1
|
Zhou Z, Huang C, Robins EM, Angus DJ, Sedikides C, Kelley NJ. Decoding the Narcissistic Brain. Neuroimage 2025:121284. [PMID: 40403942 DOI: 10.1016/j.neuroimage.2025.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
There is a substantial knowledge gap in the narcissism literature: Less than 1% of the nearly 12,000 articles on narcissism have addressed its neural basis. To help fill this gap, we asked whether the multifacetedness of narcissism could be decoded from spontaneous neural oscillations. We attempted to do so by applying a machine learning approach (multivariate pattern analysis) to the resting-state EEG data of 162 participants who also completed a comprehensive battery of narcissism scales assessing agentic, admirative, rivalrous, communal, and vulnerable forms. Consistent with the agency-communion model of narcissism, agentic and communal forms of grandiose narcissism were reflected in distinct, non-overlapping patterns of spontaneous neural oscillations. Furthermore, consistent with a narcissistic admiration and rivalry concept model of narcissism, we observed largely non-overlapping patterns of spontaneous neural oscillations for admirative and rivalrous forms of narcissism. Vulnerable narcissism was negatively associated with power across fast and slow wave frequency bands. Taken together, the results suggest that the diverse forms of narcissism can be reliably predicted from spontaneous neural oscillations. The findings contribute to the burgeoning field of personality neuroscience.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Centre for Research on Self and Identity, School of Psychology, University of Southampton
| | - Chengli Huang
- Centre for Research on Self and Identity, School of Psychology, University of Southampton
| | - Esther M Robins
- Centre for Research on Self and Identity, School of Psychology, University of Southampton
| | | | - Constantine Sedikides
- Centre for Research on Self and Identity, School of Psychology, University of Southampton
| | - Nicholas J Kelley
- Centre for Research on Self and Identity, School of Psychology, University of Southampton.
| |
Collapse
|
2
|
Landron T, Lopez-Persem A, Domenech P, Lehongre K, Navarro V, Rheims S, Kahane P, Bastin J, Pessiglione M. Dissociation of value and confidence signals in the orbitofrontal cortex during decision-making: an intracerebral electrophysiology study in humans. J Neurosci 2025; 45:e1740242025. [PMID: 40101962 PMCID: PMC12044034 DOI: 10.1523/jneurosci.1740-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025] Open
Abstract
Some decisions, such as selecting a food item in a novel menu, are not based on rational norms, or on trained habits, but on subjective preferences. How the human brain makes these preference-based decisions is still debated in cognitive neuroscience. Classical models focus on the comparison mechanism that achieves the selection of the option with best expected value. Recent models suggest that estimates of option values are refined until reaching sufficient confidence in the considered choice. Neuroimaging studies in humans and electrophysiology studies in animals have gathered evidence that value and confidence estimates are both represented in medial and lateral regions of the orbitofrontal cortex (OFC). Here, we took advantage of electrodes implanted within the OFC of human patients with pharmaco-resistant epilepsy (14 women, 12 men) to investigate whether value and confidence estimates can be dissociated in electrophysiology activity recorded during preference-based binary decisions. The overall value (liking ratings summed over options) and choice confidence (selection probability of the chosen option) were identified in low-frequency (4-8 Hz) OFC activity. These value and confidence signals were time-locked to the decision, showed opposite signs of correlation and were recorded in separate sites. This pattern of results is not consistent with the simulations of an attractor neural network model implementing a comparison of option values. However, it is compatible with the notion of a neural network generating sparse representations of option values and choice confidence estimates, based on which decisions can be made.Significance statement The orbitofrontal cortex (OFC) is known to play a critical role in decisions based on subjective preferences, such as choosing between food items in a menu. However, the information provided by the human OFC has remained elusive, due to limitations of neuroimaging techniques. Here, taking advantage of electrodes implanted in patients for clinical purposes, we present a rare dataset of electrophysiological activity recorded during preference-based decisions. Our analyses suggest that the OFC signals two distinct constructs on which decisions could be based: the subjective values of available options and the confidence in the intended choice.
Collapse
Affiliation(s)
- Thelma Landron
- Paris Brain Institute (ICM), Inserm UMR1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Alizée Lopez-Persem
- Paris Brain Institute (ICM), Inserm UMR1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Philippe Domenech
- Paris Brain Institute (ICM), Inserm UMR1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Katia Lehongre
- Paris Brain Institute (ICM), Inserm UMR1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Vincent Navarro
- Paris Brain Institute (ICM), Inserm UMR1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Epilepsy Unit, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Sorbonne Université, Paris 75013, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Bron 69500, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron 69500, France
| | - Philippe Kahane
- Grenoble Institute of Neuroscience, INSERM U1216, Université Grenoble Alpes, La Tronche 38700, France
- Centre Hospitalo-Universitaire Grenoble Alpes, Université Grenoble Alpes, La Tronche 38700, France
| | - Julien Bastin
- Grenoble Institute of Neuroscience, INSERM U1216, Université Grenoble Alpes, La Tronche 38700, France
| | - Mathias Pessiglione
- Paris Brain Institute (ICM), Inserm UMR1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| |
Collapse
|
3
|
Lee S, Song E, Zhu M, Appel-Cresswell S, McKeown MJ. Apathy scores in Parkinson's disease relate to EEG components in an incentivized motor task. Brain Commun 2024; 6:fcae025. [PMID: 38370450 PMCID: PMC10873141 DOI: 10.1093/braincomms/fcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/12/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
Apathy is one of the most prevalent non-motor symptoms of Parkinson's disease and is characterized by decreased goal-directed behaviour due to a lack of motivation and/or impaired emotional reactivity. Despite its high prevalence, the neurophysiological mechanisms underlying apathy in Parkinson's disease, which may guide neuromodulation interventions, are poorly understood. Here, we investigated the neural oscillatory characteristics of apathy in Parkinson's disease using EEG data recorded during an incentivized motor task. Thirteen Parkinson's disease patients with apathy and 13 Parkinson's disease patients without apathy as well as 12 healthy controls were instructed to squeeze a hand grip device to earn a monetary reward proportional to the grip force they used. Event-related spectral perturbations during the presentation of a reward cue and squeezing were analysed using multiset canonical correlation analysis to detect different orthogonal components of temporally consistent event-related spectral perturbations across trials and participants. The first component, predominantly located over parietal regions, demonstrated suppression of low-beta (12-20 Hz) power (i.e. beta desynchronization) during reward cue presentation that was significantly smaller in Parkinson's disease patients with apathy compared with healthy controls. Unlike traditional event-related spectral perturbation analysis, the beta desynchronization in this component was significantly correlated with clinical apathy scores. Higher monetary rewards resulted in larger beta desynchronization in healthy controls but not Parkinson's disease patients. The second component contained gamma and theta frequencies and demonstrated exaggerated theta (4-8 Hz) power in Parkinson's disease patients with apathy during the reward cue and squeezing compared with healthy controls (HCs), and this was positively correlated with Montreal Cognitive Assessment scores. The third component, over central regions, demonstrated significantly different beta power across groups, with apathetic groups having the lowest beta power. Our results emphasize that altered low-beta and low-theta oscillations are critical for reward processing and motor planning in Parkinson's disease patients with apathy and these may provide a target for non-invasive neuromodulation.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Esther Song
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Maria Zhu
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Department of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Martin J McKeown
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
4
|
Matthews J, Pisauro MA, Jurgelis M, Müller T, Vassena E, Chong TTJ, Apps MAJ. Computational mechanisms underlying the dynamics of physical and cognitive fatigue. Cognition 2023; 240:105603. [PMID: 37647742 DOI: 10.1016/j.cognition.2023.105603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
The willingness to exert effort for reward is essential but comes at the cost of fatigue. Theories suggest fatigue increases after both physical and cognitive exertion, subsequently reducing the motivation to exert effort. Yet a mechanistic understanding of how this happens on a moment-to-moment basis, and whether mechanisms are common to both mental and physical effort, is lacking. In two studies, participants reported momentary (trial-by-trial) ratings of fatigue during an effort-based decision-making task requiring either physical (grip-force) or cognitive (mental arithmetic) effort. Using a novel computational model, we show that fatigue fluctuates from trial-to-trial as a function of exerted effort and predicts subsequent choices. This mechanism was shared across the domains. Selective to the cognitive domain, committing errors also induced momentary increases in feelings of fatigue. These findings provide insight into the computations underlying the influence of effortful exertion on fatigue and motivation, in both physical and cognitive domains.
Collapse
Affiliation(s)
- Julian Matthews
- RIKEN Center for Brain Science, Wako-shi, Saitama 351-0106, Japan; Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia
| | - M Andrea Pisauro
- Centre for Human Brain Health, School of Psychology, University of Birmingham, United Kingdom; Institute for Mental Health, School of Psychology, University of Birmingham, United Kingdom; Department of Experimental Psychology, University of Oxford, United Kingdom
| | - Mindaugas Jurgelis
- Department of Experimental Psychology, University of Oxford, United Kingdom; School of Psychological Sciences, Monash University, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia
| | - Tanja Müller
- Department of Experimental Psychology, University of Oxford, United Kingdom; Zurich Center for Neuroeconomics, Department of Economics, University of Zürich, Switzerland
| | - Eliana Vassena
- Behavioural Science Institute, Radbound University, Netherlands
| | - Trevor T-J Chong
- School of Psychological Sciences, Monash University, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia.
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, United Kingdom; Institute for Mental Health, School of Psychology, University of Birmingham, United Kingdom; Department of Experimental Psychology, University of Oxford, United Kingdom; Christ Church, University of Oxford, United Kingdom.
| |
Collapse
|
5
|
Pierrieau E, Berret B, Lepage JF, Bernier PM. From Motivation to Action: Action Cost Better Predicts Changes in Premovement Beta-Band Activity than Speed. J Neurosci 2023; 43:5264-5275. [PMID: 37339875 PMCID: PMC10342222 DOI: 10.1523/jneurosci.0213-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
Although premovement beta-band event-related desynchronization (β-ERD; 13-30 Hz) from sensorimotor regions is modulated by movement speed, current evidence does not support a strict monotonic association between the two. Given that β-ERD is thought to increase information encoding capacity, we tested the hypothesis that it might be related to the expected neurocomputational cost of movement, here referred to as action cost. Critically, action cost is greater both for slow and fast movements compared with a medium or "preferred" speed. Thirty-one right-handed participants performed a speed-controlled reaching task while recording their EEG. Results revealed potent modulations of beta power as a function of speed, with β-ERD being significantly greater both for movements performed at high and low speeds compared with medium speed. Interestingly, medium-speed movements were more often chosen by participants than low-speed and high-speed movements, suggesting that they were evaluated as less costly. In line with this, modeling of action cost revealed a pattern of modulation across speed conditions that strikingly resembled the one found for β-ERD. Indeed, linear mixed models showed that estimated action cost predicted variations of β-ERD significantly better than speed. This relationship with action cost was specific to beta power, as it was not found when averaging activity in the mu band (8-12 Hz) and gamma band (31-49 Hz) bands. These results demonstrate that increasing β-ERD may not merely speed up movements, but instead facilitate the preparation of high-speed and low-speed movements through the allocation of additional neural resources, thereby enabling flexible motor control.SIGNIFICANCE STATEMENT Heightened beta activity has been associated with movement slowing in Parkinson's disease, and modulations of beta activity are commonly used to decode movement parameters in brain-computer interfaces. Here we show that premovement beta activity is better explained by the neurocomputational cost of the action rather than its speed. Instead of being interpreted as a mere reflection of changes in movement speed, premovement changes in beta activity might therefore be used to infer the amount of neural resources that are allocated for motor planning.
Collapse
Affiliation(s)
- Emeline Pierrieau
- Programme de Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Bastien Berret
- CIAMS (Complexité, Innovation, Activités, Motrices, et Sportives), Université Paris-Saclay, 91405 Orsay, France
- CIAMS (Complexité, Innovation, Activités, Motrices, et Sportives), Université d'Orléans, 45067 Orléans, France
- Institut Universitaire de France, 75231 Paris, France
| | - Jean-François Lepage
- Programme de Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
6
|
Dell'Acqua C, Hajcak G, Amir N, Santopetro NJ, Brush CJ, Meyer A. Error-related brain activity in pediatric major depressive disorder: An ERP and time-frequency investigation. Int J Psychophysiol 2023; 184:100-109. [PMID: 36638913 DOI: 10.1016/j.ijpsycho.2023.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND The error-related negativity (ERN) reflects individual differences in error monitoring. However, findings on the ERN in adult and adolescent depression have been inconsistent. Analyzing electroencephalographic (EEG) data in both the time- and time-frequency domain can be useful to better quantify neural response to errors. The present study aimed at examining electrocortical measures of error monitoring in early adolescents with and without depression. METHOD EEG activity was collected during an arrowhead version of the flanker task in 29 (25 females) early adolescents with depression and 34 without MDD (29 females). RESULTS The depression group showed reduced ERN amplitude, reduced error-related theta power and increased error-related beta power compared to the control group. When all variables that related to MDD diagnosis were considered simultaneously, both theta and beta power, but not the ERN, were independently related to an increased likelihood of being diagnosed with depression. CONCLUSIONS By examining both time-domain and separate time-frequency measures, the present study provided novel evidence on error monitoring alterations in youth depression, suggesting that depression during adolescence may be characterized by reduced error monitoring (i.e., reduced ERN and error-related theta) and post-error inhibition (i.e., greater error-related beta power). These results support that time-frequency measures might be better suited for examining error-related neural activity in MDD relative to time-domain measures.
Collapse
Affiliation(s)
- C Dell'Acqua
- Department of Psychology, Florida State University, Tallahassee, USA; Department of General Psychology, University of Padua, Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Padua, Italy.
| | - G Hajcak
- Department of Psychology, Florida State University, Tallahassee, USA; Department of Biomedical Sciences, Florida State University, Tallahassee, USA
| | - N Amir
- Department of Psychology, San Diego State University, San Diego, USA
| | - N J Santopetro
- Department of Psychology, Florida State University, Tallahassee, USA
| | - C J Brush
- Department of Psychology, Florida State University, Tallahassee, USA; Department of Movement Sciences, University of Idaho, Moscow, ID, USA
| | - A Meyer
- Department of Psychology, Florida State University, Tallahassee, USA
| |
Collapse
|
7
|
Titova NV, Bezdolny YN, Katunina EA. [Asthenia, mental fatigue and cognitive dysfunction]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:38-47. [PMID: 37315240 DOI: 10.17116/jnevro202312305138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conditions associated with asthenia are usually characterized by increased fatigue, impaired activities of daily living and decreased productivity. In clinical practice it is important to distinguish between idiopathic chronic fatigue (primary or functional asthenia) and chronic fatigue syndrome (CFS). Fatigue can also be classified by neuromuscular and/or cognitive and mental fatigue. The article discusses the neuroanatomical basis and focuses on the neurocognitive theory of pathological fatigue. In addition the relationship between mental stress, fatigue and cognitive impairments such as subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) are also discussed. We discuss the rationale that for treatment of asthenic conditions accompanied by cognitive dysfunction it is justified to use combination therapy - fonturacetam and a preparation containing nicotinoyl-GABA and Ginkgo Biloba.
Collapse
Affiliation(s)
- N V Titova
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - E A Katunina
- Federal Center of Brain and Neurotechnologies, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Zhang P, Yan J, Liu Z, Yu H, Zhao R, Zhou Q. Extreme conditions affect neuronal oscillations of cerebral cortices in humans in the China Space Station and on Earth. Commun Biol 2022; 5:1041. [PMID: 36180522 PMCID: PMC9525319 DOI: 10.1038/s42003-022-04018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
Rhythmical oscillations of neural populations can reflect working memory performance. However, whether neuronal oscillations of the cerebral cortex change in extreme environments, especially in a space station, remains unclear. Here, we recorded electroencephalography (EEG) signals when volunteers and astronauts were executing a memory task in extreme working conditions. Our experiments showed that two extreme conditions affect neuronal oscillations of the cerebral cortex and manifest in different ways. Lengthy periods of mental work impairs the gating mechanism formed by theta-gamma phase-amplitude coupling of two cortical areas, and sleep deprivation disrupts synaptic homeostasis, as reflected by the substantial increase in theta wave activity in the cortical frontal-central area. In addition, we excluded the possibility that nutritional supply or psychological situations caused decoupled theta-gamma phase-amplitude coupling or an imbalance in theta wave activity increase. Therefore, we speculate that the decoupled theta-gamma phase-amplitude coupling detected in astronauts results from their lengthy periods of mental work in the China Space Station. Furthermore, comparing preflight and inflight experiments, we find that long-term spaceflight and other hazards in the space station could worsen this decoupling evolution. This particular neuronal oscillation mechanism in the cerebral cortex could guide countermeasures for the inadaptability of humans working in spaceflight.
Collapse
Affiliation(s)
- Peng Zhang
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Juan Yan
- grid.198530.60000 0000 8803 2373China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088 China
| | - Zhongqi Liu
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Hongqiang Yu
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100193 China
| | - Rui Zhao
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100193 China
| | - Qianxiang Zhou
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| |
Collapse
|
9
|
Chen XJ, Kwak Y. Contribution of the sensorimotor beta oscillations and the cortico-basal ganglia-thalamic circuitry during value-based decision making: A simultaneous EEG-fMRI investigation. Neuroimage 2022; 257:119300. [PMID: 35568351 DOI: 10.1016/j.neuroimage.2022.119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
In decision neuroscience, the motor system has primarily been considered to be involved in executing choice actions. However, a competing perspective suggests its engagement in the evaluation of options, traditionally considered to be performed by the brain's valuation system. Here, we investigate the role of the motor system in value-based decision making by determining the neural circuitries associated with the sensorimotor beta oscillations previously identified to encode decision options. In a simultaneous EEG-fMRI study, participants evaluated reward and risk associated with a forthcoming action. A significant sensorimotor beta desynchronization was identified prior to and independent of response. The level of beta desynchronization showed evidence of encoding the reward levels. This beta desynchronization covaried, on a trial-by-trial level, with BOLD activity in the cortico-basal ganglia-thalamic circuitry. In contrast, there was only a weak covariation within the valuation network, despite significant modulation of its BOLD activity by reward levels. These results suggest that the way in which decision variables are processed differs in the valuation network and in the cortico-basal ganglia-thalamic circuitry. We propose that sensorimotor beta oscillations indicate incentive motivational drive towards a choice action computed from the decision variables even prior to making a response, and it arises from the cortico-basal ganglia-thalamic circuitry.
Collapse
Affiliation(s)
- Xing-Jie Chen
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Youngbin Kwak
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Theta but not beta activity is modulated by freedom of choice during action selection. Sci Rep 2022; 12:9115. [PMID: 35650241 PMCID: PMC9160249 DOI: 10.1038/s41598-022-13318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
Large-scale neurophysiological markers of action competition have been almost exclusively investigated in the context of instructed choices, hence it remains unclear whether these markers also apply to free choices. This study aimed to compare the specific brain dynamics underlying instructed and free decisions. Electroencephalography (EEG) was recorded while 31 participants performed a target selection task; the choice relied either on stimulus-response mappings (instructed) or on participants' preferences (free). Choice difficulty was increased by introducing distractors in the informative stimulus in instructed choices, and by presenting targets with similar motor costs in free choices. Results revealed that increased decision difficulty was associated with higher reaction times (RTs) in instructed choices and greater choice uncertainty in free choices. Midfrontal EEG theta (4-8 Hz) power increased with difficulty in instructed choices, but not in free choices. Although sensorimotor beta (15-30 Hz) power was correlated with RTs, it was not significantly influenced by choice context or difficulty. These results suggest that midfrontal theta power may specifically increase with difficulty in externally-driven choices, whereas sensorimotor beta power may be predictive of RTs in both externally- and internally-driven choices.
Collapse
|
11
|
Wilhelm RA, Threadgill AH, Gable PA. Motor Preparation and Execution for Performance Difficulty: Centroparietal Beta Activation during the Effort Expenditure for Rewards Task as a Function of Motivation. Brain Sci 2021; 11:brainsci11111442. [PMID: 34827441 PMCID: PMC8615645 DOI: 10.3390/brainsci11111442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Debate exists as to the effects of anxiety in performance-based studies. However, no studies have examined the influence of motivation both in preparation of a motor movement and during movement performance. The present study measured beta activation in preparation for and during execution of the effort expenditure for rewards task (EEfRT), a button-pressing task consisting of easy and hard trials. Results indicated that motor preparation (i.e., reduced beta activation) was greater in preparation for hard trials than for easy trials. Additionally, motor preparation decreased (i.e., beta activation increased) over the course of hard trial execution. These results suggest that motor preparation is enhanced prior to more challenging tasks but that motor preparation declines as participants become closer to completing their goal in each challenging trial. These results provide insight into how beta activation facilitates effort expenditure for motor tasks varying in difficulty and motivation. The impact of these results on models of anxiety and performance is discussed.
Collapse
Affiliation(s)
- Ricardo A. Wilhelm
- Department of Psychology, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - A. Hunter Threadgill
- Departments of Biomedical Sciences and Psychology, Florida State University, Tallahassee, FL 32306, USA;
| | - Philip A. Gable
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
12
|
Müller T, Klein-Flügge MC, Manohar SG, Husain M, Apps MAJ. Neural and computational mechanisms of momentary fatigue and persistence in effort-based choice. Nat Commun 2021; 12:4593. [PMID: 34321478 PMCID: PMC8319292 DOI: 10.1038/s41467-021-24927-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
From a gym workout, to deciding whether to persevere at work, many activities require us to persist in deciding that rewards are ‘worth the effort’ even as we become fatigued. However, studies examining effort-based decisions typically assume that the willingness to work is static. Here, we use computational modelling on two effort-based tasks, one behavioural and one during fMRI. We show that two hidden states of fatigue fluctuate on a moment-to-moment basis on different timescales but both reduce the willingness to exert effort for reward. The value of one state increases after effort but is ‘recoverable’ by rests, whereas a second ‘unrecoverable’ state gradually increases with work. The BOLD response in separate medial and lateral frontal sub-regions covaried with these states when making effort-based decisions, while a distinct fronto-striatal system integrated fatigue with value. These results provide a computational framework for understanding the brain mechanisms of persistence and momentary fatigue. The willingness to exert effort into demanding tasks often declines over time through fatigue. Here the authors provide a computational account of the moment-to-moment dynamics of fatigue and its impact on effort-based choices, and reveal the neural mechanisms that underlie such computations.
Collapse
Affiliation(s)
- Tanja Müller
- Department of Experimental Psychology, University of Oxford, Oxford, UK. .,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK. .,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK. .,Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK. .,Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Gable PA, Paul K, Pourtois G, Burgdorf J. Utilizing electroencephalography (EEG) to investigate positive affect. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Wendel CJ, Wilhelm RA, Gable PA. Individual differences in motivation and impulsivity link resting frontal alpha asymmetry and motor beta activation. Biol Psychol 2021; 162:108088. [PMID: 33811974 DOI: 10.1016/j.biopsycho.2021.108088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 11/18/2022]
Abstract
Previous research has linked neural correlates with motivational traits and measures of impulsivity. However, few previous studies have investigated whether individual differences in motivation and impulsivity moderate the relationship between these disparate neural activity patterns. In a sample of 118 young adults, we used Electroencephalography (EEG) to examine whether behavioral activation and inhibition systems (BIS/BAS) and impulsivity facets (negative urgency, lack of perseverance), moderate the relationship between beta power and resting frontal alpha asymmetry. Regression analyses revealed a novel relationship between lesser beta power and greater left frontal alpha asymmetry (LFA). Moderation analyses suggest this relationship may strengthen as BIS/BAS levels increase, and trait impulsivity levels decrease from the mean. These results are among the first revealing a relationship between two widely investigated neural activity patterns of motivation and provide some indication individual differences moderate this relationship. The limitations of these findings and need for future research are discussed.
Collapse
Affiliation(s)
- Christopher J Wendel
- Department of Psychology, University of Alabama, 505 Hackberry Lane, Tuscaloosa, AL, 35401, United States.
| | - Ricardo A Wilhelm
- Department of Psychology, University of Alabama, 505 Hackberry Lane, Tuscaloosa, AL, 35401, United States
| | - Philip A Gable
- Department of Psychological & Brain Sciences, University of Delaware 105 The Green, Newark, DE, 19716, United States
| |
Collapse
|
15
|
Wilhelm RA, Miller MW, Gable PA. Neural and Attentional Correlates of Intrinsic Motivation Resulting from Social Performance Expectancy. Neuroscience 2019; 416:137-146. [PMID: 31369789 DOI: 10.1016/j.neuroscience.2019.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
Some models of motivation distinguish between intrinsic and extrinsic motivation. While past work has examined the neural and cognitive correlates of extrinsic motivation, research on intrinsic motivation has relied primarily on behavioral measures of performance and learning. In particular, no past work has examined the neural and cognitive correlates of social performance expectancy, which is linked to intrinsic motivation. The current study manipulated expectancy of difficult (vs. easy) trials on a cued flanker task and assessed attentional scope and performance. EEG was used to examine motor-action preparation as measured by suppression of beta band activity over the motor cortex and feedback processing as measured by the Reward Positivity (RewP). Results revealed expectancy of difficult (vs. easy) trials narrowed attentional scope, reduced beta activity over the motor cortex, and enhanced RewP amplitudes to win feedback. These findings suggest that enhancing intrinsic motivation through expectancies of positive social comparison engages similar neural and cognitive correlates as extrinsic motivators high in motivational intensity.
Collapse
Affiliation(s)
- Ricardo A Wilhelm
- Department of Psychology, The University of Alabama, Box 870348, Tuscaloosa, AL 35487-0348, United States.
| | | | - Philip A Gable
- Department of Psychology, The University of Alabama, Box 870348, Tuscaloosa, AL 35487-0348, United States.
| |
Collapse
|
16
|
Contribution of sensorimotor beta oscillations during value-based action selection. Behav Brain Res 2019; 368:111907. [DOI: 10.1016/j.bbr.2019.111907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
|
17
|
Trait anxiety on effort allocation to monetary incentives: a behavioral and high-density EEG study. Transl Psychiatry 2019; 9:174. [PMID: 31300637 PMCID: PMC6626005 DOI: 10.1038/s41398-019-0508-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Trait anxiety is an important phenotype in the prediction of stress-induced neuropsychiatric disorders. While the role of trait anxiety in mental effort and cognitive impairment is well documented, much less is known about its influence on motivated behaviors and physical effort. Here, we investigated trait anxiety-related differences in behavioral and neural responses in an effort-related monetary incentive delay task. Participants prompted with different incentive levels could exert handgrip responses to earn monetary rewards while a 256-channel electroencephalography (EEG) was recorded. Participants' performance was linearly dependent on incentive level, with higher stakes prompting better accuracy and higher grip force. Importantly, we found a striking association between trait anxiety and incentive-related grip force; effort exertion was related to incentive level only in high-anxious individuals. In analyses of neural efficiency associated with effort preparation involving Contingent-negative variation (CNV), we found that the CNV amplitude was sensitive to monetary incentive levels. Source imaging analyses of CNV indicated increased activity in the anterior cingulate cortex (ACC) for the highest incentive level. Importantly, we found a significant interaction between trait anxiety and incentive level on CNV modulation at the interval ranging from -2610 to -2510 ms, with greater CNV responses to the lower monetary incentive sizes in high anxiety. Subsequent mediation analyses supported a mediation of the ACC activation on the association between trait anxiety and incentive-selective grip force. Our study reveals a role for ACC in trait anxiety-related differences on incentive processing, when rewards are dependent on effortful performance.
Collapse
|
18
|
Trübutschek D, Marti S, Ueberschär H, Dehaene S. Probing the limits of activity-silent non-conscious working memory. Proc Natl Acad Sci U S A 2019; 116:14358-14367. [PMID: 31243145 PMCID: PMC6628638 DOI: 10.1073/pnas.1820730116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two types of working memory (WM) have recently been proposed: (i) active WM, relying on sustained neural firing, and (ii) activity-silent WM, for which firing returns to baseline, yet memories may be retained by short-term synaptic changes. Activity-silent WM in particular might also underlie the recently discovered phenomenon of non-conscious WM, which permits even subliminal stimuli to be stored for several seconds. However, whether both states support identical forms of information processing is unknown. Theory predicts that activity-silent states are confined to passive storage and cannot operate on stored information. To determine whether an explicit reactivation is required before the manipulation of information in WM, we evaluated whether participants could mentally rotate brief visual stimuli of variable subjective visibility. Behaviorally, even for unseen targets, subjects reported the rotated location above chance after several seconds. As predicted, however, at the time of mental rotation, such blindsight performance was accompanied by (i) neural signatures of consciousness in the form of a sustained desynchronization in alpha/beta frequency and (ii) a reactivation of the memorized information as indicated by decodable representations of participants' guess and response. Our findings challenge the concept of genuine non-conscious "working" memory, argue that activity-silent states merely support passive short-term memory, and provide a cautionary note for purely behavioral studies of non-conscious information processing.
Collapse
Affiliation(s)
- Darinka Trübutschek
- Cognitive Neuroimaging Unit, Commissariat à l'Energie Atomique DSV/I2BM, INSERM, NeuroSpin Center, Université Paris-Sud, Université Paris-Saclay, 91191 Gif/Yvette, France;
- Ecole des Neurosciences de Paris Ile-de-France, 75006 Paris, France
- Ecole Doctorale Cerveau-Cognition-Comportement, Sorbonne Université, 75005 Paris, France
| | - Sébastien Marti
- Ecole Doctorale Cerveau-Cognition-Comportement, Sorbonne Université, 75005 Paris, France
| | - Henrik Ueberschär
- Institut de Mathématiques de Jussieu, Sorbonne Université, 75005 Paris, France
| | - Stanislas Dehaene
- Ecole Doctorale Cerveau-Cognition-Comportement, Sorbonne Université, 75005 Paris, France;
- Collège de France, 75005 Paris, France
| |
Collapse
|
19
|
Zhu M, HajiHosseini A, Baumeister TR, Garg S, Appel-Cresswell S, McKeown MJ. Altered EEG alpha and theta oscillations characterize apathy in Parkinson's disease during incentivized movement. NEUROIMAGE-CLINICAL 2019; 23:101922. [PMID: 31284232 PMCID: PMC6614604 DOI: 10.1016/j.nicl.2019.101922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/01/2019] [Accepted: 06/30/2019] [Indexed: 12/03/2022]
Abstract
Apathy is a common non-motor symptom of Parkinson's disease (PD) that is difficult to quantify and poorly understood. Some studies have used incentivized motor tasks to assess apathy, as the condition is often associated with a reduction in motivated behavior. Normally event-related desynchronization, a reduction of power in specific frequency bands, is observed in the motor cortex during the peri-movement period. Also, alpha (8–12 Hz) and theta (4–7 Hz) oscillations are sensitive to rewards that are closely related to motivational states however these oscillations have not been widely investigated in relation to apathy in PD. Using EEG recordings, we investigated the neural oscillatory characteristics of apathy in PD during an incentivized motor task with interleaved rest periods. Apathetic and non-apathetic PD subjects on dopaminergic medication and healthy control subjects were instructed to squeeze a hand grip device for a monetary reward proportional to the subject's grip force and the monetary value attributed to that trial. Apathetic PD subjects exhibited higher alpha and theta powers in the pre-trial baseline rest period compared to non-apathetic PD subjects and healthy subjects. Further, we found that both resting power and relative power in alpha and theta bands during incentivized movement predicted PD subjects' apathy scores. Our results suggest that apathetic PD patients may need to overcome greater baseline alpha and theta oscillatory activity in order to facilitate incentivized movement. Clinically, resting alpha and theta power as well as alpha and theta event-related desynchronization during movement may serve as potential neural markers for apathy severity in PD. Apathetic patients with Parkinson's disease on dopaminergic medication have distinct neural oscillatory characteristics. Apathetic patients exhibit a higher resting EEG theta and alpha power compared to non-apathetic patients. Both resting power and relative event-related theta and alpha desynchronization during squeezing are able to predict patient apathy scores.
Collapse
Affiliation(s)
- Maria Zhu
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Tobias R Baumeister
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, Faculty of Applied Science, University of British Columbia, Vancouver, BC, Canada
| | - Saurabh Garg
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Threadgill AH, Gable PA. Intertrial variability in emotive reactions to approach-motivated positive pictures predicts attentional narrowing: The role of individual differences. Biol Psychol 2019; 142:19-28. [DOI: 10.1016/j.biopsycho.2018.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/01/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
|
21
|
Pornpattananangkul N, Grogans S, Yu R, Nusslock R. Single-trial EEG dissociates motivation and conflict processes during decision-making under risk. Neuroimage 2019; 188:483-501. [PMID: 30557662 PMCID: PMC6401252 DOI: 10.1016/j.neuroimage.2018.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/25/2018] [Accepted: 12/13/2018] [Indexed: 02/08/2023] Open
Abstract
In making decisions under risk (i.e., choosing whether to gamble when the outcome probabilities are known), two aspects of decision are of particular concern. The first, if gambling, is how large are potential gains compared to losses? The subjectively larger, the more rewarding to gamble. Thus, this aspect of decision-making, quantified through expected utility (EU), is motivation-related. The second concern is how easy is it to reach the decision? When subjective desirability between gambling and not-gambling is clearly different from each other (regardless of the direction), it is easier to decide. This aspect, quantified through utility distance (UD), is conflict-related. It is unclear how the brain simultaneously processes these two aspects of decision-making. Forty-five participants decided whether to gamble during electroencephalogram (EEG) recording. To compute trial-by-trial variability in EU and UD, we fit participants' choices to models inspired by Expected-Utility and Prospect theories using hierarchical-Bayesian modeling. To examine unique influences of EU and UD, we conducted model-based single-trial EEG analyses with EU and UD as simultaneous regressors. While both EU and UD were positively associated with P3-like activity and delta-band power, the contribution of EU was around 200 ms earlier. Thus, during decision-making under risk, people may allocate their attention to motivation-related aspects before conflict-related aspects. Next, following learning the options and before reporting their decision, higher EU was associated with stronger alpha and beta suppression, while higher UD was associated with a stronger contingent-negativity-variation-like activity. This suggests distinct roles of EU and UD on anticipation-related processes. Overall, we identified time and frequency characteristics of EEG signals that differentially traced motivation-related and conflict-related information during decision-making under risk.
Collapse
Affiliation(s)
- Narun Pornpattananangkul
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA; Department of Psychology, National University of Singapore, 117570, Singapore; National Institute of Mental Health, Bethesda, MD, 20814, USA; Department of Psychology, University of Otago, Dunedin 9016, New Zealand.
| | - Shannon Grogans
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA; National Institute of Mental Health, Bethesda, MD, 20814, USA
| | - Rongjun Yu
- Department of Psychology, National University of Singapore, 117570, Singapore
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
22
|
Luring the Motor System: Impact of Performance-Contingent Incentives on Pre-Movement Beta-Band Activity and Motor Performance. J Neurosci 2019; 39:2903-2914. [PMID: 30737309 DOI: 10.1523/jneurosci.1887-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/21/2022] Open
Abstract
It has been shown that when incentives are provided during movement preparation, activity in parieto-frontal regions reflects both expected value and motivational salience. Yet behavioral work suggests that the processing of rewards is faster than for punishments, raising the possibility that expected value and motivational salience manifest at different latencies during movement planning. Given the role of beta oscillations (13-30 Hz) in movement preparation and in communication within the reward circuit, this study investigated how beta activity is modulated by positive and negative monetary incentives during reach planning, and in particular whether it reflects expected value and motivational salience at different latencies. Electroencephalography was recorded while male and female humans performed a reaching task in which reward or punishment delivery depended on movement accuracy. Before a preparatory delay period, participants were informed of the consequences of hitting or missing the target, according to four experimental conditions: Neutral (hit/miss:+0/-0¢), Reward (hit/miss:+5/-0¢), Punish (hit/miss:+0/-5¢) and Mixed (hit/miss:+5/-5¢). Results revealed that beta power over parieto-frontal regions was strongly modulated by incentives during the delay period, with power positively correlating with movement times. Interestingly, beta power was selectively sensitive to potential rewards early in the delay period, after which it came to reflect motivational salience as movement onset neared. These results demonstrate that beta activity reflects expected value and motivational salience on different time scales during reach planning. They also provide support for models that link beta activity with basal ganglia and dopamine for the allocation of neural resources according to behavioral salience.SIGNIFICANCE STATEMENT The present work demonstrates that pre-movement parieto-frontal beta power is modulated by monetary incentives in a goal-directed reaching task. Specifically, beta power transiently scaled with the availability of rewards early in movement planning, before reflecting motivational salience as movement onset neared. Moreover, pre-movement beta activity correlated with the vigor of the upcoming movement. These findings suggest that beta oscillations reflect neural processes that mediate the invigorating effect of incentives on motor performance, possibly through dopamine-mediated interactions with the basal ganglia.
Collapse
|
23
|
Müller T, Apps MA. Motivational fatigue: A neurocognitive framework for the impact of effortful exertion on subsequent motivation. Neuropsychologia 2019; 123:141-151. [DOI: 10.1016/j.neuropsychologia.2018.04.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/17/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
24
|
Roy A, Coombes SA, Chung JW, Archer DB, Okun MS, Hess CW, Wagle Shukla A, Vaillancourt DE. Cortical dynamics within and between parietal and motor cortex in essential tremor. Mov Disord 2018; 34:95-104. [PMID: 30345712 DOI: 10.1002/mds.27522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Evidence from functional imaging in essential tremor suggests that activity within parietal and motor cortices may be associated with worsening of tremor at increased visual feedback. OBJECTIVES Examine how cortical oscillations within these regions and the connectivity between these regions is associated with worsening of tremor in essential tremor in response to high visual feedback. METHOD The study included 24 essential tremor participants and 17 controls. We measured cortical activity and tremor magnitude at low and high feedback conditions. Cortical activity was measured using high-density electroencephalogram and isolated using source localization. RESULTS Changes in power across feedback in the 4-12 Hz and 12-30 Hz bands were reduced within the contralateral motor cortex of essential tremor patients compared to controls. The 12-30 Hz bidirectional connectivity between the parietal and contralateral motor cortex was decreased in essential tremor patients. Worsening of tremor from low to high visual feedback was associated with 4-12 Hz activity in contralateral motor cortex. The greatest separation between groups was found when using the difference of the contralateral motor cortex activity at high and low feedback, rather than either feedback condition alone. CONCLUSION Our findings provide new evidence that tremor in essential tremor is associated with reduced power across feedback in the motor cortex and reduced connectivity between the parietal and motor cortices. Combined with previous work on the cerebellar-thalamo-cortical motor circuit, our findings suggest that the network level disturbances associated with essential tremor extend to the cortico-cortical pathway between the parietal cortex and motor cortex. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Jae Woo Chung
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Derek B Archer
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Department of Neurology and Fixel Center for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida, USA
| | - Christopher W Hess
- Department of Neurology and Fixel Center for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida, USA
| | - Aparna Wagle Shukla
- Department of Neurology and Fixel Center for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.,Department of Neurology and Fixel Center for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, Florida, USA.,Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Glazer JE, Kelley NJ, Pornpattananangkul N, Mittal VA, Nusslock R. Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. Int J Psychophysiol 2018; 132:184-202. [DOI: 10.1016/j.ijpsycho.2018.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
26
|
Resting beta activation and trait motivation: Neurophysiological markers of motivated motor-action preparation. Int J Psychophysiol 2018; 127:46-51. [DOI: 10.1016/j.ijpsycho.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 11/18/2022]
|
27
|
Chen XJ, Kwak Y. What Makes You Go Faster?: The Effect of Reward on Speeded Action under Risk. Front Psychol 2017; 8:1057. [PMID: 28694787 PMCID: PMC5483460 DOI: 10.3389/fpsyg.2017.01057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/08/2017] [Indexed: 11/15/2022] Open
Abstract
Evaluating the potential reward and risk associated with a choice of action plays an important role in everyday decision making. However, the details behind how reward and risk affect the decisions for actions remain unclear. The present study investigates the influence of reward and risk on a decision to make a speeded motor response. One hundred and ten college students performed a Speed-Rewarded Go-NoGo task during which they were rewarded proportionally based on the speed and accuracy of their response. On each trial, the magnitude of potential reward and the probability of a forthcoming Go signal (Go-probability) were presented prior to the Go or NoGo signal. Personality traits, such as risk taking and impulsive tendencies, were measured to determine their contribution in explaining individual differences in task performance. The results showed that larger amount of rewards can motivate people to respond faster, and this effect was modulated by the assessed risk, suggesting that decisions for actions are based on a systematic trade-off between rewards and risks. Moreover, when the assessed risk was high, individuals with greater risk taking and impulsive tendencies did not adequately adjust their behavior across different reward levels. These findings shed light on the mechanistic understanding of the effect of reward and risk on decisions for a speeded action.
Collapse
Affiliation(s)
- Xing-Jie Chen
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, AmherstMA, United States
| | - Youngbin Kwak
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, AmherstMA, United States
| |
Collapse
|
28
|
Meadows CC, Gable PA, Lohse KR, Miller MW. Motivation and motor cortical activity can independently affect motor performance. Neuroscience 2016; 339:174-179. [DOI: 10.1016/j.neuroscience.2016.09.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
29
|
Pan MK, Kuo SH, Tai CH, Liou JY, Pei JC, Chang CY, Wang YM, Liu WC, Wang TR, Lai WS, Kuo CC. Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control. J Clin Invest 2016; 126:4516-4526. [PMID: 27797341 DOI: 10.1172/jci88170] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022] Open
Abstract
Neuronal oscillations at beta frequencies (20-50 Hz) in the cortico-basal ganglia circuits have long been the leading theory for bradykinesia, the slow movements that are cardinal symptoms in Parkinson's disease (PD). The beta oscillation theory helped to drive a frequency-based design in the development of deep brain stimulation therapy for PD. However, in contrast to this theory, here we have found that bradykinesia can be completely dissociated from beta oscillations in rodent models. Instead, we observed that bradykinesia is causatively regulated by the burst-firing pattern of the subthalamic nucleus (STN) in a feed-forward, or efferent-only, mechanism. Furthermore, STN burst-firing and beta oscillations are two independent mechanisms that are regulated by different NMDA receptors in STN. Our results shift the understanding of bradykinesia pathophysiology from an interactive oscillatory theory toward a feed-forward mechanism that is coded by firing patterns. This distinct mechanism may improve understanding of the fundamental concepts of motor control and enable more selective targeting of bradykinesia-specific mechanisms to improve PD therapy.
Collapse
|
30
|
Chung JW, Ofori E, Misra G, Hess CW, Vaillancourt DE. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage 2016; 144:164-173. [PMID: 27746389 DOI: 10.1016/j.neuroimage.2016.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 11/15/2022] Open
Abstract
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. SUMMARY STATEMENT Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors.
Collapse
Affiliation(s)
- Jae W Chung
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Edward Ofori
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Gaurav Misra
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Christopher W Hess
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
31
|
Mosberger AC, de Clauser L, Kasper H, Schwab ME. Motivational state, reward value, and Pavlovian cues differentially affect skilled forelimb grasping in rats. ACTA ACUST UNITED AC 2016; 23:289-302. [PMID: 27194796 PMCID: PMC4880147 DOI: 10.1101/lm.039537.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
Abstract
Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in previous studies. In rodents, skilled motor performance has been successfully modeled with the skilled grasping task, in which animals use their forepaw to grasp for sugar pellet rewards through a narrow window. Using sugar pellets, the skilled grasping task is inherently tied to motivation processes. In the present study, we performed three experiments modulating animals’ motivation during skilled grasping by changing the motivational state, presenting different reward value ratios, and displaying Pavlovian stimuli. We found in all three studies that motivation affected the speed of skilled grasping movements, with the strongest effects seen due to motivational state and reward value. Furthermore, accuracy of the movement, measured in success rate, showed a strong dependence on motivational state as well. Pavlovian cues had only minor effects on skilled grasping, but results indicate an inverse Pavlovian-instrumental transfer effect on movement speed. These findings have broad implications considering the increasing use of skilled grasping in studies of motor system structure, function, and recovery after injuries.
Collapse
Affiliation(s)
- Alice C Mosberger
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Larissa de Clauser
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hansjörg Kasper
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Neural activity underlying motor-action preparation and cognitive narrowing in approach-motivated goal states. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 16:145-52. [DOI: 10.3758/s13415-015-0381-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Schmunk G, Boubion BJ, Smith IF, Parker I, Gargus JJ. Shared functional defect in IP₃R-mediated calcium signaling in diverse monogenic autism syndromes. Transl Psychiatry 2015; 5:e643. [PMID: 26393489 PMCID: PMC5068815 DOI: 10.1038/tp.2015.123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 01/03/2023] Open
Abstract
Autism spectrum disorder (ASD) affects 2% of children, and is characterized by impaired social and communication skills together with repetitive, stereotypic behavior. The pathophysiology of ASD is complex due to genetic and environmental heterogeneity, complicating the development of therapies and making diagnosis challenging. Growing genetic evidence supports a role of disrupted Ca(2+) signaling in ASD. Here, we report that patient-derived fibroblasts from three monogenic models of ASD-fragile X and tuberous sclerosis TSC1 and TSC2 syndromes-display depressed Ca(2+) release through inositol trisphosphate receptors (IP3Rs). This was apparent in Ca(2+) signals evoked by G protein-coupled receptors and by photoreleased IP3 at the levels of both global and local elementary Ca(2+) events, suggesting fundamental defects in IP3R channel activity in ASD. Given the ubiquitous involvement of IP3R-mediated Ca(2+) signaling in neuronal excitability, synaptic plasticity, gene expression and neurodevelopment, we propose dysregulated IP3R signaling as a nexus where genes altered in ASD converge to exert their deleterious effect. These findings highlight potential pharmaceutical targets, and identify Ca(2+) screening in skin fibroblasts as a promising technique for early detection of individuals susceptible to ASD.
Collapse
Affiliation(s)
- G Schmunk
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA,Center for Autism Research and Translation, University of California, Irvine, CA, USA
| | - B J Boubion
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - I F Smith
- Center for Autism Research and Translation, University of California, Irvine, CA, USA,Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, USA
| | - I Parker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA,Center for Autism Research and Translation, University of California, Irvine, CA, USA,Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, USA
| | - J J Gargus
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA,Center for Autism Research and Translation, University of California, Irvine, CA, USA,Division of Human Genetics & Genomics, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, USA,Department of Physiology and Biophysics, School of Medicine, University of California, 2056 Hewitt Hall, 843 Health Sciences Road, Irvine, CA 92697-3940, USA. E-mail:
| |
Collapse
|
34
|
Kononowicz TW, van Rijn H. Single trial beta oscillations index time estimation. Neuropsychologia 2015; 75:381-9. [PMID: 26102187 DOI: 10.1016/j.neuropsychologia.2015.06.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022]
Abstract
Recent work shows that putamen-originating beta power oscillations serve as a carrier for temporal information during tapping tasks, with higher beta power associated with longer temporal reproductions. However, given the nature of tapping tasks, it is difficult to determine whether beta power dynamics observed in these tasks are linked to the generation or execution of motor programs or to the internal representation of time. To assess whether recent findings in animals generalize to human studies we reanalyzed existing EEG data of participants who estimated a 2.5s time interval with self-paced onset and offset keypresses. The results showed that the trial-to-trial beta power measured after the onset predicts the produced duration, such that higher beta power indexes longer produced durations. Moreover, although beta power measured before the first key-press also influenced the estimated interval, it did so independently from post-first-keypress beta power. These results suggest that initial motor inhibition plays an important role in interval production, and that this inhibition can be interpreted as a biased starting point of the decision processes involved in time estimation.
Collapse
Affiliation(s)
- Tadeusz W Kononowicz
- Experimental Psychology, University of Groningen, Groningen, The Netherlands; CEA, DSV/I2BM, NeuroSpin; INSERM, Cognitive Neuroimaging Unit, U992; Université Paris-Sud, Gif-sur-Yvette, France.
| | - Hedderik van Rijn
- Experimental Psychology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
35
|
Sebastiani V, de Pasquale F, Costantini M, Mantini D, Pizzella V, Romani GL, Della Penna S. Being an agent or an observer: Different spectral dynamics revealed by MEG. Neuroimage 2014; 102 Pt 2:717-28. [DOI: 10.1016/j.neuroimage.2014.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/28/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022] Open
|
36
|
Meyniel F, Safra L, Pessiglione M. How the brain decides when to work and when to rest: dissociation of implicit-reactive from explicit-predictive computational processes. PLoS Comput Biol 2014; 10:e1003584. [PMID: 24743711 PMCID: PMC3990494 DOI: 10.1371/journal.pcbi.1003584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/12/2014] [Indexed: 11/18/2022] Open
Abstract
A pervasive case of cost-benefit problem is how to allocate effort over time, i.e. deciding when to work and when to rest. An economic decision perspective would suggest that duration of effort is determined beforehand, depending on expected costs and benefits. However, the literature on exercise performance emphasizes that decisions are made on the fly, depending on physiological variables. Here, we propose and validate a general model of effort allocation that integrates these two views. In this model, a single variable, termed cost evidence, accumulates during effort and dissipates during rest, triggering effort cessation and resumption when reaching bounds. We assumed that such a basic mechanism could explain implicit adaptation, whereas the latent parameters (slopes and bounds) could be amenable to explicit anticipation. A series of behavioral experiments manipulating effort duration and difficulty was conducted in a total of 121 healthy humans to dissociate implicit-reactive from explicit-predictive computations. Results show 1) that effort and rest durations are adapted on the fly to variations in cost-evidence level, 2) that the cost-evidence fluctuations driving the behavior do not match explicit ratings of exhaustion, and 3) that actual difficulty impacts effort duration whereas expected difficulty impacts rest duration. Taken together, our findings suggest that cost evidence is implicitly monitored online, with an accumulation rate proportional to actual task difficulty. In contrast, cost-evidence bounds and dissipation rate might be adjusted in anticipation, depending on explicit task difficulty. Imagine that ahead of you is a long time of work: when will you take a break? This sort of issue – how to allocate effort over time – has been addressed by distinct theoretical fields, with different emphasis on reactive and predictive processes. An intuitive view is that you start working, stop when you are tired, and start again when fatigue goes away. Biologically, this means that decisions are taken when some physiological variable reaches a given bound on the risk of homeostatic failure. In a more economic perspective, fatigue translates into effort cost, which must be anticipated and compared to expected benefit before engaging an action. We proposed a computational model that bridges these perspectives from sport physiology and decision theory. Decisions are made in reaction to bounds being reached by an implicit cost variable that accumulates during effort, at a rate proportional to task difficulty, and dissipates during rest. However, some latent parameters (bounds and dissipation rate) are adjusted in anticipation, depending on explicit costs and benefits. This model was supported by behavioral data obtained using a paradigm where participants squeeze a handgrip to win a monetary payoff proportional to effort duration.
Collapse
Affiliation(s)
- Florent Meyniel
- Motivation, Brain & Behavior (MBB) team, Institut du Cerveau et de la Moelle épinière (ICM), Groupe Hospitalier Pitié-Salpêtrière, Université Pierre et Marie Curie (UPMC – Paris 6), Paris, France
| | - Lou Safra
- Motivation, Brain & Behavior (MBB) team, Institut du Cerveau et de la Moelle épinière (ICM), Groupe Hospitalier Pitié-Salpêtrière, Université Pierre et Marie Curie (UPMC – Paris 6), Paris, France
| | - Mathias Pessiglione
- Motivation, Brain & Behavior (MBB) team, Institut du Cerveau et de la Moelle épinière (ICM), Groupe Hospitalier Pitié-Salpêtrière, Université Pierre et Marie Curie (UPMC – Paris 6), Paris, France
- * E-mail:
| |
Collapse
|