1
|
Itoh MT. The influence of self-generated song during aggression on brain serotonin levels in male crickets. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:29. [PMID: 39348594 PMCID: PMC11441574 DOI: 10.1093/jisesa/ieae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024]
Abstract
Pairs of adult male crickets, Gryllus bimaculatus, fight and immediately determine winner and loser statuses. The winner male repeatedly produces an aggressive (rival) song by rubbing his forewings together. In this study, I removed the plectrum, a sound-producing structure in the forewing, from male crickets and measured their brain serotonin (5-hydroxytryptamine: 5-HT) levels immediately after a 10-min aggressive interaction. Pairs of plectrum-removed males fought and established clear winner-loser relationships, like the case of intact males. The plectrum-removed winner males frequently rubbed their forewings together, but were unable to produce song. Aggressive interaction reduced significantly brain 5-HT levels in the plectrum-removed males, regardless of their winner and loser statuses. Furthermore, the reduction of brain 5-HT was detected primarily in the central body, a group of neuropils spanning the midline of the brain. In contrast, in pairs of intact males, aggressive interaction reduced brain 5-HT levels in the loser males, but not in the winner males. Plectrum removal alone did not affect the brain's 5-HT levels. These results suggest that aggressive song emitted by the winner male cricket prevents the reduction of 5-HT levels in his own brain, especially in the central body.
Collapse
Affiliation(s)
- Masanori T Itoh
- Department of Biology, Liberal Arts and Sciences Division, Institute of Education, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| |
Collapse
|
2
|
Vilimelis Aceituno P, Dall'Osto D, Pisokas I. Theoretical principles explain the structure of the insect head direction circuit. eLife 2024; 13:e91533. [PMID: 38814703 PMCID: PMC11139481 DOI: 10.7554/elife.91533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/28/2024] [Indexed: 05/31/2024] Open
Abstract
To navigate their environment, insects need to keep track of their orientation. Previous work has shown that insects encode their head direction as a sinusoidal activity pattern around a ring of neurons arranged in an eight-column structure. However, it is unclear whether this sinusoidal encoding of head direction is just an evolutionary coincidence or if it offers a particular functional advantage. To address this question, we establish the basic mathematical requirements for direction encoding and show that it can be performed by many circuits, all with different activity patterns. Among these activity patterns, we prove that the sinusoidal one is the most noise-resilient, but only when coupled with a sinusoidal connectivity pattern between the encoding neurons. We compare this predicted optimal connectivity pattern with anatomical data from the head direction circuits of the locust and the fruit fly, finding that our theory agrees with experimental evidence. Furthermore, we demonstrate that our predicted circuit can emerge using Hebbian plasticity, implying that the neural connectivity does not need to be explicitly encoded in the genetic program of the insect but rather can emerge during development. Finally, we illustrate that in our theory, the consistent presence of the eight-column organisation of head direction circuits across multiple insect species is not a chance artefact but instead can be explained by basic evolutionary principles.
Collapse
Affiliation(s)
| | - Dominic Dall'Osto
- Institute of Neuroinformatics, University of Zürich and ETH ZürichZurichSwitzerland
| | - Ioannis Pisokas
- School of Informatics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
3
|
Garner D, Kind E, Nern A, Houghton L, Zhao A, Sancer G, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts the functional organization of visual inputs to the navigation center of the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569241. [PMID: 38076786 PMCID: PMC10705420 DOI: 10.1101/2023.11.29.569241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Many animals, including humans, navigate their surroundings by visual input, yet we understand little about how visual information is transformed and integrated by the navigation system. In Drosophila melanogaster, compass neurons in the donut-shaped ellipsoid body of the central complex generate a sense of direction by integrating visual input from ring neurons, a part of the anterior visual pathway (AVP). Here, we densely reconstruct all neurons in the AVP using FlyWire, an AI-assisted tool for analyzing electron-microscopy data. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons, which connect the medulla in the optic lobe to the small unit of anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons, which connect the anterior optic tubercle to the bulb neuropil; and ring neurons, which connect the bulb to the ellipsoid body. Based on neuronal morphologies, connectivity between different neural classes, and the locations of synapses, we identified non-overlapping channels originating from four types of MeTu neurons, which we further divided into ten subtypes based on the presynaptic connections in medulla and postsynaptic connections in AOTUsu. To gain an objective measure of the natural variation within the pathway, we quantified the differences between anterior visual pathways from both hemispheres and between two electron-microscopy datasets. Furthermore, we infer potential visual features and the visual area from which any given ring neuron receives input by combining the connectivity of the entire AVP, the MeTu neurons' dendritic fields, and presynaptic connectivity in the optic lobes. These results provide a strong foundation for understanding how distinct visual features are extracted and transformed across multiple processing stages to provide critical information for computing the fly's sense of direction.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Gerald M. Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Ortega-Escobar J, Hebets EA, Bingman VP, Wiegmann DD, Gaffin DD. Comparative biology of spatial navigation in three arachnid orders (Amblypygi, Araneae, and Scorpiones). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01612-2. [PMID: 36781447 DOI: 10.1007/s00359-023-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
From both comparative biology and translational research perspectives, there is escalating interest in understanding how animals navigate their environments. Considerable work is being directed towards understanding the sensory transduction and neural processing of environmental stimuli that guide animals to, for example, food and shelter. While much has been learned about the spatial orientation behavior, sensory cues, and neurophysiology of champion navigators such as bees and ants, many other, often overlooked animal species possess extraordinary sensory and spatial capabilities that can broaden our understanding of the behavioral and neural mechanisms of animal navigation. For example, arachnids are predators that often return to retreats after hunting excursions. Many of these arachnid central-place foragers are large and highly conducive to scientific investigation. In this review we highlight research on three orders within the Class Arachnida: Amblypygi (whip spiders), Araneae (spiders), and Scorpiones (scorpions). For each, we describe (I) their natural history and spatial navigation, (II) how they sense the world, (III) what information they use to navigate, and (IV) how they process information for navigation. We discuss similarities and differences among the groups and highlight potential avenues for future research.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
5
|
Rana A, Adams ME, Libersat F. Parasitoid wasp venom re-programs host behavior through downmodulation of brain central complex activity and motor output. J Exp Biol 2023; 226:286758. [PMID: 36700409 PMCID: PMC10088415 DOI: 10.1242/jeb.245252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
The parasitoid wasp Ampulex compressa hunts down its host, the American cockroach (Periplaneta americana), and envenomates its brain to make it a behaviorally compliant food supply for its offspring. The primary target of the wasp sting is a locomotory command center called the central complex (CX). In the present study, we employ, for the first time, chronic recordings of patterned cockroach CX activity in real time as the brain is infused with wasp venom. CX envenomation is followed by sequential changes in the pattern of neuronal firing that can be divided into three distinct temporal phases during the 2 h interval after venom injection: (1) reduction in neuronal activity for roughly 10 min immediately after venom injection; (2) rebound of activity lasting up to 25 min; (3) reduction of ongoing activity for up to 2 h. Long-term reduction of CX activity after venom injection is accompanied by decreased activity of both descending interneurons projecting to thoracic locomotory circuitry (DINs) and motor output. Thus, in this study, we provide a plausible chain of events starting in the CX that leads to decreased host locomotion following brain envenomation. We propose that these events account for the onset and maintenance of the prolonged hypokinetic state observed in stung cockroaches.
Collapse
Affiliation(s)
- Amit Rana
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael E Adams
- Departments of Entomology and Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
6
|
Zittrell F, Pabst K, Carlomagno E, Rosner R, Pegel U, Endres DM, Homberg U. Integration of optic flow into the sky compass network in the brain of the desert locust. Front Neural Circuits 2023; 17:1111310. [PMID: 37187914 PMCID: PMC10175609 DOI: 10.3389/fncir.2023.1111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Flexible orientation through any environment requires a sense of current relative heading that is updated based on self-motion. Global external cues originating from the sky or the earth's magnetic field and local cues provide a reference frame for the sense of direction. Locally, optic flow may inform about turning maneuvers, travel speed and covered distance. The central complex in the insect brain is associated with orientation behavior and largely acts as a navigation center. Visual information from global celestial cues and local landmarks are integrated in the central complex to form an internal representation of current heading. However, it is less clear how optic flow is integrated into the central-complex network. We recorded intracellularly from neurons in the locust central complex while presenting lateral grating patterns that simulated translational and rotational motion to identify these sites of integration. Certain types of central-complex neurons were sensitive to optic-flow stimulation independent of the type and direction of simulated motion. Columnar neurons innervating the noduli, paired central-complex substructures, were tuned to the direction of simulated horizontal turns. Modeling the connectivity of these neurons with a system of proposed compass neurons can account for rotation-direction specific shifts in the activity profile in the central complex corresponding to turn direction. Our model is similar but not identical to the mechanisms proposed for angular velocity integration in the navigation compass of the fly Drosophila.
Collapse
Affiliation(s)
- Frederick Zittrell
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
| | - Kathrin Pabst
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Elena Carlomagno
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Dominik M. Endres
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- *Correspondence: Uwe Homberg
| |
Collapse
|
7
|
The sky compass network in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01601-x. [PMID: 36550368 DOI: 10.1007/s00359-022-01601-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.
Collapse
|
8
|
Ding H, Yan S. Physiological Signatures of Changes in Honeybee's Central Complex During Wing Flapping. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 36222481 PMCID: PMC9554949 DOI: 10.1093/jisesa/ieac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 06/16/2023]
Abstract
Many kinds of locomotion abilities of insects-including flight control, spatial orientation memory, position memory, angle information integration, and polarized light guidance are considered to be related to the central complex. However, evidence was still not sufficient to support those conclusions from the aspect of neural basis. For the locomotion form of wing flapping, little is known about the patterns of changes in brain activity of the central complex during movement. Here, we analyze the changes in honeybees' neuronal population firing activity of central complex and optic lobes with the perspectives of energy and nonlinear changes. Although the specific function of the central complex remains unknown, evidence suggests that its neural activities change remarkably during wing flapping and its delta rhythm is dominative. Together, our data reveal that the firing activity of some of the neuronal populations of the optic lobe shows reduction in complexity during wing flapping. Elucidating the brain activity changes during a flapping period of insects promotes our understanding of the neuro-mechanisms of insect locomotor control, thus can inspire the fine control of insect cyborgs.
Collapse
Affiliation(s)
- Haojia Ding
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Division of Intelligent and Biomechanical Systems, Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
| | | |
Collapse
|
9
|
Rana A, Emanuel S, Adams ME, Libersat F. Suppression of host nocifensive behavior by parasitoid wasp venom. Front Physiol 2022; 13:907041. [PMID: 36035493 PMCID: PMC9411936 DOI: 10.3389/fphys.2022.907041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
The parasitoid wasp Ampulex compressa envenomates the brain of its host the American cockroach (Periplaneta americana), thereby making it a behaviorally compliant food supply for its offspring. The target of venom injection is a locomotory command center in the brain called the central complex. In this study, we investigate why stung cockroaches do not respond to injuries incurred during the manipulation process by the wasp. In particular, we examine how envenomation compromises nociceptive signaling pathways in the host. Noxious stimuli applied to the cuticle of stung cockroaches fail to evoke escape responses, even though nociceptive interneurons projecting to the brain respond normally. Hence, while nociceptive signals are carried forward to the brain, they fail to trigger robust nocifensive behavior. Electrophysiological recordings from the central complex of stung animals demonstrate decreases in peak firing rate, total firing, and duration of noxious-evoked activity. The single parameter best correlated with altered noxious-evoked behavioral responses of stung cockroaches is reduced duration of the evoked response in the central complex. Our findings demonstrate how the reproductive strategy of a parasitoid wasp is served by venom-mediated elimination of aversive, nocifensive behavior in its host.
Collapse
Affiliation(s)
- Amit Rana
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Michael E. Adams
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
- *Correspondence: Frederic Libersat,
| |
Collapse
|
10
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
11
|
Wosnitza A, Martin JP, Pollack AJ, Svenson GJ, Ritzmann RE. The Role of Central Complex Neurons in Prey Detection and Tracking in the Freely Moving Praying Mantis (Tenodera sinensis). Front Neural Circuits 2022; 16:893004. [PMID: 35769200 PMCID: PMC9234402 DOI: 10.3389/fncir.2022.893004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.
Collapse
Affiliation(s)
- Anne Wosnitza
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Joshua P. Martin
- Department of Biology, Colby College, Waterville, ME, United States
- *Correspondence: Joshua P. Martin
| | - Alan J. Pollack
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Gavin J. Svenson
- Cleveland Museum of Natural History, Cleveland, OH, United States
| | - Roy E. Ritzmann
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
12
|
Liang H, Bai H, Li Z, Cao Y. Polarized light sun position determination artificial neural network. APPLIED OPTICS 2022; 61:1456-1463. [PMID: 35201031 DOI: 10.1364/ao.453177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Our previous work has constructed a polarized light orientation determination (PLOD) artificial neural network. Although a PLOD network can determine the solar azimuth angle, it cannot determine the solar elevation angle. Therefore, this paper proposes an artificial neural network for polarized light solar position determination (PLSPD), which has two branches: the solar azimuth angle determination branch and the solar elevation angle determination branch. Since the solar elevation angle has no cyclic characteristics, and the angle range of the solar elevation angle is different from that of the solar azimuth angle, the solar elevation angle exponential function encoding is redesigned. In addition, compared with the PLOD, the PLSPD deletes a local full connection layer to simplify the network structure. The experimental results show that the PLSPD can determine not only the solar azimuth angle but also the solar elevation angle, and the solar azimuth angle determination accuracy of the PLSPD is higher than that of the PLOD.
Collapse
|
13
|
Takahashi N, Zittrell F, Hensgen R, Homberg U. Receptive field structures for two celestial compass cues at the input stage of the central complex in the locust brain. J Exp Biol 2022; 225:274503. [DOI: 10.1242/jeb.243858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
Successful navigation depends on an animal's ability to perceive its spatial orientation relative to visual surroundings. Heading direction in insects is represented in the central complex (CX), a navigation center in the brain, to generate steering commands. In insects that navigate relative to sky compass signals, CX neurons are tuned to celestial cues indicating the location of the sun. The desert locust CX contains a compass-like representation of two related celestial cues: the direction of unpolarized direct sunlight and the pattern of polarized light, which depends on the sun position. Whether congruent tuning to these two compass cues emerges within the CX network or is inherited from CX input neurons is unclear. To address this question, we intracellularly recorded from GABA-immunoreactive TL neurons, input elements to the locust CX (corresponding to R neurons in Drosophila), while applying visual stimuli simulating unpolarized sunlight and polarized light across the hemisphere above the animal. We show that TL neurons have large receptive fields for both types of stimuli. However, faithful integration of polarization angles across the dorsal hemisphere, or matched-filter ability to encode particular sun positions, was found in only two out of 22 recordings. Those two neurons also showed a good match in sun position coding through polarized and unpolarized light signaling, whereas 20 neurons showed substantial mismatch in signaling of the two compass cues. The data, therefore, suggest that considerable refinement of azimuth coding based on sky compass signals occurs at the synapses from TL neurons to postsynaptic CX compass neurons.
Collapse
Affiliation(s)
- Naomi Takahashi
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Frederick Zittrell
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
14
|
Yadav P, Shein-Idelson M. Polarization vision in invertebrates: beyond the boundaries of navigation. CURRENT OPINION IN INSECT SCIENCE 2021; 48:50-56. [PMID: 34628060 DOI: 10.1016/j.cois.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 05/05/2023]
Abstract
Invertebrates possess the unique ability to see polarized light. This allows them to exploit the rich polarization information embedded in their natural environments: patterns in plants, high contrast on water surfaces, distinctive signatures of conspecifics, and the celestial polarization pattern around the sun. From this wide repertoire of polarization signals, studies have primarily focused on understanding how celestial polarization information is converted into an internal compass. This review highlights several studies which suggest that spatio-temporal polarization information is utilized by insects for additional functions, such as signaling, detection, contrast enhancement, and host assessment. It concludes by evaluating recent technological advances for uncovering the full repertoire of polarization-sensitivity in invertebrates.
Collapse
Affiliation(s)
- Pratibha Yadav
- Sagol School of Neuroscience, Tel Aviv University, Israel; School of Zoology, Tel Aviv University, Israel
| | - Mark Shein-Idelson
- Sagol School of Neuroscience, Tel Aviv University, Israel; School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Israel.
| |
Collapse
|
15
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
16
|
Buhl E, Kottler B, Hodge JJL, Hirth F. Thermoresponsive motor behavior is mediated by ring neuron circuits in the central complex of Drosophila. Sci Rep 2021; 11:155. [PMID: 33420240 PMCID: PMC7794218 DOI: 10.1038/s41598-020-80103-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023] Open
Abstract
Insects are ectothermal animals that are constrained in their survival and reproduction by external temperature fluctuations which require either active avoidance of or movement towards a given heat source. In Drosophila, different thermoreceptors and neurons have been identified that mediate temperature sensation to maintain the animal’s thermal preference. However, less is known how thermosensory information is integrated to gate thermoresponsive motor behavior. Here we use transsynaptic tracing together with calcium imaging, electrophysiology and thermogenetic manipulations in freely moving Drosophila exposed to elevated temperature and identify different functions of ellipsoid body ring neurons, R1-R4, in thermoresponsive motor behavior. Our results show that warming of the external surroundings elicits calcium influx specifically in R2-R4 but not in R1, which evokes threshold-dependent neural activity in the outer layer ring neurons. In contrast to R2, R3 and R4d neurons, thermogenetic inactivation of R4m and R1 neurons expressing the temperature-sensitive mutant allele of dynamin, shibireTS, results in impaired thermoresponsive motor behavior at elevated 31 °C. trans-Tango mediated transsynaptic tracing together with physiological and behavioral analyses indicate that integrated sensory information of warming is registered by neural activity of R4m as input layer of the ellipsoid body ring neuropil and relayed on to R1 output neurons that gate an adaptive motor response. Together these findings imply that segregated activities of central complex ring neurons mediate sensory-motor transformation of external temperature changes and gate thermoresponsive motor behavior in Drosophila.
Collapse
Affiliation(s)
- Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK.
| | - Benjamin Kottler
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
17
|
Currier TA, Matheson AMM, Nagel KI. Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons. eLife 2020; 9:e61510. [PMID: 33377868 PMCID: PMC7793622 DOI: 10.7554/elife.61510] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Andrew MM Matheson
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
18
|
Pisokas I, Heinze S, Webb B. The head direction circuit of two insect species. eLife 2020; 9:e53985. [PMID: 32628112 PMCID: PMC7419142 DOI: 10.7554/elife.53985] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Recent studies of the Central Complex in the brain of the fruit fly have identified neurons with activity that tracks the animal's heading direction. These neurons are part of a neuronal circuit with dynamics resembling those of a ring attractor. The homologous circuit in other insects has similar topographic structure but with significant structural and connectivity differences. We model the connectivity patterns of two insect species to investigate the effect of these differences on the dynamics of the circuit. We illustrate that the circuit found in locusts can also operate as a ring attractor but differences in the inhibition pattern enable the fruit fly circuit to respond faster to heading changes while additional recurrent connections render the locust circuit more tolerant to noise. Our findings demonstrate that subtle differences in neuronal projection patterns can have a significant effect on circuit performance and illustrate the need for a comparative approach in neuroscience.
Collapse
Affiliation(s)
- Ioannis Pisokas
- School of Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Stanley Heinze
- Lund Vision Group and NanoLund, Lund UniversityLundSweden
| | - Barbara Webb
- School of Informatics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
19
|
Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. The brain of
Cataglyphis
ants: Neuronal organization and visual projections. J Comp Neurol 2020; 528:3479-3506. [DOI: 10.1002/cne.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jens Habenstein
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Emad Amini
- Biocenter, Neurobiology and Genetics University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Basil el Jundi
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| |
Collapse
|
20
|
von Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, Quintero Pérez M, Homberg U. Neuroarchitecture of the central complex of the desert locust: Tangential neurons. J Comp Neurol 2019; 528:906-934. [PMID: 31625611 DOI: 10.1002/cne.24796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.
Collapse
Affiliation(s)
- Joss von Hadeln
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Tobias Bockhorst
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Rosner
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Heidasch
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Manuel Quintero Pérez
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
21
|
Neuroethology of the Waggle Dance: How Followers Interact with the Waggle Dancer and Detect Spatial Information. INSECTS 2019; 10:insects10100336. [PMID: 31614450 PMCID: PMC6835826 DOI: 10.3390/insects10100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022]
Abstract
Since the honeybee possesses eusociality, advanced learning, memory ability, and information sharing through the use of various pheromones and sophisticated symbol communication (i.e., the "waggle dance"), this remarkable social animal has been one of the model symbolic animals for biological studies, animal ecology, ethology, and neuroethology. Karl von Frisch discovered the meanings of the waggle dance and called the communication a "dance language." Subsequent to this discovery, it has been extensively studied how effectively recruits translate the code in the dance to reach the advertised destination and how the waggle dance information conflicts with the information based on their own foraging experience. The dance followers, mostly foragers, detect and interact with the waggle dancer, and are finally recruited to the food source. In this review, we summarize the current state of knowledge on the neural processing underlying this fascinating behavior.
Collapse
|
22
|
Xie X, Tabuchi M, Corver A, Duan G, Wu MN, Kolodkin AL. Semaphorin 2b Regulates Sleep-Circuit Formation in the Drosophila Central Brain. Neuron 2019; 104:322-337.e14. [PMID: 31564592 DOI: 10.1016/j.neuron.2019.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/09/2019] [Accepted: 07/14/2019] [Indexed: 11/29/2022]
Abstract
The fan-shaped body (FB) neuropil in the Drosophila brain central complex (CX) controls a variety of adult behaviors, including navigation and sleep. How neuronal processes are organized into precise layers and columns in the FB and how alterations in FB neural-circuit wiring affect animal behaviors are unknown. We report here that secreted semaphorin 2b (Sema-2b) acts through its transmembrane receptor Plexin B (PlexB) to locally attract neural processes to specific FB laminae. Aberrant Sema-2b/PlexB signaling leads to select disruptions in neural lamination, and these disruptions result in the formation of ectopic inhibitory connections between subsets of FB neurons. These structural alternations and connectivity defects are associated with changes in fly sleep and arousal, emphasizing the importance of lamination-mediated neural wiring in a central brain region critical for normal sleep behavior.
Collapse
Affiliation(s)
- Xiaojun Xie
- Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Masashi Tabuchi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abel Corver
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Grace Duan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Gkanias E, Risse B, Mangan M, Webb B. From skylight input to behavioural output: A computational model of the insect polarised light compass. PLoS Comput Biol 2019; 15:e1007123. [PMID: 31318859 PMCID: PMC6638774 DOI: 10.1371/journal.pcbi.1007123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/22/2019] [Indexed: 01/30/2023] Open
Abstract
Many insects navigate by integrating the distances and directions travelled on an outward path, allowing direct return to the starting point. Fundamental to the reliability of this process is the use of a neural compass based on external celestial cues. Here we examine how such compass information could be reliably computed by the insect brain, given realistic constraints on the sky polarisation pattern and the insect eye sensor array. By processing the degree of polarisation in different directions for different parts of the sky, our model can directly estimate the solar azimuth and also infer the confidence of the estimate. We introduce a method to correct for tilting of the sensor array, as might be caused by travel over uneven terrain. We also show that the confidence can be used to approximate the change in sun position over time, allowing the compass to remain fixed with respect to 'true north' during long excursions. We demonstrate that the compass is robust to disturbances and can be effectively used as input to an existing neural model of insect path integration. We discuss the plausibility of our model to be mapped to known neural circuits, and to be implemented for robot navigation.
Collapse
Affiliation(s)
- Evripidis Gkanias
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Risse
- Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Michael Mangan
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Webb
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Collett TS. Path integration: how details of the honeybee waggle dance and the foraging strategies of desert ants might help in understanding its mechanisms. ACTA ACUST UNITED AC 2019; 222:222/11/jeb205187. [PMID: 31152122 DOI: 10.1242/jeb.205187] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Path integration is a navigational strategy that gives an animal an estimate of its position relative to some starting point. For many decades, ingenious and probing behavioural experiments have been the only window onto the operation of path integration in arthropods. New methods have now made it possible to visualise the activity of neural circuits in Drosophila while they fly or walk in virtual reality. Studies of this kind, as well as electrophysiological recordings from single neurons in the brains of other insects, are revealing details of the neural mechanisms that control an insect's direction of travel and other aspects of path integration. The aim here is first to review the major features of path integration in foraging desert ants and honeybees, the current champion path integrators of the insect world, and second consider how the elaborate behaviour of these insects might be accommodated within the framework of the newly understood neural circuits. The discussion focuses particularly on the ability of ants and honeybees to use a celestial compass to give direction in Earth-based coordinates, and of honeybees to use a landscape panorama to provide directional guidance for path integration. The possibility is raised that well-ordered behaviour might in some cases substitute for complex circuitry.
Collapse
Affiliation(s)
- Thomas S Collett
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
25
|
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 2019; 8:rsob.170224. [PMID: 29321240 PMCID: PMC5795053 DOI: 10.1098/rsob.170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Esther Kolbe
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Noa B Kahana
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nadav Yayon
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Weiss
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Guy Bloch
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
26
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
27
|
Rosner R, Pegel U, Homberg U. Responses of compass neurons in the locust brain to visual motion and leg motor activity. J Exp Biol 2019; 222:jeb.196261. [DOI: 10.1242/jeb.196261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/28/2019] [Indexed: 11/20/2022]
Abstract
The central complex, a group of midline neuropils in the insect brain, plays a key role in spatial orientation and navigation. Work in locusts, crickets, dung beetles, bees, and butterflies suggests that it harbors a network of neurons which determines the orientation of the insect relative to the pattern of polarized light in the blue sky. In locusts, these compass cells also respond to simulated approaching objects. Here we investigate in the locust Schistocerca gregaria whether compass cells change their activity when the animal experiences large-field visual motion or when the animal is engaged in walking behavior. We recorded intracellularly from these neurons while the tethered animals were allowed to perform walking movements on a slippery surface. We concurrently presented moving grating stimuli from the side or polarized light through a rotating polarizer from above. Large-field motion was combined with the simulation of approaching objects to evaluate whether responses differed from those presented on a stationary background. Here we show for the first time that compass cells are sensitive to large-field motion. Responses to looming stimuli were often more conspicuous during large-field motion. Walking activity influenced spiking rates at all stages of the network. The strength of responses to the plane of polarized light was affected in some compass cells during leg motor activity. The data show that signaling in compass cells of the locust central complex is modulated by visual context and locomotor activity.
Collapse
Affiliation(s)
- Ronny Rosner
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
- Present address: Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Uwe Homberg
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
28
|
El Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol 2018; 526:2612-2630. [PMID: 30136721 DOI: 10.1002/cne.24520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Despite their tiny brains, insects show impressive abilities when navigating over short distances during path integration or during migration over thousands of kilometers across entire continents. Celestial compass cues often play an important role as references during navigation. In contrast to many other insects, South African dung beetles rely exclusively on celestial cues for visual reference during orientation. After finding a dung pile, these animals cut off a piece of dung from the pat, shape it into a ball and roll it away along a straight path until a suitable place for underground consumption is found. To maintain a constant bearing, a brain region in the beetle's brain, called the central complex, is crucially involved in the processing of skylight cues, similar to what has already been shown for path-integrating and migrating insects. In this study, we characterized the neuroanatomy of the sky-compass network and the central complex in the dung beetle brain in detail. Using tracer injections, combined with imaging and 3D modeling, we describe the anatomy of the possible sky-compass network in the central brain. We used a quantitative approach to study the central-complex network and found that several types of neuron exhibit a highly organized connectivity pattern. The architecture of the sky-compass network and central complex is similar to that described in insects that perform path integration or are migratory. This suggests that, despite their different orientation behaviors, this neural circuitry for compass orientation is highly conserved among the insects.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, Zoology II, Emmy Noether Animal Navigation Group, University of Würzburg, Germany
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Marie Dacke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Franconville R, Beron C, Jayaraman V. Building a functional connectome of the Drosophila central complex. eLife 2018; 7:e37017. [PMID: 30124430 PMCID: PMC6150698 DOI: 10.7554/elife.37017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
The central complex is a highly conserved insect brain region composed of morphologically stereotyped neurons that arborize in distinctively shaped substructures. The region is implicated in a wide range of behaviors and several modeling studies have explored its circuit computations. Most studies have relied on assumptions about connectivity between neurons based on their overlap in light microscopy images. Here, we present an extensive functional connectome of Drosophila melanogaster's central complex at cell-type resolution. Using simultaneous optogenetic stimulation, calcium imaging and pharmacology, we tested the connectivity between 70 presynaptic-to-postsynaptic cell-type pairs. We identified numerous inputs to the central complex, but only a small number of output channels. Additionally, the connectivity of this highly recurrent circuit appears to be sparser than anticipated from light microscopy images. Finally, the connectivity matrix highlights the potentially critical role of a class of bottleneck interneurons. All data are provided for interactive exploration on a website.
Collapse
Affiliation(s)
| | - Celia Beron
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
30
|
Heinze S. Unraveling the neural basis of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2017; 24:58-67. [PMID: 29208224 PMCID: PMC6186168 DOI: 10.1016/j.cois.2017.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund University, Department of Biology, Lund Vision Group, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
31
|
Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E, Heinze S. An Anatomically Constrained Model for Path Integration in the Bee Brain. Curr Biol 2017; 27:3069-3085.e11. [PMID: 28988858 DOI: 10.1016/j.cub.2017.08.052] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
Abstract
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved.
Collapse
Affiliation(s)
- Thomas Stone
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Rachel Templin
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Luca Scimeca
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
32
|
Omoto JJ, Keleş MF, Nguyen BCM, Bolanos C, Lovick JK, Frye MA, Hartenstein V. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations. Curr Biol 2017; 27:1098-1110. [PMID: 28366740 PMCID: PMC5446208 DOI: 10.1016/j.cub.2017.02.063] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/05/2023]
Abstract
The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway.
Collapse
Affiliation(s)
- Jaison Jiro Omoto
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet Fatih Keleş
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bao-Chau Minh Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cheyenne Bolanos
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Kelly Lovick
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Arthur Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Goldschmidt D, Manoonpong P, Dasgupta S. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents. Front Neurorobot 2017; 11:20. [PMID: 28446872 PMCID: PMC5388780 DOI: 10.3389/fnbot.2017.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
Collapse
Affiliation(s)
- Dennis Goldschmidt
- Bernstein Center for Computational Neuroscience, Third Institute of Physics - Biophysics, Georg-August UniversityGöttingen, Germany.,Champalimaud Neuroscience Programme, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Poramate Manoonpong
- Embodied AI and Neurorobotics Lab, Centre of BioRobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern DenmarkOdense, Denmark
| | | |
Collapse
|
34
|
Bockhorst T, Homberg U. Interaction of compass sensing and object-motion detection in the locust central complex. J Neurophysiol 2017; 118:496-506. [PMID: 28404828 DOI: 10.1152/jn.00927.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/21/2017] [Accepted: 03/11/2017] [Indexed: 01/08/2023] Open
Abstract
Goal-directed behavior is often complicated by unpredictable events, such as the appearance of a predator during directed locomotion. This situation requires adaptive responses like evasive maneuvers followed by subsequent reorientation and course correction. Here we study the possible neural underpinnings of such a situation in an insect, the desert locust. As in other insects, its sense of spatial orientation strongly relies on the central complex, a group of midline brain neuropils. The central complex houses sky compass cells that signal the polarization plane of skylight and thus indicate the animal's steering direction relative to the sun. Most of these cells additionally respond to small moving objects that drive fast sensory-motor circuits for escape. Here we investigate how the presentation of a moving object influences activity of the neurons during compass signaling. Cells responded in one of two ways: in some neurons, responses to the moving object were simply added to the compass response that had adapted during continuous stimulation by stationary polarized light. By contrast, other neurons disadapted, i.e., regained their full compass response to polarized light, when a moving object was presented. We propose that the latter case could help to prepare for reorientation of the animal after escape. A neuronal network based on central-complex architecture can explain both responses by slight changes in the dynamics and amplitudes of adaptation to polarized light in CL columnar input neurons of the system.NEW & NOTEWORTHY Neurons of the central complex in several insects signal compass directions through sensitivity to the sky polarization pattern. In locusts, these neurons also respond to moving objects. We show here that during polarized-light presentation, responses to moving objects override their compass signaling or restore adapted inhibitory as well as excitatory compass responses. A network model is presented to explain the variations of these responses that likely serve to redirect flight or walking following evasive maneuvers.
Collapse
Affiliation(s)
- Tobias Bockhorst
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
35
|
Chang PY, Su TS, Shih CT, Lo CC. The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing. Front Neuroinform 2017; 11:26. [PMID: 28443014 PMCID: PMC5385387 DOI: 10.3389/fninf.2017.00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex.
Collapse
Affiliation(s)
- Po-Yen Chang
- Institute of Systems Neuroscience, National Tsing Hua UniversityHsinchu, Taiwan
| | - Ta-Shun Su
- Institute of Systems Neuroscience, National Tsing Hua UniversityHsinchu, Taiwan
| | - Chi-Tin Shih
- Department of Applied Physics, Tunghai UniversityTaichung, Taiwan.,National Center for High-Performance ComputingHsunchu, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Tsing Hua UniversityHsinchu, Taiwan.,Department of Life Science, National Tsing Hua UniversityHsinchu, Taiwan
| |
Collapse
|
36
|
Varga AG, Kathman ND, Martin JP, Guo P, Ritzmann RE. Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control. Front Behav Neurosci 2017; 11:4. [PMID: 28174527 PMCID: PMC5258693 DOI: 10.3389/fnbeh.2017.00004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
Cockroaches are scavengers that forage through dark, maze-like environments. Like other foraging animals, for instance rats, they must continually asses their situation to keep track of targets and negotiate barriers. While navigating a complex environment, all animals need to integrate sensory information in order to produce appropriate motor commands. The integrated sensory cues can be used to provide the animal with an environmental and contextual reference frame for the behavior. To successfully reach a goal location, navigational cues continuously derived from sensory inputs have to be utilized in the spatial guidance of motor commands. The sensory processes, contextual and spatial mechanisms, and motor outputs contributing to navigation have been heavily studied in rats. In contrast, many insect studies focused on the sensory and/or motor components of navigation, and our knowledge of the abstract representation of environmental context and spatial information in the insect brain is relatively limited. Recent reports from several laboratories have explored the role of the central complex (CX), a sensorimotor region of the insect brain, in navigational processes by recording the activity of CX neurons in freely-moving insects and in more constrained, experimenter-controlled situations. The results of these studies indicate that the CX participates in processing the temporal and spatial components of sensory cues, and utilizes these cues in creating an internal representation of orientation and context, while also directing motor control. Although these studies led to a better understanding of the CX's role in insect navigation, there are still major voids in the literature regarding the underlying mechanisms and brain regions involved in spatial navigation. The main goal of this review is to place the above listed findings in the wider context of animal navigation by providing an overview of the neural mechanisms of navigation in rats and summarizing and comparing our current knowledge on the CX's role in insect navigation to these processes. By doing so, we aimed to highlight some of the missing puzzle pieces in insect navigation and provide a different perspective for future directions.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| | - Nicholas D Kathman
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| | | | - Peiyuan Guo
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| | - Roy E Ritzmann
- Department of Biology, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
37
|
Pegel U, Pfeiffer K, Homberg U. Integration of celestial compass cues in the central complex of the locust brain. J Exp Biol 2017; 221:jeb.171207. [DOI: 10.1242/jeb.171207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Many insects rely on celestial compass cues such as the polarization pattern of the sky for spatial orientation. In the desert locust, the central complex (CX) houses multiple sets of neurons, sensitive to the oscillation plane of polarized light and, thus, likely acts as an internal polarization compass. We investigated whether other sky compass cues like direct sunlight or the chromatic gradient of the sky might contribute to this compass. We recorded from polarization-sensitive CX neurons while an unpolarized green or UV light spot was moved around the head of the animal. All types of neuron that were sensitive to the plane of polarization (E-vector) above the animal also responded to the unpolarized light spots in an azimuth-dependent way. The tuning to the unpolarized light spots was independent of wavelength, suggesting that the neurons encode solar azimuth based on direct sunlight and not on the sky chromatic gradient. Two cell types represented the natural 90°-relationship between solar azimuth and zenithal E-vector orientation, providing evidence to suggest that solar azimuth information supports the internal polarization compass. Most neurons showed advances in their tuning to the E-vector and the unpolarized light spots dependent on rotation direction, consistent with anticipatory signaling. The amplitude of responses and its variability were dependent on the level of background firing, possibly indicating different internal states. The integration of polarization and solar azimuth information strongly suggests that besides the polarization pattern of the sky, direct sunlight might be an important cue for sky compass navigation in the locust.
Collapse
Affiliation(s)
- Uta Pegel
- Animal Physiology, Department of Biology, Philipps-University, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps-University, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
38
|
Homberg U, Müller M. Ultrastructure of GABA- and Tachykinin-Immunoreactive Neurons in the Lower Division of the Central Body of the Desert Locust. Front Behav Neurosci 2016; 10:230. [PMID: 27999533 PMCID: PMC5138221 DOI: 10.3389/fnbeh.2016.00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 11/23/2022] Open
Abstract
The central complex, a group of neuropils spanning the midline of the insect brain, plays a key role in spatial orientation and navigation. In the desert locust and other species, many neurons of the central complex are sensitive to the oscillation plane of polarized light above the animal and are likely involved in the coding of compass directions derived from the polarization pattern of the sky. Polarized light signals enter the locust central complex primarily through two types of γ-aminobutyric acid (GABA)-immunoreactive tangential neurons, termed TL2 and TL3 that innervate specific layers of the lower division of the central body (CBL). Candidate postsynaptic partners are columnar neurons (CL1) connecting the CBL to the protocerebral bridge (PB). Subsets of CL1 neurons are immunoreactive to antisera against locustatachykinin (LomTK). To better understand the synaptic connectivities of tangential and columnar neurons in the CBL, we studied its ultrastructural organization in the desert locust, both with conventional electron microscopy and in preparations immunolabeled for GABA or LomTK. Neuronal profiles in the CBL were rich in mitochondria and vesicles. Three types of vesicles were distinguished: small clear vesicles with diameters of 20–40 nm, dark dense-core vesicles (diameter 70–120 nm), and granular dense-core vesicles (diameter 70–80 nm). Neurons were connected via divergent dyads and, less frequently, through convergent dyads. GABA-immunoreactive neurons contained small clear vesicles and small numbers of dark dense core vesicles. They had both pre- and postsynaptic contacts but output synapses were observed more frequently than input synapses. LomTK immunostaining was concentrated on large granular vesicles; neurons had pre- and postsynaptic connections often with neurons assumed to be GABAergic. The data suggest that GABA-immunoreactive tangential neurons provide signals to postsynaptic neurons in the CBL, including LomTK-immunolabeled CL1 neurons, but in addition also receive input from LomTK-labeled neurons. Both types of neuron are additionally involved in local circuits with other constituents of the CBL.
Collapse
Affiliation(s)
- Uwe Homberg
- Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, Germany
| | - Monika Müller
- Institute for Zoology, University of Regensburg Regensburg, Germany
| |
Collapse
|
39
|
Mota T, Kreissl S, Carrasco Durán A, Lefer D, Galizia G, Giurfa M. Synaptic Organization of Microglomerular Clusters in the Lateral and Medial Bulbs of the Honeybee Brain. Front Neuroanat 2016; 10:103. [PMID: 27847468 PMCID: PMC5088189 DOI: 10.3389/fnana.2016.00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The honeybee Apis mellifera is an established model for the study of visual orientation. Yet, research on this topic has focused on behavioral aspects and has neglected the investigation of the underlying neural architectures in the bee brain. In other insects, the anterior optic tubercle (AOTU), the lateral (LX) and the central complex (CX) are important brain regions for visuospatial performances. In the central brain of the honeybee, a prominent group of neurons connecting the AOTU with conspicuous microglomerular synaptic structures in the LX has been recently identified, but their neural organization and ultrastructure have not been investigated. Here we characterized these microglomerular structures by means of immunohistochemical and ultrastructural analyses, in order to evaluate neurotransmission and synaptic organization. Three-dimensional reconstructions of the pre-synaptic and post-synaptic microglomerular regions were performed based on confocal microscopy. Each pre-synaptic region appears as a large cup-shaped profile that embraces numerous post-synaptic profiles of GABAergic tangential neurons connecting the LX to the CX. We also identified serotonergic broad field neurons that probably provide modulatory input from the CX to the synaptic microglomeruli in the LX. Two distinct clusters of microglomerular structures were identified in the lateral bulb (LBU) and medial bulb (MBU) of the LX. Although the ultrastructure of both clusters is very similar, we found differences in the number of microglomeruli and in the volume of the pre-synaptic profiles of each cluster. We discuss the possible role of these microglomerular clusters in the visuospatial behavior of honeybees and propose research avenues for studying their neural plasticity and synaptic function.
Collapse
Affiliation(s)
- Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Sabine Kreissl
- Department of Neurobiology, University of KonstanzKonstanz, Germany
| | - Ana Carrasco Durán
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Damien Lefer
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Giovanni Galizia
- Department of Neurobiology, University of KonstanzKonstanz, Germany
| | - Martin Giurfa
- Research Center on Animal Cognition, Université de ToulouseToulouse, France
- Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| |
Collapse
|
40
|
Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0053. [PMID: 26554043 PMCID: PMC4650127 DOI: 10.1098/rstb.2015.0053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | | | - Frank Hirth
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic & Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
41
|
Jerome Beetz M, Pfeiffer K, Homberg U. Neurons in the brain of the desert locust Schistocerca gregaria sensitive to polarized light at low stimulus elevations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:759-781. [PMID: 27487785 DOI: 10.1007/s00359-016-1116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 11/28/2022]
Abstract
Desert locusts (Schistocerca gregaria) sense the plane of dorsally presented polarized light through specialized dorsal eye regions that are likely adapted to exploit the polarization pattern of the blue sky for spatial orientation. Receptive fields of these dorsal rim photoreceptors and polarization-sensitive interneurons are directed toward the upper sky but may extend to elevations below 30°. Behavioral data, however, suggests that S. gregaria is even able to detect polarized light from ventral directions but physiological evidence for this is still lacking. In this study we characterized neurons in the locust brain showing polarization sensitivity at low elevations down to the horizon. In most neurons polarization sensitivity was absent or weak when stimulating from the zenith. All neurons, including projection and commissural neurons of the optic lobe and local interneurons of the central brain, are novel cell types, distinct from polarization-sensitive neurons studied so far. Painting dorsal rim areas in both eyes black to block visual input had no effect on the polarization sensitivity of these neurons, suggesting that they receive polarized light input from the main eye. A possible role of these neurons in flight stabilization or the perception of polarized light reflected from bodies of water or vegetation is discussed.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany.,Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Keram Pfeiffer
- Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Uwe Homberg
- Faculty of Biology, Animal Physiology, Philipps-Universität Marburg, 35032, Marburg, Germany.
| |
Collapse
|
42
|
Varga AG, Ritzmann RE. Cellular Basis of Head Direction and Contextual Cues in the Insect Brain. Curr Biol 2016; 26:1816-28. [PMID: 27397888 DOI: 10.1016/j.cub.2016.05.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/22/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
Animals rely upon integrated sensory information for spatial navigation. A question of wide importance in navigation is how sensory cues get transformed into neural codes that represent the animal's orientation within its proximal environment. Here, we investigated the possibility of head-direction coding in the central complex of the cockroach, Blaberus discoidalis. We used extracellular recordings in restrained animals that were rotated on a platform relative to a fixed landmark. The passive rotations allowed us to test for head-direction coding in the absence of self-generated motion cues. Our results indicate that individual cells in the central complex encode the animal's heading relative to a landmark's position in several ways. In some cells, directional tuning was established even in the absence of visual cues, suggesting that the directional code can be maintained solely based on the internal motion cues derived from the passive rotations. Additionally, some cells in the central complex encoded rotation-direction history, a navigational context cue, by increasing or decreasing the firing rate during the stationary periods following clockwise or counterclockwise rotations. Together, these results unveil head-direction cell-like activity in the insect central complex, which highly resemble similarly functioning cells in the mammalian brain that encode head direction. We predict that the observed head-orientation coding and directionally sensitive cells are essential components of the brain circuitry mediating insect navigation.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Roy E Ritzmann
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
43
|
Homberg U. Sky Compass Orientation in Desert Locusts-Evidence from Field and Laboratory Studies. Front Behav Neurosci 2015; 9:346. [PMID: 26733834 PMCID: PMC4679860 DOI: 10.3389/fnbeh.2015.00346] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 11/30/2022] Open
Abstract
Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat.
Collapse
Affiliation(s)
- Uwe Homberg
- Faculty of Biology, Animal Physiology, Philipps University Marburg, Germany
| |
Collapse
|
44
|
Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World. PLoS One 2015; 10:e0144501. [PMID: 26636334 PMCID: PMC4670205 DOI: 10.1371/journal.pone.0144501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022] Open
Abstract
The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly) and compass navigators (locust), point to the existence of parallel networks for the two orientation strategies, or reflect differences in experimental conditions.
Collapse
|
45
|
Abstract
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
Collapse
|
46
|
Abstract
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
Collapse
|
47
|
Schmitt F, Stieb SM, Wehner R, Rössler W. Experience-related reorganization of giant synapses in the lateral complex: Potential role in plasticity of the sky-compass pathway in the desert antCataglyphis fortis. Dev Neurobiol 2015; 76:390-404. [DOI: 10.1002/dneu.22322] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/29/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Franziska Schmitt
- University of Würzburg, Biozentrum, Behavioral Physiology and Sociobiology (Zoology II); Am Hubland 97074 Würzburg Germany
| | - Sara Mae Stieb
- University of Würzburg, Biozentrum, Behavioral Physiology and Sociobiology (Zoology II); Am Hubland 97074 Würzburg Germany
| | - Rüdiger Wehner
- University of Zürich, Zoologisches Institut, Brain Research Institute; Winterthurerstraße 190, 8057 Zürich Switzerland
| | - Wolfgang Rössler
- University of Würzburg, Biozentrum, Behavioral Physiology and Sociobiology (Zoology II); Am Hubland 97074 Würzburg Germany
| |
Collapse
|
48
|
Neural dynamics for landmark orientation and angular path integration. Nature 2015; 521:186-91. [PMID: 25971509 PMCID: PMC4704792 DOI: 10.1038/nature14446] [Citation(s) in RCA: 435] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
Abstract
Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed flies walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body — a toroidal structure in the center of the fly brain. The population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity — a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors — network structures proposed to support the function of navigational brain circuits.
Collapse
|
49
|
Boyan G, Williams L, Liu Y. Conserved patterns of axogenesis in the panarthropod brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:101-112. [PMID: 25483803 DOI: 10.1016/j.asd.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/11/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
Neuropils in the cerebral midline of Panarthropoda exhibit a wide spectrum of neuroarchitectures--from rudimentary to highly elaborated--and which at first sight defy a unifying neuroarchitectural principle. Developmental approaches have shown that in model arthropods such as insects, conserved cellular and molecular mechanisms first establish a simple axon scaffold in the brain. However, to be adapted for adult life, this immature ground plan is transformed by a developmental process--known in the grasshopper as "fascicle switching"--in which subsets of neurons systematically redirect their growth cones at stereotypic locations across the brain midline. A topographic system of choice points along the transverse brain axis where axons decussate features in all panarthropods studied even though different modes of neurogenesis and varying degrees of neuropilar elaboration are involved. This suggests that the molecular mechanisms regulating choice point selection may be conserved. In combination with recent cladistic interpretations of arthropod phylogeny based on nuclear protein-coding sequences the data argue for this topographic decussation as having evolved early and being a conserved feature of the Panarthropoda. Differences in elaboration likely reflect both the extent to which neuropilar reorganization has progressed during development and the lifestyle of the individual organism.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| | - Leslie Williams
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
50
|
Bockhorst T, Homberg U. Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. J Neurophysiol 2015; 113:3291-311. [PMID: 25609107 DOI: 10.1152/jn.00742.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
The polarization pattern of skylight provides a compass cue that various insect species use for allocentric orientation. In the desert locust, Schistocerca gregaria, a network of neurons tuned to the electric field vector (E-vector) angle of polarized light is present in the central complex of the brain. Preferred E-vector angles vary along slices of neuropils in a compasslike fashion (polarotopy). We studied how the activity in this polarotopic population is modulated in ways suited to control compass-guided locomotion. To this end, we analyzed tuning profiles using measures of correlation between spike rate and E-vector angle and, furthermore, tested for adaptation to stationary angles. The results suggest that the polarotopy is stabilized by antagonistic integration across neurons with opponent tuning. Downstream to the input stage of the network, responses to stationary E-vector angles adapted quickly, which may correlate with a tendency to steer a steady course previously observed in tethered flying locusts. By contrast, rotating E-vectors corresponding to changes in heading direction under a natural sky elicited nonadapting responses. However, response amplitudes were particularly variable at the output stage, covarying with the level of ongoing activity. Moreover, the responses to rotating E-vector angles depended on the direction of rotation in an anticipatory manner. Our observations support a view of the central complex as a substrate of higher-stage processing that could assign contextual meaning to sensory input for motor control in goal-driven behaviors. Parallels to higher-stage processing of sensory information in vertebrates are discussed.
Collapse
Affiliation(s)
- Tobias Bockhorst
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|