1
|
Gauthier M, Hebert LP, Dugast E, Lardeux V, Letort K, Thiriet N, Belnoue L, Balado E, Solinas M, Belujon P. Sex-dependent effects of stress on aIC-NAc circuit neuroplasticity: Role of the endocannabinoid system. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111335. [PMID: 40113129 DOI: 10.1016/j.pnpbp.2025.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Stress is a major risk factor for psychiatric disorders and affects neuroplasticity in brain areas like the nucleus accumbens core (NAcC) and the insular cortex (IC). This study examined neuroplasticity changes in the aIC-NAcC circuit after restraint stress in male and female rats, and explored the role of the endocannabinoid system. Male and female rats underwent 2 h of acute restraint stress. Behavioral tests and in vivo electrophysiological recordings were performed immediately and 24 h after stress exposure. cFos was performed immediately after stress. Since stress effects were observed only in males, we evaluated the systemic and intra-NAc blockade of CB1 receptors in male rats. We found increased c-Fos expression in the hypothalamus but not in the IC in both sexes after acute restraint stress, along with heightened anxiety and reduced exploratory behavior. Males and females exhibited different neuronal plasticity in the aIC-NAcC pathway. Under basal conditions, males showed equal proportions of long-term potentiation (LTP) and long-term depression (LTD), whereas females predominantly exhibited LTP. Stress disrupted synaptic plasticity in males by eliminating LTD in the aIC-NAcC pathway 24 h after exposure. This effect was reversed by systemic and local CB1 receptor blockade. These findings suggest that integration of aIC information into NAcC differs by sex, with stress-induced neuroplasticity changes occurring only in males, dependent on the endocannabinoid system. This study provides insight into sex differences in stress reactivity, which may relate to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Manon Gauthier
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Léo-Paul Hebert
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Kevin Letort
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Laure Belnoue
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Eric Balado
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
2
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture enables chronic stress to disrupt agency and promote habit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560731. [PMID: 37873076 PMCID: PMC10592885 DOI: 10.1101/2023.10.03.560731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the basolateral amygdala projection to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the central amygdala projection to the dorsomedial striatum mediates habit formation. Following stress this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | | | - Anna Wiener
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | | | | | - Abigail L Yu
- Dept. of Physiology, UCLA, Los Angeles, CA 90095
| | - Kayla Lim
- Dept. of Biological Chemistry, UCLA, Los Angeles, CA 90095
| | | | | | - Gift Nnamdi
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alicia Wang
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Megha Sehgal
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | - Ana C Sias
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alcino J Silva
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kate M Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Proaño SB, Miller CK, Krentzel AA, Dorris DM, Meitzen J. Sex steroid hormones, the estrous cycle, and rapid modulation of glutamatergic synapse properties in the striatal brain regions with a focus on 17β-estradiol and the nucleus accumbens. Steroids 2024; 201:109344. [PMID: 37979822 PMCID: PMC10842710 DOI: 10.1016/j.steroids.2023.109344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17β-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.
Collapse
Affiliation(s)
- Stephanie B Proaño
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christiana K Miller
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda A Krentzel
- Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
McDonald RJ, Hong NS, Germaine C, Kolb B. Peripherally-administered amphetamine induces plasticity in medial prefrontal cortex and nucleus accumbens in rats with amygdala lesions: implications for neural models of memory modulation. Front Behav Neurosci 2023; 17:1187976. [PMID: 37358968 PMCID: PMC10285066 DOI: 10.3389/fnbeh.2023.1187976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
The amygdala has been implicated in a variety of functions linked to emotions. One popular view is that the amygdala modulates consolidation in other brain systems thought to be mainly involved in learning and memory processes. This series of experiments represents a further exploration into the role of the amygdala in memory modulation and consolidation. One interesting line of research has shown that drugs of abuse, like amphetamine, produce dendritic changes in select brain regions and these changes are thought to be equivalent to a usurping of normal plasticity processes. We were interested in the possibility that this modulation of plasticity processes would be dependent on interactions with the amygdala. According to the modulation view of amygdala function, amphetamine would activate modulation mechanisms in the amygdala that would alter plasticity processes in other brain regions. If the amygdala was rendered dysfunctional, these effects should not occur. Accordingly, this series of experiments evaluated the effects of extensive neurotoxic amygdala damage on amphetamine-induced dendritic changes in the nucleus accumbens and prefrontal cortex. The results showed that rats with large lesions of the amygdala showed the normal pattern of dendritic changes in these brain regions. This pattern of results suggests that the action of not all memory modulators, activated during emotional events, require the amygdala to impact memory.
Collapse
|
5
|
Rampon M, Carponcy J, Missaire M, Bouet R, Parmentier R, Comte JC, Malleret G, Salin PA. Synapse-Specific Modulation of Synaptic Responses by Brain States in Hippocampal Pathways. J Neurosci 2023; 43:1191-1210. [PMID: 36631268 PMCID: PMC9962785 DOI: 10.1523/jneurosci.0772-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Synaptic changes play a major role in memory processes. Modulation of synaptic responses by brain states remains, however, poorly understood in hippocampal networks, even in basal conditions. We recorded evoked synaptic responses at five hippocampal pathways in freely moving male rats. We showed that, at the perforant path to dentate gyrus (PP-DG) synapse, responses increase during wakefulness compared with sleep. At the Schaffer collaterals to CA1 (SC-CA1) synapse, responses increase during non-REM sleep (NREM) compared with the other states. During REM sleep (REM), responses decreased at the PP-DG and SC-CA1 synapses compared with NREM, while they increased at the fornix to nucleus accumbens synapse (Fx-NAc) during REM compared with the other states. In contrast, responses at the fornix to medial PFC synapse (Fx-PFC) and at the fornix to amygdala synapse (Fx-Amy) were weakly modulated by vigilance states. Extended sleep periods led to synaptic changes at PP-DG and Fx-Amy synapses but not at the other synapses. Synaptic responses were also linked to local oscillations and were highly correlated between Fx-PFC and Fx-NAc but not between Fx-Amy and these synapses. These results reveal synapse-specific modulations that may contribute to memory consolidation during the sleep-wake cycle.SIGNIFICANCE STATEMENT Surprisingly, the cortical network dynamics remains poorly known at the synaptic level. We tested the hypothesis that brain states would modulate synaptic changes in the same way at different cortical connections. To tackle this issue, we implemented an approach to explore the synaptic behavior of five connections upstream and downstream the rat hippocampus. Our study reveals that synaptic responses are modulated in a highly synapse-specific manner by wakefulness and sleep states as well as by local oscillations at these connections. Moreover, we found rapid synaptic changes during wake and sleep transitions as well as synaptic down and upregulations after extended periods of sleep. These synaptic changes are likely related to the mechanisms of sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Manon Rampon
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Julien Carponcy
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, United Kingdom
| | - Mégane Missaire
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Romain Bouet
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Regis Parmentier
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Jean-Christophe Comte
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Gael Malleret
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| | - Paul A Salin
- Forgetting processes and cortical dynamics' team, Centre de Recherche en Neurosciences de Lyon, University Claude Bernard Lyon 1, Bron, F-69500, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, Bron, F-69500, France
| |
Collapse
|
6
|
Lind EB, Sweis BM, Asp AJ, Esguerra M, Silvis KA, David Redish A, Thomas MJ. A quadruple dissociation of reward-related behaviour in mice across excitatory inputs to the nucleus accumbens shell. Commun Biol 2023; 6:119. [PMID: 36717646 PMCID: PMC9886947 DOI: 10.1038/s42003-023-04429-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
The nucleus accumbens shell (NAcSh) is critically important for reward valuations, yet it remains unclear how valuation information is integrated in this region to drive behaviour during reinforcement learning. Using an optogenetic spatial self-stimulation task in mice, here we show that contingent activation of different excitatory inputs to the NAcSh change expression of different reward-related behaviours. Our data indicate that medial prefrontal inputs support place preference via repeated actions, ventral hippocampal inputs consistently promote place preferences, basolateral amygdala inputs produce modest place preferences but as a byproduct of increased sensitivity to time investments, and paraventricular inputs reduce place preferences yet do not produce full avoidance behaviour. These findings suggest that each excitatory input provides distinct information to the NAcSh, and we propose that this reflects the reinforcement of different credit assignment functions. Our finding of a quadruple dissociation of NAcSh input-specific behaviours provides insights into how types of information carried by distinct inputs to the NAcSh could be integrated to help drive reinforcement learning and situationally appropriate behavioural responses.
Collapse
Affiliation(s)
- Erin B Lind
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Brian M Sweis
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Anders J Asp
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Manuel Esguerra
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Keelia A Silvis
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Chen Y, Liu J, Yao Y, Yan H, Su R. Rearing behaviour in the mouse behavioural pattern monitor distinguishes the effects of psychedelics from those of lisuride and TBG. Front Pharmacol 2023; 14:1021729. [PMID: 36874002 PMCID: PMC9978355 DOI: 10.3389/fphar.2023.1021729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Psychedelics alter consciousness and may have potential for drug development. As psychedelics are likely therapeutically active, it is important to study their effects and mechanisms using preclinical models. Here, we examined the effects of phenylalkylamine and indoleamine psychedelics on locomotor activity and exploratory behaviour using the mouse Behavioural Pattern Monitor (BPM). DOM, mescaline, and psilocin reduced locomotor activity at high doses and influenced rearings, an exploratory behaviour, in a characteristic inverted U-shaped dose-response function. Pretreatment with the selective 5-HT2A antagonist M100907 reversed the drug-induced alterations in locomotor activity, rearings, and jumps after systemic administration of DOM at low doses. However, holepoking at the full range of doses tested was not blocked by M100907. Administration of the hallucinogenic 5-HT2A agonist 25CN-NBOH induced striking similarities in response to that to psychedelics; these alterations were significantly diminished by M100907, whereas the putatively non-hallucinogenic 5-HT2A agonist TBG did not affect locomotor activity, rearings, or jumps at the most effective doses. The nonhallucinogenic 5-HT2A agonist lisuride failed to increase rearing. The results of these experiments provide strong evidence that DOM-elicited increases in rearing are due to mediation by the 5-HT2A receptor. Finally, discriminant analysis was able to distinguish all four psychedelics from lisuride and TBG based on behavioural performance alone. Thus, increased rearing in mice could provide additional evidence of behavioural differences between hallucinogenic and nonhallucinogenic 5-HT2A agonists.
Collapse
Affiliation(s)
- Yahong Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junhong Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
Yu J, Sesack SR, Huang Y, Schlüter OM, Grace AA, Dong Y. Contingent Amygdala Inputs Trigger Heterosynaptic LTP at Hippocampus-To-Accumbens Synapses. J Neurosci 2022; 42:6581-6592. [PMID: 35840324 PMCID: PMC9410749 DOI: 10.1523/jneurosci.0838-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
The nucleus accumbens shell (NAcSh) is a key brain region where environmental cues acquire incentive salience to reinforce motivated behaviors. Principal medium spiny neurons (MSNs) in the NAcSh receive extensive glutamatergic projections from limbic regions, among which, the ventral hippocampus (vH) transmits information enriched in contextual cues, and the basolateral amygdala (BLA) encodes real-time arousing states. The vH and BLA project convergently to NAcSh MSNs, both activated in a time-locked manner on a cue-conditioned motivational action. In brain slices prepared from male and female mice, we show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAcSh synapses without affecting BLA-to-NAcSh synapses, revealing a heterosynaptic mechanism through which BLA signals persistently increase the temporally contingent vH-to-NAcSh transmission. Furthermore, this LTP is more prominent in dopamine D1 receptor-expressing (D1) MSNs than D2 MSNs and can be prevented by inhibition of either D1 receptors or dopaminergic terminals in NAcSh. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.SIGNIFICANCE STATEMENT In motivated behaviors, environmental cues associated with arousing stimuli acquire increased incentive salience, processes mediated in part by the nucleus accumbens (NAc). NAc principal neurons receive glutamatergic projections from the ventral hippocampus (vH) and basolateral amygdala (BLA), which transmit information encoding contextual cues and affective states, respectively. Our results show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAc synapses without affecting BLA-to-NAc synapses, revealing a heterosynaptic mechanism through which BLA signals potentiate the temporally contingent vH-to-NAc transmission. Furthermore, this LTP is prevented by inhibition of either D1 receptors or dopaminergic axons. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.
Collapse
Affiliation(s)
- Jun Yu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Susan R Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Yanhua Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
9
|
Krentzel AA, Proaño SB, Dorris DM, Setzer B, Meitzen J. The estrous cycle and 17β-estradiol modulate the electrophysiological properties of rat nucleus accumbens core medium spiny neurons. J Neuroendocrinol 2022; 34:e13122. [PMID: 35365910 PMCID: PMC9250601 DOI: 10.1111/jne.13122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022]
Abstract
The nucleus accumbens core is a key nexus within the mammalian brain for integrating the premotor and limbic systems and regulating important cognitive functions such as motivated behaviors. Nucleus accumbens core functions show sex differences and are sensitive to the presence of hormones such as 17β-estradiol (estradiol) in normal and pathological contexts. The primary neuron type of the nucleus accumbens core, the medium spiny neuron (MSN), exhibits sex differences in both intrinsic excitability and glutamatergic excitatory synapse electrophysiological properties. Here, we provide a review of recent literature showing how estradiol modulates rat nucleus accumbens core MSN electrophysiology within the context of the estrous cycle. We review the changes in MSN electrophysiological properties across the estrous cycle and how these changes can be mimicked in response to exogenous estradiol exposure. We discuss in detail recent findings regarding how acute estradiol exposure rapidly modulates excitatory synapse properties in nucleus accumbens core but not caudate-putamen MSNs, which mirror the natural changes seen across estrous cycle phases. These recent insights demonstrate the strong impact of sex-specific estradiol action upon nucleus accumbens core neuron electrophysiology.
Collapse
Affiliation(s)
- Amanda A. Krentzel
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Stephanie B. Proaño
- Neurobiology LaboratoryNational Institute of Environmental Health Sciences, NIHResearch Triangle ParkNCUSA
| | - David M. Dorris
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Beverly Setzer
- Graduate Program for Neuroscience and Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | - John Meitzen
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNCUSA
- Center for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
10
|
Ruiz-López CX, Medina AC, Bello-Medina PC, Quirarte GL, Prado-Alcalá RA. Recruitment of neurons in basolateral amygdala after intense training produces a stronger memory trace. Neurobiol Learn Mem 2021; 181:107428. [PMID: 33798697 DOI: 10.1016/j.nlm.2021.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Typical amnestic treatments are ineffective when administered to subjects trained in aversively-motivated tasks using relatively high foot-shock intensities. This effect has been found when treatments that disrupt neuronal activity are administered to different regions of the brain, including the amygdala. However, the molecular mechanisms induced by this intense training are unknown. We made a detailed mapping of c-Fos-expressing neurons in four regions of the amygdala after moderate and intense one-trial inhibitory avoidance training. Rats were sacrificed 90 min after training or after appropriate control procedures, and their brains were prepared for immunohistochemical c-Fos protein detection in the central, lateral, and in the anterior and posterior parts of the basolateral amygdaloid nucleus. We found a high percentage of neurons expressing c-Fos in the anterior part of the basolateral nucleus after moderate training, and this percentage increased further after intense training. Moderate and intense training did not induce changes in c-Fos expression in the other explored amygdaloid regions. These results show that inhibitory avoidance training produces a localized expression of c-Fos in the basolateral anterior nucleus of the amygdala, which is dependent upon the intensity of training, and indicate that synaptic plastic changes in this region may be required for the formation of memory of moderate and intense aversive learning.
Collapse
Affiliation(s)
- C X Ruiz-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - A C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico; División de Ciencias de Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México 52005, Mexico
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| |
Collapse
|
11
|
Clark M. Effects of Electrical Stimulation of NAc Afferents on VP Neurons' Tonic Firing. Front Cell Neurosci 2020; 14:599920. [PMID: 33328895 PMCID: PMC7719775 DOI: 10.3389/fncel.2020.599920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Afferents from the nucleus accumbens (NAc) are a major source of input into the ventral pallidum (VP). Research reveals that these afferents are GABAergic, however, stimulation of these afferents induces both excitatory and inhibitory responses within the VP. These are likely to be partially mediated by enkephalin and substance P (SP), which are also released by these afferents, and are known to modulate VP neurons. However, less is known about the potentially differential effects stimulation of these afferents has on subpopulations of neurons within the VP and the cellular mechanisms by which they exert their effects. The current study aimed to research this further using brain slices containing the VP, stimulation of the NAc afferents, and multi-electrode array (MEA) recordings of their VP targets. Stimulation of the NAc afferents induced a pause in the tonic firing in 58% of the neurons studied in the VP, while 42% were not affected. Measures used to reveal the electrophysiological difference between these groups found no significant differences in firing frequency, coefficient of variation, and spike half-width. There were however significant differences in the pause duration between neurons in the dorsal and ventral VP, with stimulation of NAc afferents producing a significantly longer pause (0.48 ± 0.06 s) in tonic firing in dorsal VP neurons, compared to neurons in the ventral VP (0.21 ± 0.09 s). Pauses in the tonic firing of VP neurons, as a result of NAc afferent stimulation, were found to be largely mediated by GABAA receptors, as the application of picrotoxin significantly reduced their duration. Opioid agonists and antagonists were found to have no significant effects on the pause in tonic activity induced by NAc afferent stimulation. However, NK-1 receptor antagonists caused significant decreases in the pause duration, suggesting that SP may contribute to the inhibitory effect of NAc afferent stimulation via activation of NK-1 receptors.
Collapse
Affiliation(s)
- Martin Clark
- Department of Psychology, The University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
12
|
Pardo-García TR, Yusif-Rodriguez N, Yudowski G, Maldonado-Vlaar CS. Blockade of the endovanilloid receptor, TRPV1, and of the endocannabinoid enzyme, FAAH, within the nucleus accumbens shell elicits anxiolytic-like effects in male rats. Neurosci Lett 2020; 732:135023. [PMID: 32422166 DOI: 10.1016/j.neulet.2020.135023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
Abstract
RATIONALE The functional role of the endocannabinoid system (ECS) and Transient Receptor Potential Vanilloid type-1 (TRPV1) within the Nucleus Accumbens shell (NAc shell) remains unknown. Preclinical studies in rodents have reported that the ECS modulates emotional responses such as anxiety. The NAc shell has a high density of synaptically co-localized cannabinoid receptor type-1 (CB1R) and TRPV1, suggesting a potential involvement in the modulation of anxiety. OBJECTIVES The present study aims to establish the role of ECS-TRPV1 interactions within the NAc shell and its effects on anxiety. It is hypothesized that the neurochemical regulation elicited by ECS within the NAc shell mediates anxiety-like behaviors in rodents. METHODS In this study, male Sprague Dawley rats were implanted with bilateral brain cannula targeting the NAc shell. Following recovery from surgery, animals received microinfusion pretreatments (0, 0.125, 0.5 nmol/0.4 μl) of N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH) and a TRPV1 antagonist in the NAc shell. Following treatment, animals were tested in an elevated plus maze (EPM) paradigm for a period of 5 minutes. At the end of the experiment, animals were sacrificed and their brains collected for histological and biochemical analysis. RESULTS Results showed that animals treated with AA-5-HT in a dose dependent manner spent significantly more time in the open arms than vehicle-treated animals. In addition, AA-5-HT administration induced a significant downregulation of CB1R expression in the NAc shell. CONCLUSIONS The present findings suggest that the ECS within the NAc shell modulates anxiety-like behaviors via FAAH and CB1R activity.
Collapse
Affiliation(s)
- Thibaut R Pardo-García
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Nadira Yusif-Rodriguez
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Guillermo Yudowski
- University of Puerto Rico-Medical School, Institute of Neurobiology, San Juan, 00936, Puerto Rico
| | - Carmen S Maldonado-Vlaar
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| |
Collapse
|
13
|
Silkis IG. The Possible Mechanism of the Appearance of Nightmares in Post-Traumatic Stress Disorder and Approaches to Their Prevention. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Ferbinteanu J. Memory systems 2018 - Towards a new paradigm. Neurobiol Learn Mem 2019; 157:61-78. [PMID: 30439565 PMCID: PMC6389412 DOI: 10.1016/j.nlm.2018.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/29/2018] [Accepted: 11/10/2018] [Indexed: 12/26/2022]
Abstract
The multiple memory systems theory (MMS) postulates that the brain stores information based on the independent and parallel activity of a number of modules, each with distinct properties, dynamics, and neural basis. Much of the evidence for this theory comes from dissociation studies indicating that damage to restricted brain areas cause selective types of memory deficits. MMS has been the prevalent paradigm in memory research for more than thirty years, even as it has been adjusted several times to accommodate new data. However, recent empirical results indicating that the memory systems are not always dissociable constitute a challenge to fundamental tenets of the current theory because they suggest that representations formed by individual memory systems can contribute to more than one type of memory-driven behavioral strategy. This problem can be addressed by applying a dynamic network perspective to memory architecture. According to this view, memory networks can reconfigure or transiently couple in response to environmental demands. Within this context, the neural network underlying a specific memory system can act as an independent unit or as an integrated component of a higher order meta-network. This dynamic network model proposes a way in which empirical evidence that challenges the idea of distinct memory systems can be incorporated within a modular memory architecture. The model also provides a framework to account for the complex interactions among memory systems demonstrated at the behavioral level. Advances in the study of dynamic networks can generate new ideas to experimentally manipulate and control memory in basic or clinical research.
Collapse
Affiliation(s)
- J Ferbinteanu
- Dept. of Physiology and Pharmacology, Dept. of Neurology, SUNY Downstate Medical Center, 450 Clarkson Ave, Box 31, Brooklyn, NY 11203, USA.
| |
Collapse
|
15
|
Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav 2018; 104:130-137. [PMID: 29505763 PMCID: PMC6131090 DOI: 10.1016/j.yhbeh.2018.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Brian P Head
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Tonn Eisinger KR, Larson EB, Boulware MI, Thomas MJ, Mermelstein PG. Membrane estrogen receptor signaling impacts the reward circuitry of the female brain to influence motivated behaviors. Steroids 2018; 133:53-59. [PMID: 29195840 PMCID: PMC5864533 DOI: 10.1016/j.steroids.2017.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
Within the adult female, estrogen signaling is well-described as an integral component of the physiologically significant hypothalamic-pituitary-gonadal axis. In rodents, the timing of ovulation is intrinsically entwined with the display of sexual receptivity. For decades, the importance of estradiol activating intracellular estrogen receptors within the hypothalamus and midbrain/spinal cord lordosis circuits has been appreciated. These signaling pathways primarily account for the ability of the female to reproduce. Yet, often overlooked is that the desire to reproduce is also tightly regulated by estrogen receptor signaling. This lack of emphasis can be attributed to an absence of nuclear estrogen receptors in brain regions associated with reward, such as the nucleus accumbens, which are associated with motivated behaviors. This review outlines how membrane-localized estrogen receptors affect metabotropic glutamate receptor signaling within the rodent nucleus accumbens. In addition, we discuss how, as estrogens drive increased motivation for reproduction, they also produce the untoward side effect of heightening female vulnerability to drug addiction.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin B Larson
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marissa I Boulware
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark J Thomas
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Khokhar JY, Dwiel L, Henricks A, Doucette WT, Green AI. The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophr Res 2018; 194:78-85. [PMID: 28416205 PMCID: PMC6094954 DOI: 10.1016/j.schres.2017.04.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Substance use disorders occur commonly in patients with schizophrenia and dramatically worsen their overall clinical course. While the exact mechanisms contributing to substance use in schizophrenia are not known, a number of theories have been put forward to explain the basis of the co-occurrence of these disorders. We propose here a unifying hypothesis that combines recent evidence from epidemiological and genetic association studies with brain imaging and pre-clinical studies to provide an updated formulation regarding the basis of substance use in patients with schizophrenia. We suggest that the genetic determinants of risk for schizophrenia (especially within neural systems that contribute to the risk for both psychosis and addiction) make patients vulnerable to substance use. Since this vulnerability may arise prior to the appearance of psychotic symptoms, an increased use of substances in adolescence may both enhance the risk for developing a later substance use disorder, and also serve as an additional risk factor for the appearance of psychotic symptoms. Future studies that assess brain circuitry in a prospective longitudinal manner during adolescence prior to the appearance of psychotic symptoms could shed further light on the mechanistic underpinnings of these co-occurring disorders while identifying potential points of intervention for these difficult-to-treat co-occurring disorders.
Collapse
Affiliation(s)
| | - Lucas Dwiel
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | - Angela Henricks
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | | | - Alan I. Green
- Department of Psychiatry, Geisel School of Medicine at Dartmouth,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth,Dartmouth Clinical and Translational Science Institute, Dartmouth College
| |
Collapse
|
18
|
Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry 2017; 7:e1194. [PMID: 28786979 PMCID: PMC5611728 DOI: 10.1038/tp.2017.161] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/16/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.
Collapse
Affiliation(s)
- B M Sharp
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
19
|
Brancato A, Bregman D, Ahn HF, Pfau ML, Menard C, Cannizzaro C, Russo SJ, Hodes GE. Sub-chronic variable stress induces sex-specific effects on glutamatergic synapses in the nucleus accumbens. Neuroscience 2017; 350:180-189. [PMID: 28323008 DOI: 10.1016/j.neuroscience.2017.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Men and women manifest different symptoms of depression and under current diagnostic criteria, depression is twice as prevalent in woman. However, little is known of the mechanisms contributing to these important sex differences. Sub-chronic variable stress (SCVS), a rodent model of depression, induces depression-like behaviors in female mice only, modeling clinical evidence of higher susceptibility to mood disorders in women. Accumulating evidence indicates that altered neuroplasticity of excitatory synapses in the nucleus accumbens (NAc) is a key pathophysiological feature of susceptibility to social stress in males. Here we investigated the effects of SCVS on pre- and post-synaptic protein levels and morphology of glutamatergic synapses of medium spiny neurons (MSNs) in the NAc of female and male mice. Animals underwent six-day exposure to alternating stressors including shock, tail suspension and restraint. MSNs from the NAc were filled with a Lucifer yellow dye and spine density and type were examined using NeuronStudio. In a separate group of animals, immunofluorescence staining was performed for vesicular glutamate transporter 1 (VGLUT1) and vesicular glutamate transporter 2 (VGLUT2), in order to label cortical and subcortical glutamatergic terminals. Immunostaining for post-synaptic density 95 (PSD95) was employed to evaluate post-synaptic density. Females demonstrated circuit-specific pre-synaptic alterations in VGLUT1 and VGLUT2 containing synapses that may contribute to stress susceptibility in the absence of post-synaptic alterations in PSD95 puncta, spine density or type. These data indicate that susceptibility to stress in females is associated with changes in the frequency of distinct glutamatergic inputs to the NAc.
Collapse
Affiliation(s)
- Anna Brancato
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Palermo 90127, Italy
| | - Dana Bregman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - H Francisica Ahn
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Madeline L Pfau
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Caroline Menard
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, Palermo 90127, Italy
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Georgia E Hodes
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Department of Neuroscience, Virgina Polytechnic Institute and State University, Blacksburg, VA 20460, USA.
| |
Collapse
|
20
|
Cao J, Dorris DM, Meitzen J. Neonatal Masculinization Blocks Increased Excitatory Synaptic Input in Female Rat Nucleus Accumbens Core. Endocrinology 2016; 157:3181-96. [PMID: 27285859 PMCID: PMC4967116 DOI: 10.1210/en.2016-1160] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/04/2016] [Indexed: 01/18/2023]
Abstract
Steroid sex hormones and genetic sex regulate the phenotypes of motivated behaviors and relevant disorders. Most studies seeking to elucidate the underlying neuroendocrine mechanisms have focused on how 17β-estradiol modulates the role of dopamine in striatal brain regions, which express membrane-associated estrogen receptors. Dopamine action is an important component of striatal function, but excitatory synaptic neurotransmission has also emerged as a key striatal substrate and target of estradiol action. Here, we focus on excitatory synaptic input onto medium spiny neurons (MSNs) in the striatal region nucleus accumbens core (AcbC). In adult AcbC, miniature excitatory postsynaptic current (mEPSC) frequency is increased in female compared with male MSNs. We tested whether increased mEPSC frequency in female MSNs exists before puberty, whether this increased excitability is due to the absence of estradiol or testosterone during the early developmental critical period, and whether it is accompanied by stable neuron intrinsic membrane properties. We found that mEPSC frequency is increased in female compared with male MSNs before puberty. Increased mEPSC frequency in female MSNs is abolished after neonatal estradiol or testosterone exposure. MSN intrinsic membrane properties did not differ by sex. These data indicate that neonatal masculinization via estradiol and/or testosterone action is sufficient for down-regulating excitatory synaptic input onto MSNs. We conclude that excitatory synaptic input onto AcbC MSNs is organized long before adulthood via steroid sex hormone action, providing new insight into a mechanism by which sex differences in motivated behavior and other AbcC functions may be generated or compromised.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences (J.C., D.M.D., J.M.), North Carolina State University, Raleigh, North Carolina 27695; W.M. Keck Center for Behavioral Biology (J.C., J.M.), North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment (J.M.), North Carolina State University, Raleigh, North Carolina 27695; and Comparative Medicine Institute (J.M.), North Carolina State University, Raleigh, North Carolina 27695
| | - David M Dorris
- Department of Biological Sciences (J.C., D.M.D., J.M.), North Carolina State University, Raleigh, North Carolina 27695; W.M. Keck Center for Behavioral Biology (J.C., J.M.), North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment (J.M.), North Carolina State University, Raleigh, North Carolina 27695; and Comparative Medicine Institute (J.M.), North Carolina State University, Raleigh, North Carolina 27695
| | - John Meitzen
- Department of Biological Sciences (J.C., D.M.D., J.M.), North Carolina State University, Raleigh, North Carolina 27695; W.M. Keck Center for Behavioral Biology (J.C., J.M.), North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment (J.M.), North Carolina State University, Raleigh, North Carolina 27695; and Comparative Medicine Institute (J.M.), North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
21
|
Bossert JM, Adhikary S, St Laurent R, Marchant NJ, Wang HL, Morales M, Shaham Y. Role of projections from ventral subiculum to nucleus accumbens shell in context-induced reinstatement of heroin seeking in rats. Psychopharmacology (Berl) 2016; 233:1991-2004. [PMID: 26344108 PMCID: PMC4781679 DOI: 10.1007/s00213-015-4060-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/18/2015] [Indexed: 12/25/2022]
Abstract
RATIONALE AND OBJECTIVE In humans, exposure to contexts previously associated with heroin use can provoke relapse. In rats, exposure to heroin-paired contexts after extinction of drug-reinforced responding in different contexts reinstates heroin seeking. We previously demonstrated that the projections from ventral medial prefrontal cortex (vmPFC) to nucleus accumbens (NAc) shell play a role in this reinstatement. The ventral subiculum (vSub) sends glutamate projections to NAc shell and vmPFC. Here, we determined whether these projections contribute to context-induced reinstatement. METHODS We trained rats to self-administer heroin (0.05-0.1 mg/kg/infusion) for 3 h per day for 12 days; drug infusions were paired with a discrete tone-light cue. Lever pressing in the presence of the discrete cue was subsequently extinguished in a different context. We then tested the rats for reinstatement in the heroin- and extinction-associated contexts under extinction conditions. We combined Fos with the retrograde tracer Fluoro-Gold (FG) to determine projection-specific activation during the context-induced reinstatement tests. We also used anatomical disconnection procedures to determine whether the vSub → NAc shell and vSub → vmPFC projections are functionally involved in this reinstatement. RESULTS Exposure to the heroin but not the extinction context reinstated lever pressing. Context-induced reinstatement of heroin seeking was associated with increased Fos expression in vSub neurons, including those projecting to NAc shell and vmPFC. Anatomical disconnection of the vSub → NAc shell projection, but not the vSub → vmPFC projection, decreased this reinstatement. CONCLUSIONS Our data indicate that the vSub → NAc shell glutamatergic projection, but not the vSub → vmPFC projection, contributes to context-induced reinstatement of heroin seeking.
Collapse
Affiliation(s)
| | - Sweta Adhikary
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
| | - Robyn St Laurent
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
| | - Nathan J Marchant
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Hui-Ling Wang
- Integrative Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
| | - Marisela Morales
- Integrative Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP-NIDA, NIH, Baltimore, MD, USA
| |
Collapse
|
22
|
Segev A, Akirav I. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal-Accumbens Plasticity After Stress. Neuropsychopharmacology 2016; 41:1066-79. [PMID: 26289146 PMCID: PMC4748431 DOI: 10.1038/npp.2015.238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023]
Abstract
Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub-NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders.
Collapse
Affiliation(s)
- Amir Segev
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa, Israel,Department of Psychology, University of Haifa, Mt Carmel, Haifa 31905, Israel, Tel: +972 4 8288268, Fax: +972 4 8263157, E-mail:
| |
Collapse
|
23
|
Ji X, Saha S, Martin GE. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens. Front Synaptic Neurosci 2015; 7:12. [PMID: 26257641 PMCID: PMC4507144 DOI: 10.3389/fnsyn.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023] Open
Abstract
It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.
Collapse
Affiliation(s)
- Xincai Ji
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | - Sucharita Saha
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | - Gilles E Martin
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| |
Collapse
|
24
|
Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun 2015; 6:7062. [PMID: 25952660 PMCID: PMC4430111 DOI: 10.1038/ncomms8062] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
Enhanced glutamatergic transmission in the nucleus accumbens (NAc), a region critical for reward and motivation, has been implicated in the pathophysiology of depression; however, the afferent source of this increased glutamate tone is not known. The NAc receives glutamatergic inputs from the medial prefrontal cortex (mPFC), ventral hippocampus (vHIP) and basolateral amygdala (AMY). Here, we demonstrate that glutamatergic vHIP afferents to NAc regulate susceptibility to chronic social defeat stress (CSDS). We observe reduced activity in vHIP in mice resilient to CSDS. Furthermore, attenuation of vHIP-NAc transmission by optogenetic induction of long-term depression is pro-resilient, whereas acute enhancement of this input is pro-susceptible. This effect is specific to vHIP afferents to the NAc, as optogenetic stimulation of either mPFC or AMY afferents to the NAc is pro-resilient. These data indicate that vHIP afferents to NAc uniquely regulate susceptibility to CSDS, highlighting an important, novel circuit-specific mechanism in depression.
Collapse
|
25
|
Horovitz O, Richter-Levin G. Dorsal periaqueductal gray simultaneously modulates ventral subiculum induced-plasticity in the basolateral amygdala and the nucleus accumbens. Front Behav Neurosci 2015; 9:53. [PMID: 25788880 PMCID: PMC4349162 DOI: 10.3389/fnbeh.2015.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/12/2015] [Indexed: 11/25/2022] Open
Abstract
The ventral subiculum of the hippocampus projects both to the basolateral amygdala (BLA), which is typically, associated with a response to aversive stimuli, as well as to the nucleus accumbens (NAcc), which is typically associated with a response to appetitive stimuli. Traditionally, studies of the responses to emotional events focus on either negative or positive affect-related processes, however, emotional experiences often affect both. The ability of high-level processing brain regions (e.g., medial prefrontal cortex) to modulate the balance between negative and positive affect-related regions was examined extensively. In contrast, the ability of low-level processing areas (e.g., periaqueductal gray—PAG) to do so, has not been sufficiently studied. To address whether midbrain structures have the ability to modulate limbic regions, we first examined the ventral subiculum stimulation’s (vSub) ability to induce plasticity in the BLA and NAcc simultaneously in rats. Further, dorsal PAG (dPAG) priming ability to differentially modulate vSub stimulation induced plasticity in the BLA and the NAcc was subsequently examined. vSub stimulation resulted in plasticity in both the BLA and the NAcc simultaneously. Moreover, depending on stimulus intensity, differential dPAG priming effects on LTP in these two regions were observed. The results demonstrate that negative and positive affect-related processes may be simultaneously modulated. Furthermore, under some conditions lower-level processing areas, such as the dPAG, may differentially modulate plasticity in these regions and thus affect the long-term emotional outcome of the experience.
Collapse
Affiliation(s)
- Omer Horovitz
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Gal Richter-Levin
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel ; Department of Psychology, University of Haifa Haifa, Israel ; Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| |
Collapse
|
26
|
McDonald RJ, Hong NS. How does a specific learning and memory system in the mammalian brain gain control of behavior? Hippocampus 2014; 23:1084-102. [PMID: 23929795 DOI: 10.1002/hipo.22177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/06/2022]
Abstract
This review addresses a fundamental, yet poorly understood set of issues in systems neuroscience. The issues revolve around conceptualizations of the organization of learning and memory in the mammalian brain. One intriguing, and somewhat popular, conceptualization is the idea that there are multiple learning and memory systems in the mammalian brain and they interact in different ways to influence and/or control behavior. This approach has generated interesting empirical and theoretical work supporting this view. One issue that needs to be addressed is how these systems influence or gain control of voluntary behavior. To address this issue, we clearly specify what we mean by a learning and memory system. We then review two types of processes that might influence which memory system gains control of behavior. One set of processes are external factors that can affect which system controls behavior in a given situation including task parameters like the kind of information available to the subject, types of training experience, and amount of training. The second set of processes are brain mechanisms that might influence what memory system controls behavior in a given situation including executive functions mediated by the prefrontal cortex; switching mechanisms mediated by ascending neurotransmitter systems, the unique role of the hippocampus during learning. The issue of trait differences in control of different learning and memory systems will also be considered in which trait differences in learning and memory function are thought to potentially emerge from differences in level of prefrontal influence, differences in plasticity processes, differences in ascending neurotransmitter control, differential access to effector systems like motivational and motor systems. Finally, we present scenarios in which different mechanisms might interact. This review was conceived to become a jumping off point for new work directed at understanding these issues. The outcome of this work, in combination with other approaches, might improve understanding of the mechanisms of volition in human and non-human animals.
Collapse
Affiliation(s)
- Robert J McDonald
- Department of Neuroscience, Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
27
|
Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and LTP in a rat model of depression. Neuropsychopharmacology 2014; 39:919-33. [PMID: 24141570 PMCID: PMC3924526 DOI: 10.1038/npp.2013.292] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
Most psychiatric disorders are characterized by emotional memory or learning disturbances. Chronic mild stress (CMS) is a common animal model for stress-induced depression. Here we examined whether 3 days of treatment using the CB1/2 receptor agonist WIN55,212-2 could ameliorate the effects of CMS on emotional learning (ie, conditioned avoidance and extinction), long-term potentiation (LTP) in the hippocampal-accumbens pathway, and depression-like symptoms (ie, coping with stress behavior, anhedonia, and weight changes). We also examined whether the ameliorating effects of WIN55,212-2 on behavior and physiology after CMS are mediated by CB1 and glucocorticoid receptors (GRs). Rats were exposed to CMS or handled on days 1-21. The agonist WIN55,212-2 or vehicle were administered on days 19-21 (IP; 0.5 mg/kg) and behavioral and electrophysiological measures were taken on days 23 and 28. The CB1 receptor antagonist AM251 (IP; 0.3 mg/kg) or the GR antagonist RU-38486 (IP; 10 mg/kg) were co-administered with WIN55,212-2. Our results show that CMS significantly modified physiological and behavioral reactions, as observed by the impairment in avoidance extinction and LTP in the hippocampal-accumbens pathway, and the alterations in depression-like symptoms, such as coping with stress behavior, weight gain, and sucrose consumption. The most significant effect observed in this study was that 3 days of WIN55,212-2 administration prevented the CMS-induced alterations in emotional memory (ie, extinction) and plasticity. This effect was mediated by CB1 receptors as the CB1 receptor antagonist AM251 prevented the ameliorating effects of WIN55,212-2 on extinction and LTP. The GR antagonist RU-38486 also prevented the CMS-induced alterations in extinction and plasticity, and when co-administered with WIN55,212-2, the preventive effects after CMS were maintained. The findings suggest that enhancing cannabinoid signaling could represent a novel approach to the treatment of cognitive deficits that accompany stress-related depression.
Collapse
|
28
|
Zorrilla EP, Koob GF. Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. Neurosci Biobehav Rev 2013; 37:1932-45. [PMID: 23220696 PMCID: PMC3838492 DOI: 10.1016/j.neubiorev.2012.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 01/25/2023]
Abstract
In MacLean's triune brain, the amygdala putatively subserves motivated behavior by modulating the "reptilian" basal ganglia. Accordingly, Ann Kelley, with Domesick and Nauta, influentially showed that amygdalostriatal projections are much more extensive than were appreciated. They highlighted that amygdalar projections to the rostral ventromedial striatum converged with projections from the ventral tegmental area and cingulate cortex, forming a "limbic striatum". Caudal of the anterior commissure, the entire striatum receives afferents from deep basal nuclei of the amygdala. Orthologous topographic projections subsequently were observed in fish, amphibians, and reptiles. Subsequent functional studies linked acquired value to action via this neuroanatomical substrate. From Dr. Kelley's work evolved insights into components of the distributed, interconnected network that subserves motivated behavior, including the nucleus accumbens shell and core and the striatal-like extended amygdala macrostructure. These heuristic frameworks provide a neuroanatomical basis for adaptively translating motivation into behavior. The ancient amygdala-to-striatum pathways remain a current functional thread not only for stimulus-response valuation, but also for the psychopathological plasticity that underlies addiction-related memory, craving and relapse.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
29
|
Gill KM, Grace AA. Differential effects of acute and repeated stress on hippocampus and amygdala inputs to the nucleus accumbens shell. Int J Neuropsychopharmacol 2013; 16:2013-25. [PMID: 23745764 PMCID: PMC3758801 DOI: 10.1017/s1461145713000618] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The basolateral amygdala (BLA) and ventral subiculum (vSub) of the hippocampus convey emotion and context information, respectively, to the nucleus accumbens (NAc). Using in vivo extracellular recordings from NAc neurons, we examined how acute and repeated restraint stress alters the plasticity of the vSub and BLA afferent pathways. High-frequency (HFS) and low-frequency (LFS) stimulation was applied to the vSub to assess the impact on NAc responses to vSub and BLA inputs. In addition, iontophoretic application of the dopamine D2-antagonist sulpiride was used to explore the role of dopamine in the NAc in mediating the effects of stress on plasticity. Acute and repeated restraint caused disparate effects on BLA- and vSub-evoked responses in the NAc. Following repeated restraint, but not after acute restraint, HFS of the vSub failed to potentiate the vSub–NAc pathway while instead promoting a long-lasting reduction of the BLA–NAc pathway and these effects were independent of D2-receptor activity. In contrast, LFS to the vSub pathway after acute restraint resulted in potentiation in the vSub–NAc pathway while BLA-evoked responses were unchanged. When sulpiride was applied prior to LFS of the vSub after acute stress, there was a pronounced decrease in vSub-evoked responses similar to control animals. This work provides new insight into the impact of acute and repeated stress on the integration of context and emotion inputs in the NAc. These data support a model of stress whereby the hippocampus is inappropriately activated and dominates the information processing within this circuit via a dopaminergic mechanism after acute bouts of stress.
Collapse
Affiliation(s)
- Kathryn M Gill
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
30
|
Herrold AA, Persons AL, Napier TC. Cellular distribution of AMPA receptor subunits and mGlu5 following acute and repeated administration of morphine or methamphetamine. J Neurochem 2013; 126:503-17. [PMID: 23711322 DOI: 10.1111/jnc.12323] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 01/14/2023]
Abstract
Ionotropic AMPA receptors (AMPAR) and metabotropic glutamate group I subtype 5 receptors (mGlu5) mediate neuronal and behavioral effects of abused drugs. mGlu5 stimulation increases expression of striatal-enriched tyrosine phosphatase isoform 61 (STEP61 ) which internalizes AMPARs. We determined the rat brain profile of these proteins using two different classes of abused drugs, opiates, and stimulants. STEP61 levels, and cellular distribution/expression of AMPAR subunits (GluA1, GluA2) and mGlu5, were evaluated via a protein cross-linking assay in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and ventral pallidum (VP) harvested 1 day after acute, or fourteen days after repeated morphine (8 mg/kg) or methamphetamine (1 mg/kg) (treatments producing behavioral sensitization). Acute morphine decreased GluA1 and GluA2 surface expression in mPFC and GluA1 in NAc. Fourteen days after repeated morphine or methamphetamine, mGlu5 surface expression increased in VP. In mPFC, mGlu5 were unaltered; however, after methamphetamine, STEP61 levels decreased and GluA2 surface expression increased. Pre-treatment with a mGlu5-selective negative allosteric modulator, blocked methamphetamine-induced behavioral sensitization and changes in mPFC GluA2 and STEP61 . These data reveal (i) region-specific distinctions in glutamate receptor trafficking between acute and repeated treatments of morphine and methamphetamine, and (ii) that mGlu5 is necessary for methamphetamine-induced alterations in mPFC GluA2 and STEP61 .
Collapse
Affiliation(s)
- Amy A Herrold
- Laboratory of Origin, Department of Pharmacology, Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
31
|
Bangasser DA, Lee CS, Cook PA, Gee JC, Bhatnagar S, Valentino RJ. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress. Physiol Behav 2013; 122:228-36. [PMID: 23643825 DOI: 10.1016/j.physbeh.2013.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/29/2022]
Abstract
Responses to acute stressors are determined in part by stress history. For example, a history of chronic stress results in facilitated responses to a novel stressor and this facilitation is considered to be adaptive. We previously demonstrated that repeated exposure of rats to the resident-intruder model of social stress results in the emergence of two subpopulations that are characterized by different coping responses to stress. The submissive subpopulation failed to show facilitation to a novel stressor and developed a passive strategy in the Porsolt forced swim test. Because a passive stress coping response has been implicated in the propensity to develop certain psychiatric disorders, understanding the unique circuitry engaged by exposure to a novel stressor in these subpopulations would advance our understanding of the etiology of stress-related pathology. An ex vivo functional imaging technique, manganese-enhanced magnetic resonance imaging (MEMRI), was used to identify and distinguish brain regions that are differentially activated by an acute swim stress (15 min) in rats with a history of social stress compared to controls. Specifically, Mn(2+) was administered intracerebroventricularly prior to swim stress and brains were later imaged ex vivo to reveal activated structures. When compared to controls, all rats with a history of social stress showed greater activation in specific striatal, hippocampal, hypothalamic, and midbrain regions. The submissive subpopulation of rats was further distinguished by significantly greater activation in amygdala, bed nucleus of the stria terminalis, and septum, suggesting that these regions may form a circuit mediating responses to novel stress in individuals that adopt passive coping strategies. The finding that different circuits are engaged by a novel stressor in the two subpopulations of rats exposed to social stress implicates a role for these circuits in determining individual strategies for responding to stressors. Finally, these data underscore the utility of ex vivo MEMRI to identify and distinguish circuits engaged in behavioral responses.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | | | | | | | | | | |
Collapse
|
32
|
Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats. PLoS One 2012; 7:e40057. [PMID: 22808090 PMCID: PMC3392280 DOI: 10.1371/journal.pone.0040057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/31/2012] [Indexed: 12/15/2022] Open
Abstract
Stimulation of either GABAA or GABAB receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABAA receptor agonist muscimol and GABAB receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220–440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220–660 pmol) also stimulated intake of freely available chow. Muscimol (220–660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABAA or GABAB receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.
Collapse
|
33
|
Franzini A, Cordella R, Messina G, Marras CE, Romito LM, Albanese A, Rizzi M, Nardocci N, Zorzi G, Zekaj E, Villani F, Leone M, Gambini O, Broggi G. Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases. Neurol Sci 2012; 33:1285-303. [PMID: 22271259 DOI: 10.1007/s10072-012-0937-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 12/23/2011] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation (DBS) extends the treatment of some severe neurological diseases beyond pharmacological and conservative therapy. Our experience extends the field of DBS beyond the treatment of Parkinson disease and dystonia, including several other diseases such as cluster headache and disruptive behavior. Since 1993, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan, 580 deep brain electrodes were implanted in 332 patients. The DBS targets include Stn, GPi, Voa, Vop, Vim, CM-pf, pHyp, cZi, Nacc, IC, PPN, and Brodmann areas 24 and 25. Three hundred patients are still available for follow-up and therapeutic considerations. DBS gave a new therapeutic chance to these patients affected by severe neurological diseases and in some cases controlled life-threatening pathological conditions, which would otherwise result in the death of the patient such as in status dystonicus, status epilepticus and post-stroke hemiballismus. The balance of DBS in severe neurological disease is strongly positive even if further investigations and studies are needed to search for new applications and refine the selection criteria for the actual indications.
Collapse
Affiliation(s)
- Angelo Franzini
- Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cognitive and neuronal systems underlying obesity. Physiol Behav 2012; 106:337-44. [PMID: 22266286 DOI: 10.1016/j.physbeh.2012.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/30/2011] [Accepted: 01/08/2012] [Indexed: 01/31/2023]
Abstract
Since the late 1970s obesity prevalence and per capita food intake in the USA have increased dramatically. Understanding the mechanisms underlying the hyperphagia that drives obesity requires focus on the cognitive processes and neuronal systems controlling feeding that occurs in the absence of metabolic need (i.e., "non-homeostatic" intake). Given that a portion of the increased caloric intake per capita since the late 1970s is attributed to increased meal and snack frequency, and given the increased pervasiveness of environmental cues associated with energy dense, yet nutritionally depleted foods, there's a need to examine the mechanisms through which food-related cues stimulate excessive energy intake. Here, learning and memory principles and their underlying neuronal substrates are discussed with regard to stimulus-driven food intake and excessive energy consumption. Particular focus is given to the hippocampus, a brain structure that utilizes interoceptive cues relevant to energy status (e.g., neurohormonal signals such as leptin) to modulate stimulus-driven food procurement and consumption. This type of hippocampal-dependent modulatory control of feeding behavior is compromised by consumption of foods common to Western diets, including saturated fats and simple carbohydrates. The development of more effective treatments for obesity will benefit from a more complete understanding of the complex interaction between dietary, environmental, cognitive, and neurophysiological mechanisms contributing to excessive food intake.
Collapse
|
35
|
Gill KM, Grace AA. Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens. Int J Neuropsychopharmacol 2011; 14:1301-14. [PMID: 21211108 PMCID: PMC3197957 DOI: 10.1017/s1461145710001586] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleus accumbens (NAc) receives converging input from a number of structures proposed to play a role in affective disorders. In particular, the basolateral amygdala (BLA) provides an affective input that overlaps with context-related information derived from the ventral subiculum of the hippocampus (vSub). We examined how stimulation of the BLA is modulated by, and in turn affects, vSub inputs to this region. In-vivo extracellular recordings were performed in the NAc of anaesthetized rats. The effect of high-frequency (theta-burst) stimulation (HFS) of the BLA on both BLA and vSub-evoked responses was tested. In addition, the involvement of dopamine D2 receptors in BLA-induced plasticity in the NAc was examined by pre-treatment with sulpiride (5 mg/kg i.v.). Finally, tetrodotoxin (TTX) was used to inactivate the vSub and the effect on BLA-evoked responses was assessed. We found that HFS of the BLA causes hetereogeneous patterns of plasticity, depression and potentiation, respectively, in the rostral and caudal subregions of the NAc that are disrupted following D2 receptor antagonist treatment. In addition, inactivating the vSub with TTX attenuates the ability of the BLA to drive spike firing in the NAc. Thus, the vSub is required for activation of the NAc by the BLA. These data support a model whereby the amygdala can coordinate reward-seeking and fear-related behaviours via its differential regulation of NAc output. In addition, the hippocampus inappropriately dominates information processing within this circuit, potentially contributing to the overwhelming focus on internal emotional states in disorders such as depression.
Collapse
Affiliation(s)
- Kathryn M Gill
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
36
|
Penner MR, Mizumori SJY. Neural systems analysis of decision making during goal-directed navigation. Prog Neurobiol 2011; 96:96-135. [PMID: 21964237 DOI: 10.1016/j.pneurobio.2011.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/06/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors.
Collapse
Affiliation(s)
- Marsha R Penner
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, United States
| | | |
Collapse
|
37
|
Hartung H, Threlfell S, Cragg SJ. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 2011; 36:1811-22. [PMID: 21508928 PMCID: PMC3154099 DOI: 10.1038/npp.2011.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca(2+)-activated K(+) channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine-DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals.
Collapse
Affiliation(s)
- Henrike Hartung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK [2] Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK [3] Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Sarah Threlfell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum. Neuropsychopharmacology 2011; 36:1421-32. [PMID: 21430650 PMCID: PMC3096811 DOI: 10.1038/npp.2011.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.
Collapse
|
39
|
Christiansen AM, Dekloet AD, Ulrich-Lai YM, Herman JP. "Snacking" causes long term attenuation of HPA axis stress responses and enhancement of brain FosB/deltaFosB expression in rats. Physiol Behav 2011; 103:111-6. [PMID: 21262247 DOI: 10.1016/j.physbeh.2011.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/11/2011] [Accepted: 01/16/2011] [Indexed: 01/01/2023]
Abstract
A history of limited, intermittent intake of palatable food (sucrose drink) attenuates hypothalamic-pituitary-adrenal (HPA) axis stress responses and induces markers of neuronal plasticity in stress- and reward-regulatory brain regions. Synaptic plasticity could provide a mechanism for long-term changes in neuronal function, implying that sucrose stress-dampening may endure over long periods of time. The present study tests the persistence of HPA axis dampening and plasticity after cessation of palatable drinking. Adult, male Long-Evans rats (n=10-13) with free access to water and chow were given additional twice-daily access to 4ml sucrose (30%) or water for 14days. Rats were subsequently tested for HPA responsiveness to an acute (20min) restraint stress at 1, 6 and 21days after the cessation of sucrose. Brains were collected for immunohistochemical analysis of FosB/deltaFosB, a marker of long-term neuronal plasticity, in the basolateral amygdala (BLA) and nucleus accumbens (NuAc). Prior sucrose consumption significantly decreased the plasma corticosterone response to restraint at 1day after the last palatable drink presentation, and also increased FosB/deltaFosB-positive cells in the BLA and in the NuAc core. This HPA-dampening persisted through 21days after the termination of the palatable drink, as did the increased FosB/deltaFosB immunoreactivity in both the BLA and the NuAc core. These data suggest that chronic palatable food intake causes lasting changes in stress/reward-modulatory circuitry and that the suppressed hormonal response to stress that can persist well beyond periods of palatable drink exposure.
Collapse
Affiliation(s)
- A M Christiansen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
40
|
Boureau YL, Dayan P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 2011; 36:74-97. [PMID: 20881948 PMCID: PMC3055522 DOI: 10.1038/npp.2010.151] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/08/2022]
Abstract
Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine.
Collapse
Affiliation(s)
- Y-Lan Boureau
- The Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, London, UK
| |
Collapse
|
41
|
Nason MW, Adhikari A, Bozinoski M, Gordon JA, Role LW. Disrupted activity in the hippocampal-accumbens circuit of type III neuregulin 1 mutant mice. Neuropsychopharmacology 2011; 36:488-96. [PMID: 20927045 PMCID: PMC3005939 DOI: 10.1038/npp.2010.180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuregulin 1 (Nrg1), a schizophrenia susceptibility gene, is involved in fundamental aspects of neurodevelopment. Mice lacking any one of the several isoforms of Nrg1 have a variety of schizophrenia-related phenotypes, including deficits in working memory and sensorimotor gating, loss of spines in pyramidal neurons in the ventral subiculum, loss of dendrites in cortical pyramidal cells, loss of parvalbumin-positive interneurons in the prefrontal cortex, and altered plasticity in corticolimbic synapses. Mice heterozygous for a disruption in exon 7 of the Nrg1 gene lack Type III (cysteine-rich-domain-containing) isoforms and have sensorimotor gating deficits that may involve changes in the activity of a circuit involving projections from the ventral hippocampus (vHPC) to medium spiny neurons in the nucleus accumbens (nACC). To explore the neural basis of these deficits, we examined electrophysiological activity in the nACC and vHPC of these mice. Under urethane anesthesia, bursts of spontaneous activity propagated from the vHPC to the nACC in both wild-type and mutant mice. However, these bursts were weaker in mutant nACC, with reduced local field potential amplitude and spiking activity. Single units in mutant nACC fired less frequently within the bursts, and more frequently outside of the bursts. Moreover, within-burst nACC spiking was less modulated by vHPC activity, as determined by phase-locking to the low-frequency oscillatory components of the bursts. These data suggest that the efficacy of vHPC input to the nACC is reduced in the Type III Nrg1 heterozygotes, supporting a role for Nrg1 in the functional profile of hippocampal-accumbens synapses.
Collapse
Affiliation(s)
- Malcolm W Nason
- Department of Neurobiology and Behavior and Center for Nervous System Disorders, SUNY Stony Brook University, Stony Brook, NY USA
| | | | - Marjan Bozinoski
- Department of Neurobiology and Behavior and Center for Nervous System Disorders, SUNY Stony Brook University, Stony Brook, NY USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry, Columbia University, 1051 Riverside Drive Unit 87, Kolb Annex L174, New York, NY 10032, USA. Tel: +1 212 543 6768, Fax: +1 212 543 1174, E-mail:
| | - Lorna W Role
- Department of Neurobiology and Behavior and Center for Nervous System Disorders, SUNY Stony Brook University, Stony Brook, NY USA,Department of Psychiatry, Columbia University, New York, NY, USA,Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY 11794-5230, USA. Tel: +1 631 632 4100, Fax: +1 631 632-6661, E-mail:
| |
Collapse
|
42
|
Luchicchi A, Lecca S, Carta S, Pillolla G, Muntoni AL, Yasar S, Goldberg SR, Pistis M. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict Biol 2010; 15:277-88. [PMID: 20477753 PMCID: PMC3167063 DOI: 10.1111/j.1369-1600.2010.00222.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The endocannabinoid system regulates neurotransmission in brain regions relevant to neurobiological and behavioral actions of addicting drugs. We recently demonstrated that inhibition by URB597 of fatty acid amide hydrolase (FAAH), the main enzyme that degrades the endogenous cannabinoid N-acylethanolamine (NAE) anandamide and the endogenous non-cannabinoid NAEs oleoylethanolamide and palmitoylethanolamide, blocks nicotine-induced excitation of ventral tegmental area (VTA) dopamine (DA) neurons and DA release in the shell of the nucleus accumbens (ShNAc), as well as nicotine-induced drug self-administration, conditioned place preference and relapse in rats. Here, we studied whether effects of FAAH inhibition on nicotine-induced changes in activity of VTA DA neurons were specific for nicotine or extended to two drugs of abuse acting through different mechanisms, cocaine and morphine. We also evaluated whether FAAH inhibition affects nicotine-, cocaine- or morphine-induced actions in the ShNAc. Experiments involved single-unit electrophysiological recordings from DA neurons in the VTA and medium spiny neurons in the ShNAc in anesthetized rats. We found that URB597 blocked effects of nicotine and cocaine in the ShNAc through activation of both surface cannabinoid CB1-receptors and alpha-type peroxisome proliferator-activated nuclear receptor. URB597 did not alter the effects of either cocaine or morphine on VTA DA neurons. These results show that the blockade of nicotine-induced excitation of VTA DA neurons, which we previously described, is selective for nicotine and indicate novel mechanisms recruited to regulate the effects of addicting drugs within the ShNAc of the brain reward system.
Collapse
Affiliation(s)
- Antonio Luchicchi
- B.B.Brodie Department of Neuroscience, University of Cagliari, 09042, Monserrato, Italy
| | - Salvatore Lecca
- B.B.Brodie Department of Neuroscience, University of Cagliari, 09042, Monserrato, Italy
| | - Stefano Carta
- B.B.Brodie Department of Neuroscience, University of Cagliari, 09042, Monserrato, Italy
| | - Giuliano Pillolla
- B.B.Brodie Department of Neuroscience, University of Cagliari, 09042, Monserrato, Italy
| | - Anna Lisa Muntoni
- CNR Neuroscience Institute-Cagliari, University of Cagliari, 09042, Monserrato, Italy
- Center of Excellence for the Neurobiology of Addiction, University of Cagliari, 09042, Monserrato, Italy
| | - Sevil Yasar
- Division of Geriatric Medicine and Gerontology, Department of Medicine, John Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse-National Institutes of Health, Baltimore, Maryland 21224
| | - Marco Pistis
- B.B.Brodie Department of Neuroscience, University of Cagliari, 09042, Monserrato, Italy
- Center of Excellence for the Neurobiology of Addiction, University of Cagliari, 09042, Monserrato, Italy
| |
Collapse
|
43
|
Amphetamine exposure selectively enhances hippocampus-dependent spatial learning and attenuates amygdala-dependent cue learning. Neuropsychopharmacology 2010; 35:1440-52. [PMID: 20200510 PMCID: PMC3055464 DOI: 10.1038/npp.2010.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behaviorally sensitizing regimen of amphetamine (AMPH) exposure has diverse effects on learning, memory, and cognition that are likely to be a consequence of long-term neural adaptations occurring in the cortico-limbic-striatal circuitry. In particular, altered dopamine signaling in the nucleus accumbens and medial prefrontal cortex has been implicated to underlie AMPH-induced changes in behavior. This study sought to test the hypothesis that repeated AMPH exposure disrupts the regulation of limbic information processing and the balance of competing limbic control over appetitive behavior. Mice received seven intraperitoneal injections of D-AMPH (2.5 mg/kg or 5 mg/kg) or vehicle solution (saline) and were trained in (1) a simultaneous conditioned cue and place preference task using a six-arm radial maze, found to depend on the integrity of the hippocampus (HPC) and basolateral amygdala (BLA), respectively and (2) a conditional BLA-dependent cue, and HPC-dependent place learning task using an elevated T-maze. In both tasks, the vehicle pretreatment group initially acquired cue learning, followed by the emergence of significant place/spatial learning. In contrast, pretreatment with repeated AMPH caused marked deviations from normal acquisition patterns of place and cue conditioning, significantly facilitating HPC-dependent place conditioning in the first task while attenuating BLA-dependent cue conditioning in both tasks. These findings provide the first demonstration of an aberrant regulation of HPC- and BLA-dependent learning as a result of AMPH exposure, highlighting the importance of the meso-coticolimbic dopamine system in maintaining the balance of limbic control over appetitive behavior.
Collapse
|
44
|
Fabbricatore AT, Ghitza UE, Prokopenko VF, West MO. Electrophysiological evidence of mediolateral functional dichotomy in the rat accumbens during cocaine self-administration: tonic firing patterns. Eur J Neurosci 2009; 30:2387-400. [PMID: 20092580 PMCID: PMC3004473 DOI: 10.1111/j.1460-9568.2009.07033.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Given the increasing research emphasis on putative accumbal functional compartmentation, we sought to determine whether neurons that demonstrate changes in tonic firing rate during cocaine self-administration are differentially distributed across subregions of the NAcc. Rats were implanted with jugular catheters and microwire arrays targeting NAcc subregions (core, dorsal shell, ventromedial shell, ventrolateral shell and rostral pole shell). Recordings were obtained after acquisition of stable cocaine self-administration (0.77 mg/kg/0.2mL infusion; fixed-ratio 1 schedule of reinforcement; 6-h daily sessions). During the self-administration phase of the experiment, neurons demonstrated either: (i) tonic suppression (or decrease); (ii) tonic activation (or increase); or (iii) no tonic change in firing rate with respect to rates of firing during pre- and post-drug phases. Consistent with earlier observations, tonic decrease was the predominant firing pattern observed. Differences in the prevalence of tonic increase firing were observed between the core and the dorsal shell and dorsal shell-core border regions, with the latter two areas exhibiting a virtual absence of tonic increases. Tonic suppression was exhibited to a greater extent by the dorsal shell-core border region relative to the core. These differences could reflect distinct subregional afferent processing and/or differential sensitivity of subpopulations of NAcc neurons to cocaine. Ventrolateral shell firing topographies resembled those of core neurons. Taken together, these observations are consistent with an emerging body of literature that differentiates the accumbens mediolaterally and further advances the likelihood that distinct functions are subserved by NAcc subregions in appetitive processing.
Collapse
|
45
|
Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 2009; 90:385-417. [PMID: 19941931 DOI: 10.1016/j.pneurobio.2009.11.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/27/2022]
Abstract
The basal ganglia are often conceptualised as three parallel domains that include all the constituent nuclei. The 'ventral domain' appears to be critical for learning flexible behaviours for exploration and foraging, as it is the recipient of converging inputs from amygdala, hippocampal formation and prefrontal cortex, putatively centres for stimulus evaluation, spatial navigation, and planning/contingency, respectively. However, compared to work on the dorsal domains, the rich potential for quantitative theories and models of the ventral domain remains largely untapped, and the purpose of this review is to provide the stimulus for this work. We systematically review the ventral domain's structures and internal organisation, and propose a functional architecture as the basis for computational models. Using a full schematic of the structure of inputs to the ventral striatum (nucleus accumbens core and shell), we argue for the existence of many identifiable processing channels on the basis of unique combinations of afferent inputs. We then identify the potential information represented in these channels by reconciling a broad range of studies from the hippocampal, amygdala and prefrontal cortex literatures with known properties of the ventral striatum from lesion, pharmacological, and electrophysiological studies. Dopamine's key role in learning is reviewed within the three current major computational frameworks; we also show that the shell-based basal ganglia sub-circuits are well placed to generate the phasic burst and dip responses of dopaminergic neurons. We detail dopamine's modulation of ventral basal ganglia's inputs by its actions on pre-synaptic terminals and post-synaptic membranes in the striatum, arguing that the complexity of these effects hint at computational roles for dopamine beyond current ideas. The ventral basal ganglia are revealed as a constellation of multiple functional systems for the learning and selection of flexible behaviours and of behavioural strategies, sharing the common operations of selection-by-disinhibition and of dopaminergic modulation.
Collapse
Affiliation(s)
- Mark D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, S10 2TN, UK.
| | | |
Collapse
|
46
|
Abstract
The age of an experimental animal can be a critical variable, yet age matters are often overlooked within neuroscience. Many studies make use of young animals, without considering possible differences between immature and mature subjects. This is especially problematic when attempting to model traits or diseases that do not emerge until adulthood. In this commentary we discuss the reasons for this apparent bias in age of experimental animals, and illustrate the problem with a systematic review of published articles on long-term potentiation. Additionally, we review the developmental stages of a rat and discuss the difficulty of using the weight of an animal as a predictor of its age. Finally, we provide original data from our laboratory and review published data to emphasize that development is an ongoing process that does not end with puberty. Developmental changes can be quantitative in nature, involving gradual changes, rapid switches, or inverted U-shaped curves. Changes can also be qualitative. Thus, phenomena that appear to be unitary may be governed by different mechanisms at different ages. We conclude that selection of the age of the animals may be critically important in the design and interpretation of neurobiological studies.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
47
|
Zhou L, Nazarian A, Sun WL, Jenab S, Quinones-Jenab V. Basal and cocaine-induced sex differences in the DARPP-32-mediated signaling pathway. Psychopharmacology (Berl) 2009; 203:175-83. [PMID: 18985320 PMCID: PMC4893956 DOI: 10.1007/s00213-008-1388-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/16/2008] [Indexed: 01/15/2023]
Abstract
RATIONALE Behavioral and dopamine responses to cocaine are sexually dimorphic: Female rats exhibit higher levels of locomotor and reward-associated behaviors after cocaine administration and dopamine release than do males. Activation of the dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa (DARPP-32) intracellular cascade mediates responses to cocaine. OBJECTIVE To examine the possibility that acute cocaine administration alters the DARPP-32 cascade in a sexually dimorphic pattern. MATERIALS AND METHODS Male and female rats received either saline or cocaine (30 mg/kg). Protein levels of DARPP-32, phosphorylation of DARPP-32 at the Thr34 site (P-Thr34-DARPP-32), protein phosphatase 1 (PP-1), and protein phosphatase 2B (PP-2B) in nucleus accumbens were measured via Western blot analysis. RESULTS Females had higher protein levels of DARPP-32, P-Thr34-DARPP-32, calcineurin A (CaN-A; catalytic subunit of PP-2B), and calcineurin B (CaN-B; regulatory subunit of PP-2B) than males 5 min after saline treatment. In females, CaN-A protein levels were also higher at 15 min and PP-1 protein levels were higher 30 min after saline administration than males. In male rats, cocaine significantly increased CaN-A protein levels at 30 min and CaN-B protein levels at 15 min. In females, cocaine administration significantly decreased protein levels of DARPP-32, P-Thr34-DARPP-32, and CaN-A at 45 min but increased PP-1 protein levels at 30 min. Overall, males had higher activation of the DARPP-32 pathway after cocaine administration than did females. CONCLUSION These novel results show that basal and cocaine-induced sex differences in the DARPP-32/PP-1 cascade may be responsible for the sexual dimorphism in acute cocaine-induced behavioral responses.
Collapse
Affiliation(s)
- Luyi Zhou
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA
| | | | | | | | | |
Collapse
|
48
|
McGinty VB, Grace AA. Timing-dependent regulation of evoked spiking in nucleus accumbens neurons by integration of limbic and prefrontal cortical inputs. J Neurophysiol 2009; 101:1823-35. [PMID: 19193767 DOI: 10.1152/jn.91162.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single nucleus accumbens (NAcc) neurons receive excitatory synaptic input from cortical and limbic structures, and the integration of converging goal- and motivation-related signals in these neurons influences reward-directed actions. While limbic/cortical synaptic input summation has been characterized at subthreshold intensities, the manner in which multiple inputs govern NAcc neuron spike discharge has not been measured and is poorly understood. Single NAcc neurons were recorded in urethane-anesthetized rats, and spiking was evoked by coincident stimulation of two major NAcc afferent regions: the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). BLA input increased NAcc spiking elicited by mPFC stimulation depending on the timing of the stimulation pulses, consistent with the summation of monosynaptically evoked excitatory activity. When mPFC input intensity was below threshold for evoked spiking, the addition of BLA input produced the largest facilitation of evoked spiking, and the latency of the evoked spikes reflected the latency of the individual inputs. When mPFC inputs were stimulated at higher intensities, BLA-mediated facilitation was weaker, and the spike latency reflected only the mPFC input. Thus NAcc neurons integrate both the magnitude and timing of afferent synaptic activity, suggesting that NAcc neuron output is strongly dependent on the comparative magnitude of synaptic activity in its afferent structures. These interactions may be crucial integrative mechanisms that allow motivational and cognitive information to produce appropriate reward-directed actions.
Collapse
Affiliation(s)
- Vincent B McGinty
- Dept. of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260. )
| | | |
Collapse
|
49
|
Khamassi M, Mulder AB, Tabuchi E, Douchamps V, Wiener SI. Anticipatory reward signals in ventral striatal neurons of behaving rats. Eur J Neurosci 2009; 28:1849-66. [PMID: 18973599 DOI: 10.1111/j.1460-9568.2008.06480.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been proposed that the striatum plays a crucial role in learning to select appropriate actions, optimizing rewards according to the principles of 'Actor-Critic' models of trial-and-error learning. The ventral striatum (VS), as Critic, would employ a temporal difference (TD) learning algorithm to predict rewards and drive dopaminergic neurons. This study examined this model's adequacy for VS responses to multiple rewards in rats. The respective arms of a plus-maze provided rewards of varying magnitudes; multiple rewards were provided at 1-s intervals while the rat stood still. Neurons discharged phasically prior to each reward, during both initial approach and immobile waiting, demonstrating that this signal is predictive and not simply motor-related. In different neurons, responses could be greater for early, middle or late droplets in the sequence. Strikingly, this activity often reappeared after the final reward, as if in anticipation of yet another. In contrast, previous TD learning models show decremental reward-prediction profiles during reward consumption due to a temporal-order signal introduced to reproduce accurate timing in dopaminergic reward-prediction error signals. To resolve this inconsistency in a biologically plausible manner, we adapted the TD learning model such that input information is nonhomogeneously distributed among different neurons. By suppressing reward temporal-order signals and varying richness of spatial and visual input information, the model reproduced the experimental data. This validates the feasibility of a TD-learning architecture where different groups of neurons participate in solving the task based on varied input information.
Collapse
Affiliation(s)
- Mehdi Khamassi
- Laboratoire de Physiologie de la Perception et de l'Action, Collège de France, CNRS, Paris, France
| | | | | | | | | |
Collapse
|
50
|
Manago F, Castellano C, Oliverio A, Mele A, De Leonibus E. Role of dopamine receptors subtypes, D1-like and D2-like, within the nucleus accumbens subregions, core and shell, on memory consolidation in the one-trial inhibitory avoidance task. Learn Mem 2008; 16:46-52. [DOI: 10.1101/lm.1177509] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|