During simultaneous stimulation of both airway sites, peak diaphragm EMG and inspiratory esophageal pressures during sneezes were significantly increased. The expiratory maxima of esophageal pressure and amplitudes of abdominal EMGs were increased in coughs and sneezes during simultaneous mechanical stimulation trials compared to control reflexes.
Collapse
|
22
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
23
|
Simera M, Veternik M, Poliacek I. Naloxone Blocks Suppression of Cough by Codeine in Anesthetized Rabbits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 756:65-71. [DOI: 10.1007/978-94-007-4549-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
24
|
Feng X, Xu Z, Butler SG, Leng I, Zhang T, Kritchevsky SB. Effects of aging and levodopa on the laryngeal adductor reflex in rats. Exp Gerontol 2012; 47:900-7. [PMID: 22824541 PMCID: PMC4819337 DOI: 10.1016/j.exger.2012.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/22/2022]
Abstract
Dopaminergic neurotransmission plays an essential role in sensorimotor function, and declines with age. Previously, we found the laryngeal adductor reflex (LAR) was increased in excitation by a dopamine receptor antagonist. If this airway-protective reflex is similarly affected by aging, it will interfere with volitional control in older adults. The current study tested whether the LAR was affected by aging, and whether such deficits were reversed by levodopa administration in aging rats. We recorded thyroarytenoid (TA) muscle activity at rest and during elicitation of LAR responses by stimulation of the internal branch of the superior laryngeal nerve (iSLN) in 6-, 18- and 30-month-old rats under alpha-chloralose anesthesia. Using paired stimuli at different inter-stimulus intervals (ISIs), LAR central conditioning, resting muscle activity, and reflex latency and amplitudes were quantified. Numbers of dopaminergic neurons in the substantia nigra pars compacta (SNpc) were measured using tyrosine hydroxylase staining. We found: (1) increased resting TA muscle activity and LAR amplitude occurred with fewer dopaminergic neurons in the SNpc in 18- and 30-month-old rats; (2) decreases in LAR latency and increases in amplitude correlated with reduced numbers of dopaminergic neurons in the SNpc; (3) test responses were greater at 1000ms ISI in 18-month-old rats compared with 6-month-old rats; and (4) levodopa administration further increased response latency but did not alter muscle activity, response amplitude, or central conditioning. In conclusion, increases in laryngeal muscle activity levels and reflex amplitudes accompanied age reductions in dopaminergic neurons but were not reversed with levodopa administration.
Collapse
Affiliation(s)
- Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| | | | | | | | | | | |
Collapse
|
25
|
Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience 2012; 218:100-9. [DOI: 10.1016/j.neuroscience.2012.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 01/09/2023]
|
26
|
Mutolo D, Bongianni F, Cinelli E, Giovannini MG, Pantaleo T. Suppression of the cough reflex by inhibition of ERK1/2 activation in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Regul Integr Comp Physiol 2012; 302:R976-83. [DOI: 10.1152/ajpregu.00629.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The caudal nucleus tractus solitarii (cNTS), the predominant site of termination of cough-related afferents, has been shown to be a site of action of some centrally acting antitussive agents. A role of ERK1/2 has been suggested in acute central processing of nociceptive inputs. Because pain and cough share similar features, we investigated whether ERK1/2 activation could also be involved in the central transduction of tussive inputs. For this purpose, we undertook the present research on pentobarbital sodium-anesthetized, spontaneously breathing rabbits by using microinjections (30–50 nl) of an inhibitor of ERK1/2 activation (U0126) into the cNTS. Bilateral microinjections of 25 mM U0126 caused rapid and reversible reductions in the cough responses induced by both mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. In particular, the cough number and peak abdominal activity decreased. Bilateral microinjections of 50 mM U0126 completely suppressed the cough reflex without affecting the Breuer-Hering inflation reflex, the pulmonary chemoreflex, and the sneeze reflex. These U0126-induced effects were, to a large extent, reversible. Bilateral microinjections of 50 mM U0124, the inactive analog of U0126, at the same cNTS sites had no effect. This is the first study that provides evidence that ERK1/2 activation within the cNTS is required for the mediation of cough reflex responses in the anesthetized rabbit. These results suggest a role for ERK1/2 in the observed effects via nontranscriptional mechanisms, given the short time involved. They also may provide hints for the development of novel antitussive strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Grazia Giovannini
- Dipartimento di Farmacologia Preclinica e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | | |
Collapse
|
27
|
Ludlow CL. Central nervous system control of interactions between vocalization and respiration in mammals. Head Neck 2011; 33 Suppl 1:S21-5. [DOI: 10.1002/hed.21904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 11/07/2022] Open
|
28
|
Differential respiratory control of the upper airway and diaphragm muscles induced by 5-HT1A receptor ligands. Sleep Breath 2011; 16:135-47. [PMID: 21221824 DOI: 10.1007/s11325-010-0466-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/29/2010] [Accepted: 12/21/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serotonin (5-HT) has a role in respiratory function and dysfunction. Although 5-HT affects respiratory drive to both phrenic and cranial motoneurons, relatively little is known about the role of 5-HT receptor subtypes in the control of upper airway muscle (UAM) respiratory activity. MATERIALS AND METHODS Here, we performed central injections of 5-HT1A agonist (8-OHDPAT) or antagonist (WAY100635) in anesthetized rats and analyzed changes in the electromyographic activity of several UAM and other cardiorespiratory parameters. We also compared the pattern of Fos expression induced after central injection of a control solution or 8-OHDPAT. RESULTS Results showed that 8-OHDPAT induced a robust increase in UAM activity, associated with either tachypnea under volatile anesthesia or bradypnea under liquid anesthesia. Injection of WAY100635 switched off UAM respiratory activity and led to bradypnea, suggesting a tonic excitatory role of endogenous 5-HT1A receptor activation. Co-injection of the agonist and the antagonist blocked the effects produced by each drug alone. Besides drug-induced changes in respiratory frequency, only slight increases in surface of diaphragm bursts were observed. Significant increases in Fos expression after 5-HT1A receptor activation were seen in the nucleus tractus solitarius, nucleus raphe pallidus, parapyramidal region, retrotrapezoid nucleus, lateral parabrachial, and Kölliker-Fuse nuclei. This restricted pattern of Fos expression likely identified the neural substrate responsible for the enhancement of UAM respiratory activity observed after 8-OHDPAT injection. CONCLUSIONS These findings suggest an important role for the 5-HT1A receptors in the neural control of upper airway patency and may be relevant to counteract pharyngeal atonia during obstructive sleep apneas.
Collapse
|
29
|
Canning BJ, Mori N. An essential component to brainstem cough gating identified in anesthetized guinea pigs. FASEB J 2010; 24:3916-26. [PMID: 20581226 DOI: 10.1096/fj.09-151068] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Coughing protects and clears the airways and lungs of inhaled irritants, particulates, pathogens, and accumulated secretions. An initial urge to cough, and an almost binary output suggests gating mechanisms that encode and modulate this defensive reflex. Whether this "gate" has a physical location for the physiological barrier it poses to cough is unknown. Here we describe a critical component to cough gating, the central terminations of the cough receptors. A novel microinjection strategy defined coordinates for microinjection of glutamate receptor antagonists that nearly abolished cough evoked from the trachea and larynx in anesthetized guinea pigs while having no effect on basal respiratory rate and little or no effect on reflexes attributed to activating other afferent nerve subtypes. Comparable microinjections in adjacent brainstem locations (0.5-2 mm distal) were without effect on coughing. Subsequent transganglionic and dual tracing studies confirmed that the central terminations of the cough receptors and their primary relay neurons are found bilaterally within nucleus tractus solitarius (nTS), lateral to the commissural subnucleus and perhaps in the medial subnuclei. These synapses possess the physiological characteristics of a cough gate. Their localization should facilitate more mechanistic studies of the encoding and gating of cough.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
30
|
Poliacek I, Wang C, Corrie LWC, Rose MJ, Bolser DC. Microinjection of codeine into the region of the caudal ventral respiratory column suppresses cough in anesthetized cats. J Appl Physiol (1985) 2010; 108:858-65. [PMID: 20093669 DOI: 10.1152/japplphysiol.00783.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the influence of microinjection of codeine into the caudal ventral respiratory column (cVRC) on the cough reflex. Experiments were performed on 36 anesthetized spontaneously breathing cats. Electromyograms (EMGs) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. The unilateral microinjection of codeine (3.3 mM, 20-32 nl) in the cVRC reduced cough number by 29% (P < 0.01) and expiratory cough amplitudes of esophageal pressure by 33% (P < 0.05) as well as both ipsilateral and contralateral ABD EMGs by 35% and 48% (P < 0.01 and P < 0.01, respectively). No cough depression was observed after microinjections of vehicle. There was no significant effect of microinjection of codeine in the cVRC (3.3 mM, 30-40 nl) on ABD activity induced by a microinjection of D,L-homocysteic acid (30 mM, 27-40 nl) in the same location. However, a cumulative dose of codeine (0.1 mg/kg, 330 nmol/kg) applied into the brain stem circulation through the vertebral artery reduced the ABD motor response to cVRC D,L-homocysteic acid microinjection (30 mM, 28-32 nl) by 47% (P < 0.01). These results suggest that 1) codeine can act within the cVRC to suppress cough and 2) expiratory premotoneurons within the cVRC are relatively insensitive to this opioid.
Collapse
Affiliation(s)
- Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
The lung, like many other organs, is innervated by a variety of sensory nerves and by nerves of the parasympathetic and sympathetic nervous systems that regulate the function of cells within the respiratory tract. Activation of sensory nerves by both mechanical and chemical stimuli elicits a number of defensive reflexes, including cough, altered breathing pattern, and altered autonomic drive, which are important for normal lung homeostasis. However, diseases that afflict the lung are associated with altered reflexes, resulting in a variety of symptoms, including increased cough, dyspnea, airways obstruction, and bronchial hyperresponsiveness. This review summarizes the current knowledge concerning the physiological role of different sensory nerve subtypes that innervate the lung, the factors which lead to their activation, and pharmacological approaches that have been used to interrogate the function of these nerves. This information may potentially facilitate the identification of novel drug targets for the treatment of respiratory disorders such as cough, asthma, and chronic obstructive pulmonary disease.
Collapse
|
32
|
Bianchi AL, Gestreau C. The brainstem respiratory network: An overview of a half century of research. Respir Physiol Neurobiol 2009; 168:4-12. [DOI: 10.1016/j.resp.2009.04.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 12/01/2022]
|
33
|
Davenport PW, Vovk A. Cortical and subcortical central neural pathways in respiratory sensations. Respir Physiol Neurobiol 2009; 167:72-86. [DOI: 10.1016/j.resp.2008.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 09/29/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
34
|
Canning BJ. Central regulation of the cough reflex: therapeutic implications. Pulm Pharmacol Ther 2009; 22:75-81. [PMID: 19284972 DOI: 10.1016/j.pupt.2009.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 01/08/2009] [Indexed: 01/12/2023]
Abstract
In many species including humans, antagonists of NMDA-type glutamate receptors such as dextromethorphan, when used at sufficient doses, have been found to be relatively safe and effective antitussives. Similarly, now in five different species (guinea pigs, rabbits, cats, dogs and pigs), neurokinin receptor antagonists have also proven to be safe and effective antitussive agents. Both of these classes of drugs act centrally to prevent cough. A brief review of what is known about the central encoding of cough is presented, as are the advantages of centrally acting antitussives. Also discussed are new insights into cough and NMDA receptor signaling that may lead to the development of more effective antitussive agents with limited side effects and broad application in treating cough associated with a variety of aetiologies.
Collapse
|
35
|
Abstract
Cough is a persistent symptom of many inflammatory airways' diseases. Cough is mediated by receptors sited on sensory nerves and then through vagal afferent pathways, which terminate in the brainstem respiratory centre. Cough is often described as an unmet clinical need. Opioids are the only prescription-based antitussives currently available in the UK. They possess limited efficacy and exhibit serious unwanted side effects, such as physical dependence, sedation, respiratory depression and gastrointestinal symptoms. There are three classical opioid receptors: the mu, kappa and delta receptors. Peripheral opioid receptors are sited on sensory nerves innervating the airways. A greater understanding of the role of the peripheral and centrally sited opioid receptors is necessary to allow the development of targeted treatments for cough. Because of the limited efficacy and the side-effect profile of the opioids, potential new treatments are sought to alleviate cough. One class of compounds that is currently under examination is the cannabinoids. Like the opioids, cannabinoids have peripheral and centrally sited receptors and also suffer from the blight of unwanted centrally mediated side effects such as sedation, cognitive dysfunction, tachycardia and psychotropic effects. Two cannabinoid receptors have been identified, the CB(1) and CB(2) receptors, and their distribution varies throughout the peripheral and central nervous system. Encouragingly, early studies with these compounds suggest that it may be possible to separate their antitussive activity from their centrally mediated side effects, with CB(2) agonists showing potential as putative new treatments for cough. In this chapter, we describe the opioid and cannabinoid receptors, their distribution and the effects they mediate. Moreover, we highlight their potential advantages and disadvantages in the treatment of cough.
Collapse
Affiliation(s)
- M G Belvisi
- Respiratory Pharmacology, Airway Diseases, National Heart & Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK.
| | | |
Collapse
|
36
|
Abstract
Following systemic administration, centrally acting antitussive drugs are generally assumed to act in the brainstem to inhibit cough. However, recent work in humans has raised the possibility of suprapontine sites of action for cough suppressants. For drugs that may act in the brainstem, the specific locations, types of neurones affected, and receptor specificities of the compounds represent important issues regarding their cough-suppressant actions. Two medullary areas that have received the most attention regarding the actions of antitussive drugs are the nucleus of the tractus solitarius (NTS) and the caudal ventrolateral respiratory column. Studies that have implicated these two medullary areas have employed both microinjection and in vitro recording methods to control the location of action of the antitussive drugs. Other brainstem regions contain neurones that participate in the production of cough and could represent potential sites of action of antitussive drugs. These regions include the raphe nuclei, pontine nuclei, and rostral ventrolateral medulla. Specific receptor subtypes have been associated with the suppression of cough at central sites, including 5-HT1A, opioid (mu, kappa, and delta), GABA-B, tachykinin neurokinin-1 (NK-1) and neurokinin-2, non-opioid (NOP-1), cannabinoid, dopaminergic, and sigma receptors. Aside from tachykinin NK-1 receptors in the NTS, relatively little is known regarding the receptor specificity of putative antitussive drugs in particular brainstem regions. Our understanding of the mechanisms of action of antitussive drugs would be significantly advanced by further work in this area.
Collapse
Affiliation(s)
- D C Bolser
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0144, USA.
| |
Collapse
|
37
|
Cough sensors. I. Physiological and pharmacological properties of the afferent nerves regulating cough. Handb Exp Pharmacol 2008:23-47. [PMID: 18825334 DOI: 10.1007/978-3-540-79842-2_2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The afferent nerves regulating cough have been reasonably well defined. The selective effects of general anesthesia on C-fiber-dependent cough and the opposing effects of C-fiber subtypes in cough have led to some uncertainty about their regulation of this defensive reflex. But a role for C-fibers in cough seems almost certain, given the unique pharmacological properties of these unmyelinated vagal afferent nerves and the ability of many C-fiber-selective stimulants to evoke cough. The role of myelinated laryngeal, tracheal, and bronchial afferent nerve subtypes that can be activated by punctate mechanical stimuli, inhaled particulates, accumulated secretions, and acid has also been demonstrated. These "cough receptors" are distinct from the slowly and rapidly adapting intrapulmonary stretch receptors responding to lung inflation. Indeed, intrapulmonary rapidly and slowly adapting receptors and pulmonary C-fibers may play no role or a nonessential role in cough, or might even actively inhibit cough upon activation. A critical review of the studies of the afferent nerve subtypes most often implicated in cough is provided.
Collapse
|
38
|
Haji A, Ohi Y, Tsunekawa S. N-methyl-d-aspartate mechanisms in depolarization of augmenting expiratory neurons during the expulsive phase of fictive cough in decerebrate cats. Neuropharmacology 2008; 54:1120-7. [DOI: 10.1016/j.neuropharm.2008.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 11/24/2022]
|
39
|
Poliacek I, Halasova E, Jakus J, Murin P, Barani H, Stransky A, Bolser DC. Brainstem regions involved in the expiration reflex. A c-fos study in anesthetized cats. Brain Res 2007; 1184:168-77. [PMID: 17964550 PMCID: PMC2701351 DOI: 10.1016/j.brainres.2007.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/31/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
Expression of the immediate-early gene c-fos, a marker of neuronal activation, was employed to localize brainstem neuronal populations functionally related to the expiration reflex (ER). Twelve spontaneously breathing, non-decerebrate, pentobarbital anesthetized cats were used. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive ERs mechanically induced from the glottis (296+/-9 ERs) was compared to FLI in 6 control non-stimulated cats. Respiratory rate, arterial blood pressure, and end tidal CO(2) concentration remained stable during the experiment. In the medulla, increased FLI was found in the region of nucleus tractus solitarii (p<0.001), in the ventrolateral medulla along with the lateral tegmental field (p<0.01), and in the vestibular nuclei (p<0.01). In the pons, increased FLI was detected in the caudal extensions of the lateral parabrachial and Kölliker-Fuse nuclei (p<0.05). Within the rostral mesencephalon, FLI was enhanced in the midline area (p<0.05). A lower level of ER-related FLI compared to control animals was detected in the pontine raphe region (p<0.05) and the lateral division of mesencephalic periaqueductal gray (p<0.05). The results suggest that the ER is coordinated by a complex long loop of medullary-pontine-mesencephalic neuronal circuits, some of which may differ from those of other respiratory reflexes. The FLI related to the expulsive behavior ER differs from that induced by laryngeal stimulation and laryngeal adductor responses, particularly in ventrolateral medulla and mesencephalon.
Collapse
Affiliation(s)
- Ivan Poliacek
- Department of Medical Biophysics, Comenius University Bratislava, Jessenius Faculty of Medicine, Malá hora 4, 03754, Martin, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Jakus J, Poliacek I, Halasova E, Murin P, Knocikova J, Tomori Z, Bolser DC. Brainstem circuitry of tracheal-bronchial cough: c-fos study in anesthetized cats. Respir Physiol Neurobiol 2007; 160:289-300. [PMID: 18055277 DOI: 10.1016/j.resp.2007.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/15/2007] [Accepted: 10/23/2007] [Indexed: 11/15/2022]
Abstract
The c-fos gene expression method was used to localize brainstem neurons functionally related to the tracheal-bronchial cough on 13 spontaneously breathing, pentobarbitone anesthetized cats. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive coughs (170+/-12) induced by mechanical stimulation of the tracheobronchial mucosa was compared to FLI in 7 control non-stimulated cats. Thirty-four nuclei were compared for the number of labeled cells. Enhanced cough FLI was found bilaterally at following brainstem structures, as compared to controls: In the medulla, FLI was increased in the medial, interstitial and ventrolateral subnuclei of the solitary tract (p < 0.02), in the retroambigual nucleus of the caudal medulla (p < 0.05), in the ambigual, paraambigual and retrofacial nuclei of the rostral medulla along with the lateral reticular nuclei, the ventrolateral reticular tegmental field (p < 0.05), and the raphe nuclei (p < 0.05). In pons, increased FLI was detected in the lateral parabrachial and Kölliker-Fuse nuclei (p < 0.01), in the posteroventral cochlear nuclei (p < 0.01), and the raphe midline (p < 0.05). Within the mesencephalon cough-related FLI was enhanced at the rostral midline area (p < 0.05), but a decrease was found at its caudal part in the periaqueductal gray (p < 0.02). Results of this study suggest a large medullary - pontine - mesencephalic neuronal circuit involved in the control of the tracheal-bronchial cough in cats.
Collapse
Affiliation(s)
- Jan Jakus
- Department of Medical Biophysics, Comenius University Bratislava, Jessenius Faculty of Medicine, Malá Hora 4, 03754 Martin, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Takahama K, Shirasaki T. Central and peripheral mechanisms of narcotic antitussives: codeine-sensitive and -resistant coughs. COUGH 2007; 3:8. [PMID: 17620111 PMCID: PMC1950526 DOI: 10.1186/1745-9974-3-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 07/09/2007] [Indexed: 11/10/2022]
Abstract
Narcotic antitussives such as codeine reveal the antitussive effect primarily via the mu-opioid receptor in the central nervous system (CNS). The kappa-opioid receptor also seems to contribute partly to the production of the antitussive effect of the drugs. There is controversy as to whether delta-receptors are involved in promoting an antitussive effect. Peripheral opioid receptors seem to have certain limited roles. Although narcotic antitussives are the most potent antitussives at present, certain types of coughs, such as chronic cough, are particularly difficult to suppress even with codeine. In guinea pigs, coughs elicited by mechanical stimulation of the bifurcation of the trachea were not able to be suppressed by codeine. In gupigs with sub-acute bronchitis caused by SO2 gas exposure, coughing is difficult to inhibit with centrally acting antitussives such as codeine. Some studies suggest that neurokinins are involved in the development of codeine-resistant coughs. However, evidence supporting this claim is still insufficient. It is very important to characterize opiate-resistant coughs in experimental animals, and to determine which experimentally induced coughs correspond to which types of cough in humans. In this review, we describe the mechanisms of antitussive effects of narcotic antitussives, addressing codeine-sensitive and -resistant coughs, and including our own results.
Collapse
Affiliation(s)
- Kazuo Takahama
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan
| | - Tetsuya Shirasaki
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
42
|
Chan SW, Rudd JA, Lin G, Li P. Action of anti-tussive drugs on the emetic reflex of Suncus murinus (house musk shrew). Eur J Pharmacol 2006; 559:196-201. [PMID: 17254564 DOI: 10.1016/j.ejphar.2006.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 12/01/2006] [Accepted: 12/06/2006] [Indexed: 11/29/2022]
Abstract
The cough and emetic reflexes involve a synchronized firing of motor neurones involved in respiratory control. Tachykinin NK1 receptor antagonists and 5-HT1A receptor agonists are examples of centrally acting drugs that reduce cough and emesis. In the present studies, therefore, we examined the possibility that other classes of drugs known to reducing cough have anti-emetic properties to prevent emesis induced by diverse challenges. We examined the potential of codeine (1-10 mg/kg), baclofen (1-10 mg/kg), scopolamine (0.3-10 mg/kg), diphenhydramine (1-10 mg/kg), imperialine (1-30 mg/kg) and verticine (0.3-3 mg/kg) to inhibit emesis induced by nicotine (5 mg/kg, s.c.), copper sulphate (120 mg/kg, intragastric), and provocative motion (4 cm horizontal displacement, delivered at 1 Hz) in Suncus murinus (house musk shrew). Only codeine had broad inhibitory properties (P<0.05) to antagonize emesis induced by all challenges with ID50 values ranging from 1.2 to 2.3 mg/kg. Baclofen antagonized emesis induced by nicotine (maximum reduction was 44.9%, P<0.05) and motion (maximum reduction was 97.3%, P<0.01), but potentiated copper sulphate-induced emesis (maximum potentiation was 73.0%, P<0.05). Scopolamine antagonized copper sulphate-induced emesis (maximum reduction was 61.2%, P<0.05) and imperialine antagonized nicotine-induced emesis (maximum reduction was 30.2%, P<0.01), but verticine potentiated motion-induced emesis (maximum potentiation was 60.0%, P<0.05). Diphenhydramine did not significantly reduce emesis induced by any of the challenges (P>0.05). In conclusion, codeine has broad inhibitory anti-emetic actions but a known ability to reduce coughing does not necessarily predict broad inhibitory anti-emetic properties.
Collapse
Affiliation(s)
- Shun-Wan Chan
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
43
|
Ohi Y, Yamazaki H, Takeda R, Haji A. Functional and morphological organization of the nucleus tractus solitarius in the fictive cough reflex of guinea pigs. Neurosci Res 2005; 53:201-9. [PMID: 16040147 DOI: 10.1016/j.neures.2005.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/09/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
Projection of the superior laryngeal nerve (SLN) afferent fibers into the nucleus tractus solitarius (NTS) was investigated using a fluorescent tracer in guinea pigs. High density of fluorescence was detected in the ipsilateral NTS extending from 0.5 mm caudal to 1.2 mm rostral to the obex. At coronal slices, the fluorescent granules, lines and patches were located in the interstitial, medial and dorsal regions of NTS. Fluorescence was also found in the dorsal region of contralateral commissural NTS. Microstimulation of the rostral NTS, which corresponded to the region showing the strong fluorescence, induced an increase in the inspiratory discharge of phrenic nerve that was immediately followed by a large burst discharge of the iliohypogastric nerve in decerebrate, paralyzed and artificially ventilated guinea pigs. This serial response of the two nerves was identical to that induced by electrical stimulation of the SLN. Intravenous injection of codeine suppressed both NTS and SLN-induced responses. The SLN-induced response was inhibited by microinjection of codeine into the ipsilateral NTS and abolished by lesion of the ipsilateral NTS. These results suggest that the NTS has an integrative function in production of cough reflex and is possible sites of action of central antitussive agents.
Collapse
Affiliation(s)
- Yoshiaki Ohi
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
44
|
Ludlow CL. Central nervous system control of the laryngeal muscles in humans. Respir Physiol Neurobiol 2005; 147:205-22. [PMID: 15927543 PMCID: PMC1351146 DOI: 10.1016/j.resp.2005.04.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Revised: 04/01/2005] [Accepted: 04/01/2005] [Indexed: 11/15/2022]
Abstract
Laryngeal muscle control may vary for different functions such as: voice for speech communication, emotional expression during laughter and cry, breathing, swallowing, and cough. This review discusses the control of the human laryngeal muscles for some of these different functions. Sensori-motor aspects of laryngeal control have been studied by eliciting various laryngeal reflexes. The role of audition in learning and monitoring ongoing voice production for speech is well known; while the role of somatosensory feedback is less well understood. Reflexive control systems involving central pattern generators may contribute to swallowing, breathing and cough with greater cortical control during volitional tasks such as voice production for speech. Volitional control is much less well understood for each of these functions and likely involves the integration of cortical and subcortical circuits. The new frontier is the study of the central control of the laryngeal musculature for voice, swallowing and breathing and how volitional and reflexive control systems may interact in humans.
Collapse
Affiliation(s)
- Christy L Ludlow
- Laryngeal and Speech Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke/NIH, Building 10, Room 5D 38, 10 Center Drive MSC 1416, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Knight YE, Classey JD, Lasalandra MP, Akerman S, Kowacs F, Hoskin KL, Goadsby PJ. Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res 2005; 1045:1-11. [PMID: 15910757 DOI: 10.1016/j.brainres.2005.01.091] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 11/28/2022]
Abstract
Functional imaging studies and clinical evidence suggest that structures in the brainstem contribute to migraine pathophysiology with a strong association between the brainstem areas, such as periaqueductal gray (PAG), and the headache phase of migraine. Stimulation of the superior sagittal sinus (SSS) in humans evokes head pain. Second-order neurons in the trigeminal nucleus that are activated by SSS stimulation can be inhibited by PAG stimulation. The present study was undertaken to identify pontine and medullary structures that respond to noxious stimulation of the superior sagittal sinus or to ventrolateral PAG stimulation. The distribution of neurons expressing the protein product (fos) of the c-fos immediate early gene were examined in the rostral medulla and caudal pons of the cat after (i) sham, (ii) stimulation of the superior sagittal sinus, (iii) stimulation of the superior sagittal sinus with PAG stimulation, or (iv) stimulation of the PAG alone. The structures examined for fos were the trigeminal nucleus, infratrigeminal nucleus, reticular nuclei, nucleus raphe magnus, pontine blink premotor area, and superior salivatory nucleus. Compared with all other interventions, fos expression was significantly greater in the trigeminal nucleus and superior salivatory nucleus after SSS stimulation. After PAG with SSS stimulation, on the side ipsilateral to the site of PAG stimulation, fos was significantly greater in the nucleus raphe magnus. These structures are likely to be involved in the neurobiology of migraine.
Collapse
Affiliation(s)
- Yolande E Knight
- Headache Group, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Dutschmann M, Mörschel M, Kron M, Herbert H. Development of adaptive behaviour of the respiratory network: implications for the pontine Kolliker-Fuse nucleus. Respir Physiol Neurobiol 2005; 143:155-65. [PMID: 15519552 DOI: 10.1016/j.resp.2004.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 11/30/2022]
Abstract
Breathing is constantly modulated by afferent sensory inputs in order to adapt to changes in behaviour and environment. The pontine respiratory group, in particular the Kolliker-Fuse nucleus, might be a key structure for adaptive behaviours of the respiratory network. Here, we review the anatomical connectivity of the Kolliker-Fuse nucleus with primary sensory structures and with the medullary respiratory centres and focus on the importance of pontine and medullary postinspiratory neurones in the mediation of respiratory reflexes. Furthermore, we will summarise recent findings from our group regarding ontogenetic changes of respiratory reflexes (e.g., the diving response) and provide evidence that immaturity of the Kolliker-Fuse nucleus might account in neonates for a lack of plasticity in sensory evoked modulations of respiratory activity. We propose that a subpopulation of neurones within the Kolliker-Fuse nucleus represent command neurones for sensory processing which are capable of initiating adaptive behaviour in the respiratory network. Recent data from our laboratory suggest that these command neurones undergo substantial postnatal maturation.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Department of Physiology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
47
|
Shannon R, Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG. Production of reflex cough by brainstem respiratory networks. Pulm Pharmacol Ther 2004; 17:369-76. [PMID: 15564078 DOI: 10.1016/j.pupt.2004.09.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Delineation of neural mechanisms involved in reflex cough is essential for understanding its many physiological and clinical complexities, and the development of more desirable antitussive agents. Brainstem networks that generate and modulate the breathing pattern are also involved in producing the motor patterns during reflex cough. Neurones of the ventrolateral medulla respiratory pattern generator mutually interact with neural networks in the pons, medulla and cerebellum to form a larger dynamic network. This paper discusses evidence from our laboratory and others supporting the involvement of the nucleus tractus solitarii, midline raphe nuclei and lateral tegmental field in the medulla, and the pontine respiratory group and cerebellum in the production of reflex cough. Gaps in our knowledge are identified to stimulate further research on this complicated issue.
Collapse
Affiliation(s)
- R Shannon
- Department of Physiology and Biophysics, MDC Box 8, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612-4799, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Lang IM, Dean C, Medda BK, Aslam M, Shaker R. Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res 2004; 1014:145-63. [PMID: 15213000 DOI: 10.1016/j.brainres.2004.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to identify the medullary vagal nuclei involved in the different phases of swallowing activated physiologically in a species with an esophagus similar to human. In decerebrate cats, the pharyngeal (0.5-1.0 ml water in pharynx (N=6)) or esophageal (1-3 ml air in esophagus (N=5)) phases of swallowing were stimulated separately once per minute for 3 h, and we compared the resulting c-fos immunoreactivity within neuronal cell nuclei of the dorsal motor nucleus (DMN), nucleus tractus solitarius (NTS) and nucleus ambiguus (NA) with a sham control group (N=5). We found that the pharyngeal phase was associated with an elevated number of c-fos positive neurons in the intermediate (NTSim), interstitial (NTSis), ventromedial (NTSvm) subnuclei of the NTS, caudal DMN, and dorsal NA; and the esophageal phase was associated with an elevated number of c-fos positive neurons in the central (NTSce), ventral, dorsolateral, ventrolateral subnuclei of the NTS, rostral DMN, and ventral NA. We concluded that the pharyngeal and esophageal phases of swallowing are associated with different sets of NTS subnuculei; and the DMN and NA may contain functionally different populations of motor neurons situated rostrocaudally and dorsoventrally associated with the different phases of swallowing. The central pattern generator (CPG) for swallowing probably receives significant peripheral feedback, and the NTSvm may participate in the transition of the pharyngeal to the esophageal phase of swallowing.
Collapse
Affiliation(s)
- Ivan M Lang
- Department of Medicine, MCW Dysphagia Research Laboratory, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
49
|
Ambalavanar R, Tanaka Y, Selbie WS, Ludlow CL. Neuronal activation in the medulla oblongata during selective elicitation of the laryngeal adductor response. J Neurophysiol 2004; 92:2920-32. [PMID: 15212423 PMCID: PMC2376830 DOI: 10.1152/jn.00064.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Swallow and cough are complex motor patterns elicited by rapid and intense electrical stimulation of the internal branch of the superior laryngeal nerve (ISLN). The laryngeal adductor response (LAR) includes only a laryngeal response, is elicited by single stimuli to the ISLN, and is thought to represent the brain stem pathway involved in laryngospasm. To identify which regions in the medulla are activated during elicitation of the LAR alone, single electrical stimuli were presented once every 2 s to the ISLN. Two groups of five cats each were studied; an experimental group with unilateral ISLN stimulation at 0.5 Hz and a surgical control group. Three additional cats were studied to evaluate whether other oral, pharyngeal, or respiratory muscles were activated during ISLN stimulation eliciting LAR. We quantified < or = 22 sections for each of 14 structures in the medulla to determine if regions had increased Fos-like immunoreactive neurons in the experimental group. Significant increases (P < 0.0033) occurred with unilateral ISLN stimulation in the interstitial subnucleus, the ventrolateral subnucleus, the commissural subnucleus of the nucleus tractus solitarius, the lateral tegmental field of the reticular formation, the area postrema, and the nucleus ambiguus. Neither the dorsal motor nucleus of the vagus, usually active for swallow, nor the nucleus retroambiguus, retrofacial nucleus, and the lateral reticular nucleus, usually active for cough, were active with elicitation of the laryngeal adductor response alone. The results demonstrate that the laryngeal adductor pathway is contained within the broader pathways for cough and swallow in the medulla.
Collapse
Affiliation(s)
- Ranjinidevi Ambalavanar
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Strokes, Bethesda, MD 20892-1416, USA
| | | | | | | |
Collapse
|
50
|
Poletto CJ, Verdun LP, Strominger R, Ludlow CL. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures. J Appl Physiol (1985) 2004; 97:858-66. [PMID: 15133000 PMCID: PMC2376825 DOI: 10.1152/japplphysiol.00087.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand the role of each of the laryngeal muscles in producing vocal fold movement, activation of these muscles was correlated with laryngeal movement during different tasks such as sniff, cough or throat clear, and speech syllable production. Four muscles [the posterior cricoarytenoid, lateral cricoarytenoid, cricothyroid (CT), and thyroarytenoid (TA)] were recorded with bipolar hooked wire electrodes placed bilaterally in four normal subjects. A nasoendoscope was used to record vocal fold movement while simultaneously recording muscle activity. Muscle activation level was correlated with ipsilateral vocal fold angle for vocal fold opening and closing. Pearson correlation coefficients and their statistical significance were computed for each trial. Significant effects of muscle (P < or = 0.0005) and task (P = 0.034) were found on the r (transformed to Fisher's Z') values. All of the posterior cricoarytenoid recordings related significantly with vocal opening, whereas CT activity was significantly correlated with opening only during sniff. The TA and lateral cricoarytenoid activities were significantly correlated with vocal fold closing during cough. During speech, the CT and TA activity correlated with both opening and closing. Laryngeal muscle patterning to produce vocal fold movement differed across tasks; reciprocal muscle activity only occurred on cough, whereas speech and sniff often involved simultaneous contraction of muscle antagonists. In conclusion, different combinations of muscle activation are used for biomechanical control of vocal fold opening and closing movements during respiratory, airway protection, and speech tasks.
Collapse
Affiliation(s)
- Christopher J Poletto
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892-1416, USA.
| | | | | | | |
Collapse
|