1
|
Negishi K, Duan Y, Batista A, Pishgar MS, Tsai PJ, Caldwell KE, Claypool SM, Reiner DJ, Madangopal R, Bossert JM, Yang Y, Shaham Y, Fredriksson I. The Role of Claustrum in Incubation of Opioid Seeking after Electric Barrier-Induced Voluntary Abstinence in Male and Female Rats. J Neurosci 2025; 45:e0561242025. [PMID: 39933931 PMCID: PMC11949475 DOI: 10.1523/jneurosci.0561-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
We previously reported that ventral subiculum (vSub) activity is critical to incubation of oxycodone seeking after abstinence induced by adverse consequences of drug seeking. Here, we studied the role of claustrum, a key vSub input, in this incubation. We trained male and female rats to self-administer oxycodone for 2 weeks and then induced abstinence by exposing them to an electric barrier for 2 weeks. We used retrograde tracing (cholera toxin B subunit) plus the activity marker Fos to identify projections to vSub cactivated during "incubated" relapse (Abstinence Day 15). We then used pharmacological reversible inactivation to determine the causal role of claustrum in incubation and the behavioral and anatomical specificity of this role. We also used an anatomical disconnection procedure to determine the causal role of claustrum-vSub connections in incubation. Finally, we analyzed an existing functional MRI dataset to determine if functional connectivity changes in claustrum-related circuits predict incubation of oxycodone seeking. Claustrum neurons projecting to vSub were activated during relapse tests after electric barrier-induced abstinence. Inactivation of claustrum but not areas dorsolateral to claustrum decreased incubation of oxycodone seeking after electric barrier-induced abstinence; claustrum inactivation had no effect on incubation after food choice-induced abstinence. Both ipsilateral and contralateral inactivation of claustrum-vSub projections decreased incubation after electric barrier-induced abstinence. Functional connectivity changes in claustrum-cortical circuits during electric barrier-induced abstinence predicted incubated oxycodone relapse. Our study identified a novel role of claustrum in relapse to opioid drugs after abstinence induced by adverse consequences of drug seeking.
Collapse
Affiliation(s)
- Kenichiro Negishi
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ying Duan
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Mona S Pishgar
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Sarah M Claypool
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - David J Reiner
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | | | | | - Yihong Yang
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ida Fredriksson
- Center for Social and Affective Neuroscience, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
2
|
Schinz D, Neubauer A, Hippen R, Schulz J, Li HB, Thalhammer M, Schmitz-Koep B, Menegaux A, Wendt J, Ayyildiz S, Brandl F, Priller J, Uder M, Zimmer C, Hedderich DM, Sorg C. Claustrum Volumes Are Lower in Schizophrenia and Mediate Patients' Attentional Deficits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00350-1. [PMID: 39608754 DOI: 10.1016/j.bpsc.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND While the last decade of extensive research revealed the prominent role of the claustrum for mammalian forebrain organization (i.e., widely distributed claustral-cortical circuits coordinate basic cognitive functions such as attention), it is poorly understood whether the claustrum is relevant for schizophrenia and related cognitive symptoms. We hypothesized that claustrum volumes are lower in schizophrenia and also that potentially lower volumes mediate patients' attention deficits. METHODS Based on T1-weighted magnetic resonance imaging, advanced automated claustrum segmentation, and attention symbol coding task in 90 patients with schizophrenia and 96 healthy control participants from 2 independent sites, the COBRE open-source database and Munich dataset, we compared total intracranial volume-normalized claustrum volumes and symbol coding task scores across groups via analysis of covariance and related variables via correlation and mediation analysis. RESULTS Patients had lower claustrum volumes of about 13% (p < .001, Hedges' g = 0.63), which not only correlated with (r = 0.24, p = .014) but also mediated lower symbol coding task scores (indirect effect ab = -1.30 ± 0.69; 95% CI, -3.73 to -1.04). Results were not confounded by age, sex, global and claustrum-adjacent gray matter changes, scanner site, smoking, and medication. CONCLUSIONS Results demonstrate lower claustrum volumes that mediate patients' attention deficits in schizophrenia. Data indicate the claustrum as being relevant for schizophrenia pathophysiology and cognitive functioning.
Collapse
Affiliation(s)
- David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany.
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig Maximilians University of Munich, Munich, Germany
| | - Rebecca Hippen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hongwei Bran Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sevilay Ayyildiz
- Anatomy Ph.D. Program, Graduate School of Health Sciences, Kocaeli University, Istanbul, Turkey
| | - Felix Brandl
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Atlan G, Matosevich N, Peretz-Rivlin N, Marsh-Yvgi I, Zelinger N, Chen E, Kleinman T, Bleistein N, Sheinbach E, Groysman M, Nir Y, Citri A. Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior. Nat Commun 2024; 15:5415. [PMID: 38926345 PMCID: PMC11208603 DOI: 10.1038/s41467-024-48829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.
Collapse
Affiliation(s)
- Gal Atlan
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Matosevich
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Peretz-Rivlin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noam Zelinger
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eden Chen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Timna Kleinman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Bleistein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Efrat Sheinbach
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, Toronto, ON, Canada.
| |
Collapse
|
4
|
Neubauer A, Menegaux A, Wendt J, Li HB, Schmitz-Koep B, Ruzok T, Thalhammer M, Schinz D, Bartmann P, Wolke D, Priller J, Zimmer C, Rueckert D, Hedderich DM, Sorg C. Aberrant claustrum structure in preterm-born neonates: an MRI study. Neuroimage Clin 2023; 37:103286. [PMID: 36516730 PMCID: PMC9755238 DOI: 10.1016/j.nicl.2022.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The human claustrum is a gray matter structure in the white matter between insula and striatum. Previous analysis found altered claustrum microstructure in very preterm-born adults associated with lower cognitive performance. As the claustrum development is related to hypoxia-ischemia sensitive transient cell populations being at-risk in premature birth, we hypothesized that claustrum structure is already altered in preterm-born neonates. We studied anatomical and diffusion-weighted MRIs of 83 preterm- and 83 term-born neonates at term-equivalent age. Additionally, claustrum development was analyzed both in a spectrum of 377 term-born neonates and longitudinally in 53 preterm-born subjects. Data was provided by the developing Human Connectome Project. Claustrum development showed increasing volume, increasing fractional anisotropy (FA), and decreasing mean diffusivity (MD) around term both across term- and preterm-born neonates. Relative to term-born ones, preterm-born neonates had (i) increased absolute and relative claustrum volumes, both indicating increased cellular and/or extracellular matter and being in contrast to other subcortical gray matter regions of decreased volumes such as thalamus; (ii) lower claustrum FA and higher claustrum MD, pointing at increased extracellular matrix and impaired axonal integrity; and (iii) aberrant covariance between claustrum FA and MD, respectively, and that of distributed gray matter regions, hinting at relatively altered claustrum microstructure. Results together demonstrate specifically aberrant claustrum structure in preterm-born neonates, suggesting altered claustrum development in prematurity, potentially relevant for later cognitive performance.
Collapse
Affiliation(s)
- Antonia Neubauer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany.
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Jil Wendt
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Germany; Department of Quantitative Biomedicine, University of Zurich, Switzerland
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Tobias Ruzok
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Melissa Thalhammer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - David Schinz
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany; Neuropsychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Daniel Rueckert
- School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Informatics, Technical University of Munich, Germany; Department of Computing, Imperial College London, UK
| | - Dennis M Hedderich
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
5
|
Madden MB, Stewart BW, White MG, Krimmel SR, Qadir H, Barrett FS, Seminowicz DA, Mathur BN. A role for the claustrum in cognitive control. Trends Cogn Sci 2022; 26:1133-1152. [PMID: 36192309 PMCID: PMC9669149 DOI: 10.1016/j.tics.2022.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Early hypotheses of claustrum function were fueled by neuroanatomical data and yielded suggestions that the claustrum is involved in processes ranging from salience detection to multisensory integration for perceptual binding. While these hypotheses spurred useful investigations, incompatibilities inherent in these views must be reconciled to further conceptualize claustrum function amid a wealth of new data. Here, we review the varied models of claustrum function and synthesize them with developments in the field to produce a novel functional model: network instantiation in cognitive control (NICC). This model proposes that frontal cortices direct the claustrum to flexibly instantiate cortical networks to subserve cognitive control. We present literature support for this model and provide testable predictions arising from this conceptual framework.
Collapse
Affiliation(s)
- Maxwell B Madden
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brent W Stewart
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Michael G White
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Houman Qadir
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
7
|
Atilgan H, Doody M, Oliver DK, McGrath TM, Shelton AM, Echeverria-Altuna I, Tracey I, Vyazovskiy VV, Manohar SG, Packer AM. Human lesions and animal studies link the claustrum to perception, salience, sleep and pain. Brain 2022; 145:1610-1623. [PMID: 35348621 PMCID: PMC9166552 DOI: 10.1093/brain/awac114] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022] Open
Abstract
The claustrum is the most densely interconnected region in the human brain. Despite the accumulating data from clinical and experimental studies, the functional role of the claustrum remains unknown. Here, we systematically review claustrum lesion studies and discuss their functional implications. Claustral lesions are associated with an array of signs and symptoms, including changes in cognitive, perceptual and motor abilities; electrical activity; mental state; and sleep. The wide range of symptoms observed following claustral lesions do not provide compelling evidence to support prominent current theories of claustrum function such as multisensory integration or salience computation. Conversely, the lesions studies support the hypothesis that the claustrum regulates cortical excitability. We argue that the claustrum is connected to, or part of, multiple brain networks that perform both fundamental and higher cognitive functions. As a multifunctional node in numerous networks, this may explain the manifold effects of claustrum damage on brain and behaviour.
Collapse
Affiliation(s)
- Huriye Atilgan
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Max Doody
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David K. Oliver
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Thomas M. McGrath
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Andrew M. Shelton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | | | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and Merton College, University of Oxford, Oxford OX3 9DU, UK
| | | | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Adam M. Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
8
|
Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022; 110:486-501.e7. [PMID: 34863367 PMCID: PMC8829966 DOI: 10.1016/j.neuron.2021.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.
Collapse
Affiliation(s)
- Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eric A. Finkel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Daniel H. O’Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Lead contact,Correspondence:
| |
Collapse
|
9
|
Efficient Claustrum Segmentation in T2-weighted Neonatal Brain MRI Using Transfer Learning from Adult Scans. Clin Neuroradiol 2022; 32:665-676. [PMID: 35072752 PMCID: PMC9424135 DOI: 10.1007/s00062-021-01137-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/25/2021] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose
Intrauterine claustrum and subplate neuron development have been suggested to overlap. As premature birth typically impairs subplate neuron development, neonatal claustrum might indicate a specific prematurity impact; however, claustrum identification usually relies on expert knowledge due to its intricate structure. We established automated claustrum segmentation in newborns.
Methods
We applied a deep learning-based algorithm for segmenting the claustrum in 558 T2-weighted neonatal brain MRI of the developing Human Connectome Project (dHCP) with transfer learning from claustrum segmentation in T1-weighted scans of adults. The model was trained and evaluated on 30 manual bilateral claustrum annotations in neonates.
Results
With only 20 annotated scans, the model yielded median volumetric similarity, robust Hausdorff distance and Dice score of 95.9%, 1.12 mm and 80.0%, respectively, representing an excellent agreement between the automatic and manual segmentations. In comparison with interrater reliability, the model achieved significantly superior volumetric similarity (p = 0.047) and Dice score (p < 0.005) indicating stable high-quality performance. Furthermore, the effectiveness of the transfer learning technique was demonstrated in comparison with nontransfer learning. The model can achieve satisfactory segmentation with only 12 annotated scans. Finally, the model’s applicability was verified on 528 scans and revealed reliable segmentations in 97.4%.
Conclusion
The developed fast and accurate automated segmentation has great potential in large-scale study cohorts and to facilitate MRI-based connectome research of the neonatal claustrum. The easy to use models and codes are made publicly available.
Collapse
|
10
|
Hedderich DM, Menegaux A, Li H, Schmitz-Koep B, Stämpfli P, Bäuml JG, Berndt MT, Bäuerlein FJB, Grothe MJ, Dyrba M, Avram M, Boecker H, Daamen M, Zimmer C, Bartmann P, Wolke D, Sorg C. Aberrant Claustrum Microstructure in Humans after Premature Birth. Cereb Cortex 2021; 31:5549-5559. [PMID: 34171095 DOI: 10.1093/cercor/bhab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hongwei Li
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Stämpfli
- MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, 8032 Zurich, Switzerland
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany
| | - Mihai Avram
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, 23538 Lübeck, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany.,Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, CV4 7AL, Coventry, UK.,Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
11
|
Li H, Menegaux A, Schmitz-Koep B, Neubauer A, Bäuerlein FJB, Shit S, Sorg C, Menze B, Hedderich D. Automated claustrum segmentation in human brain MRI using deep learning. Hum Brain Mapp 2021; 42:5862-5872. [PMID: 34520080 PMCID: PMC8596988 DOI: 10.1002/hbm.25655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
In the last two decades, neuroscience has produced intriguing evidence for a central role of the claustrum in mammalian forebrain structure and function. However, relatively few in vivo studies of the claustrum exist in humans. A reason for this may be the delicate and sheet‐like structure of the claustrum lying between the insular cortex and the putamen, which makes it not amenable to conventional segmentation methods. Recently, Deep Learning (DL) based approaches have been successfully introduced for automated segmentation of complex, subcortical brain structures. In the following, we present a multi‐view DL‐based approach to segment the claustrum in T1‐weighted MRI scans. We trained and evaluated the proposed method in 181 individuals, using bilateral manual claustrum annotations by an expert neuroradiologist as reference standard. Cross‐validation experiments yielded median volumetric similarity, robust Hausdorff distance, and Dice score of 93.3%, 1.41 mm, and 71.8%, respectively, representing equal or superior segmentation performance compared to human intra‐rater reliability. The leave‐one‐scanner‐out evaluation showed good transferability of the algorithm to images from unseen scanners at slightly inferior performance. Furthermore, we found that DL‐based claustrum segmentation benefits from multi‐view information and requires a sample size of around 75 MRI scans in the training set. We conclude that the developed algorithm allows for robust automated claustrum segmentation and thus yields considerable potential for facilitating MRI‐based research of the human claustrum. The software and models of our method are made publicly available.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Informatics, Technical University of Munich, Munich, Germany.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Aurore Menegaux
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Antonia Neubauer
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix J B Bäuerlein
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Suprosanna Shit
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Germany.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Dennis Hedderich
- TUM-NIC Neuroimaging Center, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Brennan EKW, Jedrasiak-Cape I, Kailasa S, Rice SP, Sudhakar SK, Ahmed OJ. Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex. eLife 2021; 10:e62207. [PMID: 34170817 PMCID: PMC8233040 DOI: 10.7554/elife.62207] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG.
Collapse
Affiliation(s)
- Ellen KW Brennan
- Department of Psychology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | | | - Sameer Kailasa
- Department of Mathematics, University of MichiganAnn ArborUnited States
| | - Sharena P Rice
- Department of Psychology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | | | - Omar J Ahmed
- Department of Psychology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
- Michigan Center for Integrative Research in Critical Care, University of MichiganAnn ArborUnited States
- Kresge Hearing Research Institute, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| |
Collapse
|
13
|
Morimoto MM, Uchishiba E, Saleem AB. Organization of feedback projections to mouse primary visual cortex. iScience 2021; 24:102450. [PMID: 34113813 PMCID: PMC8169797 DOI: 10.1016/j.isci.2021.102450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Top-down, context-dependent modulation of visual processing has been a topic of wide interest, including in mouse primary visual cortex (V1). However, the organization of feedback projections to V1 is relatively unknown. Here, we investigated inputs to mouse V1 by injecting retrograde tracers. We developed a software pipeline that maps labeled cell bodies to corresponding brain areas in the Allen Reference Atlas. We identified more than 24 brain areas that provide inputs to V1 and quantified the relative strength of their projections. We also assessed the organization of the projections, based on either the organization of cell bodies in the source area (topography) or the distribution of projections across V1 (bias). Projections from most higher visual and some nonvisual areas to V1 showed both topography and bias. Such organization of feedback projections to V1 suggests that parts of the visual field are differentially modulated by context, which can be ethologically relevant for a navigating animal.
Collapse
Affiliation(s)
- Mai M. Morimoto
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Emi Uchishiba
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|
14
|
Gamberini M, Passarelli L, Impieri D, Montanari G, Diomedi S, Worthy KH, Burman KJ, Reser DH, Fattori P, Galletti C, Bakola S, Rosa MGP. Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and Adjacent Areas). Cereb Cortex 2021; 31:4595-4611. [PMID: 33939798 DOI: 10.1093/cercor/bhab108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Montanari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David H Reser
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, Victoria 3842, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Dayan-Riva A, Berger A, Anholt GE. Affordances, response conflict, and enhanced-action tendencies in obsessive-compulsive disorder: an ERP study. Psychol Med 2021; 51:948-963. [PMID: 31907102 DOI: 10.1017/s0033291719003866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by recurrent, intrusive thoughts and/or behaviors. OCD symptoms are often triggered by external stimuli. Therefore, it has been suggested that difficulty inhibiting responses to stimuli associated with strong action tendencies may underlie symptoms. The present electrophysiological study examined whether stimuli evoking a strong automatic response are associated with enhanced action tendencies in OCD participants relative to healthy controls. METHODS The lateralized readiness potential (LRP) and the N2 event-related potential (ERP) components were used as measures of action tendencies and inhibition, respectively. ERPs were recorded while 38 participants diagnosed with OCD and 38 healthy controls performed a variation of the Stroop task using colored arrows. RESULTS The OCD group presented with larger LRP amplitudes than the control group. This effect was found specifically in the incongruent condition. Furthermore, an interaction effect was found between group and congruency such that the OCD group showed a reduced N2 in the incongruent condition compared to the congruent condition, whereas the control group demonstrated the opposite effect. Results support the hypothesis that OCD is characterized by stronger readiness-for-action and impaired inhibitory mechanisms, particularly when the suppression of a dominant response tendency is required. Our results were supported by source localization analyses for the LRP and N2 components. These findings were specific to OCD and not associated with anxiety and depression symptoms. CONCLUSIONS The present results support the notion of stronger habitual behavior and embodiment tendencies in OCD and impaired inhibitory control under conditions of conflict.
Collapse
Affiliation(s)
- Adi Dayan-Riva
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Andrea Berger
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
16
|
Hu JM, Chen CH, Chen SQ, Ding SL. Afferent Projections to Area Prostriata of the Mouse. Front Neuroanat 2020; 14:605021. [PMID: 33328909 PMCID: PMC7728849 DOI: 10.3389/fnana.2020.605021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/02/2020] [Indexed: 12/02/2022] Open
Abstract
Area prostriata plays important roles in fast detection and analysis of peripheral visual information. It remains unclear whether the prostriata directly receives and integrates information from other modalities. To gain insight into this issue, we investigated brain-wide afferent projections to mouse prostriata. We find convergent projections to layer 1 of the prostriata from primary and association visual and auditory cortices; retrosplenial, lateral entorhinal, and anterior cingulate cortices; subiculum; presubiculum; and anterior thalamic nuclei. Innervation of layers 2-3 of the prostriata mainly originates from the presubiculum (including postsubiculum) and anterior midline thalamic region. Layer 5 of the prostriata mainly receives its inputs from medial entorhinal, granular retrosplenial, and medial orbitofrontal cortices and anteromedial thalamic nucleus while layer 6 gets its major inputs from ectorhinal, postrhinal, and agranular retrosplenial cortices. The claustrum, locus coeruleus, and basal forebrain provide relatively diffuse innervation to the prostriata. Moreover, Cre-dependent tracing in cortical areas reveals that the cells of origin of the prostriata inputs are located in layers 2-4 and 5 of the neocortical areas, layers 2 and 5 of the medial entorhinal cortex, and layer 5 of the retrosplenial cortex. These results indicate that the prostriata is a unique region where primary and association visual and auditory inputs directly integrate with many limbic inputs.
Collapse
Affiliation(s)
- Jin-Meng Hu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chang-Hui Chen
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng-Qiang Chen
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song-Lin Ding
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Allen Institute for Brain Science, Seattle, WA, United States
| |
Collapse
|
17
|
Lustberg D, Tillage RP, Bai Y, Pruitt M, Liles LC, Weinshenker D. Noradrenergic circuits in the forebrain control affective responses to novelty. Psychopharmacology (Berl) 2020; 237:3337-3355. [PMID: 32821984 PMCID: PMC7572912 DOI: 10.1007/s00213-020-05615-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
RATIONALE In rodents, exposure to novel environments elicits initial anxiety-like behavior (neophobia) followed by intense exploration (neophilia) that gradually subsides as the environment becomes familiar. Thus, innate novelty-induced behaviors are useful indices of anxiety and motivation in animal models of psychiatric disease. Noradrenergic neurons are activated by novelty and implicated in exploratory and anxiety-like responses, but the role of norepinephrine (NE) in neophobia has not been clearly delineated. OBJECTIVE We sought to define the role of central NE transmission in neophilic and neophobic behaviors. METHODS We assessed dopamine β-hydroxylase knockout (Dbh -/-) mice lacking NE and their NE-competent (Dbh +/-) littermate controls in neophilic (novelty-induced locomotion; NIL) and neophobic (novelty-suppressed feeding; NSF) behavioral tests with subsequent quantification of brain-wide c-fos induction. We complimented the gene knockout approach with pharmacological interventions. RESULTS Dbh -/- mice exhibited blunted locomotor responses in the NIL task and completely lacked neophobia in the NSF test. Neophobia was rescued in Dbh -/- mice by acute pharmacological restoration of central NE with the synthetic precursor L-3,4-dihydroxyphenylserine (DOPS), and attenuated in control mice by the inhibitory α2-adrenergic autoreceptor agonist guanfacine. Following either NSF or NIL, Dbh -/- mice demonstrated reduced c-fos in the anterior cingulate cortex, medial septum, ventral hippocampus, bed nucleus of the stria terminalis, and basolateral amygdala. CONCLUSION These findings indicate that central NE signaling is required for the expression of both neophilic and neophobic behaviors. Further, we describe a putative noradrenergic novelty network as a potential therapeutic target for treating anxiety and substance abuse disorders.
Collapse
Affiliation(s)
- Daniel Lustberg
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Yu Bai
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Molly Pruitt
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Anastasiades PG, Boada C, Carter AG. Cell-Type-Specific D1 Dopamine Receptor Modulation of Projection Neurons and Interneurons in the Prefrontal Cortex. Cereb Cortex 2020; 29:3224-3242. [PMID: 30566584 DOI: 10.1093/cercor/bhy299] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 11/14/2022] Open
Abstract
Dopamine modulation in the prefrontal cortex (PFC) mediates diverse effects on neuronal physiology and function, but the expression of dopamine receptors at subpopulations of projection neurons and interneurons remains unresolved. Here, we examine D1 receptor expression and modulation at specific cell types and layers in the mouse prelimbic PFC. We first show that D1 receptors are enriched in pyramidal cells in both layers 5 and 6, and that these cells project to intratelencephalic targets including contralateral cortex, striatum, and claustrum rather than to extratelencephalic structures. We then find that D1 receptors are also present in interneurons and enriched in superficial layer VIP-positive (VIP+) interneurons that coexpresses calretinin but absent from parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons. Finally, we determine that D1 receptors strongly and selectively enhance action potential firing in only a subset of these corticocortical neurons and VIP+ interneurons. Our findings define several novel subpopulations of D1+ neurons, highlighting how modulation via D1 receptors can influence both excitatory and disinhibitory microcircuits in the PFC.
Collapse
Affiliation(s)
- Paul G Anastasiades
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Christina Boada
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Adam G Carter
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| |
Collapse
|
19
|
Claustral Neurons Projecting to Frontal Cortex Mediate Contextual Association of Reward. Curr Biol 2020; 30:3522-3532.e6. [PMID: 32707061 DOI: 10.1016/j.cub.2020.06.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
The claustrum is a small nucleus, exhibiting vast reciprocal connectivity with cortical, subcortical, and midbrain regions. Recent studies, including ours, implicate the claustrum in salience detection and attention. In the current study, we develop an iterative functional investigation of the claustrum, guided by quantitative spatial transcriptional analysis. Using this approach, we identify a circuit involving dopamine-receptor expressing claustral neurons projecting to frontal cortex necessary for context association of reward. We describe the recruitment of claustral neurons by cocaine and their role in drug sensitization. In order to characterize the circuit within which these neurons are embedded, we apply chemo- and opto-genetic manipulation of increasingly specified claustral subpopulations. This strategy resolves the role of a defined network of claustrum neurons expressing dopamine D1 receptors and projecting to frontal cortex in the acquisition of cocaine conditioned-place preference and real-time optogenetic conditioned-place preference. In sum, our results suggest a role for a claustrum-to-frontal cortex circuit in the attribution of incentive salience, allocating attention to reward-related contextual cues.
Collapse
|
20
|
Abstract
Altered prepulse inhibition (PPI) is an endophenotype associated with multiple brain disorders, including schizophrenia. Circuit mechanisms that regulate PPI have been suggested, but none has been demonstrated through direct manipulations. IRSp53 is an abundant excitatory postsynaptic scaffold implicated in schizophrenia, autism spectrum disorders, and attention-deficit/hyperactivity disorder. We found that mice lacking IRSp53 in cortical excitatory neurons display decreased PPI. IRSp53-mutant layer 6 cortical neurons in the anterior cingulate cortex (ACC) displayed decreased excitatory synaptic input but markedly increased neuronal excitability, which was associated with excessive excitatory synaptic input in downstream mediodorsal thalamic (MDT) neurons. Importantly, chemogenetic inhibition of mutant neurons projecting to MDT normalized the decreased PPI and increased excitatory synaptic input onto MDT neurons. In addition, chemogenetic activation of MDT-projecting layer 6 neurons in the ACC decreased PPI in wild-type mice. These results suggest that the hyperactive ACC-MDT pathway suppresses PPI in wild-type and IRSp53-mutant mice.
Collapse
Affiliation(s)
- Yangsik Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea,Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,To whom correspondence should be addressed; Mental Health Research Institute, National Center for Mental Health, Yongmasan-ro 127, Gwangjin-gu, Seoul, South Korea 04933; tel: +82-2-2204-0502, fax: +82-2-2204-0393, e-mail:
| | - Young Woo Noh
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
21
|
Potential Role of the Amygdala and Posterior Claustrum in Exercise Intensity-dependent Cardiovascular Regulation in Rats. Neuroscience 2020; 432:150-159. [PMID: 32109531 DOI: 10.1016/j.neuroscience.2020.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/21/2022]
Abstract
Tuning of the cardiovascular response is crucial to maintain performance during high-intensity exercise. It is well known that the nucleus of the solitary tract (NTS) in the brainstem medulla plays a central role in cardiovascular regulation; however, where and how upper brain regions form circuits with NTS and coordinately control cardiovascular responses during high-intensity exercise remain unclear. Here focusing on the amygdala and claustrum, we investigated part of the mechanism for regulation of the cardiovascular system during exercise. In rats, c-Fos immunostaining was used to examine whether the amygdala and claustrum were activated during treadmill exercise. Further, we examined arterial pressure responses to electrical and chemical stimulation of the claustrum region. We also confirmed the anatomical connections between the amygdala, claustrum, and NTS by retrograde tracer injections. Finally, we performed simultaneous electrical stimulation of the claustrum and amygdala to examine their functional connectivity. c-Fos expression was observed in the amygdala and the posterior part of the claustrum (pCL), but not in the anterior part, in an exercise intensity-dependent manner. pCL stimulation induced a depressor response. Using a retrograde tracer, we confirmed direct projections from the amygdala to the pCL and NTS. Simultaneous stimulation of the central nucleus of the amygdala and pCL showed a greater pressor response compared with the stimulation of the amygdala alone. These results suggest the amygdala and pCL are involved in different phases of exercise. More speculatively, these areas might coordinately tune cardiovascular responses that help maintain performance during high-intensity exercise.
Collapse
|
22
|
D’Angiulli A, Pham DAT, Leisman G, Goldfield G. Evaluating Preschool Visual Attentional Selective-Set: Preliminary ERP Modeling and Simulation of Target Enhancement Homology. Brain Sci 2020; 10:brainsci10020124. [PMID: 32098390 PMCID: PMC7071495 DOI: 10.3390/brainsci10020124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
We reanalyzed, modeled and simulated Event-Related Potential (ERP) data from 13 healthy children (Mean age = 5.12, Standard Deviation = 0.75) during a computerized visual sustained target detection task. Extending an ERP-based ACT–R (Adaptive Control of Thought–Rational) neurocognitive modeling approach, we tested whether visual sustained selective-set attention in preschool children involves the enhancement of neural response to targets, and it shows key adult-like features (neurofunctional homology). Blinded automatic peaks analysis was conducted on vincentized binned grand ERP averages. Time-course and distribution of scalp activity were detailed through topographic mapping and paths analysis. Reaction times and accuracy were also measured. Adult Magnetic Resonance Imaging-based mapping using ACT–R dipole source modeling and electric-field spiking simulation provided very good fit with the actual ERP data (R2 > 0.70). In most electrodes, between 50 and 400 ms, ERPs concurrent with target presentation were enhanced relative to distractor, without manual response confounds. Triangulation of peak analysis, ACT–R modeling and simulation for the entire ERP epochs up to the moment of manual response (~700 ms, on average) suggested converging evidence of distinct but interacting processes of enhancement and planning for response release/inhibition, respectively. The latter involved functions and structures consistent with adult ERP activity which might correspond to a large-scale network, implicating Dorsal and Ventral Attentional Networks, corticostriatal loops, and subcortical hubs connected to prefrontal cortex top-down working memory executive control. Although preliminary, the present approach suggests novel directions for further tests and falsifiable hypotheses on the origins and development of visual selective attention and their ERP correlates.
Collapse
Affiliation(s)
- Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
- Neuroscience of Imagination, Cognition & Emotion Research (NICER) Lab, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Correspondence:
| | - Dao Anh Thu Pham
- Neuroscience of Imagination, Cognition & Emotion Research (NICER) Lab, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Gerry Leisman
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Gary Goldfield
- Department of Pediatrics, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 5B2, Canada
| |
Collapse
|
23
|
The Claustrum-Prefrontal Cortex Pathway Regulates Impulsive-Like Behavior. J Neurosci 2019; 39:10071-10080. [PMID: 31704786 DOI: 10.1523/jneurosci.1005-19.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
The claustrum connects with a broad range of cortical areas including the prefrontal cortex (PFC). However, the function of the claustrum (CLA) and its neural projections remains largely unknown. Here, we elucidated the role of the neural projections from the CLA to the PFC in regulating impulsivity in male rats. We first identified the CLA-PFC pathway by retrograde tracer and virus expression. By using immunofluorescent staining of the c-Fos-positive neurons, we showed that chemogenetic activation and inhibition of the CLA-PFC pathway reduced and increased overall activity of the PFC, respectively. In the 5-choice serial reaction time task (5-CSRTT), we found that chemogenetic activation and inhibition of the CLA-PFC pathway increased and reduced the impulsive-like behavior (i.e., premature responses), respectively. Furthermore, chemogenetic inhibition of the CLA-PFC pathway prevented methamphetamine-induced impulsivity, without affecting methamphetamine-induced hyperactivity. In contrast to the role of CLA-PFC pathway in selectively regulating impulsivity, activation of the claustrum disrupted attention in the 5-CSRTT. These results indicate that the CLA-PFC pathway is essential for impulsivity. This study may shed light on the understanding of impulsivity-related disorders such as drug addiction.SIGNIFICANCE STATEMENT The claustrum is one of the most mysterious brain regions. Although extensive anatomical studies demonstrated that the claustrum connects with many cortical areas, the function of the neural projections between the claustrum and cortical areas remain largely unknown. Here, we showed that the neural projections from the claustrum to the prefrontal cortex regulates impulsivity by using the designer drugs (DREADDs)-based chemogenetic tools. Interestingly, the claustrum-prefrontal cortex pathway also regulates methamphetamine-induced impulsivity, suggesting a critical role of this neural pathway in regulating impulsivity-related disorders such as drug addiction. Our results provided preclinical evidence that the claustrum-prefrontal cortex regulates impulsivity. The claustrum-prefrontal cortex pathway may be a novel target for the treatment of impulsivity-related brain disorders.
Collapse
|
24
|
Cytoarchitecture of the dorsal claustrum of the cat: a quantitative Golgi study. J Mol Histol 2019; 50:435-457. [DOI: 10.1007/s10735-019-09839-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022]
|
25
|
Barbier M, Risold PY. The claustrum is a target for projections from the supramammillary nucleus in the rat. Neuroscience 2019; 409:261-275. [PMID: 30930128 DOI: 10.1016/j.neuroscience.2019.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
Abstract
Injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) into the rat rostral and caudal supramammillary nucleus (SUM) provided expected patterns of projections into the hippocampus and the septal region. In addition, unexpectedly intense projections were observed into the claustrum defined by parvalbumin expression. Injections of the retrograde tracer fluorogold (FG) into the hippocampus and the region of the claustrum showed that the cells of origin of these projections distributed similarly within the borders of the SUM. The SUM is usually involved in control of hippocampal theta activity, but the observation of intense projections into the claustrum indicates that it may also influence isocortical processes. Therefore, the SUM may coordinate sensory processing in the isocortex with memory formation in the hippocampus.
Collapse
Affiliation(s)
- Marie Barbier
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France.
| | - Pierre-Yves Risold
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France
| |
Collapse
|
26
|
Hinova-Palova D, Iliev A, Landzhov B, Kotov G, Stanchev S, Georgiev GP, Kirkov V, Edelstein L, Paloff A. Ultrastructure of the dorsal claustrum in cat. I. Types of neurons. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/20023294.2019.1578636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dimka Hinova-Palova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Kotov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi P. Georgiev
- Department of Orthopedics and Traumatology, University Hospital St. Giovanna-ISUL, Medical University of Sofia, Sofia, Bulgaria
| | - Vidin Kirkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | | | - Adrian Paloff
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
27
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
28
|
Hinova-Palova D, Iliev A, Edelstein L, Landzhov B, Kotov G, Paloff A. Electron microscopic study of Golgi-impregnated and gold-toned neurons and fibers in the claustrum of the cat. J Mol Histol 2018; 49:615-630. [DOI: 10.1007/s10735-018-9799-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022]
|
29
|
Zingg B, Dong HW, Tao HW, Zhang LI. Input-output organization of the mouse claustrum. J Comp Neurol 2018; 526:2428-2443. [PMID: 30252130 DOI: 10.1002/cne.24502] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/04/2023]
Abstract
Progress in determining the precise organization and function of the claustrum (CLA) has been hindered by the difficulty in reliably targeting these neurons. To overcome this, we used a projection-based targeting strategy to selectively label CLA principal neurons. Combined with adeno-associated virus (AAV) and monosynaptic rabies tracing techniques, we systematically examined the pre-synaptic input and axonal output of this structure. We found that CLA neurons projecting to retrosplenial cortex (RSP) collateralize extensively to innervate a variety of higher-order cortical regions. No subcortical labeling was found, with the exception of sparse terminals in the basolateral amygdala (BLA). This pattern of output was similar to cingulate- and visual cortex-projecting CLA neurons, suggesting a common targeting scheme among these projection-defined populations. Rabies virus tracing directly demonstrated widespread synaptic inputs to RSP-projecting CLA neurons from both cortical and subcortical areas. The strongest inputs arose from classically defined limbic regions, including medial prefrontal cortex, anterior cingulate, BLA, ventral hippocampus, and neuromodulatory systems such as the dorsal raphe and cholinergic basal forebrain. These results suggest that the CLA may integrate information related to the emotional salience of stimuli and may globally modulate cortical state by broadcasting its output uniformly across a variety of higher cognitive centers.
Collapse
Affiliation(s)
- Brian Zingg
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Hong-Wei Dong
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li I Zhang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
30
|
Abstract
Background The claustrum (CLA) has been discussed as central to integrated conscious percepts, although recent evidence has emphasized a role in detecting sensory novelty or in amplifying correlated cortical inputs. Objective We report that many neurons in the macaque CLA are ensheathed in perineuronal nets (PNNs), which contribute to synaptic stability and enhance neuronal excitability, among other properties. Design We visualized PNNs by wisteria floribunda agglutinin (WFA) immunohistochemistry, and quantified these in comparison these to parvalbumin+ (PV) subsets and total neurons. Results PNNs ensheath about 11% of the total neurons. These are a range of large, medium, and small neurons, likely corresponding to PV+ and/or other inhibitory interneurons. The PNNs were themselves heterogeneous, consisting of lattice-like, weakly labeled, and diffuse subtypes, and showed some regional preference for the medial CLA. Conclusion The abundant neuronal labeling by PNNs in the CLA suggests an important and nuanced role for inhibition, consistent with recent physiological studies of claustrocortical circuitry. For comparison, diversified inhibition in the reticular nucleus of the thalamus (a pan-inhibitory nucleus, with extensive cortical input) exerts a spectrum of control at different local and global spatiotemporal scales. Further investigation of PNN+ neurons in the macaque CLA offers a potentially important new approach to CLA function, relevant to the human brain both in normal and diseased conditions.
Collapse
Affiliation(s)
- Mihovil Pletikos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA. 02118
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA. 02118
| |
Collapse
|