1
|
Sun Y, Xiao Z, Yang S, Hao C, Zhao H, An Y. Advances and insights for DKK3 in non-cancerous diseases: a systematic review. PeerJ 2025; 13:e18935. [PMID: 39959827 PMCID: PMC11830365 DOI: 10.7717/peerj.18935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
This review delves into the role of Dickkopf-3 (DKK3), a secreted glycoprotein and member of the Dickkopf family, in non-malignant diseases. DKK3 is particularly known for its regulatory effects on the Wnt signaling pathway, a critical mediator in various biological processes including cell proliferation, differentiation, and migration. Our review highlights DKK3's influence in disorders of the cardiovascular, respiratory, renal, and muscular systems, where it contributes to disease progression by modulating these key biological processes. As an emerging biomarker, DKK3's levels have been found to correlate with various disease states, underscoring its potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Yao Sun
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Zengli Xiao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Shuguang Yang
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Chenxiao Hao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Huiying Zhao
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Youzhong An
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
2
|
Zhou D, Qin H, Miao L, Xu Y, Yu L, Wang J. Predictive value of glycoprotein DKK3 for early neurological deterioration after ischemic stroke. Clinics (Sao Paulo) 2024; 79:100360. [PMID: 38678874 PMCID: PMC11066595 DOI: 10.1016/j.clinsp.2024.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE To explore the value of serum Dickkopf-3 (sDKK3) in predicting Early Neurological Deterioration (END) and in-hospital adverse outcomes in acute ischemic stroke (AIS) patients. METHODS AIS patients (n = 200) were included and assessed by the National Institutes of Health Stroke Rating Scale. Serum Dkk3 levels were assessed by ELISA. END was defined as an increase of ≥ 4 points in NIHSS score within 72h. The biological threshold of sDKK3 level and END occurrence were predicted based on X-tile software. Primary outcomes were END and all-cause death, and the secondary outcome was ICU admission during hospitalization. The logistic regression model and Cox risk regression model were applied to evaluate the relationship between DKK3 level and END incidence, all-cause in-hospital mortality, and in-hospital adverse outcomes (ICU admission). RESULTS During hospitalization, the incidence of END in patients with AIS was 13.0 %, and the mortality rate within 7 days after END was 11.54 % (3/26). In patients below the serum DKK3 cutoff (93.0 pg/mL), the incidence of END was 43.5 % (20/48). Patients with lower sDKK3 levels were associated with a 1.188-fold increased risk of developing END (OR = 1.188, 95 % CI 1.055‒1.369, p < 0.0001). However, there was no significant association with admission to the ICU. sDKK3 below the threshold (93.0 pg/mL) was a risk factor for death. CONCLUSION Predictive threshold levels of serum DKK3 based on X-tile software may be a potential predictive biomarker of in-hospital END in patients with AIS, and low levels of DKK3 are independently associated with increased in-hospital mortality.
Collapse
Affiliation(s)
- DongLiang Zhou
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - HongWei Qin
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - Lei Miao
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - Ying Xu
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - Lan Yu
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| | - JianMin Wang
- Department of Neurology, Renhe Hospital of Baoshan District, Shanghai City, China
| |
Collapse
|
3
|
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.
Collapse
|
4
|
Zhang LQ, Gao SJ, Sun J, Li DY, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J Neuroinflammation 2022; 19:129. [PMID: 35658977 PMCID: PMC9164405 DOI: 10.1186/s12974-022-02495-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Microglial activation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely understood. Here, we investigated the role of Dickkopf (DKK) 3 and its interplay with microglial activation in the spinal cord in neuropathic pain. METHODS In this study, we investigated the effects of intrathecal injection of recombinant DKK3 (rDKK3) on mechanical allodynia and microglial activation in the spinal cord after spared nerve injury (SNI) in rats by western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). RESULTS We found that SNI induced a significant decrease in the levels of DKK3, Kremen-1 and Dishevelled-1 (DVL-1) and up-regulated the expression of phosphorylated apoptosis signal-regulating kinase 1 (p-ASK1), phosphorylated c-JUN N-terminal kinase (p-JNK), phosphorylated p38 (p-p38) in the spinal cord. Moreover, our results showed that exogenous intrathecal administration of rDKK3 inhibited expression of p-ASK1, p-JNK, p-p38, promoted the transformation of microglia from M1 type to M2 type, and decreased the production of pro-inflammatory cytokines compared to the rats of SNI + Vehicle. However, these effects were reversed by intrathecal administration of Kremen-1 siRNA or Dishevelled-1 (DVL-1) siRNA. CONCLUSIONS These results suggest that DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation, at least partly, by the Kremen-1 and DVL-1 pathways.
Collapse
Affiliation(s)
- Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji MedicalCollege, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Chalazonitis A, Rao M, Sulzer D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:50. [PMID: 35459867 PMCID: PMC9033791 DOI: 10.1038/s41531-022-00308-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to the well-known degeneration of midbrain dopaminergic neurons, enteric neurons can also be affected in neurodegenerative disorders such as Parkinson's disease (PD). Dopaminergic neurons have recently been identified in the enteric nervous system (ENS). While ENS dopaminergic neurons have been shown to degenerate in genetic mouse models of PD, analyses of their survival in enteric biopsies of PD patients have provided inconsistent results to date. In this context, this review seeks to highlight the distinctive and shared factors and properties that control the evolution of these two sets of dopaminergic neurons from neuronal precursors to aging neurons. Although their cellular sources and developmental times of origin differ, midbrain and ENS dopaminergic neurons express many transcription factors in common and their respective environments express similar neurotrophic molecules. For example, Foxa2 and Sox6 are expressed by both populations to promote the specification, differentiation, and long-term maintenance of the dopaminergic phenotype. Both populations exhibit sustained patterns of excitability that drive intrinsic vulnerability over time. In disorders such as PD, colon biopsies have revealed aggregation of alpha-synuclein in the submucosal plexus where dopaminergic neurons reside and lack blood barrier protection. Thus, these enteric neurons may be more susceptible to neurotoxic insults and aggregation of α-synuclein that spreads from gut to midbrain. Under sustained stress, inefficient autophagy leads to neurodegeneration, GI motility dysfunction, and PD symptoms. Recent findings suggest that novel neurotrophic factors such as CDNF have the potential to be used as neuroprotective agents to prevent and treat ENS symptoms of PD.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Division of Molecular Therapeutics, New York State Psychiatry Institute, Columbia University, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
6
|
Haynes JM, Sibuea SM, Aguiar AA, Li F, Ho JK, Pouton CW. Inhibition of β-catenin dependent WNT signalling upregulates the transcriptional repressor NR0B1 and downregulates markers of an A9 phenotype in human embryonic stem cell-derived dopaminergic neurons: Implications for Parkinson's disease. PLoS One 2021; 16:e0261730. [PMID: 34941945 PMCID: PMC8700011 DOI: 10.1371/journal.pone.0261730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
In this study we investigate how β-catenin-dependent WNT signalling impacts midbrain dopaminergic neuron (mDA) specification. mDA cultures at day 65 of differentiation responded to 25 days of the tankyrase inhibitor XAV969 (XAV, 100nM) with reduced expression of markers of an A9 mDA phenotype (KCNJ6, ALDH1A1 and TH) but increased expression of the transcriptional repressors NR0B1 and NR0B2. Overexpression of NR0B1 and or NR0B2 promoted a loss of A9 dopaminergic neuron phenotype markers (KCNJ6, ALDH1A1 and TH). Overexpression of NR0B1, but not NR0B2 promoted a reduction in expression of the β-catenin-dependent WNT signalling pathway activator RSPO2. Analysis of Parkinson’s disease (PD) transcriptomic databases shows a profound PD-associated elevation of NR0B1 as well as reduced transcript for RSPO2. We conclude that reduced β-catenin-dependent WNT signalling impacts dopaminergic neuron identity, in vitro, through increased expression of the transcriptional repressor, NR0B1. We also speculate that dopaminergic neuron regulatory mechanisms may be perturbed in PD and that this may have an impact upon both existing nigral neurons and also neural progenitors transplanted as PD therapy.
Collapse
Affiliation(s)
- John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- * E-mail:
| | - Shanti M. Sibuea
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Badan Pengawas Obat dan Makanan, Jakarta, Indonesia
| | - Alita A. Aguiar
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Fangwei Li
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joan K. Ho
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Nouri P, Götz S, Rauser B, Irmler M, Peng C, Trümbach D, Kempny C, Lechermeier CG, Bryniok A, Dlugos A, Euchner E, Beckers J, Brodski C, Klümper C, Wurst W, Prakash N. Dose-Dependent and Subset-Specific Regulation of Midbrain Dopaminergic Neuron Differentiation by LEF1-Mediated WNT1/b-Catenin Signaling. Front Cell Dev Biol 2020; 8:587778. [PMID: 33195246 PMCID: PMC7649324 DOI: 10.3389/fcell.2020.587778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023] Open
Abstract
The mesodiencephalic dopaminergic (mdDA) neurons, including the nigrostriatal subset that preferentially degenerates in Parkinson’s Disease (PD), strongly depend on an accurately balanced Wingless-type MMTV integration site family member 1 (WNT1)/beta-catenin signaling pathway during their development. Loss of this pathway abolishes the generation of these neurons, whereas excessive WNT1/b-catenin signaling prevents their correct differentiation. The identity of the cells responding to this pathway in the developing mammalian ventral midbrain (VM) as well as the precise progression of WNT/b-catenin action in these cells are still unknown. We show that strong WNT/b-catenin signaling inhibits the differentiation of WNT/b-catenin-responding mdDA progenitors into PITX3+ and TH+ mdDA neurons by repressing the Pitx3 gene in mice. This effect is mediated by RSPO2, a WNT/b-catenin agonist, and lymphoid enhancer binding factor 1 (LEF1), an essential nuclear effector of the WNT/b-catenin pathway, via conserved LEF1/T-cell factor binding sites in the Pitx3 promoter. LEF1 expression is restricted to a caudolateral mdDA progenitor subset that preferentially responds to WNT/b-catenin signaling and gives rise to a fraction of all mdDA neurons. Our data indicate that an attenuation of WNT/b-catenin signaling in mdDA progenitors is essential for their correct differentiation into specific mdDA neuron subsets. This is an important consideration for stem cell-based regenerative therapies and in vitro models of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Parivash Nouri
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Sebastian Götz
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Benedict Rauser
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Changgeng Peng
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Advanced Institute of Translational Medicine, The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Kempny
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Carina G Lechermeier
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Agnes Bryniok
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Andrea Dlugos
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Ellen Euchner
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, Technical University of Munich, Munich, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Claudia Klümper
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Developmental Genetics, Helmholtz Zentrum München, Technical University of Munich/Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nilima Prakash
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| |
Collapse
|
8
|
Zhang L, Song NN, Zhang Q, Mei WY, He CH, Ma P, Huang Y, Chen JY, Mao B, Lang B, Ding YQ. Satb2 is required for the regionalization of retrosplenial cortex. Cell Death Differ 2020; 27:1604-1617. [PMID: 31666685 PMCID: PMC7206047 DOI: 10.1038/s41418-019-0443-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023] Open
Abstract
The retrosplenial cortex (Rsp) is a transitional cortex located between the neocortex and archicortex, but the molecular mechanism specifying Rsp from the archicortex remains elusive. We here report that the transcription factor Satb2 is required for specifying Rsp identity during its morphogenesis. In Satb2 CKO mice, the boundary between the Rsp and archicortex [i.e., subiculum (SubC)] disappears as early as E17.5, and Rsp efferent projection is aberrant. Rsp-specific genes are lost, whereas SubC-specific genes are ectopically expressed in Rsp of Satb2 CKO mice. Furthermore, cell-autonomous role of Satb2 in maintaining Rsp neuron identity is revealed by inactivation of Satb2 in Rsp neurons. Finally, Satb2 represses the transcription of Nr4a2. The misexpression of Nr4a2 together with Ctip2 induces expression of SubC-specific genes in wild-type Rsp, and simultaneous knockdown of these two genes in Rsp Satb2-mutant cells prevents their fate transition to SubC identity. Thus, Satb2 serves as a determinant gene in the Rsp regionalization by repressing Nr4a2 and Ctip2 during cortical development.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wan-Ying Mei
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Xu Y, Nowrangi D, Liang H, Wang T, Yu L, Lu T, Lu Z, Zhang JH, Luo B, Tang J. DKK3 attenuates JNK and AP-1 induced inflammation via Kremen-1 and DVL-1 in mice following intracerebral hemorrhage. J Neuroinflammation 2020; 17:130. [PMID: 32331523 PMCID: PMC7181567 DOI: 10.1186/s12974-020-01794-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is the most devastating stroke subtype, with a poor prognosis and few proven treatments. Neuroinflammation is associated with ICH-induced brain injury and unfavorable outcomes. There is growing evidence that Dickkopf (DKK) 3 plays a key role in the adaptive anti-inflammatory and neuroprotective responses following intracerebral hemorrhage. This study aimed to evaluate the protective effects of DKK3 against brain edema and neuroinflammation in a mice model of ICH. METHODS Male, adult CD1 mice were subjected to sham or ICH surgery using a collagenase injection model. ICH animals received either recombinant DKK3, Kremen-1 siRNA, or DVL-1 siRNA. The neurobehavioral deficits were evaluated at 24 h, 72 h, and 28 days after ICH induction. Western blot and immunofluorescence were employed to examine the expression and localization of DKK3, Kremen-1, Dishevelled-1 (DVL-1), c-JUN N-terminal kinase (JNK), Activator protein-1 (AP-1), cleaved caspase-1, NF-κB, and IL-1β in the brain. RESULTS The expression of endogenous DKK3 and DVL-1 was transiently decreased after ICH compared to that in the sham group. Compared to the mice of ICH, exogenous rDKK3 administration reduced the brain water content and affected the neurological functions in ICH mice. Moreover, DKK3 was colocalized with Kremen-1 in microglia. Using a Kremen-1 or DVL-1 siRNA-induced in vivo knockdown approach, we demonstrated that the effects of DKK3 against ICH were mediated, at least partly, by the Kremen-1 and DVL-1 pathways. CONCLUSIONS DKK3 improves the neurological outcomes, potentially by decreasing JNK/AP-1-mediated inflammation, thereby ameliorating the short- and long-term sequelae after ICH.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241000, Anhui, China
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
- Department of Neurology, Wannan Medical College First Affiliated Hospital, Wuhu, 241000, Anhui, China
| | - Derek Nowrangi
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Zhejiang, 310003, Hangzhou, China
| | - Tian Wang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Lingyan Yu
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Tai Lu
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - Zhengyang Lu
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Zhejiang, 310003, Hangzhou, China.
| | - Jiping Tang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA, 92350, USA.
| |
Collapse
|
10
|
Habuta M, Fujita H, Sato K, Bando T, Inoue J, Kondo Y, Miyaishi S, Kumon H, Ohuchi H. Dickkopf3 (Dkk3) is required for maintaining the integrity of secretory vesicles in the mouse adrenal medulla. Cell Tissue Res 2019; 379:157-167. [DOI: 10.1007/s00441-019-03113-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/22/2019] [Indexed: 01/21/2023]
|
11
|
MiR-92a modulates proliferation, apoptosis, migration, and invasion of osteosarcoma cell lines by targeting Dickkopf-related protein 3. Biosci Rep 2019; 39:BSR20190410. [PMID: 30926679 PMCID: PMC6487267 DOI: 10.1042/bsr20190410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is recognized as a common malignant tumor with a high trend of metastasis and diffusion. Despite the progresses that have been made in surgery, chemotherapy, and radiotherapy in the recent decades, the prognosis of patients with OS still remains poor. MiRNAs are being increasingly considered as new therapeutic targets for OS treatment. Our research aims to investigate the regulatory impact of miR-92a in the development of OS. Quantitative real-time PCR (qRT-PCR) results revealed that the expression of miR-92a was aberrantly overexpressed in human OS cell lines. By using cell counting kit-8 (CCK-8) assays, colony formation assays, flow cytometric analyses and Transwell assays, our data suggested that up-regulation of miR-92a promoted the proliferation, migration, and invasion of MNNG and U2OS cells, while inhibiting their apoptosis. In contrast, the knockdown of miR-92a effectively reversed these cellular biological behaviors. Furthermore, bioinformatics analysis indicated that Dickkopf-related protein 3 (DKK3) was a possible target of miR-92a. Subsequently, negative regulation of miR-92a on DKK3 was observed, which further supported the direct binding between them. In addition, silencing DKK3 rescued the inhibitory effect of miR-92a inhibitor on the development of OS. To sum up, our study revealed that miR-92a played a carcinogenic role in the growth of OS by promoting the tumorigenesis of OS cells via targeting of DKK3, thus revealing a new therapeutic target for OS.
Collapse
|
12
|
The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39:BSR20181377. [PMID: 30833362 PMCID: PMC6418402 DOI: 10.1042/bsr20181377] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) with early metastasis of the primary tumor results in poor prognosis and poor therapeutic outcomes. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a substantial role in regulating gene expression post-transcriptionally and influence the development and progression of tumors. Numerous studies have discovered that miRNAs play significant roles in the invasion and metastasis of CC by affecting specific pathways, including Notch, Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)-Akt pathways. miRNAs also effectively modulate the process of epithelial–mesenchymal transition. Many studies provide new insights into the role of miRNAs and the pathogenesis of metastatic CC. In this review, we will offer an overview and update of our present understanding of the potential roles of miRNAs in metastatic CC.
Collapse
|
13
|
Brodski C, Blaess S, Partanen J, Prakash N. Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells. J Dev Biol 2019; 7:jdb7010003. [PMID: 30650592 PMCID: PMC6473842 DOI: 10.3390/jdb7010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson’s Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro.
Collapse
Affiliation(s)
- Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany.
| | - Juha Partanen
- Faculty of Biological and Environmental Sciences, FIN00014-University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland.
| | - Nilima Prakash
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany.
| |
Collapse
|
14
|
Conditional Haploinsufficiency of β-Catenin Aggravates Neuronal Damage in a Paraquat-Based Mouse Model of Parkinson Disease. Mol Neurobiol 2018; 56:5157-5166. [PMID: 30519817 DOI: 10.1007/s12035-018-1431-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
The canonical Wnt pathway is critical for both the development and adulthood survival and homeostatic maintenance of the midbrain dopaminergic (DA) neurons. Expanding evidence has demonstrated that genetic factors associated with familial Parkinson disease (PD) deregulate this important pathway, suggesting that a disturbed canonical Wnt pathway is likely involved in PD pathogenesis; yet, the specific role of this pathway in sporadic PD remains unclear. In this study, we aimed to determine the effects of specific inhibition of the canonical pathway by hemizygous knockout of β-catenin, the obligatory component of the canonical Wnt pathway, on paraquat (PQ)-induced DA neuronal degeneration in the substantia nigra in vivo. We found that while hemizygous conditional knockout of β-catenin in DA neurons did not cause any significant TH+ neuronal loss in the substantia nigra at basal level, it triggered elevated oxidative stress at basal level and further enhanced PQ-induced oxidative damage and loss of TH+ neurons in the substantia nigra and axonal termini in the striatum that manifested as exacerbated motor deficits. These data support the notion that reduced Wnt/β-catenin signaling in sporadic PD likely contributes to DA neuronal loss through an enhanced oxidative stress-response pathway.
Collapse
|
15
|
Chen E, Li Q, Wang H, Yang F, Min L, Yang J. MiR-92a promotes tumorigenesis of colorectal cancer, a transcriptomic and functional based study. Biomed Pharmacother 2018; 106:1370-1377. [DOI: 10.1016/j.biopha.2018.07.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023] Open
|
16
|
Mendes-Pinheiro B, Teixeira FG, Anjo SI, Manadas B, Behie LA, Salgado AJ. Secretome of Undifferentiated Neural Progenitor Cells Induces Histological and Motor Improvements in a Rat Model of Parkinson's Disease. Stem Cells Transl Med 2018; 7:829-838. [PMID: 30238668 PMCID: PMC6216452 DOI: 10.1002/sctm.18-0009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results from the death of dopamine (DA) neurons. Over recent years, differentiated or undifferentiated neural stem cells (NSCs) transplantation has been widely used as a means of cell replacement therapy. However, compelling evidence has brought attention to the array of bioactive molecules produced by stem cells, defined as secretome. As described in the literature, other cell populations have a high‐neurotrophic activity, but little is known about NSCs. Moreover, the exploration of the stem cell secretome is only in its initial stages, particularly as applied to neurodegenerative diseases. Thus, we have characterized the secretome of human neural progenitor cells (hNPCs) through proteomic analysis and investigated its effects in a 6‐hydroxidopamine (6‐OHDA) rat model of PD in comparison with undifferentiated hNPCs transplantation. Results revealed that the injection of hNPCs secretome potentiated the histological recovery of DA neurons when compared to the untreated group 6‐OHDA and those transplanted with cells (hNPCs), thereby supporting the functional motor amelioration of 6‐OHDA PD animals. Additionally, hNPCs secretome proteomic characterization has revealed that these cells have the capacity to secrete a wide range of important molecules with neuroregulatory actions, which are most likely support the effects observed. Overall, we have concluded that the use of hNPCs secretome partially modulate DA neurons cell survival and ameliorate PD animals’ motor deficits, disclosing improved results when compared to cell transplantation approaches, indicating that the secretome itself could represent a route for new therapeutic options for PD regenerative medicine. stem cells translational medicine2018;7:829–838
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Sandra I Anjo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Leo A Behie
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
17
|
The Matricellular Protein R-Spondin 2 Promotes Midbrain Dopaminergic Neurogenesis and Differentiation. Stem Cell Reports 2018; 11:651-664. [PMID: 30146491 PMCID: PMC6135723 DOI: 10.1016/j.stemcr.2018.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/28/2018] [Accepted: 07/29/2018] [Indexed: 12/11/2022] Open
Abstract
The development of midbrain dopaminergic (mDA) neurons is controlled by multiple morphogens and transcription factors. However, little is known about the role of extracellular matrix proteins in this process. Here we examined the function of roof plate-specific spondins (RSPO1-4) and the floor plate-specific, spondin 1 (SPON1). Only RSPO2 and SPON1 were expressed at high levels during mDA neurogenesis, and the receptor LGR5 was expressed by midbrain floor plate progenitors. Surprisingly, RSPO2, but not SPON1, specifically promoted the differentiation of mDA neuroblasts into mDA neurons in mouse primary cultures and embryonic stem cells (ESCs). In addition, RSPO2 was found to promote not only mDA differentiation, but also mDA neurogenesis in human ESCs. Our results thus uncover an unexpected function of the matricellular protein RSPO2 and suggest an application to improve mDA neurogenesis and differentiation in human stem cell preparations destined to cell replacement therapy or drug discovery for Parkinson disease. Rspo2 is dynamically expressed during midbrain dopaminergic neuron development RSPO2 promotes the dopaminergic differentiation of mouse neurons in culture RSPO2 increases dopaminergic neurogenesis and differentiation of human ESCs
Collapse
|
18
|
Bautista E, Zarco N, Aguirre-Pineda N, Lara-Lozano M, Vergara P, González-Barrios JA, Aguilar-Roblero R, Segovia J. Expression of Gas1 in Mouse Brain: Release and Role in Neuronal Differentiation. Cell Mol Neurobiol 2018; 38:841-859. [PMID: 29110208 PMCID: PMC11481942 DOI: 10.1007/s10571-017-0559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Growth arrest-specific 1 (Gas1) is a pleiotropic protein that induces apoptosis of tumor cells and has important roles during development. Recently, the presence of two forms of Gas1 was reported: one attached to the cell membrane by a GPI anchor; and a soluble extracellular form shed by cells. Previously, we showed that Gas1 is expressed in different areas of the adult mouse CNS. Here, we report the levels of Gas1 mRNA protein in different regions and analyzed its expressions in glutamatergic, GABAergic, and dopaminergic neurons. We found that Gas1 is expressed in GABAergic and glutamatergic neurons in the Purkinje-molecular layer of the cerebellum, hippocampus, thalamus, and fastigial nucleus, as well as in dopaminergic neurons of the substantia nigra. In all cases, Gas1 was found in the cell bodies, but not in the neuropil. The Purkinje and the molecular layers show the highest levels of Gas1, whereas the granule cell layer has low levels. Moreover, we detected the expression and release of Gas1 from primary cultures of Purkinje cells and from hippocampal neurons as well as from neuronal cell lines, but not from cerebellar granular cells. In addition, using SH-SY5Y cells differentiated with retinoic acid as a neuronal model, we found that extracellular Gas1 promotes neurite outgrowth, increases the levels of tyrosine hydroxylase, and stimulates the inhibition of GSK3β. These findings demonstrate that Gas1 is expressed and released by neurons and promotes differentiation, suggesting an important role for Gas1 in cellular signaling in the CNS.
Collapse
Affiliation(s)
- Elizabeth Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Natanael Zarco
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Nicolás Aguirre-Pineda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Manuel Lara-Lozano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
- Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Avenida Instituto Politécnico Nacional N° 1669, Gustavo A. Madero, Col. Magdalena de las Salinas, Del. Gustavo A. Madero, 07760, Mexico, DF, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Avenida Instituto Politécnico Nacional N° 1669, Gustavo A. Madero, Col. Magdalena de las Salinas, Del. Gustavo A. Madero, 07760, Mexico, DF, Mexico
| | - Raúl Aguilar-Roblero
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacan, 04510, Mexico, DF, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07300, Mexico, DF, Mexico.
| |
Collapse
|
19
|
Toledo EM, Gyllborg D, Arenas E. Translation of WNT developmental programs into stem cell replacement strategies for the treatment of Parkinson's disease. Br J Pharmacol 2017; 174:4716-4724. [PMID: 28547771 PMCID: PMC5727333 DOI: 10.1111/bph.13871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022] Open
Abstract
Wnt signalling is a highly conserved pathway across species that is critical for normal development and is deregulated in multiple disorders including cancer and neurodegenerative diseases. Wnt signalling is critically required for midbrain dopaminergic (mDA) neuron development and maintenance. Understanding the molecular processes controlled by Wnt signalling may thus hold the key to understand the physiopathology and to develop novel therapies aimed at preventing the loss of mDA neurons in Parkinson's disease (PD). Pharmacological tools to activate Wnt signalling have been used to translate in vivo developmental processes into protocols for the generation of bona fide mDA neurons from human pluripotent stem cells. Moreover, these protocols are currently being fine-tuned to generate mDA neurons for clinical trials in PD. At the same time, a vast amount of molecular details of Wnt signalling continues to emerge and remains to be implemented into new protocols. We hereby review novel pharmacological tools to activate Wnt signalling and how single-cell RNA-sequencing is contributing to unravel the complexity of this pathway in the developing human ventral midbrain, generating novel hypotheses and identifying new players and opportunities to further improve cell replacement therapy for PD. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Enrique M Toledo
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Daniel Gyllborg
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|
20
|
Wu Q, Zhou W, Feng Q, Liu X, Xiong Y, Li H. MicroRNA-92b promotes cell proliferation and invasion in osteosarcoma by directly targeting Dickkopf-related protein 3. Exp Ther Med 2017; 15:173-181. [PMID: 29250147 PMCID: PMC5729699 DOI: 10.3892/etm.2017.5356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/11/2017] [Indexed: 01/13/2023] Open
Abstract
Deregulation of microRNA-92b (miR-92b) has been implicated in osteosarcoma. However, the underlying regulatory mechanism of miR-92b in osteosarcoma growth and metastasis remains largely unclear. In the present study, reverse transcription-quantitative polymerase chain reaction and western blotting were used to measure mRNA and protein expression. MTT and Transwell assays were conducted to determine cell proliferation and invasion, and a luciferase reporter assay was performed to confirm the association between miR-92b and Dickkopf3-related protein (DKK3). The results demonstrated that miR-92b was significantly upregulated in osteosarcoma tissues compared with matched adjacent non-tumor tissues. Additionally, high miR-92b levels were significantly associated with lung metastasis and advanced tumor, node, metastasis stage (P<0.05) but not with age, sex, tumor size, location, serum lactate dehydrogenase or serum alkaline phosphatase. miR-92b expression was also significantly upregulated in osteosarcoma cell lines compared with normal osteoblast cells. Knockdown of miR-92b significantly inhibited the proliferation and invasion of osteosarcoma U2OS cells (P<0.01). By contrast, overexpression of miR-92b significantly increased U2OS cell proliferation and invasion (P<0.01). DKK3 was identified as a target gene of miR-92b and it was demonstrated that DKK3 expression was negatively regulated by miR-92b in U2OS cells. Restoration of DKK3 expression abrogated the increased proliferation and invasion of U2OS cells induced by miR-92b overexpression. Notably, DKK3 was significantly downregulated in osteosarcoma tissues compared with adjacent non-tumor tissues and its expression was inversely correlated to miR-92b levels in osteosarcoma tissues. Taken together, these data indicate that miR-92b promotes cell proliferation and invasion in osteosarcoma by targeting DKK3. Therefore, miR-92b may become a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Qing Wu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Zhou
- Department of Vascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong Feng
- Nursing School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing Liu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanfei Xiong
- Department of Orthopedics, Jing An Hospital, Yichun, Jiangxi 330600, P.R. China
| | - Hui Li
- Department of Immunology and Microbiology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
21
|
Smidt MP. Molecular Programming of Mesodiencephalic Dopaminergic Neuronal Subsets. Front Neuroanat 2017; 11:59. [PMID: 28769772 PMCID: PMC5515899 DOI: 10.3389/fnana.2017.00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022] Open
Abstract
Dopamine neurons of the substantia nigra compacta (SNc) and ventral tegmental area (VTA) are critical components of the neuronal machinery to control emotion and movement in mammals. The slow and gradual death of these neurons as seen in Parkinson's disease has triggered a large investment in research toward unraveling the molecular determinants that are used to generate these neurons and to get an insight in their apparent selective vulnerability. Here, I set out to summarize the current view on the molecular distinctions that exist within this mesodiencephalic dopamine (mdDA) system and elaborate on the molecular programming that is responsible for creating such diversity.
Collapse
Affiliation(s)
- Marten P Smidt
- Molecular NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
22
|
Luo S, Li N, Yu S, Chen L, Liu C, Rong J. MicroRNA-92a promotes cell viability and invasion in cervical cancer via directly targeting Dickkopf-related protein 3. Exp Ther Med 2017; 14:1227-1234. [PMID: 28810582 DOI: 10.3892/etm.2017.4586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNA-92a (miR-92a) was recently reported to have an oncogenic role in cervical cancer; however, the underlying mechanism remains largely unclear. The present study aimed to investigate the expression, clinical significance and regulatory mechanism of miR-92a in cervical cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data indicated that miR-92a was significantly upregulated in cervical cancer tissues compared with matched adjacent non-tumor tissues (P<0.01). High expression of miR-92a was significantly associated with poor differentiation (P=0.031), advanced clinical stage (P=0.011) and lymph node metastasis (P=0.014), but not associated with age, tumor size and distant metastasis. Knockdown of miR-92a significantly inhibited the viability and invasion of cervical cancer HeLa cells, while overexpression of miR-92a significantly enhanced HeLa cell viability and invasion (P<0.01). Luciferase reporter assay identified Dickkopf-related protein 3 (DKK3) as a target gene of miR-92a, and the protein expression of DKK3 was negatively regulated by miR-92a in HeLa cells. Furthermore, overexpression of DKK3 significantly eliminated the stimulative effects of miR-92a on HeLa cell viability and invasion (P<0.01). Additionally, DKK3 was significantly downregulated in cervical cancer tissues compared with adjacent non-tumor tissues (P<0.01), inversely correlated to the miR-92a levels in cervical cancer tissues (P<0.01). In summary, the present study indicated that miR-92a promotes cell viability and invasion in cervical cancer, partly at least, via inhibiting the protein expression of DKK3. Therefore, the present study highlights the clinical significance of the miR-92a/DKK3 axis in cervical cancer.
Collapse
Affiliation(s)
- Shengtian Luo
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Na Li
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Shaohua Yu
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Lichun Chen
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Chunying Liu
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Jiawei Rong
- Department of Obstetrics and Gynecology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|
23
|
Noelanders R, Vleminckx K. How Wnt Signaling Builds the Brain: Bridging Development and Disease. Neuroscientist 2016; 23:314-329. [DOI: 10.1177/1073858416667270] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wnt/β-catenin signaling plays a crucial role throughout all stages of brain development and remains important in the adult brain. Accordingly, many neurological disorders have been linked to Wnt signaling. Defects in Wnt signaling during neural development can give rise to birth defects or lead to neurological dysfunction later in life. Developmental signaling events can also be hijacked in the adult and result in disease. Moreover, knowledge about the physiological role of Wnt signaling in the brain might lead to new therapeutic strategies for neurological diseases. Especially, the important role for Wnt signaling in neural differentiation of pluripotent stem cells has received much attention as this might provide a cure for neurodegenerative disorders. In this review, we summarize the versatile role of Wnt/β-catenin signaling during neural development and discuss some recent studies linking Wnt signaling to neurological disorders.
Collapse
Affiliation(s)
- Rivka Noelanders
- Unit of Developmental Biology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Unit of Developmental Biology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
24
|
Studying Mesodiencephalic Dopaminergic Neuron Development In Vivo to Improve Stem Cell Therapy in Parkinson's Disease. J Neurosci 2016; 36:1794-6. [PMID: 26865605 DOI: 10.1523/jneurosci.4285-15.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|