1
|
Wang W, Liu W, Liu S, Duan D, Ma Y, Zhang Z, Li C, Tang Y, Wang Z, Xing Y. Specific Activation of Dopamine Receptor D1 Expressing Neurons in the PrL Alleviates CSDS-Induced Anxiety-Like Behavior Comorbidity with Postoperative Hyperalgesia in Male Mice. Mol Neurobiol 2025; 62:2817-2834. [PMID: 39177734 DOI: 10.1007/s12035-024-04444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Postoperative pain is a type of pain that occurs in clinical patients after surgery. Among the factors influencing the transition from acute postoperative pain to chronic postoperative pain, chronic stress has received much attention in recent years. Here, we investigated the role of dopamine receptor D1/D2 expressing pyramidal neurons in the prelimbic cortex (PrL) in modulating chronic social defeat stress (CSDS)-induced anxiety-like behavior comorbidity with postoperative hyperalgesia in male mice. Our results showed that preoperative CSDS induced anxiety-like behavior and significantly prolonged postoperative pain caused by plantar incision, but did not affect plantar wound recovery and inflammation. Reduced activation of dopamine receptor D1 or D2 expressing neurons in the PrL is a remarkable feature of male mice after CSDS, and chronic inhibition of dopamine receptor D1 or D2 expressing neurons in the PrL induced anxiety-like behavior and persistent postoperative pain. Further studies found that activation of D1 expressing but not D2 expressing neurons in the PrL ameliorated CSDS-induced anxiety-like behavior and postoperative hyperalgesia. Our results suggest that dopamine receptor D1 expressing neurons in the PrL play a crucial role in CSDS-induced anxiety-like behavior comorbidity with postoperative hyperalgesia in male mice.
Collapse
Affiliation(s)
- Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Weizhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX75246, USA
| | - Dongxiao Duan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
| | - Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Zijuan Zhang
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Changsheng Li
- Department of Anesthesiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhiju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China.
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China.
| |
Collapse
|
2
|
Lupinsky D, Nasseef MT, Parent C, Craig K, Diorio J, Zhang TY, Meaney MJ. Resting-state fMRI reveals altered functional connectivity associated with resilience and susceptibility to chronic social defeat stress in mouse brain. Mol Psychiatry 2025:10.1038/s41380-025-02897-2. [PMID: 39984680 DOI: 10.1038/s41380-025-02897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/23/2025]
Abstract
Chronic stress is a causal antecedent condition for major depressive disorder and associates with altered patterns of neural connectivity. There are nevertheless important individual differences in susceptibility to chronic stress. How functional connectivity (FC) amongst interconnected, depression-related brain regions associates with resilience and susceptibility to chronic stress is largely unknown. We used resting-state functional magnetic resonance imaging (rs-fMRI) to examine FC between established depression-related regions in susceptible (SUS) and resilient (RES) adult mice following chronic social defeat stress (CSDS). Seed-seed FC analysis revealed that the ventral dentate gyrus (vDG) exhibited the greatest number of FC group differences with other stress-related limbic brain regions. SUS mice showed greater FC between the vDG and subcortical regions compared to both control (CON) or RES groups. Whole brain vDG seed-voxel analysis supported seed-seed findings in SUS mice but also indicated significantly decreased FC between the vDG and anterior cingulate area compared to CON mice. Interestingly, RES mice exhibited enhanced FC between the vDG and anterior cingulate area compared to SUS mice. Moreover, RES mice showed greater FC between the infralimbic prefrontal cortex and the nucleus accumbens shell compared to CON mice. These findings indicate unique differences in FC patterns in phenotypically distinct SUS and RES mice that could represent a neurobiological basis for depression, anxiety, and negative-coping behaviors that are associated with exposure to chronic stress.
Collapse
Affiliation(s)
- Derek Lupinsky
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
| | - Md Taufiq Nasseef
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
- Department of Mathematics, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Carine Parent
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada
| | - Kelly Craig
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Josie Diorio
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Tie-Yuan Zhang
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC, Canada.
| | - Michael J Meaney
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, QC, Canada.
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Brain-Body Initiative, Agency for Science, Technology & Research, Singapore, Singapore.
| |
Collapse
|
3
|
Xin Q, Zheng D, Zhou T, Xu J, Ni Z, Hu H. Deconstructing the neural circuit underlying social hierarchy in mice. Neuron 2025; 113:444-459.e7. [PMID: 39662472 DOI: 10.1016/j.neuron.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice. Specifically, layer 5 neurons projecting to the dorsal raphe nucleus (DRN) and periaqueductal gray (PAG) promote social competition, whereas layer 2/3 neurons projecting to the anterior basolateral amygdala (aBLA) suppress competition. These two neuronal populations show opposite changes in activity during effortful pushes in competition. In vivo and in vitro electrophysiology recordings revealed inhibition from the lose-related pathway to the win-related pathway. Such antagonistic interplay may represent a central principle in how the mPFC orchestrates complex behaviors through top-down control.
Collapse
Affiliation(s)
- Qiuhong Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Diyang Zheng
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tingting Zhou
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiayi Xu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China.
| |
Collapse
|
4
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Olaitan G, Ganesana M, Strohman A, Lynch WJ, Legon W, Venton BJ. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. J Neurochem 2025; 169:e70001. [PMID: 39902479 PMCID: PMC11791541 DOI: 10.1111/jnc.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 12/28/2024] [Indexed: 02/05/2025]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm2 ISPPA) of 2-min LIFU to the prelimbic cortex (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm2 to the PLC significantly reduced dopamine release by ~50% for up to 2 h. However, double the intensity (26 W/cm2) resulted in less inhibition (~30%), and half the intensity (6.5 W/cm2) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm2, suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
Affiliation(s)
- Greatness Olaitan
- Department of ChemistryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Andrew Strohman
- Graduate Program in Translational Biology, Medicine, and HealthVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
- Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Wynn Legon
- Graduate Program in Translational Biology, Medicine, and HealthVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
- Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- Center for Human Neuroscience ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
- Center for Health Behaviors ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
| | - B. Jill Venton
- Department of ChemistryUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
6
|
Shinohara R, Furuyashiki T. Prefrontal contributions to mental resilience: Lessons from rodent studies of stress and antidepressant actions. Neurosci Res 2025; 211:16-23. [PMID: 36549388 DOI: 10.1016/j.neures.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Individual variability of stress susceptibility led to the concept of stress resilience to adapt well upon stressors. However, the neural mechanisms of stress resilience and its relevance to antidepressant actions remain elusive. In rodents, chronic stress induces dendritic atrophy and decreases dendritic spine density in the medial prefrontal cortex (mPFC), recapitulating prefrontal alterations in depressive patients, and the mPFC promotes stress resilience. Whereas dopamine neurons projecting to the nucleus accumbens potentiated by chronic stress promote stress susceptibility, dopamine neurons projecting to the mPFC activated upon acute stress contribute to dendritic growth of mPFC neurons via dopamine D1 receptors, leading to stress resilience. Rodent studies have also identified the roles of prefrontal D1 receptors as well as D1 receptor-expressing mPFC neurons projecting to multiple subcortical areas and dendritic spine formation in the mPFC for the sustained antidepressant-like effects of low-dose ketamine. Thus, understanding the cellular and neural-circuit mechanism of prefrontal D1 receptor actions paves the way for bridging the gap between stress resilience and the sustained antidepressant-like effects. The mechanistic understanding of stress resilience might be exploitable for developing antidepressants based on a naturally occurring mechanism, thus safer than low-dose ketamine.
Collapse
Affiliation(s)
- Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.
| |
Collapse
|
7
|
Cheng Z, Zhao F, Piao J, Yang W, Cui R, Li B. Rasd2 regulates depression-like behaviors via DRD2 neurons in the prelimbic cortex afferent to nucleus accumbens core circuit. Mol Psychiatry 2025; 30:435-449. [PMID: 39097664 PMCID: PMC11746134 DOI: 10.1038/s41380-024-02684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Depressive symptoms, such as anhedonia, decreased social interaction, and lack of motivation, implicate brain reward systems in the pathophysiology of depression. Exposure to chronic stress impairs the function of brain reward circuits and is well-known to be involved in the etiology of depression. A transcriptomic analysis found that stress alters the expression of Rasd2 in mice prefrontal cortex (PFC). Similarly, in our previous study, acute fasting decreased Rasd2 expression in mice PFC, and RASD2 modulated dopamine D2 receptor (DRD2)-mediated antidepressant-like effects in ovariectomized mice. This research suggests the role of RASD2 in stress-induced depression and its underlying neural mechanisms that require further investigation. Here, we show that 5-day unpredictable mild stress (5-d UMS) exposure reduces RASD2 expression in both the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, while overexpression (but not knock-down) of Rasd2 in the NAc core (NAcc) alleviates 5-d UMS-induced depression-like behaviors and activates the DRD2-cAMP-PKA-DARPP-32 signaling pathway. Further studies investigated neuronal projections between the mPFC (Cg1, PrL, and IL) and NAcc, labeled by the retrograde tracer Fluorogold. Depression-like behaviors induced by 5-d UMS were only related to inhibition of the PrL-NAcc circuit. DREADD (Designer receptors exclusively activated by designer drug) analysis found that the activation of PrL-NAcc glutaminergic projection alleviated depression-like behaviors and increased DRD2- and RASD2-positive neurons in the NAcc. Using Drd2-cre transgenic mice, we constructed mice with Rasd2 overexpression in DRD2PrL-NAcc neurons, finding that Rasd2 overexpression ameliorated 5-d UMS-induced depression-like behaviors. These findings demonstrate a critical role for RASD2 modulation of DRD2PrL-NAcc neurons in 5-d UMS-induced depression-like behaviors. In addition, the study identifies a new potential strategy for precision medical treatment of depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| |
Collapse
|
8
|
Piriyaprasath K, Hasegawa M, Iwamoto Y, Kamimura R, Yusuf ASH, Fujii N, Yamamura K, Okamoto K. Effects of treadmill running on anxiety- and craniofacial pain-like behaviors with histone H3 acetylation in the brain of mice subjected to social defeat stress. PLoS One 2025; 20:e0318292. [PMID: 39869606 PMCID: PMC11771924 DOI: 10.1371/journal.pone.0318292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB). The effects of both short-term TR (2 days, TR2) and long-term TR (10 days, TR10) regimens were conducted. TR10 significantly reduced anxiety- and formalin-evoked craniofacial pain-like behaviors in SDS mice. It normalized SDS-induced increases in histone H3 acetylation in both the anterior and posterior portions of the ACC, as well as the anterior portion of the IC. These inhibitory effects were also observed in SDS-related increases in HDAC1, FosB, and pCREB expression. Additionally, TR10 normalized increased histone H3 acetylation in the RVM and C2 regions, with specific effects on FosB and pCREB expression observed in the C2 region. In contrast, TR2 showed limited effects on craniofacial pain-like behaviors but reduced anxiety-like behaviors in SDS mice. Under sham conditions, TR2 had minimal impact on histone H3 acetylation. Paradoxically, TR2 increased formalin-evoked craniofacial pain-like behaviors during the early phase despite not altering acetylated histone H3 expression. In conclusion, the TR10 regimen is effective in attenuating SDS-induced craniofacial pain- and anxiety-like behaviors, likely by normalizing epigenetic modifications and neural activity in key brain regions.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yuya Iwamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rantaro Kamimura
- Division of Orthodontics, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Andi Sitti Hajrah Yusuf
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Noritaka Fujii
- Division of General Dentistry and Dental Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Sakeology Center, Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Lipshutz A, Saltz V, Anderson KR, Manganaro A, Dumitriu D. A localized tracing technique to explore intra-amygdala functional and structural correlates of individual variability in behavioral response. Front Mol Neurosci 2025; 18:1347539. [PMID: 39916773 PMCID: PMC11794228 DOI: 10.3389/fnmol.2025.1347539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction The neurobiological basis for individual variability in behavioral responses to stimuli remains poorly understood. Probing the neural substrates that underlie individual variability in stress responses may open the door for preventive approaches that use biological markers to identify at-risk populations. New developments of viral neuronal tracing tools have led to a recent increase in studies on long range circuits and their functional role in stress responses and social behavior. While these studies are necessary to untangle largescale connectivity, most social behaviors are mediated and fine-tuned by local subregional circuitry. Methods In order to probe this local, interregional connectivity, we present a new combination of a neuronal tracing system with immediate early gene immunohistochemistry for examining structural and functional connectivity within the same animal. Specifically, we combine a retrograde transsynaptic rabies tracing system with cFos colocalization immediately after an acute stressor to elucidate local structural and stress-activated connectivity within the amygdala complex in female and male mice. Results and discussion We show how specific structural and functional connections can predict individual variability along a spectrum of social approach/avoidance following acute social defeat stress. We demonstrate how our robust method can be used to elucidate structural and functional differences in local connectivity that mediate individual variability in behavioral response.
Collapse
Affiliation(s)
- Allie Lipshutz
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Victoria Saltz
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Institute, Columbia University, New York, NY, United States
| | - Kristin R. Anderson
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Alessia Manganaro
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Dani Dumitriu
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Institute, Columbia University, New York, NY, United States
| |
Collapse
|
10
|
Hing B, Mitchell SB, Filali Y, Eberle M, Hultman I, Matkovich M, Kasturirangan M, Johnson M, Wyche W, Jimenez A, Velamuri R, Ghumman M, Wickramasinghe H, Christian O, Srivastava S, Hultman R. Transcriptomic Evaluation of a Stress Vulnerability Network Using Single-Cell RNA Sequencing in Mouse Prefrontal Cortex. Biol Psychiatry 2024; 96:886-899. [PMID: 38866174 PMCID: PMC11524784 DOI: 10.1016/j.biopsych.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased vulnerability to stress is a major risk factor for several mood disorders, including major depressive disorder. Although cellular and molecular mechanisms associated with depressive behaviors following stress have been identified, little is known about the mechanisms that confer the vulnerability that predisposes individuals to future damage from chronic stress. METHODS We used multisite in vivo neurophysiology in freely behaving male and female C57BL/6 mice (n = 12) to measure electrical brain network activity previously identified as indicating a latent stress vulnerability brain state. We combined this neurophysiological approach with single-cell RNA sequencing of the prefrontal cortex to identify distinct transcriptomic differences between groups of mice with inherent high and low stress vulnerability. RESULTS We identified hundreds of differentially expressed genes (padjusted < .05) across 5 major cell types in animals with high and low stress vulnerability brain network activity. This unique analysis revealed that GABAergic (gamma-aminobutyric acidergic) neuron gene expression contributed most to the network activity of the stress vulnerability brain state. Upregulation of mitochondrial and metabolic pathways also distinguished high and low vulnerability brain states, especially in inhibitory neurons. Importantly, genes that were differentially regulated with vulnerability network activity significantly overlapped (above chance) with those identified by genome-wide association studies as having single nucleotide polymorphisms significantly associated with depression as well as genes more highly expressed in postmortem prefrontal cortex of patients with major depressive disorder. CONCLUSIONS This is the first study to identify cell types and genes involved in a latent stress vulnerability state in the brain.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sara B Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Yassine Filali
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Maureen Eberle
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Ian Hultman
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Molly Matkovich
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | | | - Micah Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Whitney Wyche
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Alli Jimenez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Radha Velamuri
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Mahnoor Ghumman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Himali Wickramasinghe
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Olivia Christian
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sanvesh Srivastava
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Rainbo Hultman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Department of Psychiatry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
11
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
12
|
Jiang C, Ruiz-Sanchez I, Mei C, Pittenger C. Circuit mechanisms underlying sexually dimorphic outcomes of early life stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625736. [PMID: 39651173 PMCID: PMC11623607 DOI: 10.1101/2024.11.27.625736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Stress during early life influences brain development and can affect social, motor, and emotional processes. We describe a striking sex difference in the effects of early life stress (ELS), which produces anhedonia and anxiety-like behaviors in female adolescent mice, as reported previously, but repetitive behavioral pathology and social deficits in male adolescent mice. Notably, this parallels sex differences seen in the prevalence of psychiatric symptoms: depression and anxiety disorders are more common in girls and women, whereas neurodevelopmental disorders like autism spectrum disorder and Tourette syndrome are markedly more common in boys and men. We characterized the effects of ELS on the medial prefrontal cortex (mPFC) and on its projections to the dorsal striatum (dStr) and lateral septum (LS). ELS males, but not females, developed hyperactivity in the cortico-striatal circuit and hypoactivity in the cortico-septal circuit. Chemogenetic manipulation of cortico-striatal projection neurons modulates repetitive behavioral pathology and social behaviors in stressed males, and anhedonia in stressed females. Activation of cortico-septal projection neurons rescues social deficits in stressed males. We conclude that early life stress produces sexually dimorphic behavioral effects, with potential relevance to human psychiatric symptoms, through its differential effects on cortico-striatal and cortico-septal circuits.
Collapse
|
13
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [PMID: 39511365 PMCID: PMC11543854 DOI: 10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Acute severe stress may induce fear memory and anxiety. Their mechanisms are expectedly revealed to explore therapeutic strategies. We have investigated the recruitment of associative memory cells that encode stress signals to cause fear memory and anxiety by multidisciplinary approaches. In addition to fear memory and anxiety, the social stress by the resident/intruder paradigm leads to synapse interconnections between somatosensory S1-Tr and auditory cortical neurons in intruder mice. These S1-Tr cortical neurons become to receive convergent synapse innervations newly from the auditory cortex and innately from the thalamus as well as encode the stress signals including battle sound and somatic pain, i.e., associative memory neurons. Neuroligin-3 mRNA knockdown in the S1-Tr cortex precludes the recruitment of associative memory neurons and the onset of fear memory and anxiety. The stress-induced recruitment of associative memory cells in sensory cortices for stress-relevant fear memory and anxiety is based on neuroligin-3-mediated new synapse formation.
Collapse
Affiliation(s)
- Bingchen Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huajuan Xiao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [DOI: :10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
|
15
|
Samandari‐Bahraseman MR, Esmaeilzadeh‐Salestani K, Dogani M, Khaleghdoust B, Hatami N, Esmaeili‐Mahani S, Elyasi L, Loit E, Harro J. Antidepressant- and Anxiolytic-Like Effect of the Froriepia subpinnata Extract in the Rat: Neurochemical Correlates. Brain Behav 2024; 14:e70171. [PMID: 39607287 PMCID: PMC11603432 DOI: 10.1002/brb3.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The study aims to explore the potential antianxiety effect of Froriepia subpinnata, a native plant in northern Iran, and it is considered an antiflatulent, appetizing, antiseptic, antispasmodic, and diuretic. Despite its widespread use in diets and its reputation for calming effects, no prior research has specifically investigated its antianxiety properties. METHODS Rats were subjected to a variety of stressors for 24 days. Rats were treated with the F. subpinnata extract (100, 200, and 400 mg/kg, orally) for 14 days starting from the 10th day of stress. Then behavioral tests (elevated plus-maze, open field, sucrose preference, Morris water maze, passive avoidance) were examined. Real-time PCR was used to investigate changes in the expression of candidate genes of stress response and memory. Oxidative stress markers and corticosterone levels in serum were also measured. RESULTS Chronic stress reduced performance in a variety of tests of anxiety and memory, and treatment with the F. subpinnata extract dose-dependently improved the behavioral deficits caused by chronic stress. At the dose of 200 mg/kg, the F. subpinnata extract mitigated the effect of stress on the expression of several genes, such as those encoding dopamine D1 and D2 receptors, glutamate NMDA, and AMPA receptor subunits (Grin1 and Gria1, respectively), glucocorticoid and mineralocorticoid receptors, cholecystokinin (CCK) and CCKB receptor, neuropeptide Y, and the GABAA receptor alpha2 subunit. Also, the expression of two genes, TrkB and BDNF, was significantly affected by the extract, demonstrating meaningful decreasing changes. Furthermore, treatment with the extract led to a decrease in oxidative stress and an elevation in cortisol levels in stressed animals. CONCLUSION In this study, we provide the first evidence of the antistress and antianxiety effects of F. subpinnata extract, along with its potential procognitive impact on memory.
Collapse
Affiliation(s)
- Mohammad R. Samandari‐Bahraseman
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
- Varjavand Kesht Kariman, Limited Liability CompanyKermanIran
| | - Keyvan Esmaeilzadeh‐Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Manijeh Dogani
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Banafsheh Khaleghdoust
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Nima Hatami
- Department of Endodontic DentistryKerman University of Medical SciencesKermanIran
| | - Saeed Esmaeili‐Mahani
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of MedicineGolestan University of Medical ScienceGorganIran
| | - Evelin Loit
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of ChemistryUniversity of TartuTartuEstonia
| |
Collapse
|
16
|
de Souza ID, G S Fernandes V, Vitor F Cavalcante J, Carolina M F Coelho A, A A Morais D, Cabral-Marques O, A B Pasquali M, J S Dalmolin R. Sex-specific gene expression differences in the prefrontal cortex of major depressive disorder individuals. Neuroscience 2024; 559:272-282. [PMID: 39265803 DOI: 10.1016/j.neuroscience.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Major depressive disorder (MDD) is a leading global cause of disability, being more prevalent in females, possibly due to molecular and neuronal pathway differences between females and males. However, the connection between transcriptional changes and MDD remains unclear. We identified transcriptionally altered genes (TAGs) in MDD through gene and transcript expression analyses, focusing on sex-specific differences. Analyzing 263 brain samples from both sexes, we conducted differential gene expression, differential transcript expression, and differential transcript usage analyses, revealing 1169 unique TAGs, primarily in the prefrontal areas, with nearly half exhibiting transcript-level alterations. Females showed notable RNA splicing and export process disruptions in the orbitofrontal cortex, alongside altered DDX39B gene expression in five of the six brain regions in both sexes. Our findings suggest that disruptions in RNA processing pathways may play a vital role in MDD.
Collapse
Affiliation(s)
- Iara D de Souza
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil.
| | - Vítor G S Fernandes
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil
| | - João Vitor F Cavalcante
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil
| | - Ana Carolina M F Coelho
- Department of Community Medicine, The Arctic University of Tromsø Norway; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo Brazil; DO'R Institute for Research, São Paulo, Brazil
| | | | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil; Department of Biochemistry, Federal University of Rio Grande do Norte Brazil.
| |
Collapse
|
17
|
Moore C, Helms ML, Nipper MA, Winfrey LC, Finn DA, Meshul CK. Dopamine loss alters glutamate synapses and transporters in the medial prefrontal cortex and anxiety-related behaviour in a male MPTP rodent model of Parkinson's disease. Eur J Neurosci 2024; 60:6195-6215. [PMID: 39431445 DOI: 10.1111/ejn.16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Anxiety is a prominent non-motor symptom of Parkinson's disease (PD). Changes in the B-spectrum recordings in PD patients of the prefrontal cortex correlate with increased anxiety. Using a rodent model of PD, we reported alterations in glutamate synapses in the striatum and substantia nigra following dopamine (DA) loss. We hypothesize that DA loss will result in increased anxiety-related behaviours and that this will be associated with alterations in glutamate synapses and transporters within the medial prefrontal cortex (mPFC). Following 4 weeks of progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, there was an increase in anxiety-related behaviours and a 78% decrease in plasma corticosterone levels versus the vehicle (VEH)-treated mice. This was associated with a 30% decrease in the density of dendritic spines in Layers Il/Ill, and a 53% decrease in the density of glutamate immuno-gold labelling within vesicular glutamate transporter 1 (Vglut1)-labelled nerve terminals and spines, with no change within vesicular glutamate transporter 2 (Vglut2) positive terminals/spines in the MPTP versus VEH groups. Our prior work determined that a decrease in striatal glutamate terminal density was associated with an increase in extracellular glutamate levels. There was an increase in protein expression of Vglut1 (40%), Vglut2 (37%) and glutamate aspartate transporter (GLAST) (225%), and a decrease in glutamate transporter 1 (GLT-1) (50%) and excitatory amino acid carrier 1 (EAAC1) (51%), in the MPTP versus VEH groups within the mPFC. These data suggest that the decrease in dendritic spines within the mPFC following nigrostriatal DA loss may be due to increased extracellular glutamate levels (decrease in glutamate transporters), leading to an increase in anxiety-related behaviours.
Collapse
Affiliation(s)
- Cindy Moore
- VA Medical Center/Portland, Portland, Oregon, USA
| | | | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Deborah A Finn
- VA Medical Center/Portland, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles K Meshul
- VA Medical Center/Portland, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Kuhn AM, Bosis KE, Wohleb ES. Looking Back to Move Forward: Research in Stress, Behavior, and Immune Function. Neuroimmunomodulation 2024; 31:211-229. [PMID: 39369707 DOI: 10.1159/000541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND From the original studies investigating the effects of adrenal gland secretion to modern high-throughput multidimensional analyses, stress research has been a topic of scientific interest spanning just over a century. SUMMARY The objective of this review was to provide historical context for influential discoveries, surprising findings, and preclinical models in stress-related neuroimmune research. Furthermore, we summarize this work and present a current understanding of the stress pathways and their effects on the immune system and behavior. We focus on recent work demonstrating stress-induced immune changes within the brain and highlight studies investigating stress effects on microglia. Lastly, we conclude with potential areas for future investigation concerning microglia heterogeneity, bone marrow niches, and sex differences. KEY MESSAGES Stress is a phenomenon that ties together not only the central and peripheral nervous system, but the immune system as well. The cumulative effects of stress can enhance or suppress immune function, based on the intensity and duration of the stressor. These stress-induced immune alterations are associated with neurobiological changes, including structural remodeling of neurons and decreased neurogenesis, and these contribute to the development of behavioral and cognitive deficits. As such, research in this field has revealed important insights into neuroimmune communication as well as molecular and cellular mediators of complex behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Alexander M Kuhn
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly E Bosis
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric S Wohleb
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Butto T, Chongtham MC, Mungikar K, Hartwich D, Linke M, Ruffini N, Radyushkin K, Schweiger S, Winter J, Gerber S. Characterization of transcriptional profiles associated with stress-induced neuronal activation in Arc-GFP mice. Mol Psychiatry 2024; 29:3010-3023. [PMID: 38649752 PMCID: PMC11449785 DOI: 10.1038/s41380-024-02555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Chronic stress has become a predominant factor associated with a variety of psychiatric disorders, such as depression and anxiety, in both human and animal models. Although multiple studies have looked at transcriptional changes after social defeat stress, these studies primarily focus on bulk tissues, which might dilute important molecular signatures of social interaction in activated cells. In this study, we employed the Arc-GFP mouse model in conjunction with chronic social defeat (CSD) to selectively isolate activated nuclei (AN) populations in the ventral hippocampus (vHIP) and prefrontal cortex (PFC) of resilient and susceptible animals. Nuclear RNA-seq of susceptible vs. resilient populations revealed distinct transcriptional profiles linked predominantly with neuronal and synaptic regulation mechanisms. In the vHIP, susceptible AN exhibited increased expression of genes related to the cytoskeleton and synaptic organization. At the same time, resilient AN showed upregulation of cell adhesion genes and differential expression of major glutamatergic subunits. In the PFC, susceptible mice exhibited upregulation of synaptotagmins and immediate early genes (IEGs), suggesting a potentially over-amplified neuronal activity state. Our findings provide a novel view of stress-exposed neuronal activation and the molecular response mechanisms in stress-susceptible vs. resilient animals, which may have important implications for understanding mental resilience.
Collapse
Affiliation(s)
- Tamer Butto
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | | | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Dewi Hartwich
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Nicolas Ruffini
- Leibniz Institute for Resilience Research, Wallstr 7, 55122, Mainz, Germany
| | | | - Susann Schweiger
- Leibniz Institute for Resilience Research, Wallstr 7, 55122, Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jennifer Winter
- Leibniz Institute for Resilience Research, Wallstr 7, 55122, Mainz, Germany.
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
20
|
Jiang J, Hou X, Gu L, Liu X, Lv H, Xiong J, Kuang H, Jiang X, Hong S. Disrupted Balance of Short- and Long-Range Functional Connectivity Density in Patients with Herpes Zoster or Postherpetic Neuralgia: A Resting-State fMRI Study. J Pain Res 2024; 17:2753-2765. [PMID: 39206100 PMCID: PMC11352612 DOI: 10.2147/jpr.s472349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose This study aimed to explore the abnormal changes in short- and long-range functional connectivity density (FCD) in patients with herpes zoster (HZ) and postherpetic neuralgia (PHN). Patients and Methods Twenty HZ patients, 22 PHN patients, and 19 well-matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging scans. We used FCD mapping, a data-driven graph theory method, to investigate local and global functional connectivity patterns. Both short- and long-range FCD were calculated and compared among the PHN, HZ, and HC groups. Then, the abnormal regions were used to calculate seed-based functional connectivity. Finally, correlation analyses were performed between the altered FCD values and clinical datas. Results Compared with HCs, HZ patients showed significantly increased long-range FCD of the bilateral cerebellum, thalamus, parahippocampal gyrus, superior temporal gyrus and lingual gyrus. HZ patients also displayed significantly decreased short-range FCD of the bilateral posterior cingulate gyrus, median cingulate/paracingulate gyri, and left precuneus. Compared with HCs, PHN patients displayed significantly decreased long-range FCD of the bilateral superior frontal gyrus and decreased short-range FCD in the bilateral posterior cingulate gyrus, median cingulate/paracingulate gyri, and precuneus. However, there was no significant difference in either long-range or short-range FCD between the PHN and HZ patients. Long-range FCD deficit areas and the right insula showed altered functional connectivity in PHN patients. Furthermore, pain duration in patients with PHN was correlated with abnormal long-range FCD. Conclusion Herpes zoster pain widely affects intra- and inter-regional functional connectivity, leading to disrupted short-range FCD and increased long-range FCD during different stages of the disease. Long-term chronic pain in PHN patients may impair the pain emotion regulation pathway. These findings could improve our understanding of the pathophysiological mechanisms of HZ and PHN and offer neuroimaging markers for HZ and PHN.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Medical Imaging Research Institute, Nanchang, People’s Republic of China
| | - Xiaoyan Hou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
| | - Xian Liu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
| | - Huiting Lv
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
| | - Jiaxin Xiong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
| | - Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Medical Imaging Research Institute, Nanchang, People’s Republic of China
| | - Xiaofeng Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Medical Imaging Research Institute, Nanchang, People’s Republic of China
| |
Collapse
|
21
|
Giua G, Pereira-Silva J, Caceres-Rodriguez A, Lassalle O, Chavis P, Manzoni OJ. Cell- and Pathway-Specific Disruptions in the Accumbens of Fragile X Mouse. J Neurosci 2024; 44:e1587232024. [PMID: 38830765 PMCID: PMC11270510 DOI: 10.1523/jneurosci.1587-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism spectrum disorder. The mesocorticolimbic system, which includes the prefrontal cortex (PFC), basolateral amygdala (BLA), and nucleus accumbens core (NAcC), is essential for regulating socioemotional behaviors. We employed optogenetics to compare the functional properties of the BLA→NAcC, PFC→NAcC, and reciprocal PFC↔BLA pathways in Fmr1-/y::Drd1a-tdTomato male mice. In FXS mice, the PFC↔BLA reciprocal pathway was unaffected, while significant synaptic modifications occurred in the BLA/PFC→NAcC pathways. We observed distinct changes in D1 striatal projection neurons (SPNs) and separate modifications in D2 SPNs. In FXS mice, the BLA/PFC→NAcC-D2 SPN pathways demonstrated heightened synaptic strength. Focusing on the BLA→NAcC pathway, linked to autistic symptoms, we found increased AMPAR and NMDAR currents and elevated spine density in D2 SPNs. Conversely, the amplified firing probability of BLA→NAcC-D1 SPNs was not accompanied by increased synaptic strength, AMPAR and NMDAR currents, or spine density. These pathway-specific alterations resulted in an overall enhancement of excitatory-to-spike coupling, a physiologically relevant index of how efficiently excitatory inputs drive neuronal firing, in both BLA→NAcC-D1 and BLA→NAcC-D2 pathways. Finally, the absence of fragile X messenger ribonucleoprotein 1 (FMRP) led to impaired long-term depression specifically in BLA→D1 SPNs. These distinct alterations in synaptic transmission and plasticity within circuits targeting the NAcC highlight the potential role of postsynaptic mechanisms in selected SPNs in the observed circuit-level changes. This research underscores the heightened vulnerability of the NAcC in the context of FMRP deficiency, emphasizing its pivotal role in the pathophysiology of FXS.
Collapse
Affiliation(s)
- Gabriele Giua
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Jessica Pereira-Silva
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Alba Caceres-Rodriguez
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Olivier Lassalle
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Pascale Chavis
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| | - Olivier J Manzoni
- Institut de neurobiologie de la méditerranée, Institut National de la Santé et de la Recherche Médicale U1249, Marseille 13273, France
- Aix-Marseille University, Marseille 13284, France
| |
Collapse
|
22
|
La Porta C, Plum T, Palme R, Mack M, Tappe-Theodor A. Repeated social defeat stress differently affects arthritis-associated hypersensitivity in male and female mice. Brain Behav Immun 2024; 119:572-596. [PMID: 38663771 DOI: 10.1016/j.bbi.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic stress enhances the risk of neuropsychiatric disorders and contributes to the aggravation and chronicity of pain. The development of stress-associated diseases, including pain, is affected by individual vulnerability or resilience to stress, although the mechanisms remain elusive. We used the repeated social defeat stress model promoting susceptible and resilient phenotypes in male and female mice and induced knee mono-arthritis to investigate the impact of stress vulnerability on pain and immune system regulation. We analyzed different pain-related behaviors, measured blood cytokine and immune cell levels, and performed histological analyses at the knee joints and pain/stress-related brain areas. Stress susceptible male and female mice showed prolonged arthritis-associated hypersensitivity. Interestingly, hypersensitivity was exacerbated in male but not female mice. In males, stress promoted transiently increased neutrophils and Ly6Chigh monocytes, lasting longer in susceptible than resilient mice. While resilient male mice displayed persistently increased levels of the anti-inflammatory interleukin (IL)-10, susceptible mice showed increased levels of the pro-inflammatory IL-6 at the early- and IL-12 at the late arthritis stage. Although joint inflammation levels were comparable among groups, macrophage and neutrophil infiltration was higher in the synovium of susceptible mice. Notably, only susceptible male mice, but not females, presented microgliosis and monocyte infiltration in the prefrontal cortex at the late arthritis stage. Blood Ly6Chigh monocyte depletion during the early inflammatory phase abrogated late-stage hypersensitivity and the associated histological alterations in susceptible male mice. Thus, recruitment of blood Ly6Chigh monocytes during the early arthritis phase might be a key factor mediating the persistence of arthritis pain in susceptible male mice. Alternative neuro-immune pathways that remain to be explored might be involved in females.
Collapse
Affiliation(s)
- Carmen La Porta
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Thomas Plum
- Division for Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, Regensburg University Hospital, Regensburg, Germany
| | - Anke Tappe-Theodor
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Olaitan GO, Ganesana M, Strohman A, Lynch WJ, Legon W, Jill Venton B. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580202. [PMID: 38979318 PMCID: PMC11230179 DOI: 10.1101/2024.02.13.580202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 I sppa ) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
|
24
|
Jiang Y, Xu L, Cao Y, Meng F, Jiang S, Yang M, Zheng Z, Zhang Y, Yang L, Wang M, Sun G, Liu J, Li C, Cui M. Effects of Interleukin-19 overexpression in the medial prefrontal cortex on anxiety-related behaviors, BDNF expression and p38/JNK/ERK pathways. Brain Res Bull 2024; 212:110952. [PMID: 38636611 DOI: 10.1016/j.brainresbull.2024.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Anxiety is a prevalent mental illness known for its high incidence, comorbidity, and tendency to recur, posing significant societal and individual burdens. Studies have highlighted Interleukin-19 (IL-19) as having potential relevance in neuropsychiatric disorders. Our previous research revealed that IL-19 overexpression in colonies exacerbated anxiety-related behaviors induced by dextran sodium sulfate/stress. However, the precise role and molecular mechanisms of IL-19 in anxiety regulation remain uncertain. In this study, we initiated an acute restraint stress (ARS)-induced anxious mouse model and identified heightened expression of IL-19 and IL-20Rα in the medial prefrontal cortex (mPFC) of ARS mice. Notably, IL-19 and IL-20Rα were predominantly present in the excitatory pyramidal neurons of the mPFC under both basal and ARS conditions. Utilizing the adeno-associated virus (AAV) strategy, we demonstrated that IL-19 overexpression in the mPFC induced anxiety-related behaviors and elevated stress susceptibility. Additionally, we observed decreased protein levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the mPFC of IL-19 overexpression mice, accompanied by reduced phosphorylation of in the p38, JNK, and Erk signaling pathways. These findings emphasize the role of IL-19 in modulating anxiety-related behaviors within the mPFC and suggest its potential as a pathological gene and therapeutic target for anxiety.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yifan Cao
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Mengyu Yang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ziteng Zheng
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yi Zhang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lu Yang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Meiqin Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Physiology, Binzhou Medical University, Shandong, China
| | - Guizhi Sun
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
25
|
Canto-de-Souza L, Baptista-de-Souza D, Nunes-de-Souza RL, Planeta C. Distinct roles of the left and right prelimbic cortices in the modulation of ethanol consumption in male mice under acute and chronic social defeat stress. Psychopharmacology (Berl) 2024; 241:1161-1176. [PMID: 38347153 DOI: 10.1007/s00213-024-06550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 05/21/2024]
Abstract
RATIONALE Chronic stress exposure disrupts the medial prefrontal cortex's (mPFC) ability to regulate impulses, leading to the loss of control over alcohol drinking in rodents, emphasizing the critical role of this forebrain area in regulating alcohol consumption. Moreover, chronic stress exposure causes lateralization of mPFC functions with volumetric and functional changes, resulting in hyperactivity in the right hemisphere and functional decrease in the left. OBJECTIVES This study investigated the inhibitory role of the left prelimbic cortex (LPrL) on ethanol consumption induced by chronic social defeat stress (SDS) in male mice and to examine if inactivation of the LPrL causes disinhibition of the right mPFC, leading to an increase in ethanol consumption. We also investigated the role of lateralization and neurochemical alterations in the mPFC related to ethanol consumption induced by chronic SDS. To this end, we examined the activation patterns of ΔFosB, VGLUT2, and GAD67 in the left and right mPFC. RESULTS Temporarily blocking the LPrL or right PrL (RPrL) cortices during acute SDS did not affect male mice's voluntary ethanol consumption in male mice. When each cortex was blocked in mice previously exposed to chronic SDS, ethanol consumption also remained unaffected. However, male mice with LPrL lesions during chronic SDS showed an increase in voluntary ethanol consumption, which was associated with enhanced ΔFosB/VGLUT2-positive neurons within the RPrL cortex. CONCLUSIONS The results suggest that the LPrL may play a role in inhibiting ethanol consumption induced by chronic SDS, while the RPrL may be involved in the disinhibition of ethanol consumption.
Collapse
Affiliation(s)
- Lucas Canto-de-Souza
- Lab. Pharmacology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, 14800-903, Brazil
| | - Daniela Baptista-de-Souza
- Lab. Pharmacology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, 14800-903, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Lab. Pharmacology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, 14800-903, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil
| | - Cleopatra Planeta
- Lab. Pharmacology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, 14800-903, Brazil.
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
26
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
27
|
Nazzi S, Picchi M, Migliarini S, Maddaloni G, Barsotti N, Pasqualetti M. Reversible Morphological Remodeling of Prefrontal and Hippocampal Serotonergic Fibers by Fluoxetine. ACS Chem Neurosci 2024; 15:1702-1711. [PMID: 38433715 DOI: 10.1021/acschemneuro.3c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system.
Collapse
Affiliation(s)
- Serena Nazzi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Marta Picchi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Sara Migliarini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Giacomo Maddaloni
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Noemi Barsotti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), Pisa 56126, Italy
| | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
- Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa (CISUP), Pisa 56126, Italy
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
| |
Collapse
|
28
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
29
|
Cai Y, Ge J, Pan ZZ. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats. Front Neurosci 2024; 18:1331864. [PMID: 38327845 PMCID: PMC10847313 DOI: 10.3389/fnins.2024.1331864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Brain circuits between medial prefrontal cortex (mPFC) and amygdala have been implicated in cortical control of emotion, especially anxiety. Studies in recent years focus on differential roles of subregions of mPFC and amygdala, and reciprocal pathways between mPFC and amygdala in regulation of emotional behaviors. It has been shown that, while the projection from ventral mPFC to basomedial amygdala has an anxiolytic effect, the reciprocal projections between dorsal mPFC (dmPFC) and basolateral amygdala (BLA) are generally involved in an anxiogenic effect in various conditions with increased anxiety. However, the function of the projection from dmPFC to BLA in regulation of general emotional behaviors under normal conditions remains unclear. In this study, we used optogenetic analysis to identify how this dmPFC-BLA pathway regulates various emotional behaviors in normal rats. We found that optogenetic stimulation of the dmPFC-BLA pathway promoted a behavioral state of negative emotion, increasing anxiety-like and depressive-like behaviors and producing aversive behavior of place avoidance. Conversely, optogenetic inhibition of this pathway produced opposite effects, reducing anxiety-like and depressive-like behaviors, and inducing behaviors of place preference of reward. These findings suggest that activity of the dmPFC-BLA pathway is sufficient to drive a negative emotion state and the mPFC-amygdala circuit is tonically active in cortical regulation of emotional behaviors.
Collapse
Affiliation(s)
| | | | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
30
|
Hisey EE, Fritsch EL, Newman EL, Ressler KJ, Kangas BD, Carlezon WA. Early life stress in male mice blunts responsiveness in a translationally-relevant reward task. Neuropsychopharmacology 2023; 48:1752-1759. [PMID: 37258714 PMCID: PMC10579416 DOI: 10.1038/s41386-023-01610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Early-life stress (ELS) leaves signatures upon the brain that persist throughout the lifespan and increase the risk of psychiatric illnesses including mood and anxiety disorders. In humans, myriad forms of ELS-including childhood abuse, bullying, poverty, and trauma-are increasingly prevalent. Understanding the signs of ELS, including those associated with psychiatric illness, will enable improved treatment and prevention. Here, we developed a novel procedure to model human ELS in mice and identify translationally-relevant biomarkers of mood and anxiety disorders. We exposed male mice (C57BL/6 J) to an early-life (juvenile) chronic social defeat stress (jCSDS) and examined social interaction and responsivity to reward during adulthood. As expected, jCSDS-exposed mice showed a socially avoidant phenotype in open-field social interaction tests. However, sucrose preference tests failed to demonstrate ELS-induced reductions in choice for the sweetened solution, suggesting no effect on reward function. To explore whether other tasks might be more sensitive to changes in motivation, we tested the mice in the Probabilistic Reward Task (PRT), a procedure often used in humans to study reward learning deficits associated with depressive illness. In a touchscreen PRT variant that was reverse-translated to maximize alignment with the version used in human subjects, mice exposed to jCSDS displayed significant reductions in the tendency to develop response biases for the more richly-rewarded stimulus, a hallmark sign of anhedonia when observed in humans. Our findings suggest that translationally-relevant procedures that utilize the same endpoints across species may enable the development of improved model systems that more accurately predict outcomes in humans.
Collapse
Affiliation(s)
- Erin E Hisey
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA.
| | - Emma L Fritsch
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Emily L Newman
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| |
Collapse
|
31
|
Hing B, Mitchell SB, Eberle M, Filali Y, Hultman I, Matkovich M, Kasturirangan M, Wyche W, Jimenez A, Velamuri R, Johnson M, Srivastava S, Hultman R. Single Cell Transcriptome of Stress Vulnerability Network in mouse Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540705. [PMID: 37662266 PMCID: PMC10473598 DOI: 10.1101/2023.05.14.540705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Increased vulnerability to stress is a major risk factor for the manifestation of several mood disorders, including major depressive disorder (MDD). Despite the status of MDD as a significant donor to global disability, the complex integration of genetic and environmental factors that contribute to the behavioral display of such disorders has made a thorough understanding of related etiology elusive. Recent developments suggest that a brain-wide network approach is needed, taking into account the complex interplay of cell types spanning multiple brain regions. Single cell RNA-sequencing technologies can provide transcriptomic profiling at the single-cell level across heterogenous samples. Furthermore, we have previously used local field potential oscillations and machine learning to identify an electrical brain network that is indicative of a predisposed vulnerability state. Thus, this study combined single cell RNA-sequencing (scRNA-Seq) with electrical brain network measures of the stress-vulnerable state, providing a unique opportunity to access the relationship between stress network activity and transcriptomic changes within individual cell types. We found especially high numbers of differentially expressed genes between animals with high and low stress vulnerability brain network activity in astrocytes and glutamatergic neurons but we estimated that vulnerability network activity depends most on GABAergic neurons. High vulnerability network activity included upregulation of microglia and mitochondrial and metabolic pathways, while lower vulnerability involved synaptic regulation. Genes that were differentially regulated with vulnerability network activity significantly overlapped with genes identified as having significant SNPs by human GWAS for depression. Taken together, these data provide the gene expression architecture of a previously uncharacterized stress vulnerability brain state, enabling new understanding and intervention of predisposition to stress susceptibility.
Collapse
|
32
|
Favoretto CA, Pagliusi M, Morais-Silva G. Involvement of brain cell phenotypes in stress-vulnerability and resilience. Front Neurosci 2023; 17:1175514. [PMID: 37476833 PMCID: PMC10354562 DOI: 10.3389/fnins.2023.1175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Stress-related disorders' prevalence is epidemically increasing in modern society, leading to a severe impact on individuals' well-being and a great economic burden on public resources. Based on this, it is critical to understand the mechanisms by which stress induces these disorders. The study of stress made great progress in the past decades, from deeper into the hypothalamic-pituitary-adrenal axis to the understanding of the involvement of a single cell subtype on stress outcomes. In fact, many studies have used state-of-the-art tools such as chemogenetic, optogenetic, genetic manipulation, electrophysiology, pharmacology, and immunohistochemistry to investigate the role of specific cell subtypes in the stress response. In this review, we aim to gather studies addressing the involvement of specific brain cell subtypes in stress-related responses, exploring possible mechanisms associated with stress vulnerability versus resilience in preclinical models. We particularly focus on the involvement of the astrocytes, microglia, medium spiny neurons, parvalbumin neurons, pyramidal neurons, serotonergic neurons, and interneurons of different brain areas in stress-induced outcomes, resilience, and vulnerability to stress. We believe that this review can shed light on how diverse molecular mechanisms, involving specific receptors, neurotrophic factors, epigenetic enzymes, and miRNAs, among others, within these brain cell subtypes, are associated with the expression of a stress-susceptible or resilient phenotype, advancing the understanding/knowledge on the specific machinery implicate in those events.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
33
|
Fang S, Qin Y, Yang S, Zhang H, Zheng J, Wen S, Li W, Liang Z, Zhang X, Li B, Huang L. Differences in the neural basis and transcriptomic patterns in acute and persistent pain-related anxiety-like behaviors. Front Mol Neurosci 2023; 16:1185243. [PMID: 37383426 PMCID: PMC10297165 DOI: 10.3389/fnmol.2023.1185243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/11/2023] [Indexed: 06/30/2023] Open
Abstract
Background Both acute and persistent pain is associated with anxiety in clinical observations, but whether the underlying neural mechanisms differ is poorly understood. Methods We used formalin or complete Freund's adjuvant (CFA) to induce acute or persistent pain. Behavioral performance was assessed by the paw withdrawal threshold (PWT), open field (OF), and elevated plus maze (EPM) tests. C-Fos staining was used to identify the activated brain regions. Chemogenetic inhibition was further performed to examine the necessity of brain regions in behaviors. RNA sequencing (RNA-seq) was used to identify the transcriptomic changes. Results Both acute and persistent pain could lead to anxiety-like behavior in mice. The c-Fos expression indicates that the bed nucleus of the stria terminalis (BNST) is activated only in acute pain, whereas the medial prefrontal cortex (mPFC) is activated only in persistent pain. Chemogenetic manipulation reveals that the activation of the BNST excitatory neurons is required for acute pain-induced anxiety-like behaviors. In contrast, the activation of the prelimbic mPFC excitatory neurons is essential for persistent pain-induced anxiety-like behaviors. RNA-seq reveals that acute and persistent pain induces differential gene expression changes and protein-protein interaction networks in the BNST and prelimbic mPFC. The genes relevant to neuronal functions might underline the differential activation of the BNST and prelimbic mPFC in different pain models, and be involved in acute and persistent pain-related anxiety-like behaviors. Conclusion Distinct brain regions and gene expression patterns are involved in acute and persistent pain-related anxiety-like behaviors.
Collapse
Affiliation(s)
- Shunchang Fang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Medical College, Jiaying University, Meizhou, China
| | - Yuxin Qin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shana Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyang Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songhai Wen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weimin Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zirui Liang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
35
|
Fetcho RN, Hall BS, Estrin DJ, Walsh AP, Schuette PJ, Kaminsky J, Singh A, Roshgodal J, Bavley CC, Nadkarni V, Antigua S, Huynh TN, Grosenick L, Carthy C, Komer L, Adhikari A, Lee FS, Rajadhyaksha AM, Liston C. Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships. Nat Commun 2023; 14:2487. [PMID: 37120443 PMCID: PMC10148889 DOI: 10.1038/s41467-023-37460-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/17/2023] [Indexed: 05/01/2023] Open
Abstract
Social hierarchies exert a powerful influence on behavior, but the neurobiological mechanisms that detect and regulate hierarchical interactions are not well understood, especially at the level of neural circuits. Here, we use fiber photometry and chemogenetic tools to record and manipulate the activity of nucleus accumbens-projecting cells in the ventromedial prefrontal cortex (vmPFC-NAcSh) during tube test social competitions. We show that vmPFC-NAcSh projections signal learned hierarchical relationships, and are selectively recruited by subordinate mice when they initiate effortful social dominance behavior during encounters with a dominant competitor from an established hierarchy. After repeated bouts of social defeat stress, this circuit is preferentially activated during social interactions initiated by stress resilient individuals, and plays a necessary role in supporting social approach behavior in subordinated mice. These results define a necessary role for vmPFC-NAcSh cells in the adaptive regulation of social interaction behavior based on prior hierarchical interactions.
Collapse
Affiliation(s)
- Robert N Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Baila S Hall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - David J Estrin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alexander P Walsh
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Kaminsky
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ashna Singh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Roshgodal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Charlotte C Bavley
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Viraj Nadkarni
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Susan Antigua
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Thu N Huynh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Camille Carthy
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Komer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis S Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, New York, NY, USA.
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, New York, NY, USA.
| |
Collapse
|
36
|
Pan Y, Mou Q, Huang Z, Chen S, Shi Y, Ye M, Shao M, Wang Z. Chronic social defeat alters behaviors and neuronal activation in the brain of female Mongolian gerbils. Behav Brain Res 2023; 448:114456. [PMID: 37116662 DOI: 10.1016/j.bbr.2023.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Chronic social defeat has been found to be stressful and to affect many aspects of the brain and behaviors in males. However, relatively little is known about its effects on females. In the present study, we examined the effects of repeated social defeat on social approach and anxiety-like behaviors as well as the neuronal activation in the brain of sexually naïve female Mongolian gerbils (Meriones unguiculatus). Our data indicate that repeated social defeats for 20 days reduced social approach and social investigation, but increased risk assessment or vigilance to an unfamiliar conspecific. Such social defeat experience also increased anxiety-like behavior and reduced locomotor activity. Using ΔFosB-immunoreactive (ΔFosB-ir) staining as a marker of neuronal activation in the brain, we found significant elevations by social defeat experience in the density of ΔFosB-ir stained neurons in several brain regions, including the prelimbic (PL) and infralimbic (IL) subnuclei of the prefrontal cortex (PFC), CA1 subfields (CA1) of the hippocampus, central subnuclei of the amygdala (CeA), the paraventricular nucleus (PVN), dorsomedial nucleus (DMH), and ventrolateral subdivision of the ventromedial nucleus (VMHvl) of the hypothalamus. As these brain regions have been implicated in social behaviors and stress responses, our data suggest that the specific patterns of neuronal activation in the brain may relate to the altered social and anxiety-like behaviors following chronic social defeat in female Mongolian gerbils.
Collapse
Affiliation(s)
- Yongliang Pan
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China.
| | - Qiuyue Mou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Zhexue Huang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Senyao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Yilei Shi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Mengfan Ye
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Mingqin Shao
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
37
|
Behavioral flexibility impacts on coping and emotional responses in male mice submitted to social defeat stress. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110696. [PMID: 36521585 DOI: 10.1016/j.pnpbp.2022.110696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Behavioral flexibility permits the appropriate behavioral adjustments in response to changing environmental demands. The present study aimed to evaluate if variability in baseline flexibility can enable differences in coping strategies, changes in neuroplasticity, and behavioral outcomes in responses to chronic social defeat stress (CSDS). Male C57BL6 mice were submitted to the Morris Water Maze (MWM) using an extended protocol for reversal learning to assess. The animals were divided into low and high behavioral flexibility groups based on their performance on the last day of acquisition versus the four days of reversal learning. The CSDS was applied for ten consecutive days, and coping strategies were evaluated during the physical interaction on the first and last day of stress. A battery of behavioral tests to assess social and emotional behavior was conducted 24 h after the CSDS protocol. The complexity of prefrontal cortex (PFC) neuronal morphology was evaluated by the Golgi-Cox method. Animals with High Flexibility exhibited changes in their CSDS coping strategies, from active to passive coping, during the CSDS protocol. Low Flexibility mice had no alterations in the coping strategies during CSDS. After social stress, High Flexibility was associated with reduced social interaction with an aggressive Swiss mouse, higher latency to immobility in the tail suspension test, and reduced latency to self-care in the sucrose splash test. High Flexibility mice also displayed higher dendritic complexity on pyramidal neurons from the prelimbic and infralimbic prefrontal cortex compared to Low Flexibility mice. These results suggest That High Flexibility is associated with increased neuroplasticity in cortical areas and better emotional responses related to behavioral despair and motivation. However, exposure to CSDS reversed the beneficial effects of High Flexibility in male mice. Thus, this study suggests that baseline variability in behavioral flexibility, even in inbred strains, might be associated with differences in coping strategies, PFC morphology, and behavioral responses to social stress.
Collapse
|
38
|
Papp M, Gruca P, Litwa E, Lason M, Willner P. Optogenetic stimulation of transmission from prelimbic cortex to nucleus accumbens core overcomes resistance to venlafaxine in an animal model of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110715. [PMID: 36610613 DOI: 10.1016/j.pnpbp.2023.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Our earlier study demonstrated that repeated optogenetic stimulation of afferents from ventral hippocampus (vHIP) to the prelimbic region of medial prefrontal cortex (mPFC) overcame resistance to antidepressant treatment in Wistar-Kyoto (WKY) rats. These results suggested that antidepressant resistance may result from an insufficiency of transmission from vHIP to mPFC. Here we examined whether similar effects can be elicited from major output of mPFC; the pathway from to nucleus accumbens core (NAc). METHOD WKY rats were subjected to Chronic Mild Stress and were used in two sets of experiments: 1) they were treated acutely with optogenetic stimulation of afferents to NAc core originating from the mPFC, and 2) they were treated with chronic (5 weeks) venlafaxine (10 mg/kg) and/or repeated (once weekly) optogenetic stimulation of afferents to NAc originating from either mPFC or vHIP. RESULTS Chronic mild stress procedure decreased sucrose intake, open arm entries on elevated plus maze, and novel object recognition test. Acute optogenetic stimulation of the mPFC-NAc and vHIP-NAc pathways had no effect in sucrose or plus maze tests, but increased object recognition. Neither venlafaxine nor mPFC-NAc optogenetic stimulation alone was effective in reversing the effects of CMS, but the combination of chronic antidepressant and repeated optogenetic stimulation improved behaviour on all three measures. CONCLUSIONS The synergism between venlafaxine and mPFC-NAc optogenetic stimulation supports the hypothesis that the mechanisms of non-responsiveness of WKY rats involves a failure of antidepressant treatment to restore transmission in the mPFC-NAc pathway. Together with earlier results, this implicates insufficiency in a vHIP-mPFC-NAc circuit in non-responsiveness to antidepressant drugs.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
39
|
Cooper MA, Grizzell JA, Whitten CJ, Burghardt GM. Comparing the ontogeny, neurobiology, and function of social play in hamsters and rats. Neurosci Biobehav Rev 2023; 147:105102. [PMID: 36804399 PMCID: PMC10023430 DOI: 10.1016/j.neubiorev.2023.105102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Syrian hamsters show complex social play behavior and provide a valuable animal model for delineating the neurobiological mechanisms and functions of social play. In this review, we compare social play behavior of hamsters and rats and underlying neurobiological mechanisms. Juvenile rats play by competing for opportunities to pin one another and attack their partner's neck. A broad set of cortical, limbic, and striatal regions regulate the display of social play in rats. In hamsters, social play is characterized by attacks to the head in early puberty, which gradually transitions to the flanks in late puberty. The transition from juvenile social play to adult hamster aggression corresponds with engagement of neural ensembles controlling aggression. Play deprivation in rats and hamsters alters dendritic morphology in mPFC neurons and impairs flexible, context-dependent behavior in adulthood, which suggests these animals may have converged on a similar function for social play. Overall, dissecting the neurobiology of social play in hamsters and rats can provide a valuable comparative approach for evaluating the function of social play.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA.
| | - J Alex Grizzell
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Gordon M Burghardt
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA; Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| |
Collapse
|
40
|
Mahmud A, Avramescu RG, Niu Z, Flores C. Awakening the dormant: Role of axonal guidance cues in stress-induced reorganization of the adult prefrontal cortex leading to depression-like behavior. Front Neural Circuits 2023; 17:1113023. [PMID: 37035502 PMCID: PMC10079902 DOI: 10.3389/fncir.2023.1113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic and disabling disorder affecting roughly 280 million people worldwide. While multiple brain areas have been implicated, dysfunction of prefrontal cortex (PFC) circuitry has been consistently documented in MDD, as well as in animal models for stress-induced depression-like behavioral states. During brain development, axonal guidance cues organize neuronal wiring by directing axonal pathfinding and arborization, dendritic growth, and synapse formation. Guidance cue systems continue to be expressed in the adult brain and are emerging as important mediators of synaptic plasticity and fine-tuning of mature neural networks. Dysregulation or interference of guidance cues has been linked to depression-like behavioral abnormalities in rodents and MDD in humans. In this review, we focus on the emerging role of guidance cues in stress-induced changes in adult prefrontal cortex circuitry and in precipitating depression-like behaviors. We discuss how modulating axonal guidance cue systems could be a novel approach for precision medicine and the treatment of depression.
Collapse
Affiliation(s)
- Ashraf Mahmud
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Psychiatry, Neurology, and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
41
|
Woodward E, Rangel-Barajas C, Ringland A, Logrip ML, Coutellier L. Sex-Specific Timelines for Adaptations of Prefrontal Parvalbumin Neurons in Response to Stress and Changes in Anxiety- and Depressive-Like Behaviors. eNeuro 2023; 10:ENEURO.0300-22.2023. [PMID: 36808099 PMCID: PMC9997696 DOI: 10.1523/eneuro.0300-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
Women are twice as likely as men to experience emotional dysregulation after stress, resulting in substantially higher psychopathology for equivalent lifetime stress exposure, yet the mechanisms underlying this vulnerability remain unknown. Studies suggest changes in medial prefrontal cortex (mPFC) activity as a potential contributor. Whether maladaptive changes in inhibitory interneurons participate in this process, and whether adaptations in response to stress differ between men and women, producing sex-specific changes in emotional behaviors and mPFC activity, remained undetermined. This study examined whether unpredictable chronic mild stress (UCMS) in mice differentially alters behavior and mPFC parvalbumin (PV) interneuron activity by sex, and whether the activity of these neurons drives sex-specific behavioral changes. Four weeks of UCMS increased anxiety-like and depressive-like behaviors associated with FosB activation in mPFC PV neurons, particularly in females. After 8 weeks of UCMS, both sexes displayed these behavioral and neural changes. Chemogenetic activation of PV neurons in UCMS-exposed and nonstressed males induced significant changes in anxiety-like behaviors. Importantly, patch-clamp electrophysiology demonstrated altered excitability and basic neural properties on the same timeline as the emergence of behavioral effects: changes in females after 4 weeks and in males after 8 weeks of UCMS. These findings show, for the first time, that sex-specific changes in the excitability of prefrontal PV neurons parallel the emergence of anxiety-like behavior, revealing a potential novel mechanism underlying the enhanced vulnerability of females to stress-induced psychopathology and supporting further investigation of this neuronal population to identify new therapeutic targets for stress disorders.
Collapse
Affiliation(s)
- Emma Woodward
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Claudia Rangel-Barajas
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Amanda Ringland
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
| | - Marian L Logrip
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laurence Coutellier
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
42
|
Upregulations of α 1 adrenergic receptors and noradrenaline synthases in the medial prefrontal cortex are associated with emotional and cognitive dysregulation induced by post-weaning social isolation in male rats. Neurosci Lett 2023; 797:137071. [PMID: 36642239 DOI: 10.1016/j.neulet.2023.137071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Early-life social isolation induces emotional and cognitive dysregulation, such as increased aggression and anxiety, and decreases neuron excitability in the medial prefrontal cortex (mPFC). The noradrenergic system in the mPFC regulates emotion and cognitive function via α1 or α2A adrenergic receptors, depending on noradrenaline levels. However, social isolation-induced changes in the mPFC noradrenergic system have not been reported. Here, male Wistar rats received post-weaning social isolation for nine consecutive weeks and were administered behavioral tests (novel object recognition, elevated plus maze, aggression, and forced swimming, sequentially). Protein expression levels in the mPFC noradrenergic system (α1 and α2A adrenergic receptors, tyrosine hydroxylase, and dopamine-β-hydroxylase used as indices of noradrenaline synthesis and release) were examined through western blotting. Social isolation caused cognitive dysfunction, anxiety-like behavior, and aggression, but not behavioral despair. Socially-isolated rats exhibited increased protein levels of the α1 adrenergic receptor, tyrosine hydroxylase, and dopamine-β-hydroxylase in the mPFC; there was no significant difference between the groups in the α2A adrenergic receptor expression levels. Preferential activation of the α1 adrenergic receptor caused by high noradrenaline concentration in the mPFC may be involved in social isolation-induced emotional and cognitive regulation impairments. Targeting the α1 adrenergic receptor signaling pathway is a potential therapeutic strategy for psychiatric disorders with symptomatic features such as emotional and cognitive dysregulation.
Collapse
|
43
|
Hughes BW, Siemsen BM, Tsvetkov E, Berto S, Kumar J, Cornbrooks RG, Akiki RM, Cho JY, Carter JS, Snyder KK, Assali A, Scofield MD, Cowan CW, Taniguchi M. NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses. eLife 2023; 12:e75631. [PMID: 36780219 PMCID: PMC9925055 DOI: 10.7554/elife.75631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/29/2023] [Indexed: 02/14/2023] Open
Abstract
Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.
Collapse
Affiliation(s)
- Brandon W Hughes
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Benjamin M Siemsen
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Stefano Berto
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Rebecca G Cornbrooks
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Rose Marie Akiki
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jennifer Y Cho
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Jordan S Carter
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Kirsten K Snyder
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Anesthesiology, Medical University of South CarolinaCharlestonUnited States
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
- Neuroscience Graduate Program, University of Texas Southwestern Medical CenterDallasUnited States
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Psychiatry, Harvard Medical SchoolBelmontUnited States
| |
Collapse
|
44
|
Zhang YD, Shi DD, Zhang S, Wang Z. Sex-specific transcriptional signatures in the medial prefrontal cortex underlying sexually dimorphic behavioural responses to stress in rats. J Psychiatry Neurosci 2023; 48:E61-E73. [PMID: 36796857 PMCID: PMC9943549 DOI: 10.1503/jpn.220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Converging evidence suggests that stress alters behavioural responses in a sex-specific manner; however, the underlying molecular mechanisms of stress remain largely unknown. METHODS We adapted unpredictable maternal separation (UMS) and adult restraint stress (RS) paradigms to mimic stress in rats in early life or adulthood, respectively. The sexual dimorphism of the prefrontal cortex was noted, and we performed RNA sequencing (RNA-Seq) to identify specific genes or pathways responsible for sexually dimorphic responses to stress. We then performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) to verify the results of RNA-Seq. RESULTS Female rats exposed to either UMS or RS showed no negative effects on anxiety-like behaviours, whereas the emotional functions of the PFC were impaired markedly in stressed male rats. Leveraging differentially expressed genes (DEG) analyses, we identified sex-specific transcriptional profiles associated with stress. There were many overlapping DEGs between UMS and RS transcriptional data sets, where 1406 DEGs were associated with both biological sex and stress, while only 117 DEGs were related to stress. Notably, Uba52 and Rpl34-ps1 were the first-ranked hub gene in 1406 and 117 DEGs respectively, and Uba52 was higher than Rp134-ps1, suggesting that stress may have led to a more pronounced effect on the set of 1406 DEGs. Pathway analysis revealed that 1406 DEGs were primarily enriched in ribosomal pathway. These results were confirmed by qRT-PCR. LIMITATIONS Sex-specific transcriptional profiles associated with stress were identified in this study, but more in-depth experiments, such as single-cell sequencing and manipulation of male and female gene networks in vivo, are needed to verify our findings. CONCLUSION Our findings show sex-specific behavioural responses to stress and highlight sexual dimorphism at the transcriptional level, shedding light on developing sex-specific therapeutic strategies for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| | - Dong-Dong Shi
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| | - Sen Zhang
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| | - Zhen Wang
- From the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Y.-D. Zhang, Shi, S. Zhang, Wang); the Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Shi, S. Zhang, Wang); and the Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China (Wang)
| |
Collapse
|
45
|
Meccia J, Lopez J, Bagot RC. Probing the antidepressant potential of psilocybin: integrating insight from human research and animal models towards an understanding of neural circuit mechanisms. Psychopharmacology (Berl) 2023; 240:27-40. [PMID: 36564671 DOI: 10.1007/s00213-022-06297-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Interest in the therapeutic potential of serotonergic psychedelic compounds including psilocybin has surged in recent years. While human clinical research suggests psilocybin holds promise as a rapid and long-lasting antidepressant, little is known about how its acute mechanisms of action mediate enduring alterations in cognition and behavior. Human neuroimaging studies point to both acute and sustained modulation of functional connectivity in key cortically dependent brain networks. Emerging evidence in preclinical models highlights the importance of psilocybin-induced neuroplasticity and alterations in the prefrontal cortex (PFC). Overviewing research in both humans and preclinical models suggests avenues to increase crosstalk between fields. We review how acute modulation of PFC circuits may contribute to long-term structural and functional alterations to mediate antidepressant effects. We highlight the potential for preclinical circuit and behavioral neuroscience approaches to provide basic mechanistic insight into how psilocybin modulates cognitive and affective neural circuits to support further development of psilocybin as a promising new treatment for depression.
Collapse
Affiliation(s)
- Juliet Meccia
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada
| | - Joëlle Lopez
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada. .,Ludmer Centre for Neuroinformatics and Mental Health, Montréal, QC, Canada.
| |
Collapse
|
46
|
Cambiaghi M, Infortuna C, Gualano F, Elsamadisi A, Malik W, Buffelli M, Han Z, Solhkhah R, P. Thomas F, Battaglia F. High-frequency rTMS modulates emotional behaviors and structural plasticity in layers II/III and V of the mPFC. Front Cell Neurosci 2022; 16:1082211. [PMID: 36582213 PMCID: PMC9792489 DOI: 10.3389/fncel.2022.1082211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique, and it has been increasingly used as a nonpharmacological intervention for the treatment of various neurological and neuropsychiatric diseases, including depression. In humans, rTMS over the prefrontal cortex is used to induce modulation of the neural circuitry that regulates emotions, cognition, and depressive symptoms. However, the underlying mechanisms are still unknown. In this study, we investigated the effects of a short (5-day) treatment with high-frequency (HF) rTMS (15 Hz) on emotional behavior and prefrontal cortex morphological plasticity in mice. Mice that had undergone HF-rTMS showed an anti-depressant-like activity as evidenced by decreased immobility time in both the Tail Suspension Test and the Forced Swim Test along with increased spine density in both layer II/III and layer V apical and basal dendrites. Furthermore, dendritic complexity assessed by Sholl analysis revealed increased arborization in the apical portions of both layers, but no modifications in the basal dendrites branching. Overall, these results indicate that the antidepressant-like activity of HF-rTMS is paralleled by structural remodeling in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carmenrita Infortuna
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Francesca Gualano
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Amir Elsamadisi
- Department of Psychiatry, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Wasib Malik
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Mario Buffelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Zhiyong Han
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Ramon Solhkhah
- Department of Psychiatry, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Florian P. Thomas
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, United States,Department of Neurology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Fortunato Battaglia
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States,Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, United States,*Correspondence: Fortunato Battaglia
| |
Collapse
|
47
|
Cholecystokinin (CCK) and its receptors (CCK1R and CCK2R) in chickens: functional analysis and tissue expression. Poult Sci 2022; 102:102273. [PMID: 36436379 PMCID: PMC9706633 DOI: 10.1016/j.psj.2022.102273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Cholecystokinin (CCK) is widely distributed in the gastrointestinal tract and central nervous system, regulating a range of physiological functions by activating its receptors (CCK1R and CCK2R). Compared to those in mammals, the CCK gene and its receptors have already been cloned in various birds, such as chickens. However, knowledge regarding their functionality and tissue expression is limited. In this study, we examined the expression of CCK and its 2 receptors in chicken tissues. In addition, the functionality of the 2 receptors was investigated. Using 3 cell-based luciferase reporter systems and western blots, we demonstrated that chicken (c-) CCK1R could be potently activated by cCCK-8S but not cCCK-4, whereas cCCK2R could be activated by cCCK-8S and cCCK-4 with similar efficiency. Using RNA-sequencing, we revealed that cCCK is abundantly expressed in the testis, ileum, and several brain regions (cerebrum, midbrain, cerebellum, hindbrain, and hypothalamus). The abundant expression of CCK in the hypothalamus was further supported by immunofluorescence. In addition, cCCK1R is highly expressed in the pancreas and moderately expressed in various intestinal regions (ileum, cecum, and rectum) and the pituitary gland, whereas cCCK2R expression is primarily restricted to the brain. Our data reveal the differential specificities of CCK receptors for various CCK peptides. In combination with the differential tissue distribution of CCK and its receptors, the present study helps to understanding the physiological functions of CCK/CCKRs in birds.
Collapse
|
48
|
Bush BJ, Donnay C, Andrews EJA, Lewis-Sanders D, Gray CL, Qiao Z, Brager AJ, Johnson H, Brewer HCS, Sood S, Saafir T, Benveniste M, Paul KN, Ehlen JC. Non-rapid eye movement sleep determines resilience to social stress. eLife 2022; 11:e80206. [PMID: 36149059 PMCID: PMC9586557 DOI: 10.7554/elife.80206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.
Collapse
Affiliation(s)
- Brittany J Bush
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Caroline Donnay
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | | | | | - Cloe L Gray
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Zhimei Qiao
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Allison J Brager
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Hadiya Johnson
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Hamadi CS Brewer
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Sahil Sood
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Morris Benveniste
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | | |
Collapse
|
49
|
Babiczky Á, Matyas F. Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system. eLife 2022; 11:78813. [PMID: 36063145 PMCID: PMC9444245 DOI: 10.7554/elife.78813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortical influence over the mesolimbic system - including the nucleus accumbens (NAc) and the ventral tegmental area (VTA) - is implicated in various cognitive processes and behavioral malfunctions. The functional versatility of this system could be explained by an underlying anatomical complexity; however, the detailed characterization of the medial prefrontal cortical (mPFC) innervation of the NAc and VTA is still lacking. Therefore, combining classical retrograde and conditional viral tracing techniques with multiple fluorescent immunohistochemistry, we sought to deliver a precise, cell- and layer-specific anatomical description of the cortico-mesolimbic pathways in mice. We demonstrated that NAc- (mPFCNAc) and VTA-projecting mPFC (mPFCVTA) populations show different laminar distribution (layers 2/3-5a and 5b-6, respectively) and express different molecular markers. Specifically, calbindin and Ntsr1 are specific to mPFCNAc neurons, while mPFCVTA neurons express high levels of Ctip2 and FoxP2, indicating that these populations are mostly separated at the cellular level. We directly tested this with double retrograde tracing and Canine adenovirus type 2-mediated viral labeling and found that there is indeed minimal overlap between the two populations. Furthermore, whole-brain analysis revealed that the projection pattern of these populations is also different throughout the brain. Taken together, we demonstrated that the NAc and the VTA are innervated by two, mostly nonoverlapping mPFC populations with different laminar distribution and molecular profile. These results can contribute to the advancement in our understanding of mesocorticolimbic functions and its disorders in future studies.
Collapse
Affiliation(s)
- Ákos Babiczky
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Doctoral School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Matyas
- Research Centre for Natural Sciences, Budapest, Hungary.,Institute of Experimental Medicine, Budapest, Hungary.,Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
50
|
Bhattarai JP, Etyemez S, Jaaro-Peled H, Janke E, Leon Tolosa UD, Kamiya A, Gottfried JA, Sawa A, Ma M. Olfactory modulation of the medial prefrontal cortex circuitry: Implications for social cognition. Semin Cell Dev Biol 2022; 129:31-39. [PMID: 33975755 PMCID: PMC8573060 DOI: 10.1016/j.semcdb.2021.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Semra Etyemez
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Usuy D Leon Tolosa
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atsushi Kamiya
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Neuroscience, Biomedical Engineering, and Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|