1
|
Stachowski NJ, Wheel JH, Singh S, Atoche SJ, Yao L, Garcia-Ramirez DL, Giszter SF, Dougherty KJ. Activity of spinal RORβ neurons is related to functional improvements following combination treatment after complete SCI. Proc Natl Acad Sci U S A 2025; 122:e2406333122. [PMID: 40198697 PMCID: PMC12012501 DOI: 10.1073/pnas.2406333122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Various strategies targeting spinal locomotor circuitry have been associated with functional improvements after spinal cord injury (SCI). However, the neuronal populations mediating beneficial effects remain largely unknown. Using a combination therapy in a mouse model of complete SCI, we show that virally delivered brain-derived neurotrophic factor (BDNF) (AAV-BDNF) activates hindlimb stepping and causes hyperreflexia, whereas submotor threshold epidural stimulation (ES) reduces BDNF-induced hyperreflexia. Given their role in gating proprioceptive afferents and as a potential convergence point of BDNF and ES, we hypothesized that an enhanced excitability of inhibitory RORβ neurons would be associated with locomotor improvements. Ex vivo spinal slice recordings from mice with a range of locomotor and hyperreflexia scores revealed that the excitability of RORβ neurons was related to functional outcome post-SCI. Mice with poor locomotor function after SCI had less excitable RORβ neurons, but the excitability of RORβ neurons was similar between the uninjured and "best stepping" SCI groups. Further, chemogenetic activation of RORβ neurons reduced BDNF-induced hyperreflexia and improved stepping, similar to ES. Our findings identify inhibitory RORβ neurons as a target population to limit hyperreflexia and enhance locomotor function after SCI.
Collapse
Affiliation(s)
- Nicholas J. Stachowski
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Jaimena H. Wheel
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Shayna Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sebastian J. Atoche
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lihua Yao
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - D. Leonardo Garcia-Ramirez
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Simon F. Giszter
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Kimberly J. Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
2
|
Al-Abbasi Z, Bhuiyan SA, Renthal W, Molliver DC. A Transcriptomic Comparison of the HD10.6 Human Sensory Neuron-Derived Cell Line with Primary and iPSC Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.643725. [PMID: 40236231 PMCID: PMC11996562 DOI: 10.1101/2025.04.03.643725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A key concern in early-stage analgesic discovery efforts is the extent to which mechanisms identified in rodents will translate to humans. To evaluate an alternative approach to the use of rodent dissociated DRG neurons for in vitro analyses of nociceptive signaling, we performed a transcriptomic analysis of the HD10.6 human dorsal root ganglion (DRG)-derived immortalized cell line. We conducted RNA-seq on proliferating and mature HD10.6 cells to characterize transcriptional changes associated with maturation. We then compared the transcriptomes of HD10.6 cells and several recently developed lines of human induced pluripotent stem cell-derived sensory neurons (iPSC-SN) to single-nucleus RNA-seq data from human DRGs. HD10.6 cells showed the highest correlation with 3 human sensory neuron subtypes associated with nociception and pruriception. Each of the iPSC-SN lines evaluated showed a distinct pattern of correlation with human sensory neuron subtypes. We identified G protein-coupled receptors (GPCRs) and ion channels that are expressed in both HD10.6 cells and human DRG neurons, as well as numerous genes that are expressed in human DRG but not in rodent, underscoring the need for human sensory neuron in vitro models. Proof-of-concept evaluations of protein kinase A, protein kinase C and Erk signaling provide examples of scalable assays using HD10.6 cells to investigate well-established GPCR signaling pathways. We conclude that HD10.6 cells provide a versatile model for exploring human neuronal signaling mechanisms.
Collapse
|
3
|
Rivera-Arconada I, Baccei ML, López-García JA, Bardoni R. An electrophysiologist's guide to dorsal horn excitability and pain. Front Cell Neurosci 2025; 19:1548252. [PMID: 40241846 PMCID: PMC12001243 DOI: 10.3389/fncel.2025.1548252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The dorsal horn of the spinal cord represents the first site in the central nervous system (CNS) where nociceptive signals are integrated. As a result, there has been a rapid growth in the number of studies investigating the ionic mechanisms regulating the excitability of dorsal horn neurons under normal and pathological conditions. We believe that it is time to look back and to critically examine what picture emerges from this wealth of studies. What are the actual types of neurons described in the literature based on electrophysiological criteria? Are these electrophysiologically-defined subpopulations strongly linked to specific morphological, functional, or molecular traits? Are these electrophysiological properties stable, or can they change during development or in response to peripheral injury? Here we provide an in-depth overview of both early and recent publications that explore the factors influencing dorsal horn neuronal excitability (including intrinsic membrane properties and synaptic transmission), how these factors vary across distinct subtypes of dorsal horn neurons, and how such factors are altered by peripheral nerve or tissue damage. The meta-research presented below leads to the conclusion that the dorsal horn is comprised of highly heterogeneous subpopulations in which the observed electrophysiological properties of a given neuron often fail to easily predict other properties such as biochemical phenotype or morphology. This highlights the need for future studies which can more fully interrogate the properties of dorsal horn neurons in a multi-modal manner.
Collapse
Affiliation(s)
| | - Mark L. Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
Wu H, Saini C, Medina R, Hsieh SL, Meshkati A, Sung K. Pain without presence: a narrative review of the pathophysiological landscape of phantom limb pain. FRONTIERS IN PAIN RESEARCH 2025; 6:1419762. [PMID: 40041552 PMCID: PMC11876430 DOI: 10.3389/fpain.2025.1419762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Phantom limb pain (PLP) is defined as the perception of pain in a limb that has been amputated. In the United States, approximately 30,000-40,000 amputations are performed annually with an estimated 2.3 million people living with amputations. The prevalence of PLP among amputees is approximately 64%. Over the years, various theories regarding the etiology of PLP have been proposed, with some gaining more prominence than others. Yet, there is a lack of consensus on PLP mechanisms as the current literature exploring the pathophysiology of PLP is multifactorial, involving complex interactions between the central and peripheral nervous systems, psychosocial factors, and genetic influences. This review seeks to enhance the understanding of PLP by exploring its multifaceted pathophysiology, including genetic predispositions. We highlight historical aspects of pain theories and PLP, examining how these theories have expanded to include psychosocial dimensions associated with chronic pain in amputees. Additionally, we present significant findings from both human and animal studies focused on neuroaxial systems and recent advances in molecular research to further elucidate the complex and multifactorial nature of PLP. Ultimately, we hope that the integration of current theoretical frameworks and findings will lay a more robust foundation for future research on PLP.
Collapse
Affiliation(s)
- Hong Wu
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Chandan Saini
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Roi Medina
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Sharon L. Hsieh
- Department of PhysicalMedicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA, United States
| | - Aria Meshkati
- Rush University Medical College, Chicago, IL, United States
| | - Kerry Sung
- Rush University Medical College, Chicago, IL, United States
| |
Collapse
|
6
|
Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Mol Neurobiol 2025; 62:1904-1944. [PMID: 39046702 DOI: 10.1007/s12035-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Amirlou
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Sirouskabiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasim Basiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
7
|
Jang K, Garraway SM. TrkB Agonist (7,8-DHF)-Induced Responses in Dorsal Root Ganglia Neurons Are Decreased after Spinal Cord Injury: Implication for Peripheral Pain Mechanisms. eNeuro 2025; 12:ENEURO.0219-24.2024. [PMID: 39753357 PMCID: PMC11728855 DOI: 10.1523/eneuro.0219-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkBF616A mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI. To examine potential neural mechanisms underlying the behavioral outcome, patch-clamp recording was performed in small-diameter dissociated thoracic (T) dorsal root ganglia (DRG) neurons to evaluate TrkB signaling in uninjured mice and after T10 contusion SCI. Bath-applied 7,8-dihydroxyflavone (7,8-DHF), a selective TrkB agonist, induced a robust inward current in neurons from uninjured mice, which was attenuated by 1NMP treatment. SCI also decreased 7,8-DHF-induced current while increasing the latency to its peak amplitude. Western blot revealed a concomitant decrease in TrkB expression in DRGs adjacent to the spinal lesion. Analyses of cellular and membrane properties showed that SCI increased neuronal excitability, evident by an increase in resting membrane potential and the number of spiking neurons. However, SCI did not increase spontaneous firing in DRG neurons. These results suggest that SCI induced changes in TrkB activation in DRG neurons even though these alterations are likely not contributing to pain hypersensitivity by nociceptor hyperexcitability. Overall, this reveals complex interactions involving TrkB signaling and provides an opportunity to investigate other, presumably peripheral, mechanisms by which TrkB contributes to pain hypersensitivity after SCI.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Sandra M Garraway
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
8
|
Liang CL, Yen CY, Wang HK, Tsai YD, Chye CL, Wang KW. Intramuscular Pulsed Radiofrequency Upregulates BNDF-TrKB Expression in the Spinal Cord in Rats as an Alternative Treatment for Complicated Pain. Int J Mol Sci 2024; 25:7199. [PMID: 39000303 PMCID: PMC11240886 DOI: 10.3390/ijms25137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Two cases of complicated pain exist: posterior screw fixation and myofascial pain. Intramuscular pulsed radiofrequency (PRF) may be an alternative treatment for such patients. This is a two-stage animal study. In the first stage, two muscle groups and two nerve groups were subdivided into a high-temperature group with PRF at 58 °C and a regular temperature with PRF at 42 °C in rats. In the second stage, two nerve injury groups were subdivided into nerve injury with PRF 42 °C on the sciatic nerve and muscle. Blood and spinal cord samples were collected. In the first stage, the immunohistochemical analysis showed that PRF upregulated brain-derived neurotrophic factor (BDNF) in the spinal cord in both groups of rats. In the second stage, the immunohistochemical analysis showed significant BDNF and tropomyosin receptor kinase B (TrkB) expression within the spinal cord after PRF in muscles and nerves after nerve injury. The blood biomarkers showed a significant increase in BDNF levels. PRF in the muscle in rats could upregulate BDNF-TrkB in the spinal cord, similar to PRF on the sciatica nerve for pain relief in rats. PRF could be considered clinically for patients with complicated pain and this study also demonstrated the role of BDNF in pain modulation. The optimal temperature for PRF was 42 °C.
Collapse
Affiliation(s)
- Cheng-Loong Liang
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-L.L.); (H.-K.W.); (Y.-D.T.); (C.-L.C.)
| | - Cheng-Yo Yen
- Department of Orthopedic, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan;
| | - Hao-Kuang Wang
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-L.L.); (H.-K.W.); (Y.-D.T.); (C.-L.C.)
| | - Yu-Duan Tsai
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-L.L.); (H.-K.W.); (Y.-D.T.); (C.-L.C.)
| | - Cien-Leong Chye
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-L.L.); (H.-K.W.); (Y.-D.T.); (C.-L.C.)
| | - Kuo-Wei Wang
- Department of Neurosurgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung City 824005, Taiwan
| |
Collapse
|
9
|
Tam TH, Zhang W, Tu Y, Hicks JL, Farcas S, Kim D, Salter MW. Pain hypersensitivity is dependent on autophagy protein Beclin 1 in males but not females. Cell Rep 2024; 43:114293. [PMID: 38814784 DOI: 10.1016/j.celrep.2024.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic pain is associated with alterations in fundamental cellular processes. Here, we investigate whether Beclin 1, a protein essential for initiating the cellular process of autophagy, is involved in pain processing and is targetable for pain relief. We find that monoallelic deletion of Becn1 increases inflammation-induced mechanical hypersensitivity in male mice. However, in females, loss of Becn1 does not affect inflammation-induced mechanical hypersensitivity. In males, intrathecal delivery of a Beclin 1 activator, tat-beclin 1, reverses inflammation- and nerve injury-induced mechanical hypersensitivity and prevents mechanical hypersensitivity induced by brain-derived neurotrophic factor (BDNF), a mediator of inflammatory and neuropathic pain. Pain signaling pathways converge on the enhancement of N-methyl-D-aspartate receptors (NMDARs) in spinal dorsal horn neurons. The loss of Becn1 upregulates synaptic NMDAR-mediated currents in dorsal horn neurons from males but not females. We conclude that inhibition of Beclin 1 in the dorsal horn is critical in mediating inflammatory and neuropathic pain signaling pathways in males.
Collapse
Affiliation(s)
- Theresa H Tam
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wenbo Zhang
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - YuShan Tu
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Janice L Hicks
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sophia Farcas
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Doyeon Kim
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W Salter
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
11
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
12
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
13
|
Zhang S, Chen Y, Wang Y, Wang H, Yao D, Chen G. Tau Accumulation in the Spinal Cord Contributes to Chronic Inflammatory Pain by Upregulation of IL-1β and BDNF. Neurosci Bull 2024; 40:466-482. [PMID: 38148427 PMCID: PMC11003936 DOI: 10.1007/s12264-023-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/09/2023] [Indexed: 12/28/2023] Open
Abstract
Microtubule-associated protein Tau is responsible for the stabilization of neuronal microtubules under normal physiological conditions. Much attention has been focused on Tau's contribution to cognition, but little research has explored its role in emotions such as pain, anxiety, and depression. In the current study, we found a significant increase in the levels of p-Tau (Thr231), total Tau, IL-1β, and brain-derived neurotrophic factor (BDNF) on day 7 after complete Freund's adjuvant (CFA) injection; they were present in the vast majority of neurons in the spinal dorsal horn. Microinjection of Mapt-shRNA recombinant adeno-associated virus into the spinal dorsal cord alleviated CFA-induced inflammatory pain and inhibited CFA-induced IL-1β and BDNF upregulation. Importantly, Tau overexpression was sufficient to induce hyperalgesia by increasing the expression of IL-1β and BDNF. Furthermore, the activation of glycogen synthase kinase 3 beta partly contributed to Tau accumulation. These findings suggest that Tau in the dorsal horn could be a promising target for chronic inflammatory pain therapy.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yeru Chen
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongwei Wang
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Dandan Yao
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
14
|
Smith PA. The Known Biology of Neuropathic Pain and Its Relevance to Pain Management. Can J Neurol Sci 2024; 51:32-39. [PMID: 36799022 DOI: 10.1017/cjn.2023.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that is crucial for the onset and persistence of pain and the release of secondary mediators such as colony-stimulating factor 1 from primary afferent terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1β from microglia and astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve translation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysiology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
16
|
Phan TT, Jayathilake NJ, Lee KP, Park JM. BDNF/TrkB Signaling Inhibition Suppresses Astrogliosis and Alleviates Mechanical Allodynia in a Partial Crush Injury Model. Exp Neurobiol 2023; 32:343-353. [PMID: 37927132 PMCID: PMC10628862 DOI: 10.5607/en23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Neuropathic pain presents a formidable clinical challenge due to its persistent nature and limited responsiveness to conventional analgesic treatments. While significant progress has been made in understanding the role of spinal astrocytes in neuropathic pain, their contribution and functional changes following a partial crush injury (PCI) remain unexplored. In this study, we investigated structural and functional changes in spinal astrocytes during chronic neuropathic pain, employing a partial crush injury model. This model allowes us to replicate the transition from initial nociceptive responses to persistent pain, highlighting the relevance of astrocytes in pain maintenance and sensitization. Through the examination of mechanical allodynia, a painful sensation in response to innocuous stimuli, and the correlation with increased levels of brain-derived neurotrophic factor (BDNF) along with reactive astrocytes, we identified a potential mechanistic link between astrocytic activity and BDNF signaling. Ultimately, our research provides evidence that inhibiting astrocyte activation through a BDNF/TrkB inhibitor alleviates mechanical allodynia, underscoring the therapeutic potential of targeting glial BDNF-related pathways for pain management. These findings offer critical insights into the cellular and molecular dynamics of neuropathic pain, paving the way for innovative and targeted treatment strategies for this challenging condition.
Collapse
Affiliation(s)
- Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34126, Korea
| | - Nishani Jayanika Jayathilake
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
- IBS School, University of Science and Technology, Daejeon 34126, Korea
| |
Collapse
|
17
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Hermann DM, Bacigaluppi M, Peruzzotti-Jametti L. Editorial: Hot topics in cellular neuropathology, volume II: promoting neuronal plasticity in the injured central nervous system. Front Cell Neurosci 2023; 17:1269763. [PMID: 37731464 PMCID: PMC10507398 DOI: 10.3389/fncel.2023.1269763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marco Bacigaluppi
- Department of Neurology and Neuroimmunology Unit, San Raffaele Hospital, Milan, Italy
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Kumar V, Kingsley D, Perikamana SM, Mogha P, Goodwin CR, Varghese S. Self-assembled innervated vasculature-on-a-chip to study nociception. Biofabrication 2023; 15:10.1088/1758-5090/acc904. [PMID: 36996841 PMCID: PMC10152403 DOI: 10.1088/1758-5090/acc904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Nociceptor sensory neurons play a key role in eliciting pain. An active crosstalk between nociceptor neurons and the vascular system at the molecular and cellular level is required to sense and respond to noxious stimuli. Besides nociception, interaction between nociceptor neurons and vasculature also contributes to neurogenesis and angiogenesis.In vitromodels of innervated vasculature can greatly help delineate these roles while facilitating disease modeling and drug screening. Herein, we report the development of a microfluidic-assisted tissue model of nociception in the presence of microvasculature. The self-assembled innervated microvasculature was engineered using endothelial cells and primary dorsal root ganglion (DRG) neurons. The sensory neurons and the endothelial cells displayed distinct morphologies in presence of each other. The neurons exhibited an elevated response to capsaicin in the presence of vasculature. Concomitantly, increased transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor expression was observed in the DRG neurons in presence of vascularization. Finally, we demonstrated the applicability of this platform for modeling nociception associated with tissue acidosis. While not demonstrated here, this platform could also serve as a tool to study pain resulting from vascular disorders while also paving the way towards the development of innervated microphysiological models.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham NC
| | - David Kingsley
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | | | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
| | - C Rory Goodwin
- Department of Neurosurgery, Spine Division, Duke University Medical Center, Durham, NC
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham NC
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham NC
- Department of Mechanical Engineering and Material Science, Duke University, Durham NC
| |
Collapse
|
20
|
Sánchez-Sánchez J, Vicente-García C, Cañada-García D, Martín-Zanca D, Arévalo JC. ARMS/Kidins220 regulates nociception by controlling brain-derived neurotrophic factor secretion. Pain 2023; 164:563-576. [PMID: 35916735 DOI: 10.1097/j.pain.0000000000002741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is an alarm mechanism to prevent body damage in response to noxious stimuli. The nerve growth factor (NGF)/TrkA axis plays an essential role as pain mediator, and several clinical trials using antibodies against NGF have yielded promising results, but side effects have precluded their clinical approval. A better understanding of the mechanism of NGF/TrkA-mediated nociception is needed. Here, we find that ARMS/Kidins220, a scaffold protein for Trk receptors, is a modulator of nociception. Male mice, with ARMS/Kidins220 reduction exclusively in TrkA-expressing cells, displayed hyperalgesia to heat, inflammatory, and capsaicin stimuli, but not to cold or mechanical stimuli. Simultaneous deletion of brain-derived neurotrophic factor (BDNF) reversed the effects of ARMS/Kidins220 knock down alone. Mechanistically, ARMS/Kidins220 levels are reduced in vitro and in vivo in response to capsaicin through calpains, and this reduction leads to enhanced regulated BDNF secretion from dorsal root ganglion. Altogether, these data indicate that ARMS/Kidins220 protein levels have a role as a pain modulator in the NGF/TrkA axis regulating BDNF secretion.
Collapse
Affiliation(s)
- Julia Sánchez-Sánchez
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Vicente-García
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Daniel Cañada-García
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dionisio Martín-Zanca
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Juan C Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
21
|
Martin KK, Noble DJ, Parvin S, Jang K, Garraway SM. Pharmacogenetic inhibition of TrkB signaling in adult mice attenuates mechanical hypersensitivity and improves locomotor function after spinal cord injury. Front Cell Neurosci 2022; 16:987236. [PMID: 36226073 PMCID: PMC9548551 DOI: 10.3389/fncel.2022.987236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through tropomyosin receptor kinase B (TrkB), to exert various types of plasticity. The exact involvement of BDNF and TrkB in neuropathic pain states after spinal cord injury (SCI) remains unresolved. This study utilized transgenic TrkBF616 mice to examine the effect of pharmacogenetic inhibition of TrkB signaling, induced by treatment with 1NM-PP1 (1NMP) in drinking water for 5 days, on formalin-induced inflammatory pain, pain hypersensitivity, and locomotor dysfunction after thoracic spinal contusion. We also examined TrkB, ERK1/2, and pERK1/2 expression in the lumbar spinal cord and trunk skin. The results showed that formalin-induced pain responses were robustly attenuated in 1NMP-treated mice. Weekly assessment of tactile sensitivity with the von Frey test showed that treatment with 1NMP immediately after SCI blocked the development of mechanical hypersensitivity up to 4 weeks post-SCI. Contrastingly, when treatment started 2 weeks after SCI, 1NMP reversibly and partially attenuated hind-paw hypersensitivity. Locomotor scores were significantly improved in the early-treated 1NMP mice compared to late-treated or vehicle-treated SCI mice. 1NMP treatment attenuated SCI-induced increases in TrkB and pERK1/2 levels in the lumbar cord but failed to exert similar effects in the trunk skin. These results suggest that early onset TrkB signaling after SCI contributes to maladaptive plasticity that leads to spinal pain hypersensitivity and impaired locomotor function.
Collapse
Affiliation(s)
| | | | | | | | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Pathophysiological and Neuroplastic Changes in Postamputation and Neuropathic Pain: Review of the Literature. Plast Reconstr Surg Glob Open 2022; 10:e4549. [PMID: 36187278 PMCID: PMC9521753 DOI: 10.1097/gox.0000000000004549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/05/2022] [Indexed: 10/24/2022]
Abstract
Despite advancements in surgical and rehabilitation strategies, extremity amputations are frequently associated with disability, phantom limb sensations, and chronic pain. Investigation into potential treatment modalities has focused on the pathophysiological changes in both the peripheral and central nervous systems to better understand the underlying mechanism in the development of chronic pain in persons with amputations. Methods Presented in this article is a discussion outlining the physiological changes that occur in the peripheral and central nervous systems following amputation. In this review, the authors examine the molecular and neuroplastic changes occurring in the nervous system, as well as the state-of-the-art treatment to help reduce the development of postamputation pain. Results This review summarizes the current literature regarding neurological changes following amputation. Development of both central sensitization and neuronal remodeling in the spinal cord and cerebral cortex allows for the development of neuropathic and phantom limb pain postamputation. Recently developed treatments targeting these pathophysiological changes have enabled a reduction in the severity of pain; however, complete resolution remains elusive. Conclusions Changes in the peripheral and central nervous systems following amputation should not be viewed as separate pathologies, but rather two interdependent mechanisms that underlie the development of pathological pain. A better understanding of the physiological changes following amputation will allow for improvements in therapeutic treatments to minimize pathological pain caused by amputation.
Collapse
|
23
|
Iannuccelli C, Lucchino B, Gioia C, Dolcini G, Rabasco J, Venditto T, Ioppolo F, Santilli V, Conti F, Di Franco M. Gender influence on clinical manifestations, depressive symptoms and brain-derived neurotrophic factor (BDNF) serum levels in patients affected by fibromyalgia. Clin Rheumatol 2022; 41:2171-2178. [PMID: 35344113 PMCID: PMC9187562 DOI: 10.1007/s10067-022-06133-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION OBJECTIVES: Fibromyalgia (FM) is a common rheumatic disorder characterized by chronic, widespread pain associated with several not painful symptoms. The contribution of gender to the manifestation of the disease may influence the higher prevalence of FM among women. In spite of this, how patients' gender influences the clinical manifestation of FM is still not well understood. The frequent association with neuropsychiatric symptoms raised the attention on the role of neurotrophins, including the brain-derived neurotrophic factor (BDNF) as potential biomarkers of the condition. Aims of the study were to evaluate the influence of gender on clinical manifestations and to investigate BDNF serum levels as a potential biomarker of FM. METHODS We consecutively enrolled 201 adult patients of both sexes diagnosed with FM. For each patient, we collected clinical and clinimetric data and, in a subgroup of 40 patients, we measured serum BDNF levels. BDNF levels have been measured also in 40 matched healthy controls (HC). RESULTS Several symptoms were significantly higher in women compared with men, including pain, fatigue, memory problems, tenderness, balance problems and sensitivity to environmental stimuli. On the contrary, men reported a significant higher frequency of coexisting depressive symptoms. BDNF levels were significantly lower in FM patients compared with HC, discriminating with good accuracy the condition. CONCLUSION Gender influences FM clinical manifestations, with a higher prevalence of pain, fatigue and other common FM symptoms among women while higher frequency of neuropsychiatric symptoms among men. BDNF offers promises as a potential biomarker of the disease. Key Points • Gender-related differences in the clinical manifestations of FM may contribute to the higher prevalence of FM among females. Indeed, women show higher levels of pain and symptoms traditionally associated to FM, which are evaluated to establish the diagnosis according to the clinical criteria. • The new insights into the pathogenesis of the disease raised the attention on the role of brain mediators in FM. Among these, BNDF shows potential as a diagnostic biomarker.
Collapse
Affiliation(s)
- Cristina Iannuccelli
- Department of Internal Clinical, Anesthesiologic and Cardiovascular Sciences, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Bruno Lucchino
- Department of Internal Clinical, Anesthesiologic and Cardiovascular Sciences, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Chiara Gioia
- Department of Internal Clinical, Anesthesiologic and Cardiovascular Sciences, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Giulio Dolcini
- Department of Internal Clinical, Anesthesiologic and Cardiovascular Sciences, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Jole Rabasco
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Teresa Venditto
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Francesco Ioppolo
- Unit of Physical Medicine and Rehabilitation, Umberto I Polyclinic Hospital, Sapienza University of Rome, Rome, Italy
| | - Valter Santilli
- Unit of Physical Medicine and Rehabilitation, Umberto I Polyclinic Hospital, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Department of Internal Clinical, Anesthesiologic and Cardiovascular Sciences, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Manuela Di Franco
- Department of Internal Clinical, Anesthesiologic and Cardiovascular Sciences, Rheumatology Unit, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
24
|
Xie RG, Chu WG, Liu DL, Wang X, Ma SB, Wang F, Wang FD, Lin Z, Wu WB, Lu N, Liu YY, Han WJ, Zhang H, Bai ZT, Hu SJ, Tao HR, Kuner T, Zhang X, Kuner R, Wu SX, Luo C. Presynaptic NMDARs on spinal nociceptor terminals state-dependently modulate synaptic transmission and pain. Nat Commun 2022; 13:728. [PMID: 35132099 PMCID: PMC8821657 DOI: 10.1038/s41467-022-28429-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization. Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. Here, the authors show that also presynaptic NMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner.
Collapse
|
25
|
In memoriam. Pain 2021; 163:403-405. [DOI: 10.1097/j.pain.0000000000002567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Effects of Ozone on Hippocampus BDNF and Fos Expressions in Rats with Chronic Compression of Dorsal Root Ganglia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5572915. [PMID: 34869766 PMCID: PMC8642004 DOI: 10.1155/2021/5572915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
The effects of ozone on hippocampal expression levels of brain-derived neurotrophic factor (BDNF) and c-fos protein (Fos) were evaluated in rats with chronic compression of dorsal root ganglia (CCD). Forty-eight adult female Sprague-Dawley rats were randomly divided into the following 4 groups (n = 12): sham operation (sham group), CCD group, CCD with 20 μg/ml of ozone (CCD + AO3 group), and CCD with 40 μg/ml of ozone (CCD + BO3 group). Except the sham group, unilateral L5 dorsal root ganglion (DRG) compression was performed on all other groups. On days 1, 2, and 4 after the operation, the CCD + AO3 and CCD + BO3 groups were injected with 100 μl of ozone with concentrations of 20 and 40 μg/ml, respectively. Thermal withdrawal latencies (TWLs) and mechanical withdrawal thresholds (MWTs) were measured at various time points before and after the operation. BDNF and Fos expressions were examined in the extracted hippocampi using immunohistochemistry. The TWLs and MWTs of CCD model rats that received ozone were lower with decreased BDNF and increased Fos expression levels, on day 21 after the operation, compared to those of the sham group (P < 0.05). The TWLs and MWTs of the CCD + AO3 and CCD + BO3 groups were higher with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD group (P < 0.05). The TWLs were longer and the MWTs were higher in the CCD + BO3 group at each time point with increased BDNF and decreased Fos expression levels, on day 21 after the operation, compared to those of the CCD + AO3 group (P < 0.05). Our results revealed that ozone can relieve the neuropathic pain caused by the pathological neuralgia resulting from DRG compression in rats. The mechanism of action for ozone is likely associated with changes in BDNF and Fos expression levels in the hippocampus.
Collapse
|
27
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Yamanashi Y, Ohmichi M, Ohmichi Y, Ikemoto T, Arai YC, Maruyama Y, Otsuka S, Hirai S, Naito M, Deie M. Efficacy of Methotrexate on Rat Knee Osteoarthritis Induced by Monosodium Iodoacetate. J Inflamm Res 2021; 14:3247-3259. [PMID: 34290513 PMCID: PMC8289442 DOI: 10.2147/jir.s318540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Objective To explore whether methotrexate (MTX) prevents joint destruction and improves pain-related behaviors in the acute phase of knee osteoarthritis (OA) induced by monosodium iodoacetate (MIA) in a rat model. Methods Twenty of 25 male Wistar rats (10–14 weeks old) received 3 mg MIA via intra-articular injection into their right knee and were then administered a vehicle control (n=10) or 3 mg/kg MTX orally weekly (n=10). We assessed differences in pain-related behavior, spontaneous lifting behavior, micro-computed tomography (CT), histopathology, and expression of pain- and inflammatory-related genes using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) between the two groups for 4 weeks. Five rats were used as untreated controls to assess pain- and inflammatory-related mRNA expression in the dorsal root ganglia (DRG) and knee joints using RT-qPCR. Results Joint destruction and mechanical hyperalgesia were observed in the vehicle group. Decreases in mechanical pain thresholds for the knee joint and calf muscles were improved after MTX administration; however, joint damage assessed by micro-CT and histopathology was not significantly inhibited by MTX administration, while upregulation levels of transient receptor potential cation channel, subfamily V, member 1 (TRPV-1) (P<0.01) and brain-derived neurotrophic factor (BDNF) (P=0.02) mRNA in the DRG and nerve growth factor NGF mRNA (P=0.03) in the affected knee joints were significantly suppressed in the MTX group compared with the vehicle group at week 4. Conclusion Our results imply that MTX administration improves pain-related behaviors and suppresses expression of pain-related mRNAs in the DRG and knee joint; however, MTX is not expected to prevent cartilage degeneration in MIA-induced OA in rat knee.
Collapse
Affiliation(s)
- Yuki Yamanashi
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mika Ohmichi
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Ishikawa, Japan.,Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yusuke Ohmichi
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Ishikawa, Japan.,Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tatsunori Ikemoto
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| | - Young-Chang Arai
- Institute of Physical Fitness, Sports Medicine and Rehabilitation, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yohei Maruyama
- Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shun Otsuka
- Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shuichi Hirai
- Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, Nagakute, Aichi, Japan
| | - Masataka Deie
- Department of Orthopedic Surgery, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
29
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
30
|
Neidhöfer C. On the Evolution of the Biological Framework for Insight. PHILOSOPHIES 2021; 6:43. [DOI: 10.3390/philosophies6020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 52127 Bonn, Germany
| |
Collapse
|
31
|
BDNF Participates in Chronic Constriction Injury-Induced Neuropathic Pain via Transcriptionally Activating P2X 7 in Primary Sensory Neurons. Mol Neurobiol 2021; 58:4226-4236. [PMID: 33963520 DOI: 10.1007/s12035-021-02410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Neuropathic pain, resulting from the pathological changes of the somatosensory nervous system, remains a severe public health problem worldwide. The effect of treatment targeting neuropathic pain is very limited, as the underlying mechanism of neuropathic pain is largely unknown. In this study, we demonstrated that the expression level of brain-derived neurotrophic factor (BDNF) was remarkably and time-dependently increased in dorsal root ganglion (DRG) neurons. DRG microinjection of BDNF siRNA in DRG ameliorated chronic constriction injury (CCI) induced mechanical, thermal, and cold nociceptive hypersensitivities. Overexpressing BDNF through microinjection of the AAV5-BDNF in DRG caused enhanced responses to basal mechanical, thermal, and cold stimuli in mice exposed to CCI. Mechanically, the P2X7 promoter activity was enhanced by CCI-induced increase of DRG BDNF protein and was involved in the CCI-induced upregulation of DRG P2X7 protein. The overexpression of BDNF also increased P2X7 expression in DRG neurons, which was validated in in vivo and in vitro experiments. BDNF may exert crucial effect via transcriptionally activating the P2X7 gene in primary sensory neurons, since P2X7 acts as a role of endogenous agitator in neuropathic pain and BDNF largely co-expresses with P2X7 in DRG neurons. Therefore, our data provide evidence that BDNF may be a promising therapeutic target for neuropathic pain.
Collapse
|
32
|
Takahara-Yamauchi R, Ikemoto H, Okumo T, Sakhri FZ, Horikawa H, Nakamura A, Sakaue S, Kato M, Adachi N, Sunagawa M. Analgesic effect of voluntary exercise in a rat model of persistent pain via suppression of microglial activation in the spinal cord. Biomed Res 2021; 42:67-76. [PMID: 33840672 DOI: 10.2220/biomedres.42.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we employed a rodent model for persistent allodynia and hyperalgesia to determine whether voluntary exercise could exert analgesic effects on these pain symptoms. Rats were subcutaneously injected with formalin into the plantar surface of the right hind paw to induce mechanical allodynia and hyperalgesia. We assessed the analgesic effects of a voluntary wheel running (VWR) using the von Frey test and investigated microglial proliferation in the dorsal horn of the spinal cord. We also determined the effect of formalin and VWR on the protein expression levels of brain-derived neurotrophic factor (BDNF), its receptor TrkB, and K+-Cl- cotransporter 2 (KCC2), which play a key role in inducing allodynia and hyperalgesia. Rats with access to the running wheels showed beneficial effects on persistent formalin-induced mechanical allodynia and hyperalgesia. The effects of VWR were elicited through the suppression of formalin-induced microglial proliferation, TrkB up-regulation, and KCC2 down-regulation in the spinal cord. BDNF, however, might not contribute to the beneficial effects of VWR. Our results show an analgesic effect of voluntary physical exercise in a rodent model with persistent pain, possibly through the regulation of microglial proliferation and TrkB and KCC2 expression in the spinal cord.
Collapse
Affiliation(s)
- Risa Takahara-Yamauchi
- Department of Physiology, School of Medicine, Showa University.,Faculty of Arts and Sciences at Fujiyoshida, Showa University
| | - Hideshi Ikemoto
- Department of Physiology, School of Medicine, Showa University
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University
| | | | | | - Akiou Nakamura
- Department of Physiology, School of Medicine, Showa University
| | - Satoshi Sakaue
- Department of Physiology, School of Medicine, Showa University
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University
| | - Naoki Adachi
- Department of Physiology, School of Medicine, Showa University
| | | |
Collapse
|
33
|
Rapid elevation of brain-derived neurotrophic factor production in the bilateral trigeminal ganglia by unilateral transection of the mental nerve in mice. Neuroreport 2021; 32:659-665. [PMID: 33814543 DOI: 10.1097/wnr.0000000000001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Previous spinal nerve injury studies have reported brain-derived neurotrophic factor (BDNF) mRNA upregulation in either the ipsilateral dorsal root ganglion (DRG) neurons or both the contralateral and ipsilateral DRG neurons from early period after peripheral nerve injury. This BDNF elevation induces hyperalgesia in the injured and/or uninjured sites, but this detailed mechanism remains unknown. This study aimed to investigate the BDNF mRNA expression in bilateral DRG neurons caused by unilateral nerve injury and to explore the possible mechanisms by which nitric oxide (NO) mediates BDNF production in the DRG, resulting in contralateral hyperalgesia. METHODS Early changes in BDNF mRNA expression in the bilateral trigeminal ganglia, within 1 day after mental nerve transection, were examined. Additionally, the effects on BDNF production of the NO synthase inhibitor N(ω)-nitro-l-arginine methyl ester (L-NAME) were investigated in the bilateral trigeminal ganglia. The relationship between injured neurons and BDNF production in the trigeminal ganglia was then assessed using immunohistochemical and retrograde tracing methods. RESULTS Reverse transcription-PCR analysis demonstrated that unilateral transection of the mental nerve induced a rapid elevation of BDNF mRNA expression, which was inhibited by the intracerebroventricular administration of L-NAME prior to nerve transection. This effect was observed in both the ipsilateral and contralateral sides to the nerve transection. BDNF immunostaining combined with FluoroGold retrograde tracing revealed two types of BDNF-reactive neurons, FluoroGold-labelled and non-FluoroGold-labelled neurons, in the ipsilateral and contralateral sides of the trigeminal ganglia. BDNF-positive cells were also observed in the trigeminal ganglia of other trigeminal nerve branches. CONCLUSIONS Unilateral nerve injury upregulates BDNF production in the bilateral trigeminal ganglia by NO-mediated and/or indirect activation of afferent neurons, resulting in contralateral hyperalgesia.
Collapse
|
34
|
Abstract
Brain-derived neurotrophic factor (BDNF) and the high-affinity receptor tropomyosin receptor kinase B (TrkB) have important roles in neuronal survival and in spinal sensitization mechanisms associated with chronic pain. Recent clinical evidence also supports a peripheral role of BDNF in osteoarthritis (OA), with synovial expression of TrkB associated with higher OA pain. The aim of this study was to use clinical samples and animal models to explore the potential contribution of knee joint BDNF/TrkB signalling to chronic OA pain. Brain-derived neurotrophic factor and TrkB mRNA and protein were present in knee synovia from OA patients (16 women, 14 men, median age 67 years [interquartile range: 61-73]). There was a significant positive correlation between mRNA expression of NTRK2 (TrkB) and the proinflammatory chemokine fractalkine in the OA synovia. Using the surgical medial meniscal transection (MNX) model and the chemical monosodium iodoacetate (MIA) model of OA pain in male rats, the effects of peripheral BDNF injection, vs sequestering endogenous BDNF with TrkB-Fc chimera, on established pain behaviour were determined. Intra-articular injection of BDNF augmented established OA pain behaviour in MIA rats, but had no effect in controls. Intra-articular injection of the TrkB-Fc chimera acutely reversed pain behaviour to a similar extent in both models of OA pain (weight-bearing asymmetry MIA: -11 ± 4%, MNX: -12 ± 4%), compared to vehicle treatment. Our data suggesting a contribution of peripheral knee joint BDNF/TrkB signalling in the maintenance of chronic OA joint pain support further investigation of the therapeutic potential of this target.
Collapse
|
35
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
36
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
37
|
Lackovic J, Price TJ, Dussor G. De novo protein synthesis is necessary for priming in preclinical models of migraine. Cephalalgia 2020; 41:237-246. [PMID: 33200943 DOI: 10.1177/0333102420970514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Migraine attacks are often triggered by normally innocuous stimuli, suggesting that sensitization within the nervous system is present. One mechanism that may contribute to neuronal sensitization in this context is translation regulation of new protein synthesis. The goal of this study was to determine whether protein synthesis contributes to behavioral responses and priming in preclinical models of migraine. METHODS Mice received a dural injection of interleukin-6 in the absence or presence of the protein synthesis inhibitor anisomycin or the translation initiation inhibitor 4EGI-1 and were tested for facial hypersensitivity. Upon returning to baseline, mice were given a second, non-noxious dural injection of pH 7.0 to test for priming. Additionally, eIF4ES209Amice lacking phosphorylation of mRNA cap-binding protein eIF4E received dural interleukin-6 or were subjected to repeated restraint stress and then tested for facial hypersensitivity. After returning to baseline, mice were given either dural pH 7.0 or a systemic sub-threshold dose of the nitric oxide donor sodium nitroprusside and tested for priming. RESULTS Dural injection of interleukin-6 in the presence of anisomycin or 4EGI-1 or in eIF4ES209Amice resulted in the partial attenuation of acute facial hypersensitivity and complete block of hyperalgesic priming. Additionally, hyperalgesic priming following repeated restraint stress was blocked in eIF4ES209Amice. CONCLUSIONS These studies show that de novo protein synthesis regulated by activity-dependent translation is critical to the development of priming in two preclinical models of migraine. This suggests that targeting the regulation of protein synthesis may be a novel approach for new migraine treatment strategies.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
38
|
Brennan K, Elifritz KM, Comire MM, Jupiter DC. Rate and maintenance of improvement of myofascial pain with dry needling alone vs. dry needling with intramuscular electrical stimulation: a randomized controlled trial. J Man Manip Ther 2020; 29:216-226. [PMID: 32990529 DOI: 10.1080/10669817.2020.1824469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
STUDY DESIGN Prospective, randomized. OBJECTIVES To determine the difference in rate and maintenance of improvement of pain and disability for Dry Needling (DN) compared to Dry Needling with Intramuscular Electrical Stimulation (DN/IMES), in Myofascial Pain Syndrome (MPS). BACKGROUND DN and neuromuscular electrical stimulation (NMES) have been shown to be efficacious in treating MPS. DN/IMES for MPS treatment has not been studied extensively, but initial results are promising. METHODS Forty-five subjects were randomly assigned to the DN (n = 25) or DN/IMES (n = 20) group. Both groups received six consecutive weekly treatments and completed NDI and NPRS questionnaires (week 0, 3, 6, and 12). RESULTS Both DN and DN/IMES groups showed significant improvement between weeks 0-6 on NDI (p = 0.008 and 0.00002, respectively) and NPRS scores (0 = 0.017 and p = 0.018, respectively). DN/IMES group showed significant within group changes on the NPRS between weeks 0-3 (p = 0.029). No changes were noted in the DN or DN/IMES groups between week 6-12 on NDI (p = 0.497 and p = 0.714, respectively) or NPRS (p = 0.801 and p = 0.164, respectively). CONCLUSION DN and DN/IMES demonstrated improvement and maintenance in disability and pain for 6 weeks. No differences in improvement of disability or pain existed between the groups at week 6 or 12.
Collapse
Affiliation(s)
- Kindyle Brennan
- Doctor of Physical Therapy Program, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Katherine M Elifritz
- Department of Physical Therapy, Virginia Sportsmedicine Institute, Arlington, VA, USA
| | - Megan M Comire
- Department of Physical Therapy, Inspire Physical Therapy, College Station, TX, USA
| | - Daniel C Jupiter
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
39
|
Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain 2020; 160:2210-2220. [PMID: 31145219 PMCID: PMC6756297 DOI: 10.1097/j.pain.0000000000001625] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic pain continues to be a significant global burden despite the availability of a variety of nonpharmacologic and pharmacologic treatment options. Thus, there is a need for new analgesics with novel mechanisms of action. In this regard, antibodies directed against nerve growth factor (NGF-Abs) are a new class of agents in development for the treatment of chronic pain conditions such as osteoarthritis and chronic low-back pain. This comprehensive narrative review summarizes evidence supporting pronociceptive functions for NGF that include contributing to peripheral and central sensitization through tropomyosin receptor kinase A activation and stimulation of local neuronal sprouting. The potential role of NGF in osteoarthritis and chronic low-back pain signaling is also examined to provide a mechanistic basis for the observed efficacy of NGF-Abs in clinical trials of these particular pain states. Finally, the safety profile of NGF-Abs in terms of common adverse events, joint safety, and nerve structure/function is discussed.
Collapse
|
40
|
Schwann Cell Autocrine and Paracrine Regulatory Mechanisms, Mediated by Allopregnanolone and BDNF, Modulate PKCε in Peripheral Sensory Neurons. Cells 2020; 9:cells9081874. [PMID: 32796542 PMCID: PMC7465687 DOI: 10.3390/cells9081874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Protein kinase type C-ε (PKCε) plays important roles in the sensitization of primary afferent nociceptors, such as ion channel phosphorylation, that in turn promotes mechanical hyperalgesia and pain chronification. In these neurons, PKCε is modulated through the local release of mediators by the surrounding Schwann cells (SCs). The progesterone metabolite allopregnanolone (ALLO) is endogenously synthesized by SCs, whereas it has proven to be a crucial mediator of neuron-glia interaction in peripheral nerve fibers. Biomolecular and pharmacological studies on rat primary SCs and dorsal root ganglia (DRG) neuronal cultures were aimed at investigating the hypothesis that ALLO modulates neuronal PKCε, playing a role in peripheral nociception. We found that SCs tonically release ALLO, which, in turn, autocrinally upregulated the synthesis of the growth factor brain-derived neurotrophic factor (BDNF). Subsequently, glial BDNF paracrinally activates PKCε via trkB in DRG sensory neurons. Herein, we report a novel mechanism of SCs-neuron cross-talk in the peripheral nervous system, highlighting a key role of ALLO and BDNF in nociceptor sensitization. These findings emphasize promising targets for inhibiting the development and chronification of neuropathic pain.
Collapse
|
41
|
Cao T, Matyas JJ, Renn CL, Faden AI, Dorsey SG, Wu J. Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain. Cells 2020; 9:cells9051194. [PMID: 32403409 PMCID: PMC7290366 DOI: 10.3390/cells9051194] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a major focus for regenerative therapeutics, has been lauded for its pro-survival characteristics and involvement in both development and recovery of function within the central nervous system (CNS). However, studies of tyrosine receptor kinase B (TrkB), a major receptor for BDNF, indicate that certain effects of the TrkB receptor in response to disease or injury may be maladaptive. More specifically, imbalance among TrkB receptor isoforms appears to contribute to aberrant signaling and hyperpathic pain. A truncated isoform of the receptor, TrkB.T1, lacks the intracellular kinase domain of the full length receptor and is up-regulated in multiple CNS injury models. Such up-regulation is associated with hyperpathic pain, and TrkB.T1 inhibition reduces neuropathic pain in various experimental paradigms. Deletion of TrkB.T1 also limits astrocyte changes in vitro, including proliferation, migration, and activation. Mechanistically, TrkB.T1 is believed to act through release of intracellular calcium in astrocytes, as well as through interactions with neurotrophins, leading to cell cycle activation. Together, these studies support a potential role for astrocytic TrkB.T1 in hyperpathic pain and suggest that targeted strategies directed at this receptor may have therapeutic potential.
Collapse
Affiliation(s)
- Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Jessica J. Matyas
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
| | - Cynthia L. Renn
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD 21201, USA; (C.L.R.); (S.G.D.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; (T.C.); (J.J.M.); (A.I.F.)
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-5189
| |
Collapse
|
42
|
Malfait AM, Miller RE, Block JA. Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. Pharmacol Ther 2020; 211:107553. [PMID: 32311372 DOI: 10.1016/j.pharmthera.2020.107553] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Chronic pain represents a substantial unmet medical need globally. In recent years, the quest for a new generation of novel, safe, mechanism-based analgesic treatments has focused on neurotrophic factors, a large group of secreted proteins that control the growth and survival of different populations of neurons, but that postnatally are involved in the genesis and maintenance of pain, with biological activity in both the periphery and the central nervous system. In this narrative review, we discuss the two families of neurotrophic proteins that have been extensively studied for their role in pain: first, the neurotrophins, nerve growth factor (NGF) and brain-derived growth factor (BDNF), and secondly, the GDNF family of ligands (GFLs). We provide an overview of the pain pathway, and the pain-producing effects of these different proteins. We summarize accumulating preclinical and clinical findings with a focus on musculoskeletal pain, and on osteoarthritis in particular, because the musculoskeletal system is the most prevalent source of chronic pain and of disability, and clinical testing of these novel agents - often biologics- is most advanced in this area.
Collapse
Affiliation(s)
- Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, United States of America
| | - Rachel E Miller
- Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, United States of America
| | - Joel A Block
- Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, United States of America.
| |
Collapse
|
43
|
BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol Brain 2020; 13:43. [PMID: 32183860 PMCID: PMC7079446 DOI: 10.1186/s13041-020-00582-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 01/21/2023] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) signalling contributes to the formation, maturation and plasticity of Central Nervous System (CNS) synapses. Acute exposure of cultured brain circuits to BDNF leads to up-regulation of glutamatergic neuro-transmission, by the accurate tuning of pre and post synaptic features, leading to structural and functional synaptic changes. Chronic BDNF treatment has been comparatively less investigated, besides it may represent a therapeutic option to obtain rescue of post-injury alterations of synaptic networks. In this study, we used a paradigm of BDNF long-term (4 days) incubation to assess in hippocampal neurons in culture, the ability of such a treatment to alter synapses. By patch clamp recordings we describe the augmented function of excitatory neurotransmission and we further explore by live imaging the presynaptic changes brought about by long-term BDNF. In our study, exogenous long-term BDNF exposure of post-natal neurons did not affect inhibitory neurotransmission. We further compare, by genetic manipulations of cultured neurons and BDNF release, intracellular overexpression of this neurotrophin at the same developmental age. We describe for the first-time differences in synaptic modulation by BDNF with respect to exogenous or intracellular release paradigms. Such a finding holds the potential of influencing the design of future therapeutic strategies.
Collapse
|
44
|
Immunopotentiator thymosin alpha-1 attenuates inflammatory pain by modulating the Wnt3a/β-catenin pathway in spinal cord. Neuroreport 2020; 31:69-75. [PMID: 31764244 DOI: 10.1097/wnr.0000000000001370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanism of inflammatory pain involves the central nervous system (CNS) and the immune system. It is reported that immunopotentiator thymosin alpha-1 (Tα1) can reduce inflammation, protect neurons and strengthen the immune function. However, the roles of Tα1 in inflammatory pain still remain unclear. In this study, we found Tα1 can attenuate the complete Freund's adjuvant (CFA)-induced mechanical allodynia and heat hyperalgesia. Meanwhile, it reduced the upregulation of CFA-induced inflammatory mediators (interferon (IFN)-γ, tumor necrosis factor-α and brain-derived neurotrophic factor). In addition, we found the Wnt3a/β-catenin pathway was activated in spinal cord after the injection of CFA, paralleling with pain hypersensitivity. However, Tα1 reversed this status. In summary, Tα1 could attenuate inflammatory pain by modulating the Wnt3a/β-catenin pathway. It might be related to the downregulation of inflammatory mediators.
Collapse
|
45
|
The BDNF Protein and its Cognate mRNAs in the Rat Spinal Cord during Amylin-induced Reversal of Morphine Tolerance. Neuroscience 2019; 422:54-64. [PMID: 31689388 DOI: 10.1016/j.neuroscience.2019.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
The pancreatic peptide, Amylin (AMY), reportedly affects nociception in rodents. Here, we investigated the potential effect of AMY on the tolerance to morphine and on the expression of BDNF at both levels of protein and RNA in the lumbar spinal cord of morphine tolerant rats. Animals in both groups of control and test received a single daily dose of intrathecal (i.t.) morphine for 10 days. Rats in the test group received AMY (1, 10 and 60 pmoles) in addition to morphine from days 6 to10. Morphine tolerance was established at day 5. AMY alone showed enduring antinociceptive effects for 10 days. Real-Time PCR, western blotting and ELISA were used respectively to assess levels of BDNF transcripts and their encoded proteins. Rats tolerant to i.t. morphine showed increased expression of exons I, IV, and IX of the BDNF gene, and had elevated levels of pro-BDNF and BDNF protein in their lumbar spinal cord. AMY, when co-administered with morphine from days 6 to 10, reversed morphine tolerance and adversely affected the morphine-induced expression of the BDNF gene at both levels of protein and mRNAs containing exons I, IV and IX. AMY alone increased levels of exons I and IV transcripts. Levels of pro-BDNF and BDNF proteins remained unchanged in the lumbar spinal cord of rats treated by AMY alone. These results suggest that i.t. AMY not only abolished morphine tolerance, but also reduced the morphine induced increase in the expression of both BDNF transcripts and protein in the lumbar spinal cord.
Collapse
|
46
|
Dussán-Sarria JA, da Silva NRJ, Deitos A, Stefani LC, Laste G, Souza AD, Torres ILS, Fregni F, Caumo W. Higher Cortical Facilitation and Serum BDNF Are Associated with Increased Sensitivity to Heat Pain and Reduced Endogenous Pain Inhibition in Healthy Males. PAIN MEDICINE 2019; 19:1578-1586. [PMID: 29294124 DOI: 10.1093/pm/pnx297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Although the brain-derived neurotrophic factor (BDNF) has been intensively investigated in animal models of chronic pain, its role in human pain processing is less understood. Objective To study the neurophysiology of BDNF modulation on acute experimental pain, we performed a cross-sectional study. Methods We recruited 20 healthy male volunteers (19-40 years old) and assessed their serum BDNF levels, quantitative sensory testing, and cortical excitability parameters using transcranial magnetic stimulation. Results Linear regression models demonstrated that the BDNF (β = -5.245, P = 0.034) and intracortical facilitation (β = -3.311, P = 0.034) were inversely correlated with heat pain threshold (adjusted R2 = 44.26). The BDNF (β = -3.719, P ≤ 0.001) was also inversely correlated with conditioned pain modulation (adjusted R2 = 56.8). Conclusions Our findings indicate that higher serum BDNF and intracortical facilitation of the primary motor cortex are associated with increased sensitivity to heat pain and high serum BDNF with reduced pain inhibition during noxious heterotopic stimulation.
Collapse
Affiliation(s)
- Jairo Alberto Dussán-Sarria
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Nadia Regina Jardim da Silva
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Alicia Deitos
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Luciana Cadore Stefani
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil.,Surgery Department, School of Medicine, HCPA/UFRGS, RS, Brazil
| | - Gabriela Laste
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil.,La Salle University, Canoas, RS, Brazil
| | - Iraci L S Torres
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Pharmacology Department, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Boston, Massachusetts, USA
| | - Wolnei Caumo
- Postgraduation Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA)/UFRGS, Porto Alegre, RS, Brazil.,Surgery Department, School of Medicine, HCPA/UFRGS, RS, Brazil.,Pain and Palliative Care Service at HCPA, Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Haploinsufficiency of the brain-derived neurotrophic factor gene is associated with reduced pain sensitivity. Pain 2019; 160:1070-1081. [PMID: 30855519 DOI: 10.1097/j.pain.0000000000001485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rare pain-insensitive individuals offer unique insights into how pain circuits function and have led to the development of new strategies for pain control. We investigated pain sensitivity in humans with WAGR (Wilms tumor, aniridia, genitourinary anomaly, and range of intellectual disabilities) syndrome, who have variably sized heterozygous deletion of the 11p13 region. The deletion region can be inclusive or exclusive of the brain-derived neurotrophic factor (BDNF) gene, a crucial trophic factor for nociceptive afferents. Nociceptive responses assessed by quantitative sensory testing demonstrated reduced pain sensitivity only in the WAGR subjects whose deletion boundaries included the BDNF gene. Corresponding behavioral assessments were made in heterozygous Bdnf knockout rats to examine the specific role of Bdnf. These analogous experiments revealed impairment of Aδ- and C-fiber-mediated heat nociception, determined by acute nociceptive thermal stimuli, and in aversive behaviors evoked when the rats were placed on a hot plate. Similar results were obtained for C-fiber-mediated cold responses and cold avoidance on a cold-plate device. Together, these results suggested a blunted responsiveness to aversive stimuli. Our parallel observations in humans and rats show that hemizygous deletion of the BDNF gene reduces pain sensitivity and establishes BDNF as a determinant of nociceptive sensitivity.
Collapse
|
48
|
Boakye PA, Rancic V, Whitlock KH, Simmons D, Longo FM, Ballanyi K, Smith PA. Receptor dependence of BDNF actions in superficial dorsal horn: relation to central sensitization and actions of macrophage colony stimulating factor 1. J Neurophysiol 2019; 121:2308-2322. [PMID: 30995156 DOI: 10.1152/jn.00839.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injury elicits an enduring increase in the excitability of the spinal dorsal horn. This change, which contributes to the development of neuropathic pain, is a consequence of release and prolonged exposure of dorsal horn neurons to various neurotrophins and cytokines. We have shown in rats that nerve injury increases excitatory synaptic drive to excitatory neurons but decreases drive to inhibitory neurons. Both effects, which contribute to an increase in dorsal horn excitability, appear to be mediated by microglia-derived BDNF. We have used multiphoton Ca2+ imaging and whole cell recording of spontaneous excitatory postsynaptic currents in defined-medium organotypic cultures of GAD67-GFP+ mice spinal cord to determine the receptor dependence of these opposing actions of BDNF. In mice, as in rats, BDNF enhances excitatory transmission onto excitatory neurons. This is mediated via presynaptic TrkB and p75 neurotrophin receptors and exclusively by postsynaptic TrkB. By contrast with findings from rats, in mice BDNF does not decrease excitation of inhibitory neurons. The cytokine macrophage colony-stimulating factor 1 (CSF-1) has also been implicated in the onset of neuropathic pain. Nerve injury provokes its de novo synthesis in primary afferents, its release in spinal cord, and activation of microglia. We now show that CSF-1 increases excitatory drive to excitatory neurons via a BDNF-dependent mechanism and decreases excitatory drive to inhibitory neurons via BDNF-independent processes. Our findings complete missing steps in the cascade of events whereby peripheral nerve injury instigates increased dorsal horn excitability in the context of central sensitization and the onset of neuropathic pain. NEW & NOTEWORTHY Nerve injury provokes synthesis of macrophage colony-stimulating factor 1 (CSF-1) in primary afferents and its release in the dorsal horn. We show that CSF-1 increases excitatory drive to excitatory dorsal horn neurons via BDNF activation of postsynaptic TrkB and presynaptic TrkB and p75 neurotrophin receptors. CSF-1 decreases excitatory drive to inhibitory neurons via a BDNF-independent processes. This completes missing steps in understanding how peripheral injury instigates central sensitization and the onset of neuropathic pain.
Collapse
Affiliation(s)
- Paul A Boakye
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada
| | - Vladimir Rancic
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Physiology, University of Alberta , Edmonton , Canada
| | - Kerri H Whitlock
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada
| | - Danielle Simmons
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
| | - Klaus Ballanyi
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Physiology, University of Alberta , Edmonton , Canada
| | - Peter A Smith
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Pharmacology, University of Alberta , Edmonton , Canada
| |
Collapse
|
49
|
Brietzke AP, Antunes LC, Carvalho F, Elkifury J, Gasparin A, Sanches PRS, da Silva Junior DP, Dussán-Sarria JA, Souza A, da Silva Torres IL, Fregni F, Md WC. Potency of descending pain modulatory system is linked with peripheral sensory dysfunction in fibromyalgia: An exploratory study. Medicine (Baltimore) 2019; 98:e13477. [PMID: 30653087 PMCID: PMC6370006 DOI: 10.1097/md.0000000000013477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibromyalgia (FM) is characterized by chronic widespread pain whose pathophysiological mechanism is related to central and peripheral nervous system dysfunction. Neuropathy of small nerve fibers has been implicated due to related pain descriptors, psychophysical pain, and neurophysiological testing, as well as skin biopsy studies. Nevertheless, this alteration alone has not been previously associated to the dysfunction in the descending pain modulatory system (DPMS) that is observed in FM. We hypothesize that they associated, thus, we conducted a cross-sectional exploratory study.To explore small fiber dysfunction using quantitative sensory testing (QST) is associated with the DPMS and other surrogates of nociceptive pathways alterations in FM.We run a cross-sectional study and recruited 41 women with FM, and 28 healthy female volunteers. We used the QST to measure the thermal heat threshold (HTT), heat pain threshold (HPT), heat pain tolerance (HPT), heat pain tolerance (HPTo), and conditional pain modulation task (CPM-task). Algometry was used to determine the pain pressure threshold (PPT). Scales to assess catastrophizing, anxiety, depression, and sleep disturbances were also applied. Serum brain-derived neurotrophic factor (BDNF) was measured as a marker of neuroplasticity. We run multivariate linear regression models by group to study their relationships.Samples differed in their psychophysical profile, where FM presented lower sensitivity and pain thresholds. In FM but not in the healthy subjects, regression models revealed that serum BDNF was related to HTT and CPM-Task (Hotelling Trace = 1.80, P < .001, power = 0.94, R = 0.64). HTT was directly related to CPM-Task (B = 0.98, P = .004, partial-η = 0.25), and to HPT (B = 1.61, P = .008, partial η = 0.21), but not to PPT. Meanwhile, BDNF relationship to CPM-Task was inverse (B = -0.04, P = .043, partial-η = 0.12), and to HPT was direct (B = -0.08, P = .03, partial-η = 0.14).These findings high spot that in FM the disinhibition of the DPMS is positively correlated with the dysfunction in peripheral sensory neurons assessed by QST and conversely with serum BDNF.
Collapse
Affiliation(s)
- Aline Patrícia Brietzke
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Luciana Conceição Antunes
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Fabiana Carvalho
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Jessica Elkifury
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | - Assunta Gasparin
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | | | | | | | - Andressa Souza
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
| | | | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown
| | - Wolnei Caumo Md
- Post-Graduate Program in Medical Sciences, Medical Engineering Service
- Faculdade de Medicina da Universidade Federal do Rio Grande do Sul, Porto Alegre
- Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre, Porto Alegre
- Department of Surgery, School of Medicine, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
50
|
Moy JK, Szabo-Pardi T, Tillu DV, Megat S, Pradhan G, Kume M, Asiedu MN, Burton MD, Dussor G, Price TJ. Temporal and sex differences in the role of BDNF/TrkB signaling in hyperalgesic priming in mice and rats. NEUROBIOLOGY OF PAIN 2018; 5:100024. [PMID: 31194015 PMCID: PMC6550116 DOI: 10.1016/j.ynpai.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
The effect of TrkB-Fc on hyperalgesic priming is sexually dimorphic in mice. The effect of TrkB-Fc on hyperalgesic priming is equivalent in male and female rats. Microglial BDNF does not contribute to hyperalgesic priming in mice.
Brain-derived neurotrophic factor (BDNF) signaling through its cognate receptor, TrkB, is a well-known promoter of synaptic plasticity at nociceptive synapses in the dorsal horn of the spinal cord. Existing evidence suggests that BDNF/TrkB signaling in neuropathic pain is sex dependent. We tested the hypothesis that the effects of BDNF/TrkB signaling in hyperalgesic priming might also be sexually dimorphic. Using the incision postsurgical pain model in male mice, we show that BDNF sequestration with TrkB-Fc administered at the time of surgery blocks the initiation and maintenance of hyperalgesic priming. However, when BDNF signaling was blocked prior to the precipitation of hyperalgesic priming with prostaglandin E2 (PGE2), priming was not reversed. This result is in contrast to our findings in male mice with interleukin-6 (IL6) as the priming stimulus where TrkB-Fc was effective in reversing the maintenance of hyperalgesic priming. Furthermore, in IL6-induced hyperalgesic priming, the BDNF sequestering agent, TrkB-fc, was effective in reversing the maintenance of hyperalgesic priming in male mice; however, when this experiment was conducted in female mice, we did not observe any effect of TrkB-fc. This markedly sexual dimorphic effect in mice is consistent with recent studies showing a similar effect in neuropathic pain models. We tested whether the sexual dimorphic role for BDNF was consistent across species. Importantly, we find that this sexual dimorphism does not occur in rats where TrkB-fc reverses hyperalgesic priming fully in both sexes. Finally, to determine the source of BDNF in hyperalgesic priming in mice, we used transgenic mice (Cx3cr1CreER × Bdnfflx/flx mice) with BDNF eliminated from microglia. From these experiments we conclude that BDNF from microglia does not contribute to hyperalgesic priming and that the key source of BDNF for hyperalgesic priming is likely nociceptors in the dorsal root ganglion. These experiments demonstrate the importance of testing mechanistic hypotheses in both sexes in multiple species to gain insight into complex biology underlying chronic pain.
Collapse
Affiliation(s)
- Jamie K Moy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Thomas Szabo-Pardi
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Dipti V Tillu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Department of Medical Pharmacology, University of Arizona, Tucson, AZ, 85724, United States
| | - Salim Megat
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Grishma Pradhan
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Moeno Kume
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Marina N Asiedu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Michael D Burton
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| |
Collapse
|