1
|
Brambilla S, Guiotto M, Torretta E, Armenia I, Moretti M, Gelfi C, Palombella S, di Summa PG. Human platelet lysate stimulates neurotrophic properties of human adipose-derived stem cells better than Schwann cell-like cells. Stem Cell Res Ther 2023; 14:179. [PMID: 37480149 PMCID: PMC10362751 DOI: 10.1186/s13287-023-03407-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Trauma-associated peripheral nerve injury is a widespread clinical problem causing sensory and motor disabilities. Schwann cells (SCs) contribute to nerve regeneration, mainly by secreting nerve growth factor (NGF) and brain-derived neurotrophic factor. In the last years, adipose-derived stem cells (ASCs) differentiated into SCs (SC-ASCs) were considered as promising cell therapy. However, the cell trans-differentiation process has not been effectively showed and presents several drawbacks, thus an alternative approach for increasing ASCs neurotrophic properties is highly demanded. In the context of human cell-based therapies, Good Manufacturing Practice directions indicate that FBS should be substituted with a xenogeneic-free supplement, such as Human Platelet Lysate (HPL). Previously, we demonstrated that neurotrophic properties of HPL-cultured ASCs were superior compared to undifferentiated FBS-cultured ASCs. Therefore, as following step, here we compared the neurotrophic properties of differentiated SC-like ASCs and HPL-cultured ASCs. METHODS Both cell groups were investigated for gene expression level of neurotrophic factors, their receptors and neuronal markers. Moreover, the expression of nestin was quantitatively evaluated by flow cytometry. The commitment toward the SC phenotype was assessed with immunofluorescence pictures. Proteomics analysis was performed on both cells and their conditioned media to compare the differential protein profile. Finally, neurotrophic abilities of both groups were evaluated with a functional co-culture assay, assessing dorsal root ganglia survival and neurite outgrowth. RESULTS HPL-cultured ASCs demonstrated higher gene expression of NGF and lower expression of S100B. Moreover, nestin was present in almost all HPL-cultured ASCs and only in one quarter of SC-ASCs. Immunofluorescence confirmed that S100B was not present in HPL-cultured ASCs. Proteomics analysis validated the higher expression of nestin and the increase in cytoskeletal and ECM proteins involved in neural regeneration processes. The co-culture assay highlighted that neurite outgrowth was higher in the presence of HPL-ASCs or their conditioned medium compared to SC-ASCs. CONCLUSIONS All together, our results show that HPL-ASCs were more neurotrophic than SC-ASCs. We highlighted that the HPL triggers an immature neuro-induction state of ASCs, while keeping their stem properties, paving the way for innovative therapies for nerve regeneration.
Collapse
Affiliation(s)
- Stefania Brambilla
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
| | - Martino Guiotto
- Department of Plastic and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón, CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Via F. Chiesa 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Silvia Palombella
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy.
| | - Pietro G di Summa
- Department of Plastic and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
2
|
Digilio L, McMahon LP, Duston A, Yap CC, Winckler B. Quantifying Single and Dual Channel Live Imaging Data: Kymograph Analysis of Organelle Motility in Neurons. Bio Protoc 2023; 13:e4675. [PMID: 37251096 PMCID: PMC10213073 DOI: 10.21769/bioprotoc.4675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023] Open
Abstract
Live imaging is commonly used to study dynamic processes in cells. Many labs carrying out live imaging in neurons use kymographs as a tool. Kymographs display time-dependent microscope data (time-lapsed images) in two-dimensional representations showing position vs. time. Extraction of quantitative data from kymographs, often done manually, is time-consuming and not standardized across labs. We describe here our recent methodology for quantitatively analyzing single color kymographs. We discuss the challenges and solutions of reliably extracting quantifiable data from single-channel kymographs. When acquiring in two fluorescent channels, the challenge becomes analyzing two objects that may co-traffic together. One must carefully examine the kymographs from both channels and decide which tracks are the same or try to identify the coincident tracks from an overlay of the two channels. This process is laborious and time consuming. The difficulty in finding an available tool for such analysis has led us to create a program to do so, called KymoMerge. KymoMerge semi-automates the process of identifying co-located tracks in multi-channel kymographs and produces a co-localized output kymograph that can be analyzed further. We describe our analysis, caveats, and challenges of two-color imaging using KymoMerge.
Collapse
Affiliation(s)
- Laura Digilio
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Lloyd P. McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Alois Duston
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Qi L, Sun C, Sun S, Li A, Hu Q, Liu Y, Zhang Y. Phosphatidylinositol (3,5)-bisphosphate machinery regulates neurite thickness through neuron-specific endosomal protein NSG1/NEEP21. J Biol Chem 2022; 299:102775. [PMID: 36493904 PMCID: PMC9823133 DOI: 10.1016/j.jbc.2022.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.
Collapse
Affiliation(s)
- Lijuan Qi
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Shenqing Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Aiqing Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Qiuming Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yanling Zhang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,For correspondence: Yanling Zhang
| |
Collapse
|
4
|
Yap CC, Mason AJ, Winckler B. Dynamics and distribution of endosomes and lysosomes in dendrites. Curr Opin Neurobiol 2022; 74:102537. [DOI: 10.1016/j.conb.2022.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
|
5
|
Yap CC, Winckler B. Spatial regulation of endosomes in growing dendrites. Dev Biol 2022; 486:5-14. [PMID: 35306006 PMCID: PMC10646839 DOI: 10.1016/j.ydbio.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/19/2023]
Abstract
Many membrane proteins are highly enriched in either dendrites or axons. This non-uniform distribution is a critical feature of neuronal polarity and underlies neuronal function. The molecular mechanisms responsible for polarized distribution of membrane proteins has been studied for some time and many answers have emerged. A less well studied feature of neurons is that organelles are also frequently non-uniformly distributed. For instance, EEA1-positive early endosomes are somatodendritic whereas synaptic vesicles are axonal. In addition, some organelles are present in both axons and dendrites, but not distributed uniformly along the processes. One well known example are lysosomes which are abundant in the soma and proximal dendrite, but sparse in the distal dendrite and the distal axon. The mechanisms that determine the spatial distribution of organelles along dendrites are only starting to be studied. In this review, we will discuss the cell biological mechanisms of how the distribution of diverse sets of endosomes along the proximal-distal axis of dendrites might be regulated. In particular, we will focus on the regulation of bulk homeostatic mechanisms as opposed to local regulation. We posit that immature dendrites regulate organelle motility differently from mature dendrites in order to spatially organize dendrite growth, branching and sculpting.
Collapse
|
6
|
Yap CC, Digilio L, McMahon LP, Wang T, Winckler B. Dynein Is Required for Rab7-Dependent Endosome Maturation, Retrograde Dendritic Transport, and Degradation. J Neurosci 2022; 42:4415-4434. [PMID: 35474277 PMCID: PMC9172292 DOI: 10.1523/jneurosci.2530-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
In all cell types, endocytosed cargo is transported along a set of endosomal compartments, which are linked maturationally from early endosomes (EEs) via late endosomes (LEs) to lysosomes. Lysosomes are critical for degradation of proteins that enter through endocytic as well as autophagic pathways. Rab7 is the master regulator of early-to-late endosome maturation, motility, and fusion with lysosomes. We previously showed that most degradative lysosomes are localized in the soma and in the first 25 µm of the dendrite and that bulk degradation of dendritic membrane proteins occurs in/near the soma. Dendritic late endosomes therefore move retrogradely in a Rab7-dependent manner for fusion with somatic lysosomes. We now used cultured E18 rat hippocampal neurons of both sexes to determine which microtubule motor is responsible for degradative flux of late endosomes. Based on multiple approaches (inhibiting dynein/dynactin itself or inhibiting dynein recruitment to endosomes by expressing the C-terminus of the Rab7 effector, RILP), we now demonstrate that net retrograde flux of late endosomes in dendrites is supported by dynein. Inhibition of dynein also delays maturation of somatic endosomes, as evidenced by excessive accumulation of Rab7. In addition, degradation of dendritic cargos is inhibited. Our results also suggest that GDP-GTP cycling of Rab7 appears necessary not only for endosomal maturation but also for fusion with lysosomes subsequent to arrival in the soma. In conclusion, Rab7-dependent dynein/dynactin recruitment to dendritic endosomes plays multifaceted roles in dendritic endosome maturation as well as retrograde transport of late endosomes to sustain normal degradative flux.SIGNIFICANCE STATEMENT Lysosomes are critical for degradation of membrane and extracellular proteins that enter through endocytosis. Lysosomes are also the endpoint of autophagy and thus responsible for protein and organelle homeostasis. Endosomal-lysosomal dysfunction is linked to neurodegeneration and aging. We identify roles in dendrites for two proteins with links to human diseases, Rab7 and dynein. Our previous work identified a process that requires directional retrograde transport in dendrites, namely, efficient degradation of short-lived membrane proteins. Based on multiple approaches, we demonstrate that Rab7-dependent recruitment of dynein motors supports net retrograde transport to lysosomes and is needed for endosome maturation. Our data also suggest that GDP-GTP cycling of Rab7 is required for fusion with lysosomes and degradation, subsequent to arrival in the soma.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Lloyd P McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
7
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Neuron-Specific Gene 2 (NSG2) Encodes an AMPA Receptor Interacting Protein That Modulates Excitatory Neurotransmission. eNeuro 2019; 6:eN-NWR-0292-18. [PMID: 30680309 PMCID: PMC6345199 DOI: 10.1523/eneuro.0292-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
Neurons have evolved a number of unique protein-coding genes that regulate trafficking of protein complexes within small organelles throughout dendrites and axons. Neuron-specific gene 2 (NSG2) encodes for one of the most abundant proteins in the nervous system during perinatal development. NSG2 belongs to a family of small neuronal endosomal proteins but its function has remained uncharacterized to date. Here, we show that NSG2 is found in discrete punctae restricted to the somatodendritic arbors of developing mouse and human neurons, and a significant proportion of NSG2 punctae colocalize with postsynaptic HOMER1 and surface-expressed AMPA-type glutamate receptors (AMPARs) at excitatory synapses. Immunoprecipitation revealed that NSG2 physically interacts with both the GluA1 and GluA2 AMPAR subunits in mouse brain. Knock-out of NSG2 in mouse hippocampal neurons selectively impaired the frequency of miniature EPSCs (mEPSCs) and caused alterations in PSD95 expression at postsynaptic densities (PSDs). In contrast, NSG2 overexpression caused a significant increase in the amplitude of mEPSCs as well as GluA2 surface expression. Thus, NSG2 functions as an AMPAR-binding protein that is required for normal synapse formation and/or maintenance, and has unique functions compared with other NSG family members.
Collapse
|
9
|
Yap CC, Digilio L, McMahon LP, Garcia ADR, Winckler B. Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J Cell Biol 2018; 217:3141-3159. [PMID: 29907658 PMCID: PMC6122995 DOI: 10.1083/jcb.201711039] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Neurons are large and long lived, creating high needs for regulating protein turnover. Disturbances in proteostasis lead to aggregates and cellular stress. We characterized the behavior of the short-lived dendritic membrane proteins Nsg1 and Nsg2 to determine whether these proteins are degraded locally in dendrites or centrally in the soma. We discovered a spatial heterogeneity of endolysosomal compartments in dendrites. Early EEA1-positive and late Rab7-positive endosomes are found throughout dendrites, whereas the density of degradative LAMP1- and cathepsin (Cat) B/D-positive lysosomes decreases steeply past the proximal segment. Unlike in fibroblasts, we found that the majority of dendritic Rab7 late endosomes (LEs) do not contain LAMP1 and that a large proportion of LAMP1 compartments do not contain CatB/D. Second, Rab7 activity is required to mobilize distal predegradative LEs for transport to the soma and terminal degradation. We conclude that the majority of dendritic LAMP1 endosomes are not degradative lysosomes and that terminal degradation of dendritic cargos such as Nsg1, Nsg2, and DNER requires Rab7-dependent transport in LEs to somatic lysosomes.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - Lloyd P McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | | | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
10
|
Barford K, Keeler A, McMahon L, McDaniel K, Yap CC, Deppmann CD, Winckler B. Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Sci Rep 2018; 8:4715. [PMID: 29549340 PMCID: PMC5856830 DOI: 10.1038/s41598-018-23036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 01/16/2023] Open
Abstract
The development of the peripheral nervous system relies on long-distance signaling from target organs back to the soma. In sympathetic neurons, this long-distance signaling is mediated by target derived Nerve Growth Factor (NGF) interacting with its axonal receptor, TrkA. This ligand receptor complex internalizes into what is commonly referred to as the signaling endosome which is transported retrogradely to the soma and dendrites to mediate survival signaling and synapse formation, respectively. The molecular identity of signaling endosomes in dendrites has not yet been determined. Here, we perform a detailed analysis of TrkA endosomal compartments and trafficking patterns. We find that signaling endosomes are not uniform but molecularly diversified into Rab7 (late endosome) and Rab11 (recycling endosome) populations in axons and dendrites in vitro and in the soma in vivo. Surprisingly, TrkA-NGF signaling endosomes in dendrites undergo dynamic trafficking events, including putative fusion and fission. Overall, we find that signaling endosomes do not remain as a singular endosomal subtype but instead exist in multiple populations that undergo dynamic endosomal trafficking events. These dynamic events might drive functional diversification of the signaling endosome.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Austin Keeler
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Kathryn McDaniel
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Christopher D Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA. .,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903, USA.
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA.
| |
Collapse
|
11
|
Yap CC, Digilio L, McMahon L, Winckler B. The endosomal neuronal proteins Nsg1/NEEP21 and Nsg2/P19 are itinerant, not resident proteins of dendritic endosomes. Sci Rep 2017; 7:10481. [PMID: 28874679 PMCID: PMC5585371 DOI: 10.1038/s41598-017-07667-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane traffic critically regulates most aspects of neuronal function. Neurons express many neuronal-specific proteins that regulate membrane traffic, including the poorly understood small transmembrane proteins neural-specific gene 1 and 2 (Nsg1/NEEP21 and Nsg2/P19). Nsg1 has been implicated in regulating endosomal recycling and sorting of several important neuronal receptors. Nsg2 is largely unstudied. At steady-state, Nsg1 and Nsg2 only partially co-localize with known endosomal compartments, and it was suggested that they mark a neuronal-specific endosome. Since Nsg1 localizes to and functions in the dendritic endosome, we set out to discover how Nsg1 and Nsg2 localization to endosomes is regulated in primary rat hippocampal neurons, using quadruple immunolocalization against endogenous proteins, live imaging of dendritic endosomes, and interference approaches against the endosomal regulators Rab5 and Rab7. In contrast to previous conclusions, we now show that Nsg1 and Nsg2 are not resident endosomal proteins, but traffic rapidly from the cell surface to lysosomes and have a half-life of less than two hours. Their partial co-localization with canonical endosomal markers thus reflects their rapid flux towards degradation rather than specific targeting to a singular compartment. These findings will require rethinking of how this class of endosomal proteins regulates trafficking of much longer-lived receptors.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
12
|
Barford K, Yap CC, Dwyer ND, Winckler B. The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo. J Comp Neurol 2017; 525:1861-1878. [PMID: 28299779 DOI: 10.1002/cne.24168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/28/2016] [Accepted: 11/18/2016] [Indexed: 01/23/2023]
Abstract
Endosomal maturation and transport constitutes a complex trafficking system present in all cell types. Neurons have adapted their endosomal system to meet their unique and complex needs. These adaptations include repurposing existing proteins to diversify endocytosis and trafficking, as well as preferential expression of certain regulators more highly in neurons than other cell types. These neuronal regulators include the family of Neuron-Specific Gene family members (Nsg), NEEP21 (Nsg1), and P19 (Nsg2). NEEP21/Nsg1 plays a role in the trafficking of multiple receptors, including the cell adhesion molecule L1/NgCAM, the neurotransmitter receptor GluA2, and β-APP. Recently, we showed that NEEP2/Nsg1 and P19/Nsg2 are not expressed in all neuronal cell types in vitro. However, it is not known where and when NEEP21/Nsg1 and P19/Nsg2 are expressed in vivo, and whether both proteins are always coexpressed. Here, we show that NEEP21/Nsg1 and P19/Nsg2 are present in both overlapping and distinct cell populations in the hippocampus, neocortex, and cerebellum during development. NEEP21/Nsg1 and P19/Nsg2 levels are highest during embryonic development, and expression persists in the juvenile mouse brain. In particular, a subset of layer V cortical neurons retains relatively high expression of both NEEP21/Nsg1 and P19/Nsg2 at postnatal day 16 as well as in the CA1-3 regions of the hippocampus. In the cerebellum, NEEP21/Nsg1 expression becomes largely restricted to Purkinje neurons in adulthood whereas P19/Nsg2 expression strikingly disappears from the cerebellum with age. This divergent and restricted expression likely reflects differential needs for this class of trafficking regulators in different neurons during different stages of maturation.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
13
|
Barford K, Deppmann C, Winckler B. The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol 2017; 77:405-418. [PMID: 27503831 DOI: 10.1002/dneu.22427] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand-receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing 'when' and 'how much' signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| |
Collapse
|
14
|
Mestres I, Chuang JZ, Calegari F, Conde C, Sung CH. SARA regulates neuronal migration during neocortical development through L1 trafficking. Development 2016; 143:3143-53. [PMID: 27471254 DOI: 10.1242/dev.129338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that endocytic trafficking of adhesion proteins plays a crucial role in neuronal migration during neocortical development. However, molecular insights into these processes remain elusive. Here, we study the early endosomal protein Smad anchor for receptor activation (SARA) in the developing mouse brain. SARA is enriched at the apical endfeet of radial glia of the neocortex. Although SARA knockdown did not lead to detectable neurogenic phenotypes, SARA-suppressed neurons exhibited impaired orientation and migration across the intermediate zone. Mechanistically, we show that SARA knockdown neurons exhibit increased surface expression of the L1 cell adhesion molecule. Neurons ectopically expressing L1 phenocopy the migration and orientation defects caused by SARA knockdown and display increased contact with neighboring neurites. L1 knockdown effectively rescues SARA suppression-induced phenotypes. SARA knockdown neurons eventually overcome their migration defect and enter later into the cortical plate. Nevertheless, these neurons localize at more superficial cortical layers than their control counterparts. These results suggest that SARA regulates the orientation, multipolar-to-bipolar transition and the positioning of cortical neurons via modulating surface L1 expression.
Collapse
Affiliation(s)
- Iván Mestres
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Jen-Zen Chuang
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Cecilia Conde
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA Departments of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
15
|
Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19). PLoS One 2015; 10:e0140010. [PMID: 26465886 PMCID: PMC4605768 DOI: 10.1371/journal.pone.0140010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.
Collapse
|
16
|
Abstract
Endosomes play critical roles on regulating surface receptor levels as well as signaling cascades in all cell types, including neurons. Endocytosis and endosomal trafficking is routinely studied after fixation, but live imaging is increasingly being used to capture the dynamic nature of endosomes and is allowing increasingly sophisticated glimpses into trafficking processes in live neurons. In this chapter, we describe the basics of neuronal primary cultures, methods for expressing fluorescent proteins, and live imaging of cargos and endosomal regulators.
Collapse
Affiliation(s)
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Medical School, Charlottesville, VA, USA
| |
Collapse
|