1
|
McCraw A, Sullivan J, Lowery K, Eddings R, Heim HR, Buss AT. Dynamic Field Theory of Executive Function: Identifying Early Neurocognitive Markers. Monogr Soc Res Child Dev 2024; 89:7-109. [PMID: 39628288 PMCID: PMC11615565 DOI: 10.1111/mono.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 12/08/2024]
Abstract
In this Monograph, we explored neurocognitive predictors of executive function (EF) development in a cohort of children followed longitudinally from 30 to 54 months of age. We tested predictions of a dynamic field model that explains development in a benchmark measure of EF development, the dimensional change card sort (DCCS) task. This is a rule-use task that measures children's ability to switch between sorting cards by shape or color rules. A key developmental mechanism in the model is that dimensional label learning drives EF development. Data collection began in February 2019 and was completed in April 2022 on the Knoxville campus of the University of Tennessee. Our cohort included 20 children (13 female) all of whom were White (not Hispanic/Latinx) from an urban area in southern United States, and the sample annual family income distribution ranged from low to high (most families falling between $40,000 and 59,000 per year (note that we address issues of generalizability and the small sample size throughout the monograph)). We tested the influence of dimensional label learning on DCCS performance by longitudinally assessing neurocognitive function across multiple domains at 30 and 54 months of age. We measured dimensional label learning with comprehension and production tasks for shape and color labels. Simple EF was measured with the Simon task which required children to respond to images of a cat or dog with a lateralized (left/right) button press. Response conflict was manipulated in this task based on the spatial location of the stimulus which could be neutral (central), congruent, or incongruent with the spatial lateralization of the response. Dimensional understanding was measured with an object matching task requiring children to generalize similarity between objects that matched within the dimensions of color or shape. We first identified neural measures associated with performance and development on each of these tasks. We then examined which of these measures predicted performance on the DCCS task at 54 months. We measured neural activity with functional near-infrared spectroscopy across bilateral frontal, temporal, and parietal cortices. Our results identified an array of neurocognitive mechanisms associated with development within each domain we assessed. Importantly, our results suggest that dimensional label learning impacts the development of EF. Neural activation in left frontal cortex during dimensional label production at 30 months of age predicted EF performance at 54 months of age. We discussed these results in the context of efforts to train EF with broad transfer. We also discussed a new autonomy-centered EF framework. The dynamic field model on which we have motivated the current research makes decisions autonomously and various factors can influence the types of decisions that the model makes. In this way, EF is a property of neurocognitive dynamics, which can be influenced by individual factors and contextual effects. We also discuss how this conceptual framework can generalize beyond the specific example of dimensional label learning and DCCS performance to other aspects of EF and how this framework can help to understand how EF unfolds in unique individual, cultural, and contextual factors. Measures of EF during early childhood are associated with a wide range of development outcomes, including academic skills and quality of life. The hope is that broad aspects of development can be improved by implementing interventions aimed at facilitating EF development. However, this promise has been largely unrealized. Previous work on EF development has been limited by a focus on EF components, such as inhibition, working memory, and switching. Similarly, intervention research has focused on practicing EF tasks that target these specific components of EF. While performance typically improves on the practiced task, improvement rarely generalizes to other EF tasks or other developmental outcomes. The current work is unique because we looked beyond EF itself to identify the lower-level learning processes that predict EF development. Indeed, the results of this study identify the first learning mechanism involved in the development of EF. Although the work here provides new targets for interventions in future work, there are also important limitations. First, our sample is not representative of the underlying population of children in the United States under the age of 5. This is a problem in much of the existing developmental cognitive neuroscience research. We discussed challenges to the generalizability of our findings to the population at large. This is particularly important given that our theory is largely contextual, suggesting that children's unique experiences with learning labels for visual dimensions will impact EF development. Second, we identified a learning mechanism to target in future intervention research; however, it is not clear whether such interventions would benefit all children or how to identify children who would benefit most from such interventions. We also discuss prospective lines of research that can address these limitations, such as targeting families that are typically underrepresented in research, expanding longitudinal studies to examine longer term outcomes such as school-readiness and academic skills, and using the dynamic field (DF) model to systematically explore how exposure to objects and labels can optimize the neural representations underlying dimensional label learning. Future work remains to understand how such learning processes come to define the contextually and culturally specific skills that emerge over development and how these skills lay the foundation for broad developmental trajectories.
Collapse
Affiliation(s)
- Alexis McCraw
- Department of PsychologyUniversity of TennesseeKnoxville
| | | | - Kara Lowery
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Rachel Eddings
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Hollis R. Heim
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Aaron T. Buss
- Department of PsychologyUniversity of TennesseeKnoxville
| |
Collapse
|
2
|
Naeije G, Niesen M, Vander Ghinst M, Bourguignon M. Simultaneous EEG recording of cortical tracking of speech and movement kinematics. Neuroscience 2024; 561:1-10. [PMID: 39395635 DOI: 10.1016/j.neuroscience.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
RATIONALE Cortical activity is coupled with streams of sensory stimulation. The coupling with the temporal envelope of heard speech is known as the cortical tracking of speech (CTS), and that with movement kinematics is known as the corticokinematic coupling (CKC). Simultaneous measurement of both couplings is desirable in clinical settings, but it is unknown whether the inherent dual-tasking condition has an impact on CTS or CKC. AIM We aim to determine whether and how CTS and CKC levels are affected when recorded simultaneously. METHODS Twenty-three healthy young adults underwent 64-channel EEG recordings while listening to stories and while performing repetitive finger-tapping movements in 3 conditions: separately (audio- or tapping-only) or simultaneously (audio-tapping). CTS and CKC values were estimated using coherence analysis between each EEG signal and speech temporal envelope (CTS) or finger acceleration (CKC). CTS was also estimated as the reconstruction accuracy of a decoding model. RESULTS Across recordings, CTS assessed with reconstruction accuracy was significant in 85 % of the subjects at phrasal frequency (0.5 Hz) and in 68 % at syllabic frequencies (4-8 Hz), and CKC was significant in over 85 % of the subjects at movement frequency and its first harmonic. Comparing CTS and CKC values evaluated in separate recordings to those in simultaneous recordings revealed no significant difference and moderate-to-high levels of correlation. CONCLUSION Despite the subtle behavioral effects, CTS and CKC are not evidently altered by the dual-task setting inherent to recording them simultaneously and can be evaluated simultaneously using EEG in clinical settings.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, HUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Maxime Niesen
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, HUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, HUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Teng F, Wang M, Lu Z, Zhang C, Xiao L, Chen Z, Huang M, Xie L, Chen Z, Wang W. Causal relationship between cortical structural changes and onset of anxiety disorder: evidence from Mendelian randomization. Cereb Cortex 2024; 34:bhae440. [PMID: 39503246 DOI: 10.1093/cercor/bhae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Previous studies have reported a correlation between anxiety disorders and changes in brain structure, yet the specific alterations in brain region volumes remain unclear. This study aimed to infer the causal relationship between anxiety disorders and changes in brain structure volume through Mendelian Randomization analysis. We selected 63 cortical structure volumes from the GWAS database as exposure data and anxiety disorder data from the FinnGen and UK Biobank databases as outcomes. We found a significant correlation between atrophy in the Left precentral volume area (Odds Ratio [OR] = 0.935, 95% Confidence intervals [CI]: 0.891-0.981, P value, P = 0.007) and an increased risk of anxiety disorders. Additionally, changes identified in specific brain regions, such as atrophy in the Right rostral anterior cingulate area (OR = 0.993, 95% CI: 0.987-0.999, P = 0.025) and increased volume in the Left superior parietal area (OR = 1.001, 95% CI: 1.000-1.001, P = 0.028), may correlate with an increased risk of anxiety disorders. Furthermore, both phenotypes demonstrated directional consistency in their respective and overall meta-analyzed OR values pre- and post-merger, enhancing the reliability of the results. This study elucidates the causal relationship between anxiety disorders and specific brain structures, providing new insights for further research into psychiatric disorders.
Collapse
Affiliation(s)
- Fei Teng
- Department of Liver Surgery, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Zhangyu Lu
- West China School of Medicine, Sichuan University, No. 17 South Renming Road, Chengdu 610094, China
| | - Chunyu Zhang
- Emergency Surgery Department of Changji Hui Autonomous Prefecture People's Hospital, Yan'an North Avenue, Changji City 831100, Xinjiang Province, China
| | - Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - ZhaoMing Chen
- Clinical Laboratory Diagnosis, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Avenue, Wenjiang District, Chengdu 610041, China
| | - Mengshuang Huang
- Clinical Laboratory Diagnosis, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Liutai Avenue, Wenjiang District, Chengdu 610041, China
| | - Linglin Xie
- Department of Nursing, Ziyang College of Dental Technology, No. 1666, West Section 3, Outer Ring Road, Yanjiang District, Ziyang City 641300, China
| | - Zheyu Chen
- Department of Liver Surgery, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
4
|
Lopez-Chaichio L, Galindo-Moreno P, Padial-Molina M, Gutierrez-Garrido L, Rodriguez-Alvarez R, O’Valle F, Catena A. Mastication Influences Human Brain Anatomy. J Oral Maxillofac Res 2024; 15:e4. [PMID: 40017684 PMCID: PMC11863650 DOI: 10.5037/jomr.2024.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
Objectives The purpose of this observational clinical study was to evaluate the relationship between brain anatomical and volumetric changes in white matter, grey matter, and cerebral cortex thickness with the number of functional occlusal pairs present in the mouth. Material and Methods The number of functional occlusal pairs in 70 patients was counted and non-invasive brain analysis was performed using magnetic resonance imaging. The volume of grey matter, white matter, and thickness of the cortex in different areas of the brain were determined by SPM12 and CAT12 software. Multiple regression model corrected for multiple comparisons using FDR and Spearman correlation coefficient were calculated for statistical comparison. Results A total of 70 (39 male, 31 female) were analysed, with an average number of occlusal pairs of 10.21 (3.99). According to the Spearman correlation coefficient, a lower number of occlusal pairs was related to a reduction in white matter (right external capsule and posterior limb of the internal capsule), a reduction in grey matter (right temporal superior and medial gyrus and left cerebellum crus 1) and a reduction in thickness of the cerebral cortex (rostral anterior cingulated cortex of the right hemisphere and areas in the right and left hemisphere, especially in the frontal cortex). Conclusions The number of occlusal pairs is related to the volume of white matter, grey matter, and thickness of the cerebral cortex in areas of the brain that are directly involved in the onset and progression of Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Lucia Lopez-Chaichio
- Private practice, Jaen, Spain. Formerly PhD Program in Clinical Medicine and Public Health, University of Granada, GranadaSpain.
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, and Instituto Biosanitario de Granada (Ibs.GRANADA), University of Granada, GranadaSpain.
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, and Instituto Biosanitario de Granada (Ibs.GRANADA), University of Granada, GranadaSpain.
| | - Lourdes Gutierrez-Garrido
- Private practice, Granada, Spain. Formerly PhD Program in Clinical Medicine and Public Health, University of Granada, GranadaSpain.
| | | | - Francisco O’Valle
- Department of Pathology and IBIMER, School of Medicine, and Instituto Biosanitario de Granada (Ibs.GRANADA), University of Granada, GranadaSpain.
| | - Andres Catena
- Department of Pathology and IBIMER, School of Medicine, and Instituto Biosanitario de Granada (Ibs.GRANADA), University of Granada, GranadaSpain.
| |
Collapse
|
5
|
Ortiz-Barajas MC. Predicting language outcome at birth. Front Hum Neurosci 2024; 18:1370572. [PMID: 39036813 PMCID: PMC11258996 DOI: 10.3389/fnhum.2024.1370572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Even though most children acquire language effortlessly, not all do. Nowadays, language disorders are difficult to diagnose before 3-4 years of age, because diagnosis relies on behavioral criteria difficult to obtain early in life. Using electroencephalography, I investigated whether differences in newborns' neural activity when listening to sentences in their native language (French) and a rhythmically different unfamiliar language (English) relate to measures of later language development at 12 and 18 months. Here I show that activation differences in the theta band at birth predict language comprehension abilities at 12 and 18 months. These findings suggest that a neural measure of language discrimination at birth could be used in the early identification of infants at risk of developmental language disorders.
Collapse
|
6
|
Tang Q, Zhang G, Fan YS, Sheng W, Yang C, Liu L, Liu X, Liu H, Guo Y, Gao Q, Lu F, He Z, Cui Q, Chen H. An investigation into the abnormal dynamic connection mechanism of generalized anxiety disorders based on non-homogeneous Markov models. J Affect Disord 2024; 354:500-508. [PMID: 38484883 DOI: 10.1016/j.jad.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The dynamic and hierarchical nature of the functional brain network. The neural dynamical systems tend to converge to multiple attractors (stable fixed points or dynamical states) in long run. Little is known about how the changes in this brain dynamic "long-term" behavior of the connectivity flow of brain network in generalized anxiety disorder (GAD). METHODS This study recruited 92 patients with GAD and 77 healthy controls (HC). We applied a reachable probability approach combining a Non-homogeneous Markov model with transition probability to quantify all possible connectivity flows and the hierarchical structure of brain functional systems at the dynamic level and the stationary probability vector (10-step transition probabilities) to describe the steady state of the system in the long run. A random forest algorithm was conducted to predict the severity of anxiety. RESULTS The dynamic functional patterns in distributed brain networks had larger possibility to converge in bilateral thalamus, posterior cingulate cortex (PCC), right superior occipital gyrus (SOG) and smaller possibility to converge in bilateral superior temporal gyrus (STG) and right parahippocampal gyrus (PHG) in patients with GAD compared to HC. The abnormal transition probability pattern could predict anxiety severity in patients with GAD. LIMITATIONS Small samples and subjects taking medications may have influenced our results. Future studies are expected to rule out the potential confounding effects. CONCLUSION Our results have revealed abnormal dynamic neural communication and integration in emotion regulation in patients with GAD, which give new insights to understand the dynamics of brain function of patients with GAD.
Collapse
Affiliation(s)
- Qin Tang
- Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing 400038, China; The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Lab for Neuroinformation High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Gan Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chenguang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liju Liu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoxiang Liu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanhong Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Lab for Neuroinformation High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Huafu Chen
- Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing 400038, China; The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Lab for Neuroinformation High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Zanoaga MD, Friligkou E, He J, Pathak GA, Koller D, Cabrera-Mendoza B, Stein MB, Polimanti R. Brainwide Mendelian Randomization Study of Anxiety Disorders and Symptoms. Biol Psychiatry 2024; 95:810-817. [PMID: 37967698 PMCID: PMC10978301 DOI: 10.1016/j.biopsych.2023.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND To gain insights into the role of brain structure and function on anxiety (ANX), we conducted a genetically informed investigation leveraging information from ANX genome-wide association studies available from the UK Biobank (n = 380,379), the FinnGen Program (n = 290,361), and the Million Veteran Program (n = 175,163) together with UK Biobank genome-wide data (n = 33,224) related to 3935 brain imaging-derived phenotypes (IDPs). METHODS A genetic correlation analysis between ANX and brain IDPs was performed using linkage disequilibrium score regression. To investigate ANX-brain associations, a 2-sample Mendelian randomization was performed considering multiple methods and sensitivity analyses. A subsequent multivariable Mendelian randomization was conducted to distinguish between direct and indirect effects. Finally, a generalized linear model was used to explore the associations of brain IDPs with ANX symptoms. RESULTS After false discovery rate correction (q < .05), we identified 41 brain IDPs genetically correlated with ANX without heterogeneity among the datasets investigated (i.e., UK Biobank, FinnGen, and Million Veteran Program). Six of these IDPs showed genetically inferred causal effects on ANX. In the subsequent multivariable Mendelian randomization analysis, reduced area of the right posterior middle cingulate gyrus (β = -0.09, p = 8.01 × 10-4) and reduced gray matter volume of the right anterior superior temporal gyrus (β = -0.09, p = 1.55 × 10-3) had direct effects on ANX. In the ANX symptom-level analysis, the right posterior middle cingulate gyrus was negatively associated with "tense, sore, or aching muscles during the worst period of anxiety" (β = -0.13, p = 8.26 × 10-6). CONCLUSIONS This study identified genetically inferred effects that are generalizable across large cohorts, thereby contributing to our understanding of how changes in brain structure and function can lead to ANX.
Collapse
Affiliation(s)
- Mihaela-Diana Zanoaga
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Eleni Friligkou
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jun He
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Dora Koller
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, California; Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California; Veteran Affairs San Diego Healthcare System, San Diego, California
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veteran Affairs Connecticut Healthcare System, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
8
|
Lee IS, Kang JH, Kim J. Auditory influence on stickiness perception: an fMRI study of multisensory integration. Neuroreport 2024; 35:269-276. [PMID: 38305131 PMCID: PMC10852036 DOI: 10.1097/wnr.0000000000002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
This study explored how the human brain perceives stickiness through tactile and auditory channels, especially when presented with congruent or incongruent intensity cues. In our behavioral and functional MRI (fMRI) experiments, we presented participants with adhesive tape stimuli at two different intensities. The congruent condition involved providing stickiness stimuli with matching intensity cues in both auditory and tactile channels, whereas the incongruent condition involved cues of different intensities. Behavioral results showed that participants were able to distinguish between the congruent and incongruent conditions with high accuracy. Through fMRI searchlight analysis, we tested which brain regions could distinguish between congruent and incongruent conditions, and as a result, we identified the superior temporal gyrus, known primarily for auditory processing. Interestingly, we did not observe any significant activation in regions associated with somatosensory or motor functions. This indicates that the brain dedicates more attention to auditory cues than to tactile cues, possibly due to the unfamiliarity of conveying the sensation of stickiness through sound. Our results could provide new perspectives on the complexities of multisensory integration, highlighting the subtle yet significant role of auditory processing in understanding tactile properties such as stickiness.
Collapse
Affiliation(s)
- In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul
| | - Jae-Hwan Kang
- Digital Health Research Division, Korea Institute of Oriental Medicine
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon
| | - Junsuk Kim
- School of Information Convergence, Kwangwoon University, Seoul, South Korea
| |
Collapse
|
9
|
Corsini A, Tomassini A, Pastore A, Delis I, Fadiga L, D'Ausilio A. Speech perception difficulty modulates theta-band encoding of articulatory synergies. J Neurophysiol 2024; 131:480-491. [PMID: 38323331 DOI: 10.1152/jn.00388.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
The human brain tracks available speech acoustics and extrapolates missing information such as the speaker's articulatory patterns. However, the extent to which articulatory reconstruction supports speech perception remains unclear. This study explores the relationship between articulatory reconstruction and task difficulty. Participants listened to sentences and performed a speech-rhyming task. Real kinematic data of the speaker's vocal tract were recorded via electromagnetic articulography (EMA) and aligned to corresponding acoustic outputs. We extracted articulatory synergies from the EMA data with principal component analysis (PCA) and employed partial information decomposition (PID) to separate the electroencephalographic (EEG) encoding of acoustic and articulatory features into unique, redundant, and synergistic atoms of information. We median-split sentences into easy (ES) and hard (HS) based on participants' performance and found that greater task difficulty involved greater encoding of unique articulatory information in the theta band. We conclude that fine-grained articulatory reconstruction plays a complementary role in the encoding of speech acoustics, lending further support to the claim that motor processes support speech perception.NEW & NOTEWORTHY Top-down processes originating from the motor system contribute to speech perception through the reconstruction of the speaker's articulatory movement. This study investigates the role of such articulatory simulation under variable task difficulty. We show that more challenging listening tasks lead to increased encoding of articulatory kinematics in the theta band and suggest that, in such situations, fine-grained articulatory reconstruction complements acoustic encoding.
Collapse
Affiliation(s)
- Alessandro Corsini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| | - Aldo Pastore
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Ershaid H, Lizarazu M, McLaughlin D, Cooke M, Simantiraki O, Koutsogiannaki M, Lallier M. Contributions of listening effort and intelligibility to cortical tracking of speech in adverse listening conditions. Cortex 2024; 172:54-71. [PMID: 38215511 DOI: 10.1016/j.cortex.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Cortical tracking of speech is vital for speech segmentation and is linked to speech intelligibility. However, there is no clear consensus as to whether reduced intelligibility leads to a decrease or an increase in cortical speech tracking, warranting further investigation of the factors influencing this relationship. One such factor is listening effort, defined as the cognitive resources necessary for speech comprehension, and reported to have a strong negative correlation with speech intelligibility. Yet, no studies have examined the relationship between speech intelligibility, listening effort, and cortical tracking of speech. The aim of the present study was thus to examine these factors in quiet and distinct adverse listening conditions. Forty-nine normal hearing adults listened to sentences produced casually, presented in quiet and two adverse listening conditions: cafeteria noise and reverberant speech. Electrophysiological responses were registered with electroencephalogram, and listening effort was estimated subjectively using self-reported scores and objectively using pupillometry. Results indicated varying impacts of adverse conditions on intelligibility, listening effort, and cortical tracking of speech, depending on the preservation of the speech temporal envelope. The more distorted envelope in the reverberant condition led to higher listening effort, as reflected in higher subjective scores, increased pupil diameter, and stronger cortical tracking of speech in the delta band. These findings suggest that using measures of listening effort in addition to those of intelligibility is useful for interpreting cortical tracking of speech results. Moreover, reading and phonological skills of participants were positively correlated with listening effort in the cafeteria condition, suggesting a special role of expert language skills in processing speech in this noisy condition. Implications for future research and theories linking atypical cortical tracking of speech and reading disorders are further discussed.
Collapse
Affiliation(s)
- Hadeel Ershaid
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Drew McLaughlin
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Martin Cooke
- Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| | | | | | - Marie Lallier
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
11
|
Silva Pereira S, Özer EE, Sebastian-Galles N. Complexity of STG signals and linguistic rhythm: a methodological study for EEG data. Cereb Cortex 2024; 34:bhad549. [PMID: 38236741 DOI: 10.1093/cercor/bhad549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 02/06/2024] Open
Abstract
The superior temporal and the Heschl's gyri of the human brain play a fundamental role in speech processing. Neurons synchronize their activity to the amplitude envelope of the speech signal to extract acoustic and linguistic features, a process known as neural tracking/entrainment. Electroencephalography has been extensively used in language-related research due to its high temporal resolution and reduced cost, but it does not allow for a precise source localization. Motivated by the lack of a unified methodology for the interpretation of source reconstructed signals, we propose a method based on modularity and signal complexity. The procedure was tested on data from an experiment in which we investigated the impact of native language on tracking to linguistic rhythms in two groups: English natives and Spanish natives. In the experiment, we found no effect of native language but an effect of language rhythm. Here, we compare source projected signals in the auditory areas of both hemispheres for the different conditions using nonparametric permutation tests, modularity, and a dynamical complexity measure. We found increasing values of complexity for decreased regularity in the stimuli, giving us the possibility to conclude that languages with less complex rhythms are easier to track by the auditory cortex.
Collapse
Affiliation(s)
- Silvana Silva Pereira
- Center for Brain and Cognition, Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Ege Ekin Özer
- Center for Brain and Cognition, Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Nuria Sebastian-Galles
- Center for Brain and Cognition, Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| |
Collapse
|
12
|
Cattarinussi G, Pouya P, Grimaldi DA, Dini MZ, Sambataro F, Brambilla P, Delvecchio G. Cortical alterations in relatives of patients with bipolar disorder: A review of magnetic resonance imaging studies. J Affect Disord 2024; 345:234-243. [PMID: 37865341 DOI: 10.1016/j.jad.2023.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a severe mental disorder characterized by high heritability rates. Widespread brain cortical alterations have been reported in BD patients, mostly involving the frontal, temporal and parietal regions. Importantly, also unaffected relatives of BD patients (BD-RELs) present abnormalities in cortical measures, which are not influenced by disease-related factors, such as medication use and illness duration. Here, we collected all available evidence on cortical measures in BD-RELs to further our knowledge on the potential cortical alterations associated with the vulnerability and the resilience to BD. METHODS A search on PubMed, Web of Science and Scopus was performed to identify neuroimaging studies exploring cortical alterations in BD-RELs, including cortical thickness (CT), surface area (SA), gyrification (GI) and cortical complexity. Eleven studies were included. Of these, five assessed CT, five examined CT and SA and one explored CT, SA and GI. RESULTS Overall, a heterogeneous pattern of cortical alterations emerged. The areas more consistently linked with genetic liability for BD were the prefrontal and sensorimotor regions. Mixed evidence was reported in the temporal and cingulate areas. LIMITATIONS The small sample size and the heterogeneity in terms of methodologies and the characteristics of the participants limit the generalizability of our results. CONCLUSIONS Our findings suggest that the genetic liability for BD is related to reduced CT in the prefrontal cortex, which might be a marker of risk for BD, and increased CT within the sensorimotor cortex, which could represent a marker of resilience.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Parnia Pouya
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahta Zare Dini
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
13
|
Jiang Z, An X, Liu S, Yin E, Yan Y, Ming D. Neural oscillations reflect the individual differences in the temporal perception of audiovisual speech. Cereb Cortex 2023; 33:10575-10583. [PMID: 37727958 DOI: 10.1093/cercor/bhad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
Multisensory integration occurs within a limited time interval between multimodal stimuli. Multisensory temporal perception varies widely among individuals and involves perceptual synchrony and temporal sensitivity processes. Previous studies explored the neural mechanisms of individual differences for beep-flash stimuli, whereas there was no study for speech. In this study, 28 subjects (16 male) performed an audiovisual speech/ba/simultaneity judgment task while recording their electroencephalography. We examined the relationship between prestimulus neural oscillations (i.e. the pre-pronunciation movement-related oscillations) and temporal perception. The perceptual synchrony was quantified using the Point of Subjective Simultaneity and temporal sensitivity using the Temporal Binding Window. Our results revealed dissociated neural mechanisms for individual differences in Temporal Binding Window and Point of Subjective Simultaneity. The frontocentral delta power, reflecting top-down attention control, is positively related to the magnitude of individual auditory leading Temporal Binding Windows (auditory Temporal Binding Windows; LTBWs), whereas the parieto-occipital theta power, indexing bottom-up visual temporal attention specific to speech, is negatively associated with the magnitude of individual visual leading Temporal Binding Windows (visual Temporal Binding Windows; RTBWs). In addition, increased left frontal and bilateral temporoparietal occipital alpha power, reflecting general attentional states, is associated with increased Points of Subjective Simultaneity. Strengthening attention abilities might improve the audiovisual temporal perception of speech and further impact speech integration.
Collapse
Affiliation(s)
- Zeliang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Erwei Yin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, China
| | - Ye Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Defense Innovation Institute, Academy of Military Sciences (AMS), 100071 Beijing, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), 300457 Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
14
|
Răutu IS, De Tiège X, Jousmäki V, Bourguignon M, Bertels J. Speech-derived haptic stimulation enhances speech recognition in a multi-talker background. Sci Rep 2023; 13:16621. [PMID: 37789043 PMCID: PMC10547762 DOI: 10.1038/s41598-023-43644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
Speech understanding, while effortless in quiet conditions, is challenging in noisy environments. Previous studies have revealed that a feasible approach to supplement speech-in-noise (SiN) perception consists in presenting speech-derived signals as haptic input. In the current study, we investigated whether the presentation of a vibrotactile signal derived from the speech temporal envelope can improve SiN intelligibility in a multi-talker background for untrained, normal-hearing listeners. We also determined if vibrotactile sensitivity, evaluated using vibrotactile detection thresholds, modulates the extent of audio-tactile SiN improvement. In practice, we measured participants' speech recognition in a multi-talker noise without (audio-only) and with (audio-tactile) concurrent vibrotactile stimulation delivered in three schemes: to the left or right palm, or to both. Averaged across the three stimulation delivery schemes, the vibrotactile stimulation led to a significant improvement of 0.41 dB in SiN recognition when compared to the audio-only condition. Notably, there were no significant differences observed between the improvements in these delivery schemes. In addition, audio-tactile SiN benefit was significantly predicted by participants' vibrotactile threshold levels and unimodal (audio-only) SiN performance. The extent of the improvement afforded by speech-envelope-derived vibrotactile stimulation was in line with previously uncovered vibrotactile enhancements of SiN perception in untrained listeners with no known hearing impairment. Overall, these results highlight the potential of concurrent vibrotactile stimulation to improve SiN recognition, especially in individuals with poor SiN perception abilities, and tentatively more so with increasing tactile sensitivity. Moreover, they lend support to the multimodal accounts of speech perception and research on tactile speech aid devices.
Collapse
Affiliation(s)
- I Sabina Răutu
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service de Neuroimagerie Translationnelle, Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- BCBL, Basque Center on Cognition, Brain and Language, 20009, San Sebastián, Spain
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Bertels
- Laboratoire de Neuroanatomie et de Neuroimagerie Translationnelles (LN2T), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- ULBabylab, Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
15
|
Zanoaga MD, Friligkou E, He J, Pathak GA, Koller D, Cabrera-Mendoza B, Stein MB, Polimanti R. Brain-Wide Mendelian Randomization Study of Anxiety Disorders and Symptoms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295448. [PMID: 37745546 PMCID: PMC10516096 DOI: 10.1101/2023.09.12.23295448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background To gain insights into the role of brain structure and function on anxiety (ANX), we conducted a genetically informed investigation leveraging information from ANX genome-wide association studies available from UK Biobank (UKB; N=380,379), FinnGen Program (N=290,361), and Million Veteran Program (MVP; N=199,611) together with UKB genome-wide data (N=33,224) related to 3,935 brain imaging-derived phenotypes (IDP). Methods A genetic correlation analysis between ANX and brain IDPs was performed using linkage disequilibrium score regression. To investigate ANX-brain associations, a two-sample Mendelian randomization (MR) was performed considering multiple methods and sensitivity analyses. A subsequent multivariable MR (MVMR) was executed to distinguish between direct and indirect effects. Finally, a generalized linear model was used to explore the associations of brain IDPs with ANX symptoms. Results After false discovery rate correction (FDR q<0.05), we identified 41 brain IDPs genetically correlated with ANX without heterogeneity among the datasets investigated (i.e., UKB, FinnGen, and MVP). Six of these IDPs showed genetically inferred causal effects on ANX. In the subsequent MVMR analysis, reduced area of the right posterior middle-cingulate gyrus (rpMCG; beta=-0.09, P= 8.01×10 -4 ) and reduced gray-matter volume of the right anterior superior temporal gyrus (raSTG; beta=-0.09, P=1.55×10 -3 ) had direct effects on ANX. In the ANX symptom-level analysis, rpMCG was negatively associated with "tense sore oraching muscles during the worst period of anxiety" (beta=-0.13, P=8.26×10 -6 ). Conclusions This study identified genetically inferred effects generalizable across large cohorts, contributing to understand how changes in brain structure and function can lead to ANX.
Collapse
|
16
|
Mohammadi Y, Graversen C, Østergaard J, Andersen OK, Reichenbach T. Phase-locking of Neural Activity to the Envelope of Speech in the Delta Frequency Band Reflects Differences between Word Lists and Sentences. J Cogn Neurosci 2023; 35:1301-1311. [PMID: 37379482 DOI: 10.1162/jocn_a_02016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The envelope of a speech signal is tracked by neural activity in the cerebral cortex. The cortical tracking occurs mainly in two frequency bands, theta (4-8 Hz) and delta (1-4 Hz). Tracking in the faster theta band has been mostly associated with lower-level acoustic processing, such as the parsing of syllables, whereas the slower tracking in the delta band relates to higher-level linguistic information of words and word sequences. However, much regarding the more specific association between cortical tracking and acoustic as well as linguistic processing remains to be uncovered. Here, we recorded EEG responses to both meaningful sentences and random word lists in different levels of signal-to-noise ratios (SNRs) that lead to different levels of speech comprehension as well as listening effort. We then related the neural signals to the acoustic stimuli by computing the phase-locking value (PLV) between the EEG recordings and the speech envelope. We found that the PLV in the delta band increases with increasing SNR for sentences but not for the random word lists, showing that the PLV in this frequency band reflects linguistic information. When attempting to disentangle the effects of SNR, speech comprehension, and listening effort, we observed a trend that the PLV in the delta band might reflect listening effort rather than the other two variables, although the effect was not statistically significant. In summary, our study shows that the PLV in the delta band reflects linguistic information and might be related to listening effort.
Collapse
|
17
|
Abbasi O, Steingräber N, Chalas N, Kluger DS, Gross J. Spatiotemporal dynamics characterise spectral connectivity profiles of continuous speaking and listening. PLoS Biol 2023; 21:e3002178. [PMID: 37478152 DOI: 10.1371/journal.pbio.3002178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/23/2023] Open
Abstract
Speech production and perception are fundamental processes of human cognition that both rely on intricate processing mechanisms that are still poorly understood. Here, we study these processes by using magnetoencephalography (MEG) to comprehensively map connectivity of regional brain activity within the brain and to the speech envelope during continuous speaking and listening. Our results reveal not only a partly shared neural substrate for both processes but also a dissociation in space, delay, and frequency. Neural activity in motor and frontal areas is coupled to succeeding speech in delta band (1 to 3 Hz), whereas coupling in the theta range follows speech in temporal areas during speaking. Neural connectivity results showed a separation of bottom-up and top-down signalling in distinct frequency bands during speaking. Here, we show that frequency-specific connectivity channels for bottom-up and top-down signalling support continuous speaking and listening. These findings further shed light on the complex interplay between different brain regions involved in speech production and perception.
Collapse
Affiliation(s)
- Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nadine Steingräber
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Tai Y, Shahsavarani S, Khan RA, Schmidt SA, Husain FT. An Inverse Relationship Between Gray Matter Volume and Speech-in-Noise Performance in Tinnitus Patients with Normal Hearing Sensitivity. J Assoc Res Otolaryngol 2023; 24:385-395. [PMID: 36869165 PMCID: PMC10335974 DOI: 10.1007/s10162-023-00895-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Speech-in-noise (SiN) recognition difficulties are often reported in patients with tinnitus. Although brain structural changes such as reduced gray matter (GM) volume in auditory and cognitive processing regions have been reported in the tinnitus population, it remains unclear how such changes influence speech understanding, such as SiN performance. In this study, pure-tone audiometry and Quick Speech-in-Noise test were conducted on individuals with tinnitus and normal hearing and hearing-matched controls. T1-weighted structural MRI images were obtained from all participants. After preprocessing, GM volumes were compared between tinnitus and control groups using whole-brain and region-of-interest analyses. Further, regression analyses were performed to examine the correlation between regional GM volume and SiN scores in each group. The results showed decreased GM volume in the right inferior frontal gyrus in the tinnitus group relative to the control group. In the tinnitus group, SiN performance showed a negative correlation with GM volume in the left cerebellum (Crus I/II) and the left superior temporal gyrus; no significant correlation between SiN performance and regional GM volume was found in the control group. Even with clinically defined normal hearing and comparable SiN performance relative to controls, tinnitus appears to change the association between SiN recognition and regional GM volume. This change may reflect compensatory mechanisms utilized by individuals with tinnitus who maintain behavioral performance.
Collapse
Affiliation(s)
- Yihsin Tai
- Department of Speech Pathology and Audiology, Ball State University, Muncie, IN, USA.
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Rafay A Khan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sara A Schmidt
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Talukdar T, Zwilling CE, Barbey AK. Integrating Nutrient Biomarkers, Cognitive Function, and Structural MRI Data to Build Multivariate Phenotypes of Healthy Aging. J Nutr 2023; 153:1338-1346. [PMID: 36965693 DOI: 10.1016/j.tjnut.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Research in the emerging field of Nutritional Cognitive Neuroscience demonstrates that many aspects of nutrition - from entire diets to specific nutrients - affect cognitive performance and brain health. OBJECTIVE While prior research has primarily examined the bivariate relationship between nutrition and cognition, or nutrition and brain health, the present study sought to investigate the joint relationship between these essential and interactive elements of human health. METHODS We applied a state-of-the-art data fusion method, Coupled Matrix Tensor Factorization, to characterize the joint association between measures of nutrition (52 nutrient biomarkers), cognition (Wechsler Abbreviated Test of Intelligence and Wechsler Memory Scale), and brain health (high-resolution Magnetic Resonance Imaging measures of structural brain volume) within a cross-sectional sample of 111 healthy older adults that had an average age of 69.1 years, were 62% female and had an average Body Mass Index of 26.0. RESULTS Data fusion uncovered 3 latent factors that capture the joint association between specific nutrient profiles, cognitive measures, and cortical volumes, demonstrating the respects in which these health domains are coupled. Hierarchical cluster analysis further revealed systematic differences between the observed latent factors, providing evidence for multivariate phenotypes that represent high versus low levels of performance across multiple health domains. The primary features that distinguish between each phenotype were: (i) nutrient biomarkers for monounsaturated and polyunsaturated fatty acids; (ii) cognitive measures of immediate, auditory, and delayed memory; and (iii) brain volumes within frontal, temporal, and parietal cortex. CONCLUSIONS By incorporating innovations in nutritional epidemiology (nutrient biomarker analysis), cognitive neuroscience (high-resolution structural brain imaging), and statistics (data fusion), the present study provides an interdisciplinary synthesis of methods that elucidate how nutrition, cognition, and brain health are integrated through lifestyle choices that affect healthy aging.
Collapse
Affiliation(s)
- Tanveer Talukdar
- Decision Neuroscience Laboratory, Beckman Institute, University of Illinois, Urbana, IL. USA
| | - Christopher E Zwilling
- Decision Neuroscience Laboratory, Beckman Institute, University of Illinois, Urbana, IL. USA
| | - Aron K Barbey
- Decision Neuroscience Laboratory, Beckman Institute, University of Illinois, Urbana, IL. USA; Department of Psychology, University of Illinois, Urbana, IL. USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Champaign, IL. USA; Department of Bioengineering, University of Illinois, Champaign, IL. USA; Division of Nutritional Sciences, University of Illinois, Champaign, IL. USA; Neuroscience Program, University of Illinois, Champaign, IL. USA.
| |
Collapse
|
20
|
Niesen M, Bourguignon M, Bertels J, Vander Ghinst M, Wens V, Goldman S, De Tiège X. Cortical tracking of lexical speech units in a multi-talker background is immature in school-aged children. Neuroimage 2023; 265:119770. [PMID: 36462732 DOI: 10.1016/j.neuroimage.2022.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults. Twenty adults and twenty children (7-9 years) listened to synthesized French monosyllabic words presented at 2.5 Hz, either randomly or in 4-word hierarchical structures wherein 2 words formed a phrase at 1.25 Hz, and 2 phrases formed a sentence at 0.625 Hz, with or without babble noise. Neuromagnetic responses to words, phrases and sentences were identified and source-localized. Children and adults displayed significant cortical tracking of words in all conditions, and of phrases and sentences only when words formed meaningful sentences. In children compared with adults, the cortical tracking was lower for all linguistic units in conditions without noise. In the presence of noise, the cortical tracking was similarly reduced for sentence units in both groups, but remained stable for phrase units. Critically, when there was noise, adults increased the cortical tracking of monosyllabic words in the inferior frontal gyri and supratemporal auditory cortices but children did not. This study demonstrates that the difficulties of school-aged children in understanding speech in a multi-talker background might be partly due to an immature tracking of lexical but not supra-lexical linguistic units.
Collapse
Affiliation(s)
- Maxime Niesen
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium.
| | - Mathieu Bourguignon
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Laboratory of Neurophysiology and Movement Biomechanics, 1070 Brussels, Belgium.; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| | - Julie Bertels
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Cognition and Computation group, ULBabyLab - Consciousness, Brussels, Belgium
| | - Marc Vander Ghinst
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| | - Serge Goldman
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Nuclear Medicine, 1070 Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| |
Collapse
|
21
|
Rahimi V, Mohammadkhani G, Alaghband Rad J, Mousavi SZ, Khalili ME. Modulation of auditory temporal processing, speech in noise perception, auditory-verbal memory, and reading efficiency by anodal tDCS in children with dyslexia. Neuropsychologia 2022; 177:108427. [PMID: 36410540 DOI: 10.1016/j.neuropsychologia.2022.108427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Dyslexia is a neurodevelopmental disorder that is prevalent in children. It is estimated that 30-50% of individuals diagnosed with dyslexia also manifest an auditory perceptual deficit characteristic of auditory processing disorder (APD). Some studies suggest that defects in basic auditory processing can lead to phonological defects as the most prominent cause of dyslexia. Thus, in some cases, there may be interrelationships between dyslexia and some of the aspects of central auditory processing. In recent years, transcranial direct current stimulation (tDCS) has been used as a safe method for the modulation of central auditory processing aspects in healthy adults and reading skills in children with dyslexia. Therefore, the objectives of our study were to investigate the effect of tDCS on the modulation of different aspects of central auditory processing, aspects of reading, and the relationship between these two domains in dyslexic children with APD. A within-subjects design was employed to investigate the effect of two electrode arrays (the anode on the left STG (AC)/cathode on the right shoulder and anode on the left STG/cathode on the right STG) on auditory temporal processing; speech-in-noise perception, short-term auditory memory; and high-frequency word, low-frequency word, pseudoword, and text reading. The results of this clinical trial showed the modulation of the studied variables in central auditory processing and the accuracy and speed of reading variables compared to the control and sham statuses in both electrode arrays. Our results also showed that the improvement of the accuracy and speed of text reading, as well as the accuracy of pseudoword reading were related to the improvement of speech in noise perception and temporal processing. The results of this research can be effective in clarifying the basis of the neurobiology of dyslexia and, in particular, the hypothesis of the role of basic auditory processing and subsequently the role of the auditory cortex in dyslexia. These results might provide a framework to facilitate behavioral rehabilitation in dyslexic children with APD.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran.
| | - Javad Alaghband Rad
- Department of Psychiatry, Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Iran
| | - Seyyedeh Zohre Mousavi
- Department of Speech Therapy, School of Rehabilitation, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
Pastore A, Tomassini A, Delis I, Dolfini E, Fadiga L, D'Ausilio A. Speech listening entails neural encoding of invisible articulatory features. Neuroimage 2022; 264:119724. [PMID: 36328272 DOI: 10.1016/j.neuroimage.2022.119724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Speech processing entails a complex interplay between bottom-up and top-down computations. The former is reflected in the neural entrainment to the quasi-rhythmic properties of speech acoustics while the latter is supposed to guide the selection of the most relevant input subspace. Top-down signals are believed to originate mainly from motor regions, yet similar activities have been shown to tune attentional cycles also for simpler, non-speech stimuli. Here we examined whether, during speech listening, the brain reconstructs articulatory patterns associated to speech production. We measured electroencephalographic (EEG) data while participants listened to sentences during the production of which articulatory kinematics of lips, jaws and tongue were also recorded (via Electro-Magnetic Articulography, EMA). We captured the patterns of articulatory coordination through Principal Component Analysis (PCA) and used Partial Information Decomposition (PID) to identify whether the speech envelope and each of the kinematic components provided unique, synergistic and/or redundant information regarding the EEG signals. Interestingly, tongue movements contain both unique as well as synergistic information with the envelope that are encoded in the listener's brain activity. This demonstrates that during speech listening the brain retrieves highly specific and unique motor information that is never accessible through vision, thus leveraging audio-motor maps that arise most likely from the acquisition of speech production during development.
Collapse
Affiliation(s)
- A Pastore
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy.
| | - A Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - I Delis
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - E Dolfini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| | - L Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy
| | - A D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy.
| |
Collapse
|
23
|
Neurodevelopmental oscillatory basis of speech processing in noise. Dev Cogn Neurosci 2022; 59:101181. [PMID: 36549148 PMCID: PMC9792357 DOI: 10.1016/j.dcn.2022.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Humans' extraordinary ability to understand speech in noise relies on multiple processes that develop with age. Using magnetoencephalography (MEG), we characterize the underlying neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5-27 years) track phrasal and syllabic structures in connected speech mixed with different types of noise. While the extraction of prosodic cues from clear speech was stable during development, its maintenance in a multi-talker background matured rapidly up to age 9 and was associated with speech comprehension. Furthermore, while the extraction of subtler information provided by syllables matured at age 9, its maintenance in noisy backgrounds progressively matured until adulthood. Altogether, these results highlight distinct behaviorally relevant maturational trajectories for the neuronal signatures of speech perception. In accordance with grain-size proposals, neuromaturational milestones are reached increasingly late for linguistic units of decreasing size, with further delays incurred by noise.
Collapse
|
24
|
Li Z, Hong B, Wang D, Nolte G, Engel AK, Zhang D. Speaker-listener neural coupling reveals a right-lateralized mechanism for non-native speech-in-noise comprehension. Cereb Cortex 2022; 33:3701-3714. [PMID: 35975617 DOI: 10.1093/cercor/bhac302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/14/2022] Open
Abstract
While the increasingly globalized world has brought more and more demands for non-native language communication, the prevalence of background noise in everyday life poses a great challenge to non-native speech comprehension. The present study employed an interbrain approach based on functional near-infrared spectroscopy (fNIRS) to explore how people adapt to comprehend non-native speech information in noise. A group of Korean participants who acquired Chinese as their non-native language was invited to listen to Chinese narratives at 4 noise levels (no noise, 2 dB, -6 dB, and - 9 dB). These narratives were real-life stories spoken by native Chinese speakers. Processing of the non-native speech was associated with significant fNIRS-based listener-speaker neural couplings mainly over the right hemisphere at both the listener's and the speaker's sides. More importantly, the neural couplings from the listener's right superior temporal gyrus, the right middle temporal gyrus, as well as the right postcentral gyrus were found to be positively correlated with their individual comprehension performance at the strongest noise level (-9 dB). These results provide interbrain evidence in support of the right-lateralized mechanism for non-native speech processing and suggest that both an auditory-based and a sensorimotor-based mechanism contributed to the non-native speech-in-noise comprehension.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China.,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Daifa Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci 2022; 16:893903. [PMID: 35958984 PMCID: PMC9359080 DOI: 10.3389/fnins.2022.893903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Decreased tolerance in response to specific every-day sounds (misophonia) is a serious, debilitating disorder that is gaining rapid recognition within the mental health community. Emerging research findings suggest that misophonia may have a unique neural signature. Specifically, when examining responses to misophonic trigger sounds, differences emerge at a physiological and neural level from potentially overlapping psychopathologies. While these findings are preliminary and in need of replication, they support the hypothesis that misophonia is a unique disorder. In this theoretical paper, we begin by reviewing the candidate networks that may be at play in this complex disorder (e.g., regulatory, sensory, and auditory). We then summarize current neuroimaging findings in misophonia and present areas of overlap and divergence from other mental health disorders that are hypothesized to co-occur with misophonia (e.g., obsessive compulsive disorder). Future studies needed to further our understanding of the neuroscience of misophonia will also be discussed. Next, we introduce the potential of neurostimulation as a tool to treat neural dysfunction in misophonia. We describe how neurostimulation research has led to novel interventions in psychiatric disorders, targeting regions that may also be relevant to misophonia. The paper is concluded by presenting several options for how neurostimulation interventions for misophonia could be crafted.
Collapse
Affiliation(s)
- Andrada D. Neacsiu
- Duke Center for Misophonia and Emotion Regulation, Duke Brain Stimulation Research Center, Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria Szymkiewicz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jeffrey T. Galla
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Brenden Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Yashaswini Kulkarni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Cade W. Spector
- Department of Philosophy, Duke University, Durham, NC, United States
| |
Collapse
|
26
|
Wu YJ, Hou X, Peng C, Yu W, Oppenheim GM, Thierry G, Zhang D. Rapid learning of a phonemic discrimination in the first hours of life. Nat Hum Behav 2022; 6:1169-1179. [PMID: 35654965 PMCID: PMC9391223 DOI: 10.1038/s41562-022-01355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Human neonates can discriminate phonemes, but the neural mechanism underlying this ability is poorly understood. Here we show that the neonatal brain can learn to discriminate natural vowels from backward vowels, a contrast unlikely to have been learnt in the womb. Using functional near-infrared spectroscopy, we examined the neuroplastic changes caused by 5 h of postnatal exposure to random sequences of natural and reversed (backward) vowels (T1), and again 2 h later (T2). Neonates in the experimental group were trained with the same stimuli as those used at T1 and T2. Compared with controls, infants in the experimental group showed shorter haemodynamic response latencies for forward vs backward vowels at T1, maximally over the inferior frontal region. At T2, neural activity differentially increased, maximally over superior temporal regions and the left inferior parietal region. Neonates thus exhibit ultra-fast tuning to natural phonemes in the first hours after birth.
Collapse
Affiliation(s)
- Yan Jing Wu
- Faculty of Foreign Languages, Ningbo University, Ningbo, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Cheng Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wenwen Yu
- School of Psychology, Shenzhen University, Shenzhen, China
| | | | - Guillaume Thierry
- School of Psychology, Bangor University, Bangor, Wales, UK.,Faculty of English, Adam Mickiewicz University, Poznań, Poland
| | - Dandan Zhang
- School of Psychology, Shenzhen University, Shenzhen, China. .,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.
| |
Collapse
|
27
|
Kachlicka M, Laffere A, Dick F, Tierney A. Slow phase-locked modulations support selective attention to sound. Neuroimage 2022; 252:119024. [PMID: 35231629 PMCID: PMC9133470 DOI: 10.1016/j.neuroimage.2022.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022] Open
Abstract
To make sense of complex soundscapes, listeners must select and attend to task-relevant streams while ignoring uninformative sounds. One possible neural mechanism underlying this process is alignment of endogenous oscillations with the temporal structure of the target sound stream. Such a mechanism has been suggested to mediate attentional modulation of neural phase-locking to the rhythms of attended sounds. However, such modulations are compatible with an alternate framework, where attention acts as a filter that enhances exogenously-driven neural auditory responses. Here we attempted to test several predictions arising from the oscillatory account by playing two tone streams varying across conditions in tone duration and presentation rate; participants attended to one stream or listened passively. Attentional modulation of the evoked waveform was roughly sinusoidal and scaled with rate, while the passive response did not. However, there was only limited evidence for continuation of modulations through the silence between sequences. These results suggest that attentionally-driven changes in phase alignment reflect synchronization of slow endogenous activity with the temporal structure of attended stimuli.
Collapse
Affiliation(s)
- Magdalena Kachlicka
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Aeron Laffere
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Fred Dick
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England; Division of Psychology & Language Sciences, UCL, Gower Street, London WC1E 6BT, England
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England.
| |
Collapse
|
28
|
Destoky F, Bertels J, Niesen M, Wens V, Vander Ghinst M, Rovai A, Trotta N, Lallier M, De Tiège X, Bourguignon M. The role of reading experience in atypical cortical tracking of speech and speech-in-noise in dyslexia. Neuroimage 2022; 253:119061. [PMID: 35259526 DOI: 10.1016/j.neuroimage.2022.119061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking relates to reduced reading experience, and if it is modulated by the severity of dyslexia or the presence of acoustic noise. We included 26 school-age children with dyslexia, 26 age-matched controls and 26 reading-level matched controls. All were native French speakers. Children's brain activity was recorded with magnetoencephalography while they listened to continuous speech in noiseless and multiple noise conditions. CTS values were compared between groups, conditions and hemispheres, and also within groups, between children with mild and severe dyslexia. Syllabic CTS was significantly reduced in the right superior temporal gyrus in children with dyslexia compared with controls matched for age but not for reading level. Severe dyslexia was characterized by lower rapid automatized naming (RAN) abilities compared with mild dyslexia, and phrasal CTS lateralized to the right hemisphere in children with mild dyslexia and all control groups but not in children with severe dyslexia. Finally, an alteration in phrasal CTS was uncovered in children with dyslexia compared with age-matched controls in babble noise conditions but not in other less challenging listening conditions (non-speech noise or noiseless conditions); no such effect was seen in comparison with reading-level matched controls. Overall, our results confirmed the finding of altered neuronal basis of speech perception in noiseless and babble noise conditions in dyslexia compared with age-matched peers. However, the absence of alteration in comparison with reading-level matched controls demonstrates that such alterations are associated with reduced reading level, suggesting they are merely driven by reduced reading experience rather than a cause of dyslexia. Finally, our result of altered hemispheric lateralization of phrasal CTS in relation with altered RAN abilities in severe dyslexia is in line with a temporal sampling deficit of speech at phrasal rate in dyslexia.
Collapse
Affiliation(s)
- Florian Destoky
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium.
| | - Julie Bertels
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Consciousness, Cognition and Computation Group, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Maxime Niesen
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Service d'ORL et de Chirurgie Cervico-Faciale, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Vincent Wens
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Service d'ORL et de Chirurgie Cervico-Faciale, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Antonin Rovai
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain; Laboratory of Neurophysiology and Movement Biomechanics, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Jousmäki V. Gratifying Gizmos for Research and Clinical MEG. Front Neurol 2022; 12:814573. [PMID: 35153989 PMCID: PMC8830907 DOI: 10.3389/fneur.2021.814573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Experimental designs are of utmost importance in neuroimaging. Experimental repertoire needs to be designed with the understanding of physiology, clinical feasibility, and constraints posed by a particular neuroimaging method. Innovations in introducing natural, ecologically-relevant stimuli, with successful collaboration across disciplines, correct timing, and a bit of luck may cultivate novel experiments, new discoveries, and open pathways to new clinical practices. Here I introduce some gizmos that I have initiated in magnetoencephalography (MEG) and applied with my collaborators in my home laboratory and in several other laboratories. These gizmos have been applied to address neuronal correlates of audiotactile interactions, tactile sense, active and passive movements, speech processing, and intermittent photic stimulation (IPS) in humans. This review also includes additional notes on the ideas behind the gizmos, their evolution, and results obtained.
Collapse
Affiliation(s)
- Veikko Jousmäki
- Aalto NeuroImaging, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Cognitive Neuroimaging Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Veikko Jousmäki
| |
Collapse
|
30
|
Yoon L, Carranza AF, Swartz JR. Resting-State Functional Connectivity Associated With Extraversion and Agreeableness in Adolescence. Front Behav Neurosci 2022; 15:644790. [PMID: 35046781 PMCID: PMC8762207 DOI: 10.3389/fnbeh.2021.644790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Although adolescence is a period in which developmental changes occur in brain connectivity, personality formation, and peer interaction, few studies have examined the neural correlates of personality dimensions related to social behavior within adolescent samples. The current study aims to investigate whether adolescents’ brain functional connectivity is associated with extraversion and agreeableness, personality dimensions linked to peer acceptance, social network size, and friendship quality. Considering sex-variant neural maturation in adolescence, we also examined sex-specific associations between personality and functional connectivity. Using resting-state functional magnetic resonance imaging (fMRI) data from a community sample of 70 adolescents aged 12–15, we examined associations between self-reported extraversion and agreeableness and seed-to-whole brain connectivity with the amygdala as a seed region of interest. Then, using 415 brain regions that correspond to 8 major brain networks and subcortex, we explored neural connectivity within brain networks and across the whole-brain. We conducted group-level multiple regression analyses with the regressors of extraversion, agreeableness, and their interactions with sex. Results demonstrated that amygdala connectivity with the postcentral gyrus, middle temporal gyrus, and the temporal pole is positively associated with extraversion in girls and negatively associated with extraversion in boys. Agreeableness was positively associated with amygdala connectivity with the middle occipital cortex and superior parietal cortex, in the same direction for boys and girls. Results of the whole-brain connectivity analysis revealed that the connectivity of the postcentral gyrus, located in the dorsal attention network, with regions in default mode network (DMN), salience/ventral attention network, and control network (CON) was associated with extraversion, with most connections showing positive associations in girls and negative associations in boys. For agreeableness, results of the within-network connectivity analysis showed that connections within the limbic network were positively associated with agreeableness in boys while negatively associated with or not associated with agreeableness in girls. Results suggest that intrinsic functional connectivity may contribute to adolescents’ individual differences in extraversion and agreeableness and highlights sex-specific neural connectivity patterns associated with the two personality dimensions. This study deepens our understanding of the neurobiological correlates of adolescent personality that may lead to different developmental trajectories of social experience.
Collapse
|
31
|
Zhang L, Shen Q, Liao H, Li J, Wang T, Zi Y, Zhou F, Song C, Mao Z, Wang M, Cai S, Tan C. Aberrant Changes in Cortical Complexity in Right-Onset Versus Left-Onset Parkinson's Disease in Early-Stage. Front Aging Neurosci 2021; 13:749606. [PMID: 34819848 PMCID: PMC8606890 DOI: 10.3389/fnagi.2021.749606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence to show that motor symptom lateralization in Parkinson’s disease (PD) is linked to non-motor features, progression, and prognosis of the disease. However, few studies have reported the difference in cortical complexity between patients with left-onset of PD (LPD) and right-onset of PD (RPD). This study aimed to investigate the differences in the cortical complexity between early-stage LPD and RPD. High-resolution T1-weighted magnetic resonance images of the brain were acquired in 24 patients with LPD, 34 patients with RPD, and 37 age- and sex-matched healthy controls (HCs). Cortical complexity including gyrification index, fractal dimension (FD), and sulcal depth was analyzed using surface-based morphometry via CAT12/SPM12. Familywise error (FWE) peak-level correction at p < 0.05 was performed for significance testing. In patients with RPD, we found decreased mean FD and mean sulcal depth in the banks of the left superior temporal sulcus (STS) compared with LPD and HCs. The mean FD in the left superior temporal gyrus (STG) was decreased in RPD compared with HCs. However, in patients with LPD, we did not identify significantly abnormal cortical complex change compared with HCs. Moreover, we observed that the mean FD in STG was negatively correlated with the 17-item Hamilton Depression Scale (HAMD) among the three groups. Our findings support the specific influence of asymmetrical motor symptoms in cortical complexity in early-stage PD and reveal that the banks of left STS and left STG might play a crucial role in RPD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Renvall H, Seol J, Tuominen R, Sorger B, Riecke L, Salmelin R. Selective auditory attention within naturalistic scenes modulates reactivity to speech sounds. Eur J Neurosci 2021; 54:7626-7641. [PMID: 34697833 PMCID: PMC9298413 DOI: 10.1111/ejn.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/10/2021] [Indexed: 11/27/2022]
Abstract
Rapid recognition and categorization of sounds are essential for humans and animals alike, both for understanding and reacting to our surroundings and for daily communication and social interaction. For humans, perception of speech sounds is of crucial importance. In real life, this task is complicated by the presence of a multitude of meaningful non‐speech sounds. The present behavioural, magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) study was set out to address how attention to speech versus attention to natural non‐speech sounds within complex auditory scenes influences cortical processing. The stimuli were superimpositions of spoken words and environmental sounds, with parametric variation of the speech‐to‐environmental sound intensity ratio. The participants' task was to detect a repetition in either the speech or the environmental sound. We found that specifically when participants attended to speech within the superimposed stimuli, higher speech‐to‐environmental sound ratios resulted in shorter sustained MEG responses and stronger BOLD fMRI signals especially in the left supratemporal auditory cortex and in improved behavioural performance. No such effects of speech‐to‐environmental sound ratio were observed when participants attended to the environmental sound part within the exact same stimuli. These findings suggest stronger saliency of speech compared with other meaningful sounds during processing of natural auditory scenes, likely linked to speech‐specific top‐down and bottom‐up mechanisms activated during speech perception that are needed for tracking speech in real‐life‐like auditory environments.
Collapse
Affiliation(s)
- Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland.,BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Jaeho Seol
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Riku Tuominen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.,Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
33
|
Vander Ghinst M, Bourguignon M, Wens V, Naeije G, Ducène C, Niesen M, Hassid S, Choufani G, Goldman S, De Tiège X. Inaccurate cortical tracking of speech in adults with impaired speech perception in noise. Brain Commun 2021; 3:fcab186. [PMID: 34541530 PMCID: PMC8445395 DOI: 10.1093/braincomms/fcab186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023] Open
Abstract
Impaired speech perception in noise despite normal peripheral auditory function is a common problem in young adults. Despite a growing body of research, the pathophysiology of this impairment remains unknown. This magnetoencephalography study characterizes the cortical tracking of speech in a multi-talker background in a group of highly selected adult subjects with impaired speech perception in noise without peripheral auditory dysfunction. Magnetoencephalographic signals were recorded from 13 subjects with impaired speech perception in noise (six females, mean age: 30 years) and matched healthy subjects while they were listening to 5 different recordings of stories merged with a multi-talker background at different signal to noise ratios (No Noise, +10, +5, 0 and −5 dB). The cortical tracking of speech was quantified with coherence between magnetoencephalographic signals and the temporal envelope of (i) the global auditory scene (i.e. the attended speech stream and the multi-talker background noise), (ii) the attended speech stream only and (iii) the multi-talker background noise. Functional connectivity was then estimated between brain areas showing altered cortical tracking of speech in noise in subjects with impaired speech perception in noise and the rest of the brain. All participants demonstrated a selective cortical representation of the attended speech stream in noisy conditions, but subjects with impaired speech perception in noise displayed reduced cortical tracking of speech at the syllable rate (i.e. 4–8 Hz) in all noisy conditions. Increased functional connectivity was observed in subjects with impaired speech perception in noise in Noiseless and speech in noise conditions between supratemporal auditory cortices and left-dominant brain areas involved in semantic and attention processes. The difficulty to understand speech in a multi-talker background in subjects with impaired speech perception in noise appears to be related to an inaccurate auditory cortex tracking of speech at the syllable rate. The increased functional connectivity between supratemporal auditory cortices and language/attention-related neocortical areas probably aims at supporting speech perception and subsequent recognition in adverse auditory scenes. Overall, this study argues for a central origin of impaired speech perception in noise in the absence of any peripheral auditory dysfunction.
Collapse
Affiliation(s)
- Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Laboratory of Neurophysiology and Movement Biomechanics, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Basque Center on Cognition, Brain and Language (BCBL), Donostia/San Sebastian 20009, Spain
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service de Neurologie, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Cecile Ducène
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Maxime Niesen
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Sergio Hassid
- Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Georges Choufani
- Service, d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| |
Collapse
|
34
|
Liu H, Hu X, Ren Y, Wang L, Guo L, Guo CC, Han J. Neural Correlates of Interobserver Visual Congruency in Free-Viewing Condition. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.3002765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Li Z, Li J, Hong B, Nolte G, Engel AK, Zhang D. Speaker-Listener Neural Coupling Reveals an Adaptive Mechanism for Speech Comprehension in a Noisy Environment. Cereb Cortex 2021; 31:4719-4729. [PMID: 33969389 DOI: 10.1093/cercor/bhab118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Comprehending speech in noise is an essential cognitive skill for verbal communication. However, it remains unclear how our brain adapts to the noisy environment to achieve comprehension. The present study investigated the neural mechanisms of speech comprehension in noise using an functional near-infrared spectroscopy-based inter-brain approach. A group of speakers was invited to tell real-life stories. The recorded speech audios were added with meaningless white noise at four signal-to-noise levels and then played to listeners. Results showed that speaker-listener neural couplings of listener's left inferior frontal gyri (IFG), that is, sensorimotor system, and right middle temporal gyri (MTG), angular gyri (AG), that is, auditory system, were significantly higher in listening conditions than in the baseline. More importantly, the correlation between neural coupling of listener's left IFG and the comprehension performance gradually became more positive with increasing noise level, indicating an adaptive role of sensorimotor system in noisy speech comprehension; however, the top behavioral correlations for the coupling of listener's right MTG and AG were only obtained in mild noise conditions, indicating a different and less robust mechanism. To sum up, speaker-listener coupling analysis provides added value and new sight to understand the neural mechanism of speech-in-noise comprehension.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Jiawei Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China.,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Liu L, Zhang Y, Zhou Q, Garrett DD, Lu C, Chen A, Qiu J, Ding G. Auditory-Articulatory Neural Alignment between Listener and Speaker during Verbal Communication. Cereb Cortex 2021; 30:942-951. [PMID: 31318013 DOI: 10.1093/cercor/bhz138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 11/13/2022] Open
Abstract
Whether auditory processing of speech relies on reference to the articulatory motor information of speaker remains elusive. Here, we addressed this issue under a two-brain framework. Functional magnetic resonance imaging was applied to record the brain activities of speakers when telling real-life stories and later of listeners when listening to the audio recordings of these stories. Based on between-brain seed-to-voxel correlation analyses, we revealed that neural dynamics in listeners' auditory temporal cortex are temporally coupled with the dynamics in the speaker's larynx/phonation area. Moreover, the coupling response in listener's left auditory temporal cortex follows the hierarchical organization for speech processing, with response lags in A1+, STG/STS, and MTG increasing linearly. Further, listeners showing greater coupling responses understand the speech better. When comprehension fails, such interbrain auditory-articulation coupling vanishes substantially. These findings suggest that a listener's auditory system and a speaker's articulatory system are inherently aligned during naturalistic verbal interaction, and such alignment is associated with high-level information transfer from the speaker to the listener. Our study provides reliable evidence supporting that references to the articulatory motor information of speaker facilitate speech comprehension under a naturalistic scene.
Collapse
Affiliation(s)
- Lanfang Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China.,Department of Psychology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuxuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qi Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Antao Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education & Department of Psychology, Southwest University, Chongqing 400715, People's Republic of China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education & Department of Psychology, Southwest University, Chongqing 400715, People's Republic of China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
37
|
Lizarazu M, Carreiras M, Bourguignon M, Zarraga A, Molinaro N. Language Proficiency Entails Tuning Cortical Activity to Second Language Speech. Cereb Cortex 2021; 31:3820-3831. [PMID: 33791775 DOI: 10.1093/cercor/bhab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/12/2022] Open
Abstract
Cortical tracking of linguistic structures in speech, such as phrases (<3 Hz, delta band) and syllables (3-8 Hz, theta band), is known to be crucial for speech comprehension. However, it has not been established whether this effect is related to language proficiency. Here, we investigate how auditory cortical activity in second language (L2) learners tracked L2 speech. Using magnetoencephalography, we recorded brain activity from participants listening to Spanish and Basque. Participants were Spanish native (L1) language speakers studying Basque (L2) at the same language center at three different levels: beginner (Grade 1), intermediate (Grade 2), and advanced (Grade 3). We found that 1) both delta and theta tracking to L2 speech in the auditory cortex were related to L2 learning proficiency and that 2) top-down modulations of activity in the left auditory regions during L2 speech listening-by the left inferior frontal and motor regions in delta band and by the left middle temporal regions in theta band-were also related to L2 proficiency. Altogether, these results indicate that the ability to learn an L2 is related to successful cortical tracking of L2 speech and its modulation by neuronal oscillations in higher-order cortical regions.
Collapse
Affiliation(s)
- Mikel Lizarazu
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, Ecole Normale Supérieure, EHESS, CNRS, PSL University, Paris 75005, France
| | - Manuel Carreiras
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Mathieu Bourguignon
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, 1050, Belgium.,Laboratory of neurophysiology and movement biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Asier Zarraga
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain
| | - Nicola Molinaro
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
38
|
Kurthen I, Galbier J, Jagoda L, Neuschwander P, Giroud N, Meyer M. Selective attention modulates neural envelope tracking of informationally masked speech in healthy older adults. Hum Brain Mapp 2021; 42:3042-3057. [PMID: 33783913 PMCID: PMC8193518 DOI: 10.1002/hbm.25415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/07/2022] Open
Abstract
Speech understanding in noisy situations is compromised in old age. This study investigated the energetic and informational masking components of multi‐talker babble noise and their influence on neural tracking of the speech envelope in a sample of healthy older adults. Twenty‐three older adults (age range 65–80 years) listened to an audiobook embedded in noise while their electroencephalogram (EEG) was recorded. Energetic masking was manipulated by varying the signal‐to‐noise ratio (SNR) between target speech and background talkers and informational masking was manipulated by varying the number of background talkers. Neural envelope tracking was measured by calculating temporal response functions (TRFs) between speech envelope and EEG. Number of background talkers, but not SNR modulated the amplitude of an earlier (around 50 ms time lag) and a later (around 300 ms time lag) peak in the TRFs. Selective attention, but not working memory or peripheral hearing additionally modulated the amplitude of the later TRF peak. Finally, amplitude of the later TRF peak was positively related to accuracy in the comprehension task. The results suggest that stronger envelope tracking is beneficial for speech‐in‐noise understanding and that selective attention is an important ability supporting speech‐in‐noise understanding in multi‐talker scenes.
Collapse
Affiliation(s)
- Ira Kurthen
- Developmental Psychology: Infancy and Childhood, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Jolanda Galbier
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Laura Jagoda
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Pia Neuschwander
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Department of Computational Linguistics, Phonetics and Speech Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,Cognitive Psychology Unit, Institute of Psychology, University of Klagenfurt, Klagenfurt, Austria.,University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
de Lange P, Boto E, Holmes N, Hill RM, Bowtell R, Wens V, De Tiège X, Brookes MJ, Bourguignon M. Measuring the cortical tracking of speech with optically-pumped magnetometers. Neuroimage 2021; 233:117969. [PMID: 33744453 DOI: 10.1016/j.neuroimage.2021.117969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
During continuous speech listening, brain activity tracks speech rhythmicity at frequencies matching with the repetition rate of phrases (0.2-1.5 Hz), words (2-4 Hz) and syllables (4-8 Hz). Here, we evaluated the applicability of wearable MEG based on optically-pumped magnetometers (OPMs) to measure such cortical tracking of speech (CTS). Measuring CTS with OPMs is a priori challenging given the complications associated with OPM measurements at frequencies below 4 Hz, due to increased intrinsic interference and head movement artifacts. Still, this represents an important development as OPM-MEG provides lifespan compliance and substantially improved spatial resolution compared with classical MEG. In this study, four healthy right-handed adults listened to continuous speech for 9 min. The radial component of the magnetic field was recorded simultaneously with 45-46 OPMs evenly covering the scalp surface and fixed to an additively manufactured helmet which fitted all 4 participants. We estimated CTS with reconstruction accuracy and coherence, and determined the number of dominant principal components (PCs) to remove from the data (as a preprocessing step) for optimal estimation. We also identified the dominant source of CTS using a minimum norm estimate. CTS estimated with reconstruction accuracy and coherence was significant in all 4 participants at phrasal and word rates, and in 3 participants (reconstruction accuracy) or 2 (coherence) at syllabic rate. Overall, close-to-optimal CTS estimation was obtained when the 3 (reconstruction accuracy) or 10 (coherence) first PCs were removed from the data. Importantly, values of reconstruction accuracy (~0.4 for 0.2-1.5-Hz CTS and ~0.1 for 2-8-Hz CTS) were remarkably close to those previously reported in classical MEG studies. Finally, source reconstruction localized the main sources of CTS to bilateral auditory cortices. In conclusion, t his study demonstrates that OPMs can be used for the purpose of CTS assessment. This finding opens new research avenues to unravel the neural network involved in CTS across the lifespan and potential alterations in, e.g., language developmental disorders. Data also suggest that OPMs are generally suitable for recording neural activity at frequencies below 4 Hz provided PCA is used as a preprocessing step; 0.2-1.5-Hz being the lowest frequency range successfully investigated here.
Collapse
Affiliation(s)
- Paul de Lange
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Laboratory of neurophysiology and movement biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain.
| |
Collapse
|
40
|
Meyer L, Lakatos P, He Y. Language Dysfunction in Schizophrenia: Assessing Neural Tracking to Characterize the Underlying Disorder(s)? Front Neurosci 2021; 15:640502. [PMID: 33692672 PMCID: PMC7937925 DOI: 10.3389/fnins.2021.640502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Deficits in language production and comprehension are characteristic of schizophrenia. To date, it remains unclear whether these deficits arise from dysfunctional linguistic knowledge, or dysfunctional predictions derived from the linguistic context. Alternatively, the deficits could be a result of dysfunctional neural tracking of auditory information resulting in decreased auditory information fidelity and even distorted information. Here, we discuss possible ways for clinical neuroscientists to employ neural tracking methodology to independently characterize deficiencies on the auditory-sensory and abstract linguistic levels. This might lead to a mechanistic understanding of the deficits underlying language related disorder(s) in schizophrenia. We propose to combine naturalistic stimulation, measures of speech-brain synchronization, and computational modeling of abstract linguistic knowledge and predictions. These independent but likely interacting assessments may be exploited for an objective and differential diagnosis of schizophrenia, as well as a better understanding of the disorder on the functional level-illustrating the potential of neural tracking methodology as translational tool in a range of psychotic populations.
Collapse
Affiliation(s)
- Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, Germany
| | - Peter Lakatos
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States
| | - Yifei He
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
41
|
Lucena Gómez G, Peigneux P, Wens V, Bourguignon M. Localization accuracy of a common beamformer for the comparison of two conditions. Neuroimage 2021; 230:117793. [PMID: 33497769 DOI: 10.1016/j.neuroimage.2021.117793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022] Open
Abstract
The linearly constrained minimum variance beamformer is frequently used to reconstruct sources underpinning neuromagnetic recordings. When reconstructions must be compared across conditions, it is considered good practice to use a single, "common" beamformer estimated from all the data at once. This is to ensure that differences between conditions are not ascribable to differences in beamformer weights. Here, we investigate the localization accuracy of such a common beamformer. Based on theoretical derivations, we first show that the common beamformer leads to localization errors in source reconstruction. We then turn to simulations in which we attempt to reconstruct a (genuine) source in a first condition, while considering a second condition in which there is an (interfering) source elsewhere in the brain. We estimate maps of mislocalization and assess statistically the difference between "standard" and "common" beamformers. We complement our findings with an application to experimental MEG data. The results show that the common beamformer may yield significant mislocalization. Specifically, the common beamformer may force the genuine source to be reconstructed closer to the interfering source than it really is. As the same applies to the reconstruction of the interfering source, both sources are pulled closer together than they are. This observation was further illustrated in experimental data. Thus, although the common beamformer allows for the comparison of conditions, in some circumstances it introduces localization inaccuracies. We recommend alternative approaches to the general problem of comparing conditions.
Collapse
Affiliation(s)
- Gustavo Lucena Gómez
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherches Cognition et Neurosciences, and UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Magnetoencephalography unit, Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain; Laboratoire Cognition Langage et Développement, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
42
|
Shafi R, Crawley AP, Tartaglia MC, Tator CH, Green RE, Mikulis DJ, Colantonio A. Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome. Sci Rep 2020; 10:21982. [PMID: 33319807 PMCID: PMC7738671 DOI: 10.1038/s41598-020-77137-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Concussions are associated with a range of cognitive, neuropsychological and behavioral sequelae that, at times, persist beyond typical recovery times and are referred to as postconcussion syndrome (PCS). There is growing support that concussion can disrupt network-based connectivity post-injury. To date, a significant knowledge gap remains regarding the sex-specific impact of concussion on resting state functional connectivity (rs-FC). The aims of this study were to (1) investigate the injury-based rs-FC differences across three large-scale neural networks and (2) explore the sex-specific impact of injury on network-based connectivity. MRI data was collected from a sample of 80 concussed participants who fulfilled the criteria for postconcussion syndrome and 31 control participants who did not have any history of concussion. Connectivity maps between network nodes and brain regions were used to assess connectivity using the Functional Connectivity (CONN) toolbox. Network based statistics showed that concussed participants were significantly different from healthy controls across both salience and fronto-parietal network nodes. More specifically, distinct subnetwork components were identified in the concussed sample, with hyperconnected frontal nodes and hypoconnected posterior nodes across both the salience and fronto-parietal networks, when compared to the healthy controls. Node-to-region analyses showed sex-specific differences across association cortices, however, driven by distinct networks. Sex-specific network-based alterations in rs-FC post concussion need to be examined to better understand the underlying mechanisms and associations to clinical outcomes.
Collapse
Affiliation(s)
- Reema Shafi
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada. .,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Adrian P Crawley
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles H Tator
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin E Green
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David J Mikulis
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Occupational Science and Occupational Therapy, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Lizarazu M, Lallier M, Bourguignon M, Carreiras M, Molinaro N. Impaired neural response to speech edges in dyslexia. Cortex 2020; 135:207-218. [PMID: 33387899 DOI: 10.1016/j.cortex.2020.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 09/16/2020] [Indexed: 12/01/2022]
Abstract
Speech comprehension has been proposed to critically rely on oscillatory cortical tracking, that is, phase alignment of neural oscillations to the slow temporal modulations (envelope) of speech. Speech-brain entrainment is readjusted over time as transient events (edges) in speech lead to speech-brain phase realignment. Auditory behavioral research suggests that phonological deficits in dyslexia are linked to difficulty in discriminating speech edges. Importantly, research to date has not specifically examined neural responses to speech edges in dyslexia. In the present study, we used MEG to record brain activity from normal and dyslexic readers while they listened to speech. We computed phase locking values (PLVs) to evaluate phase entrainment between neural oscillations and the speech envelope time-locked to edge onsets. In both groups, we observed that edge onsets induced phase resets in the auditory oscillations tracking speech, thereby enhancing their entrainment to speech. Importantly, dyslexic readers showed weaker PLVs compared to normal readers in left auditory regions from ~.15 sec to ~.65 sec after edge onset. Our results indicate that the neural mechanism that adapts cortical entrainment to the speech envelope is impaired in dyslexia. These findings here are consistent with the temporal sampling theory of developmental dyslexia.
Collapse
Affiliation(s)
- Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; LSCP, Département d'études Cognitives, ENS, EHESS, CNRS, PSL Research University, 75005, Paris, France.
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Mathieu Bourguignon
- Laboratoire de Cartographie Fonctionnelle du Cerveau, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
44
|
Ríos‐López P, Molinaro N, Bourguignon M, Lallier M. Development of neural oscillatory activity in response to speech in children from 4 to 6 years old. Dev Sci 2020; 23:e12947. [PMID: 32043677 PMCID: PMC7685108 DOI: 10.1111/desc.12947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/18/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Recent neurophysiological theories propose that the cerebral hemispheres collaborate to resolve the complex temporal nature of speech, such that left-hemisphere (or bilateral) gamma-band oscillatory activity would specialize in coding information at fast rates (phonemic information), whereas right-hemisphere delta- and theta-band activity would code for speech's slow temporal components (syllabic and prosodic information). Despite the relevance that neural entrainment to speech might have for reading acquisition and for core speech perception operations such as the perception of intelligible speech, no study had yet explored its development in young children. In the current study, speech-brain entrainment was recorded via EEG in a cohort of children at three different time points since they were 4-5 to 6-7 years of age. Our results showed that speech-brain entrainment occurred only at delta frequencies (0.5 Hz) at all testing times. The fact that, from the longitudinal perspective, coherence increased in bilateral temporal electrodes suggests that, contrary to previous hypotheses claiming for an innate right-hemispheric bias for processing prosodic information, at 7 years of age the low-frequency components of speech are processed in a bilateral manner. Lastly, delta speech-brain entrainment in the right hemisphere was related to an indirect measure of intelligibility, providing preliminary evidence that the entrainment phenomenon might support core linguistic operations since early childhood.
Collapse
Affiliation(s)
- Paula Ríos‐López
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
| | - Nicola Molinaro
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Mathieu Bourguignon
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
- Laboratoire de Cartographie fonctionnelle du CerveauUniversite libre de BruxellesBrusselsBelgium
| | - Marie Lallier
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
| |
Collapse
|
45
|
Mégevand P, Mercier MR, Groppe DM, Zion Golumbic E, Mesgarani N, Beauchamp MS, Schroeder CE, Mehta AD. Crossmodal Phase Reset and Evoked Responses Provide Complementary Mechanisms for the Influence of Visual Speech in Auditory Cortex. J Neurosci 2020; 40:8530-8542. [PMID: 33023923 PMCID: PMC7605423 DOI: 10.1523/jneurosci.0555-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
Natural conversation is multisensory: when we can see the speaker's face, visual speech cues improve our comprehension. The neuronal mechanisms underlying this phenomenon remain unclear. The two main alternatives are visually mediated phase modulation of neuronal oscillations (excitability fluctuations) in auditory neurons and visual input-evoked responses in auditory neurons. Investigating this question using naturalistic audiovisual speech with intracranial recordings in humans of both sexes, we find evidence for both mechanisms. Remarkably, auditory cortical neurons track the temporal dynamics of purely visual speech using the phase of their slow oscillations and phase-related modulations in broadband high-frequency activity. Consistent with known perceptual enhancement effects, the visual phase reset amplifies the cortical representation of concomitant auditory speech. In contrast to this, and in line with earlier reports, visual input reduces the amplitude of evoked responses to concomitant auditory input. We interpret the combination of improved phase tracking and reduced response amplitude as evidence for more efficient and reliable stimulus processing in the presence of congruent auditory and visual speech inputs.SIGNIFICANCE STATEMENT Watching the speaker can facilitate our understanding of what is being said. The mechanisms responsible for this influence of visual cues on the processing of speech remain incompletely understood. We studied these mechanisms by recording the electrical activity of the human brain through electrodes implanted surgically inside the brain. We found that visual inputs can operate by directly activating auditory cortical areas, and also indirectly by modulating the strength of cortical responses to auditory input. Our results help to understand the mechanisms by which the brain merges auditory and visual speech into a unitary perception.
Collapse
Affiliation(s)
- Pierre Mégevand
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549
- Feinstein Institutes for Medical Research, Manhasset, New York 11030
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Manuel R Mercier
- Department of Neurology, Montefiore Medical Center, Bronx, New York 10467
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
- Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM, 13005 Marseille, France
| | - David M Groppe
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549
- Feinstein Institutes for Medical Research, Manhasset, New York 11030
- The Krembil Neuroscience Centre, University Health Network, Toronto, Ontario M5T 1M8, Canada
| | - Elana Zion Golumbic
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Michael S Beauchamp
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Charles E Schroeder
- Nathan S. Kline Institute, Orangeburg, New York 10962
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Ashesh D Mehta
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549
- Feinstein Institutes for Medical Research, Manhasset, New York 11030
| |
Collapse
|
46
|
Laffere A, Dick F, Holt LL, Tierney A. Attentional modulation of neural entrainment to sound streams in children with and without ADHD. Neuroimage 2020; 224:117396. [PMID: 32979522 DOI: 10.1016/j.neuroimage.2020.117396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
To extract meaningful information from complex auditory scenes like a noisy playground, rock concert, or classroom, children can direct attention to different sound streams. One means of accomplishing this might be to align neural activity with the temporal structure of a target stream, such as a specific talker or melody. However, this may be more difficult for children with ADHD, who can struggle with accurately perceiving and producing temporal intervals. In this EEG study, we found that school-aged children's attention to one of two temporally-interleaved isochronous tone 'melodies' was linked to an increase in phase-locking at the melody's rate, and a shift in neural phase that aligned the neural responses with the attended tone stream. Children's attention task performance and neural phase alignment with the attended melody were linked to performance on temporal production tasks, suggesting that children with more robust control over motor timing were better able to direct attention to the time points associated with the target melody. Finally, we found that although children with ADHD performed less accurately on the tonal attention task than typically developing children, they showed the same degree of attentional modulation of phase locking and neural phase shifts, suggesting that children with ADHD may have difficulty with attentional engagement rather than attentional selection.
Collapse
Affiliation(s)
- Aeron Laffere
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Fred Dick
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom; Division of Psychology & Language Sciences, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Lori L Holt
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom.
| |
Collapse
|
47
|
Destoky F, Bertels J, Niesen M, Wens V, Vander Ghinst M, Leybaert J, Lallier M, Ince RAA, Gross J, De Tiège X, Bourguignon M. Cortical tracking of speech in noise accounts for reading strategies in children. PLoS Biol 2020; 18:e3000840. [PMID: 32845876 PMCID: PMC7478533 DOI: 10.1371/journal.pbio.3000840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/08/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022] Open
Abstract
Humans' propensity to acquire literacy relates to several factors, including the ability to understand speech in noise (SiN). Still, the nature of the relation between reading and SiN perception abilities remains poorly understood. Here, we dissect the interplay between (1) reading abilities, (2) classical behavioral predictors of reading (phonological awareness, phonological memory, and rapid automatized naming), and (3) electrophysiological markers of SiN perception in 99 elementary school children (26 with dyslexia). We demonstrate that, in typical readers, cortical representation of the phrasal content of SiN relates to the degree of development of the lexical (but not sublexical) reading strategy. In contrast, classical behavioral predictors of reading abilities and the ability to benefit from visual speech to represent the syllabic content of SiN account for global reading performance (i.e., speed and accuracy of lexical and sublexical reading). In individuals with dyslexia, we found preserved integration of visual speech information to optimize processing of syntactic information but not to sustain acoustic/phonemic processing. Finally, within children with dyslexia, measures of cortical representation of the phrasal content of SiN were negatively related to reading speed and positively related to the compromise between reading precision and reading speed, potentially owing to compensatory attentional mechanisms. These results clarify the nature of the relation between SiN perception and reading abilities in typical child readers and children with dyslexia and identify novel electrophysiological markers of emergent literacy.
Collapse
Affiliation(s)
- Florian Destoky
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Bertels
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Consciousness, Cognition and Computation group, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Maxime Niesen
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Service d'ORL et de chirurgie cervico-faciale, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacqueline Leybaert
- Laboratoire Cognition Langage et Développement, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Robin A. A. Ince
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- Institute for Biomagnetism and Biosignal analysis, University of Muenster, Muenster, Germany
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire Cognition Langage et Développement, UNI–ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| |
Collapse
|
48
|
Neocortical activity tracks the hierarchical linguistic structures of self-produced speech during reading aloud. Neuroimage 2020; 216:116788. [DOI: 10.1016/j.neuroimage.2020.116788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
|
49
|
Coolen T, Wens V, Vander Ghinst M, Mary A, Bourguignon M, Naeije G, Peigneux P, Sadeghi N, Goldman S, De Tiège X. Frequency-Dependent Intrinsic Electrophysiological Functional Architecture of the Human Verbal Language Network. Front Integr Neurosci 2020; 14:27. [PMID: 32528258 PMCID: PMC7264165 DOI: 10.3389/fnint.2020.00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) allowed the spatial characterization of the resting-state verbal language network (vLN). While other resting-state networks (RSNs) were matched with their electrophysiological equivalents at rest and could be spectrally defined, such correspondence is lacking for the vLN. This magnetoencephalography (MEG) study aimed at defining the spatio-spectral characteristics of the neuromagnetic intrinsic functional architecture of the vLN. Neuromagnetic activity was recorded at rest in 100 right-handed healthy adults (age range: 18-41 years). Band-limited power envelope correlations were performed within and across frequency bands (θ, α, β, and low γ) from a seed region placed in the left Broca's area, using static orthogonalization as leakage correction. K-means clustering was used to segregate spatio-spectral clusters of resting-state functional connectivity (rsFC). Remarkably, unlike other RSNs, within-frequency long-range rsFC from the left Broca's area was not driven by one main carrying frequency but was characterized by a specific spatio-spectral pattern segregated along the ventral (predominantly θ and α) and dorsal (β and low-γ bands) vLN streams. In contrast, spatial patterns of cross-frequency vLN functional integration were spectrally more widespread and involved multiple frequency bands. Moreover, the static intrinsic functional architecture of the neuromagnetic human vLN involved clearly left-hemisphere-dominant vLN interactions as well as cross-network interactions with the executive control network and postero-medial nodes of the DMN. Overall, this study highlighted the involvement of multiple modes of within and cross-frequency power envelope couplings at the basis of long-range electrophysiological vLN functional integration. As such, it lays the foundation for future works aimed at understanding the pathophysiology of language-related disorders.
Collapse
Affiliation(s)
- Tim Coolen
- Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Radiology, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Magnetoencenphalography Unit, Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Alison Mary
- Neuropsychology & Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences, ULB-Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,BCBL-Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,Laboratoire Cognition Langage et Développement, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- Neuropsychology & Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences, ULB-Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Niloufar Sadeghi
- Department of Radiology, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Magnetoencenphalography Unit, Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Magnetoencenphalography Unit, Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
50
|
Wollman I, Arias P, Aucouturier JJ, Morillon B. Neural entrainment to music is sensitive to melodic spectral complexity. J Neurophysiol 2020; 123:1063-1071. [PMID: 32023136 DOI: 10.1152/jn.00758.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During auditory perception, neural oscillations are known to entrain to acoustic dynamics but their role in the processing of auditory information remains unclear. As a complex temporal structure that can be parameterized acoustically, music is particularly suited to address this issue. In a combined behavioral and EEG experiment in human participants, we investigated the relative contribution of temporal (acoustic dynamics) and nontemporal (melodic spectral complexity) dimensions of stimulation on neural entrainment, a stimulus-brain coupling phenomenon operationally defined here as the temporal coherence between acoustical and neural dynamics. We first highlight that low-frequency neural oscillations robustly entrain to complex acoustic temporal modulations, which underscores the fine-grained nature of this coupling mechanism. We also reveal that enhancing melodic spectral complexity, in terms of pitch, harmony, and pitch variation, increases neural entrainment. Importantly, this manipulation enhances activity in the theta (5 Hz) range, a frequency-selective effect independent of the note rate of the melodies, which may reflect internal temporal constraints of the neural processes involved. Moreover, while both emotional arousal ratings and neural entrainment were positively modulated by spectral complexity, no direct relationship between arousal and neural entrainment was observed. Overall, these results indicate that neural entrainment to music is sensitive to the spectral content of auditory information and indexes an auditory level of processing that should be distinguished from higher-order emotional processing stages.NEW & NOTEWORTHY Low-frequency (<10 Hz) cortical neural oscillations are known to entrain to acoustic dynamics, the so-called neural entrainment phenomenon, but their functional implication in the processing of auditory information remains unclear. In a behavioral and EEG experiment capitalizing on parameterized musical textures, we disentangle the contribution of stimulus dynamics, melodic spectral complexity, and emotional judgments on neural entrainment and highlight their respective spatial and spectral neural signature.
Collapse
Affiliation(s)
- Indiana Wollman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Cité de la musique, Philharmonie de Paris, Paris, France
| | - Pablo Arias
- Institut de Recherche et Coordination Acoustique/Musique-Centre National de la Recherche Scientifique-Sorbonne Université, Unité Mixte de Recherche 9912 STMS, Paris, France
| | - Jean-Julien Aucouturier
- Institut de Recherche et Coordination Acoustique/Musique-Centre National de la Recherche Scientifique-Sorbonne Université, Unité Mixte de Recherche 9912 STMS, Paris, France
| | - Benjamin Morillon
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|