1
|
Tomé D, Almeida RD. The injured axon: intrinsic mechanisms driving axonal regeneration. Trends Neurosci 2024; 47:875-891. [PMID: 39438216 DOI: 10.1016/j.tins.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.
Collapse
Affiliation(s)
- Diogo Tomé
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Ramiro D Almeida
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Singh AK, Rai A, Joshi I, Reddy DN, Guha R, Alka K, Shukla S, Rath SK, Nazir A, Clement JP, Kundu TK. Oral Administration of a Specific p300/CBP Lysine Acetyltransferase Activator Induces Synaptic Plasticity and Repairs Spinal Cord Injury. ACS Chem Neurosci 2024; 15:2741-2755. [PMID: 38795032 DOI: 10.1021/acschemneuro.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Abstract
TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.
Collapse
Affiliation(s)
- Akash Kumar Singh
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Amrish Rai
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ila Joshi
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
3
|
Shang Z, Shi W, Fu H, Zhang Y, Yu T. Identification of key autophagy-related genes and pathways in spinal cord injury. Sci Rep 2024; 14:6553. [PMID: 38504116 PMCID: PMC10951339 DOI: 10.1038/s41598-024-56683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024] Open
Abstract
Spinal cord injury (SCI) can cause a range of functional impairments, and patients with SCI have limited potential for functional recovery. Previous studies have demonstrated that autophagy plays a role in the pathological process of SCI, but the specific mechanism of autophagy in this context remains unclear. Therefore, we explored the role of autophagy in SCI by identifying key autophagy-related genes and pathways. This study utilized the GSE132242 expression profile dataset, which consists of four control samples and four SCI samples; autophagy-related genes were sourced from GeneCards. R software was used to screen differentially expressed genes (DEGs) in the GSE132242 dataset, which were then intersected with autophagy-related genes to identify autophagy-related DEGs in SCI. Subsequently, the expression levels of these genes were confirmed and analyzed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) analysis was conducted to identify interaction genes, and the resulting network was visualized with Cytoscape. The MCODE plug-in was used to build gene cluster modules, and the cytoHubba plug-in was applied to screen for hub genes. Finally, the GSE5296 dataset was used to verify the reliability of the hub genes. We screened 129 autophagy-related DEGs, including 126 up-regulated and 3 down-regulated genes. GO and KEGG pathway enrichment analysis showed that these 129 genes were mainly involved in the process of cell apoptosis, angiogenesis, IL-1 production, and inflammatory reactions, the TNF signaling pathway and the p53 signaling pathway. PPI identified 10 hub genes, including CCL2, TGFB1, PTGS2, FN1, HGF, MYC, IGF1, CD44, CXCR4, and SERPINEL1. The GSE5296 dataset revealed that the control group exhibited lower expression levels than the SCI group, although only CD44 and TGFB1 showed significant differences. This study identified 129 autophagy-related genes that might play a role in SCI. CD44 and TGFB1 were identified as potentially important genes in the autophagy process after SCI. These findings provide new targets for future research and offer new perspectives on the pathogenesis of SCI.
Collapse
Affiliation(s)
- Zhen Shang
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Weipeng Shi
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Haitao Fu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
- Shandong Institute of Traumatic Orthopedics, Qingdao, 266000, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, 266000, China.
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266000, China.
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
4
|
Downregulation of UBE4B promotes CNS axon regrowth and functional recovery after stroke. iScience 2022; 26:105885. [PMID: 36654858 PMCID: PMC9840934 DOI: 10.1016/j.isci.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The limited intrinsic regrowth capacity of corticospinal axons impedes functional recovery after cortical stroke. Although the mammalian target of rapamycin (mTOR) and p53 pathways have been identified as the key intrinsic pathways regulating CNS axon regrowth, little is known about the key upstream regulatory mechanism by which these two major pathways control CNS axon regrowth. By screening genes that regulate ubiquitin-mediated degradation of the p53 proteins in mice, we found that ubiquitination factor E4B (UBE4B) represses axonal regrowth in retinal ganglion cells and corticospinal neurons. We found that axonal regrowth induced by UBE4B depletion depended on the cooperative activation of p53 and mTOR. Importantly, overexpression of UbV.E4B, a competitive inhibitor of UBE4B, in corticospinal neurons promoted corticospinal axon sprouting and facilitated the recovery of corticospinal axon-dependent function in a cortical stroke model. Thus, our findings provide a translatable strategy for restoring corticospinal tract-dependent functions after cortical stroke.
Collapse
|
5
|
Müller F, De Virgiliis F, Kong G, Zhou L, Serger E, Chadwick J, Sanchez-Vassopoulos A, Singh AK, Eswaramoorthy M, Kundu TK, Di Giovanni S. CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability. PLoS Biol 2022; 20:e3001310. [PMID: 36126035 PMCID: PMC9488786 DOI: 10.1371/journal.pbio.3001310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability.
Collapse
Affiliation(s)
- Franziska Müller
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, United Kingdom
| | - Francesco De Virgiliis
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, United Kingdom
| | - Guiping Kong
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, United Kingdom
| | - Luming Zhou
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, United Kingdom
| | - Elisabeth Serger
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, United Kingdom
| | - Jessica Chadwick
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, United Kingdom
| | | | - Akash Kumar Singh
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, JNCASR, Bangalore, India
| | | | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, JNCASR, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Simone Di Giovanni
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Liu X, Yao C, Tang Y, Liu X, Duan C, Wang C, Han F, Xiang Y, Wu L, Li Y, Ji A, Cai T. Role of p53 methylation in manganese-induced cyclooxygenase-2 expression in BV2 microglial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113824. [PMID: 36068751 DOI: 10.1016/j.ecoenv.2022.113824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 05/21/2023]
Abstract
Manganese (Mn) is an essential cofactor for many enzymes and plays an important role in normal growth and development. However, excess exposure to manganese (Mn) may be an important environmental factor leading to neurodegeneration. The overexpression of microglial cyclooxygenase-2 (COX-2) plays a key role in neuroinflammation in neurodegenerative diseases. The existing data suggest that Mn can induce neuroinflammation by up-regulating COX-2 expression. However, the mechanisms involved in Mn-induced microglial COX-2 up-regulation remain to be determined. The aim of this study was to investigate the role of p53 in Mn-induced COX-2 expression in microglial cells. The results showed that Mn exposure induced the up-regulation of COX-2 and inhibited the expression of p53 in BV2 microglial cells. The addition of p53 activator and the over-expression of p53 blocked the expression of COX-2 and prostaglandin E2 (PGE2), a COX-2 downstream effector, induced by Mn. Further, Mn increased the methylation of p53 DNA in microglia, while the addition of demethylation reagent 5-Aza-dC enhanced the expression of p53 but decreased the expression of COX-2. These results suggested that Mn may inhibit p53 expression through induction of DNA methylation, which can further induce the expression of COX-2 in microglial cells.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chenggang Duan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
7
|
Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C, Stavarache MA, Ma M, Wang Y, Cui Q, Kaplitt MG, Zack DJ, Benowitz LI, Yin Y. Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells' response to Pten deletion. Proc Natl Acad Sci U S A 2022; 119:e2113751119. [PMID: 35394873 PMCID: PMC9169637 DOI: 10.1073/pnas.2113751119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell–derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.
Collapse
Affiliation(s)
- Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Ling-Ping Cen
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Yiqing Li
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510085, China
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Oleksandr Strelko
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mihaela A. Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Madeline Ma
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Yongting Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Cui
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
8
|
Choi Y, Shin T. Alendronate Enhances Functional Recovery after Spinal Cord Injury. Exp Neurobiol 2022; 31:54-64. [PMID: 35256544 PMCID: PMC8907254 DOI: 10.5607/en21030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury is a destructive disease characterized by motor/sensory dysfunction and severe inflammation. Alendronate is an anti-inflammatory molecule and may therefore be of benefit in the treatment of the inflammation associated with spinal cord injury. This study aimed to evaluate whether alendronate attenuates motor/sensory dysfunction and the inflammatory response in a thoracic spinal cord clip injury model. Alendronate was intraperitoneally administered at 1 mg/kg/day or 5 mg/kg/day from day (D) 0 to 28 post-injury (PI). The histopathological evaluation showed an alleviation of the inflammatory response, including the infiltration of inflammatory cells, and a decrease in gliosis. Alendronate also led to reductions in the levels of inflammation-related molecules, including mitogen-activated protein kinase, p53, pro-inflammatory cytokines, and pro-inflammatory mediators. Neuro-behavioral assessments, including the Basso, Beattie, and Bresnahan scale for locomotor function, the von Frey filament test, the hot plate test, and the cold stimulation test for sensory function, and the horizontal ladder test for sensorimotor function improved significantly in the alendronate-treated group at D28PI. Taken together, these results suggest that alendronate treatment can inhibit the inflammatory response in spinal cord injury thus improving functional responses.
Collapse
Affiliation(s)
- Yuna Choi
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
9
|
Boido M, Vercelli A. Genes and miRNAs as Hurdles and Promoters of Corticospinal Tract Regeneration in Spinal Cord Injury. Front Cell Dev Biol 2021; 9:748911. [PMID: 34722529 PMCID: PMC8554128 DOI: 10.3389/fcell.2021.748911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating lesion to the spinal cord, which determines the interruption of ascending/descending axonal tracts, the loss of supraspinal control of sensory-motor functions below the injured site, and severe autonomic dysfunctions, dramatically impacting the quality of life of the patients. After the acute inflammatory phase, the progressive formation of the astrocytic glial scar characterizes the acute-chronic phase: such scar represents one of the main obstacles to the axonal regeneration that, as known, is very limited in the central nervous system (CNS). Unfortunately, a cure for SCI is still lacking: the current clinical approaches are mainly based on early vertebral column stabilization, anti-inflammatory drug administration, and rehabilitation programs. However, new experimental therapeutic strategies are under investigation, one of which is to stimulate axonal regrowth and bypass the glial scar. One major issue in axonal regrowth consists of the different genetic programs, which characterize axonal development and maturation. Here, we will review the main hurdles that in adulthood limit axonal regeneration after SCI, describing the key genes, transcription factors, and miRNAs involved in these processes (seen their reciprocal influencing action), with particular attention to corticospinal motor neurons located in the sensory-motor cortex and subjected to axotomy in case of SCI. We will highlight the functional complexity of the neural regeneration programs. We will also discuss if specific axon growth programs, that undergo a physiological downregulation during CNS development, could be reactivated after a spinal cord trauma to sustain regrowth, representing a new potential therapeutic approach.
Collapse
Affiliation(s)
- Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Fague L, Liu YA, Marsh-Armstrong N. The basic science of optic nerve regeneration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1276. [PMID: 34532413 PMCID: PMC8421956 DOI: 10.21037/atm-20-5351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
Diverse insults to the optic nerve result in partial to total vision loss as the axons of retinal ganglion cells are destroyed. In glaucoma, axons are injured at the optic nerve head; in other optic neuropathies, axons can be damaged along the entire visual pathway. In all cases, as mammals cannot regenerate injured central nervous system cells, once the axons are lost, vision loss is irreversible. However, much has been learned about how retinal ganglion cells respond to axon injuries, and many of these crucial discoveries offer hope for future regenerative therapies. Here we review the current understanding regarding the temporal progression of axonal degeneration. We summarize known survival and regenerative mechanisms in mammals, including specific signaling pathways, key transcription factors, and reprogramming genes. We cover mechanisms intrinsic to retinal ganglion cells as well as their interactions with myeloid and glial cell populations in the retina and optic nerve that affect survival and regeneration. Finally, we highlight some non-mammalian species that are able to regenerate their retinal ganglion cell axons after injury, as understanding these successful regenerative responses may be essential to the rational design of future clinical interventions to regrow the optic nerve. In the end, a combination of many different molecular and cellular interventions will likely be the only way to achieve functional recovery of vision and restore quality of life to millions of patients around the world.
Collapse
Affiliation(s)
- Lindsay Fague
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Yin Allison Liu
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Nicholas Marsh-Armstrong
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
11
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Nat Commun 2021; 12:391. [PMID: 33452250 PMCID: PMC7810685 DOI: 10.1038/s41467-020-20112-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) often causes severe and permanent disabilities due to the regenerative failure of severed axons. Here we report significant locomotor recovery of both hindlimbs after a complete spinal cord crush. This is achieved by the unilateral transduction of cortical motoneurons with an AAV expressing hyper-IL-6 (hIL-6), a potent designer cytokine stimulating JAK/STAT3 signaling and axon regeneration. We find collaterals of these AAV-transduced motoneurons projecting to serotonergic neurons in both sides of the raphe nuclei. Hence, the transduction of cortical neurons facilitates the axonal transport and release of hIL-6 at innervated neurons in the brain stem. Therefore, this transneuronal delivery of hIL-6 promotes the regeneration of corticospinal and raphespinal fibers after injury, with the latter being essential for hIL-6-induced functional recovery. Thus, transneuronal delivery enables regenerative stimulation of neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.
Collapse
|
13
|
Telegin GB, Chernov AS, Konovalov NA, Belogurov AA, Balmasova IP, Gabibov AG. Cytokine Profile As a Marker of Cell Damage and Immune Dysfunction after Spinal Cord Injury. Acta Naturae 2020; 12:92-101. [PMID: 33173599 PMCID: PMC7604889 DOI: 10.32607/actanaturae.11096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
This study reviews the findings of recent experiments designed to investigate the cytokine profile after a spinal cord injury. The role played by key cytokines in eliciting the cellular response to trauma was assessed. The results of the specific immunopathogenetic interaction between the nervous and immune systems in the immediate and chronic post-traumatic periods are summarized. It was demonstrated that it is reasonable to use the step-by-step approach to the assessment of the cytokine profile after a spinal cord injury and take into account the combination of the pathogenetic and protective components in implementing the regulatory effects of individual cytokines and their integration into the regenerative processes in the injured spinal cord. This allows one to rationally organize treatment and develop novel drugs.
Collapse
Affiliation(s)
- G. B. Telegin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Pushchino, 142290 Russia
| | - A. S. Chernov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Pushchino, 142290 Russia
| | - N. A. Konovalov
- N.N. Burdenko National Scientific and Practical Center for Neurosurgery, RF Health Ministry, Moscow, 125047 Russia
| | - A. A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - I. P. Balmasova
- Evdokimov Moscow State University of Medicine and Dentistry of Russia’s Ministry of Health, Moscow, 127473 Russia
| | - A. G. Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
14
|
Hutson TH, Di Giovanni S. The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol 2019; 15:732-745. [DOI: 10.1038/s41582-019-0280-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
|
15
|
Telomerase Reverse Transcriptase and p53 Regulate Mammalian Peripheral Nervous System and CNS Axon Regeneration Downstream of c-Myc. J Neurosci 2019; 39:9107-9118. [PMID: 31597725 DOI: 10.1523/jneurosci.0419-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Although several genes have been identified to promote axon regeneration in the CNS, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using female mouse sensory axon and optic nerve regeneration as model systems, we reveal an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provide evidence that TERT and p53 act downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells is sufficient to promote sensory axon and optic never regeneration, respectively. The study reveals a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration.SIGNIFICANCE STATEMENT Despite significant progress during the past decade, our understanding of the molecular mechanisms by which mammalian CNS axon regeneration is regulated is still fragmented. By using sensory axon and optic nerve regeneration as model systems, the study revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. The results also delineated a c-Myc-TERT-p53 pathway in controlling axon growth. Last, our results demonstrated that p53 alone was sufficient to promote sensory axon and optic nerve regeneration in vivo Collectively, the study not only revealed a new mechanisms underlying mammalian axon regeneration, but also expanded the pool of potential targets that can be manipulated to enhance CNS axon regeneration.
Collapse
|
16
|
Xu AK, Gong Z, He YZ, Xia KS, Tao HM. Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury. J Zhejiang Univ Sci B 2019; 20:205-218. [PMID: 30829009 DOI: 10.1631/jzus.b1800280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.
Collapse
Affiliation(s)
- An-Kai Xu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Zhe Gong
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Yu-Zhe He
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Kai-Shun Xia
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| | - Hui-Min Tao
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
17
|
Fawcett JW. The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult? Neurochem Res 2019; 45:144-158. [PMID: 31388931 PMCID: PMC6942574 DOI: 10.1007/s11064-019-02844-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Axon regeneration in the CNS is inhibited by many extrinsic and intrinsic factors. Because these act in parallel, no single intervention has been sufficient to enable full regeneration of damaged axons in the adult mammalian CNS. In the external environment, NogoA and CSPGs are strongly inhibitory to the regeneration of adult axons. CNS neurons lose intrinsic regenerative ability as they mature: embryonic but not mature neurons can grow axons for long distances when transplanted into the adult CNS, and regeneration fails with maturity in in vitro axotomy models. The causes of this loss of regeneration include partitioning of neurons into axonal and dendritic fields with many growth-related molecules directed specifically to dendrites and excluded from axons, changes in axonal signalling due to changes in expression and localization of receptors and their ligands, changes in local translation of proteins in axons, and changes in cytoskeletal dynamics after injury. Also with neuronal maturation come epigenetic changes in neurons, with many of the transcription factor binding sites that drive axon growth-related genes becoming inaccessible. The overall aim for successful regeneration is to ensure that the right molecules are expressed after axotomy and to arrange for them to be transported to the right place in the neuron, including the damaged axon tip.
Collapse
Affiliation(s)
- James W Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
- Centre of Reconstructive Neuroscience, Institute for Experimental Medicine ASCR, Prague, Czech Republic.
| |
Collapse
|
18
|
Hervera A, Zhou L, Palmisano I, McLachlan E, Kong G, Hutson TH, Danzi MC, Lemmon VP, Bixby JL, Matamoros‐Angles A, Forsberg K, De Virgiliis F, Matheos DP, Kwapis J, Wood MA, Puttagunta R, del Río JA, Di Giovanni S. PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. EMBO J 2019; 38:e101032. [PMID: 31268609 PMCID: PMC6600644 DOI: 10.15252/embj.2018101032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.
Collapse
Affiliation(s)
- Arnau Hervera
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
- Molecular and Cellular NeurobiotechnologyInstitute for Bioengineering of Catalonia (IBEC)Parc Científic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat de BarcelonaBarcelonaSpain
- Institute of NeuroscienceUniversity of BarcelonaBarcelonaSpain
| | - Luming Zhou
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
- Laboratory for NeuroRegeneration and RepairCenter for NeurologyHertie Institute for Clinical Brain ResearchUniversity of TuebingenTuebingenGermany
- Graduate School for Cellular and Molecular NeuroscienceUniversity of TuebingenTuebingenGermany
| | - Ilaria Palmisano
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
| | - Eilidh McLachlan
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
| | - Guiping Kong
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
- Laboratory for NeuroRegeneration and RepairCenter for NeurologyHertie Institute for Clinical Brain ResearchUniversity of TuebingenTuebingenGermany
| | - Thomas H Hutson
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
| | - Matt C Danzi
- The Miami Project to Cure ParalysisDepartment of Neurological SurgeryMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Vance P Lemmon
- The Miami Project to Cure ParalysisDepartment of Neurological SurgeryMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - John L Bixby
- The Miami Project to Cure ParalysisDepartment of Neurological SurgeryMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Andreu Matamoros‐Angles
- Molecular and Cellular NeurobiotechnologyInstitute for Bioengineering of Catalonia (IBEC)Parc Científic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat de BarcelonaBarcelonaSpain
- Institute of NeuroscienceUniversity of BarcelonaBarcelonaSpain
| | - Kirsi Forsberg
- Laboratory for NeuroRegeneration and RepairCenter for NeurologyHertie Institute for Clinical Brain ResearchUniversity of TuebingenTuebingenGermany
| | - Francesco De Virgiliis
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
- Laboratory for NeuroRegeneration and RepairCenter for NeurologyHertie Institute for Clinical Brain ResearchUniversity of TuebingenTuebingenGermany
- Graduate School for Cellular and Molecular NeuroscienceUniversity of TuebingenTuebingenGermany
| | - Dina P Matheos
- Center for the Neurobiology of Learning & MemoryDepartment of Neurobiology & BehaviorUniversity of CaliforniaIrvineCAUSA
| | - Janine Kwapis
- Center for the Neurobiology of Learning & MemoryDepartment of Neurobiology & BehaviorUniversity of CaliforniaIrvineCAUSA
| | - Marcelo A Wood
- Center for the Neurobiology of Learning & MemoryDepartment of Neurobiology & BehaviorUniversity of CaliforniaIrvineCAUSA
| | - Radhika Puttagunta
- Laboratory for NeuroRegeneration and RepairCenter for NeurologyHertie Institute for Clinical Brain ResearchUniversity of TuebingenTuebingenGermany
- Spinal Cord Injury CenterUniversity Hospital HeidelbergHeidelbergGermany
| | - José Antonio del Río
- Molecular and Cellular NeurobiotechnologyInstitute for Bioengineering of Catalonia (IBEC)Parc Científic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat de BarcelonaBarcelonaSpain
- Institute of NeuroscienceUniversity of BarcelonaBarcelonaSpain
| | - Simone Di Giovanni
- Department of MedicineDivision of Brain SciencesMolecular NeuroregenerationImperial College LondonLondonUK
- Laboratory for NeuroRegeneration and RepairCenter for NeurologyHertie Institute for Clinical Brain ResearchUniversity of TuebingenTuebingenGermany
| |
Collapse
|
19
|
Katoh H, Yokota K, Fehlings MG. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Front Cell Neurosci 2019; 13:248. [PMID: 31244609 PMCID: PMC6563678 DOI: 10.3389/fncel.2019.00248] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the treatment of spinal cord injury (SCI). Advances in post-trauma management and intensive rehabilitation have significantly improved the prognosis of SCI and converted what was once an “ailment not to be treated” into a survivable injury, but the cold hard fact is that we still do not have a validated method to improve the paralysis of SCI. The irreversible functional impairment of the injured spinal cord is caused by the disruption of neuronal transduction across the injury lesion, which is brought about by demyelination, axonal degeneration, and loss of synapses. Furthermore, refractory substrates generated in the injured spinal cord inhibit spontaneous recovery. The discovery of the regenerative capability of central nervous system neurons in the proper environment and the verification of neural stem cells in the spinal cord once incited hope that a cure for SCI was on the horizon. That hope was gradually replaced with mounting frustration when neuroprotective drugs, cell transplantation, and strategies to enhance remyelination, axonal regeneration, and neuronal plasticity demonstrated significant improvement in animal models of SCI but did not translate into a cure in human patients. However, recent advances in SCI research have greatly increased our understanding of the fundamental processes underlying SCI and fostered increasing optimism that these multiple treatment strategies are finally coming together to bring about a new era in which we will be able to propose encouraging therapies that will lead to appreciable improvements in SCI patients. In this review, we outline the pathophysiology of SCI that makes the spinal cord refractory to regeneration and discuss the research that has been done with cell replacement and biomaterial implantation strategies, both by itself and as a combined treatment. We will focus on the capacity of these strategies to facilitate the regeneration of neural connectivity necessary to achieve meaningful functional recovery after SCI.
Collapse
Affiliation(s)
- Hiroyuki Katoh
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery - Surgical Sciences, School of Medicine, Tokai University, Tokyo, Japan
| | - Kazuya Yokota
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Spine Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
20
|
Xu D, Zhao W, Wang C, Zhu H, He M, Zhu X, Liu W, Wang F, Fan J, Chen C, Cui D, Cui Z. Up-regulation of TNF Receptor-associated Factor 7 after spinal cord injury in rats may have implication for neuronal apoptosis. Neuropeptides 2018; 71:81-89. [PMID: 30100091 DOI: 10.1016/j.npep.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
TNF receptor-associated factor 7 (TRAF7), is an E3 ubiquitin ligase for several proteins involved in the activation of TLR-dependent NF-kappaB signaling. TRAF7 links TNF receptor family proteins to signaling pathways, thus participates in regulating cell death and survival mediated by TNF family ligands. To date, the biological function of TRAF7 after spinal cord injury (SCI) is still with limited acquaintance. In this study, we have performed an acute SCI model in adult rats and investigated the dynamic changes of TRAF7 expression in the spinal cord. Our results showed that TRAF7 was up-regulated significantly after SCI, which was paralleled with the levels of the apoptotic protein active caspase-3. Immunofluorescent labeling showed that TRAF7 was co-localizated with active caspase-3 in neurons. To further investigate the function of TRAF7, an apoptosis model was established in primary neuronal cells. When TRAF7 was knocked down by specific short interfering RNA (siRNA), the protein levels of active caspase-3 and the number of apoptotic primary neurons were significantly decreased in our study. Taken together, our findings suggest that the change of TRAF7 protein expression plays a key role in neuronal apoptosis after SCI.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Wei Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Hao Zhu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng 224005, People's Republic of China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Xinhui Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Fei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Jianbo Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Chu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Daoran Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
21
|
Jing YH, Yan JL, Wang QJ, Chen HC, Ma XZ, Yin J, Gao LP. Spermidine ameliorates the neuronal aging by improving the mitochondrial function in vitro. Exp Gerontol 2018; 108:77-86. [PMID: 29649571 DOI: 10.1016/j.exger.2018.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Changes in mitochondrial structure and function are the initial factors of cell aging. Spermidine has an antiaging effect, but its effect on neuronal aging and mitochondrial mechanisms is unclear. In this study, mouse neuroblastoma (N2a) cells were treated with d‑galactose (d‑Gal) to establish cell aging to investigate the antiaging effect and mechanisms of spermidine. Changes in the cell cycle and β-galactosidase activity were analyzed to evaluate the extent of cell aging. Stabilities of mitochondrial mRNA and mitochondrial membrane potential (MMP) were evaluated in the process of cell aging under different treatments. The mitochondrial function was also evaluated using the Seahorse Metabolic Analysis System combined with ATP production. The unfolded protein response (UPR) of the N2a cells was analyzed under different treatments. Results showed that spermidine pretreatment could delay the cell aging and could maintain the mitochondrial stability during d‑Gal treatment. Spermidine increased the proportion of cells in the S phase and maintained the MMP. The oxygen utilization and ATP production in the N2a cells were reduced by d‑Gal treatment but were partially rescued by the spermidine pretreatment. Spermidine ameliorated the N2a cell aging by promoting the autophagy and inhibiting the apoptosis except the UPR. These results showed that spermidine could ameliorate the N2a cell aging by maintaining the mitochondrial mRNA transcription, MMP and oxygen utilization during the d‑Gal treatment.
Collapse
Affiliation(s)
- Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Ji-Long Yan
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Qing-Jun Wang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Hai-Chao Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Xue-Zhu Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu province 730000, PR China.
| |
Collapse
|
22
|
Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 2018; 20:307-319. [PMID: 29434374 DOI: 10.1038/s41556-018-0039-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-β1-dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K-phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2-PI3K-p-Akt signalling pathway.
Collapse
|
23
|
Increased intraocular pressure alters the cellular distribution of HuR protein in retinal ganglion cells - A possible sign of endogenous neuroprotection failure. Biochim Biophys Acta Mol Basis Dis 2017; 1864:296-306. [PMID: 29107807 DOI: 10.1016/j.bbadis.2017.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/09/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
The RNA-binding protein, HuR, modulates mRNA processing and gene expression of several stress response proteins i.e. Hsp70 and p53 that have been postulated to be involved in the pathogenesis of glaucoma, a chronic optic neuropathy leading to irreversible blindness. We evaluated HuR protein expression in retinas and optic nerves of glaucomatous rats and human primary open angle glaucoma patients and its possible impact on stress response mechanisms. We found that the cytoplasmic content of HuR was reduced more extensively in glaucomatous retinas than in optic nerves and this was linked with a declined cytoplasmic Hsp70 level and p53 nuclear translocation. In the optic nerve, the p53 content was decreased as a feature of reactive gliosis. Based on our findings, we conclude that the alteration in the HuR content, observed both in rat glaucoma model and human glaucoma samples, affects post-transcriptionally the expression of genes crucial for maintaining cell homeostasis; therefore, we postulate that HuR may be involved in the pathogenesis of glaucoma.
Collapse
|
24
|
Kim J, Mahapatra C, Hong J, Kim MS, Leong KW, Kim H, Hyun JK. Functional Recovery of Contused Spinal Cord in Rat with the Injection of Optimal-Dosed Cerium Oxide Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700034. [PMID: 29051850 PMCID: PMC5644223 DOI: 10.1002/advs.201700034] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/01/2017] [Indexed: 05/19/2023]
Abstract
Spinal cord injury (SCI) produces excess reactive oxygen species (ROS) that can exacerbate secondary injury and lead to permanent functional impairment. Hypothesizing that cerium oxide nanoparticles (CONPs) as an effective ROS scavenger may offset this damaging effect, it is first demonstrated in vitro that CONPs suppressed inducible nitric oxide synthase (iNOS) generation and enhanced cell viability of hydrogen peroxide (H2O2)-insulted cortical neurons. Next, CONPs are administered at various does (50-4000 µg mL-1) to a contused spinal cord rat model and monitored the disease progression for up to eight weeks. At one day postinjury, the number of iNOS+ cells decreases in the treated groups compared with the control. At one week, the cavity size and inflammatory cells are substantially reduced, and the expression of proinflammatory and apoptotic molecules is downregulated with a concurrent upregulation of anti-inflammatory cytokine. By eight weeks, the treated groups show significantly improved locomotor functions compared with the control. This study shows for the first time that injection of optimal-dosed CONPs alone into contusion-injured spinal cord of rats can reduce ROS level, attenuate inflammation and apoptosis, and consequently help locomotor functional recovery, adding a promising and complementary strategy to the other treatments of acute SCI.
Collapse
Affiliation(s)
- Jong‐Wan Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
| | - Chinmaya Mahapatra
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
| | - Jin‐Young Hong
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
| | - Min Soo Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
| | - Kam W. Leong
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Hae‐Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Rehabilitation MedicineCollege of MedicineDankook UniversityCheonan330‐714Republic of Korea
| |
Collapse
|
25
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
26
|
Devaux S, Cizkova D, Mallah K, Karnoub MA, Laouby Z, Kobeissy F, Blasko J, Nataf S, Pays L, Mériaux C, Fournier I, Salzet M. RhoA Inhibitor Treatment At Acute Phase of Spinal Cord Injury May Induce Neurite Outgrowth and Synaptogenesis. Mol Cell Proteomics 2017; 16:1394-1415. [PMID: 28659490 PMCID: PMC5546194 DOI: 10.1074/mcp.m116.064881] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The therapeutic use of RhoA inhibitors (RhoAi) has been experimentally tested in spinal cord injury (SCI). In order to decipher the underlying molecular mechanisms involved in such a process, an in vitro neuroproteomic-systems biology platform was developed in which the pan-proteomic profile of the dorsal root ganglia (DRG) cell line ND7/23 DRG was assessed in a large array of culture conditions using RhoAi and/or conditioned media obtained from SCI ex vivo derived spinal cord slices. A fine mapping of the spatio-temporal molecular events of the RhoAi treatment in SCI was performed. The data obtained allow a better understanding of regeneration/degeneration induced above and below the lesion site. Results notably showed a time-dependent alteration of the transcription factors profile along with the synthesis of growth cone-related factors (receptors, ligands, and signaling pathways) in RhoAi treated DRG cells. Furthermore, we assessed in a rat SCI model the in vivo impact of RhoAi treatment administered in situ via alginate scaffold that was combined with FK506 delivery. The improved recovery of locomotion was detected only at the early postinjury time points, whereas after overall survival a dramatic increase of synaptic contacts on outgrowing neurites in affected segments was observed. We validate these results by in vivo proteomic studies along the spinal cord segments from tissue and secreted media analyses, confirming the increase of the synaptogenesis expression factors under RhoAi treatment. Taken together, we demonstrate that RhoAi treatment seems to be useful to stimulate neurite outgrowth in both in vitro as well in vivo environments. However, for in vivo experiments there is a need for sustained delivery regiment to facilitate axon regeneration and promote synaptic reconnections with appropriate target neurons also at chronic phase, which in turn may lead to higher assumption for functional improvement.
Collapse
Affiliation(s)
- Stephanie Devaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Dasa Cizkova
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
- §Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
- ¶Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Khalil Mallah
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Melodie Anne Karnoub
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Zahra Laouby
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Firas Kobeissy
- ‖Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut
| | - Juraj Blasko
- **Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 4-6 Kosice, Slovakia
| | - Serge Nataf
- ‡‡Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Fr-69600, Oullins, France
| | - Laurent Pays
- ‡‡Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, Fr-69600, Oullins, France
| | - Céline Mériaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Isabelle Fournier
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France;
| |
Collapse
|
27
|
Manohar A, Foffani G, Ganzer PD, Bethea JR, Moxon KA. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats. eLife 2017; 6. [PMID: 28661400 PMCID: PMC5499944 DOI: 10.7554/elife.23532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/22/2017] [Indexed: 12/29/2022] Open
Abstract
After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI:http://dx.doi.org/10.7554/eLife.23532.001
Collapse
Affiliation(s)
- Anitha Manohar
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain.,Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States.,Department of Biomedical Engineering, University of California, Davis, United States
| |
Collapse
|
28
|
Bremer J, Skinner J, Granato M. A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish. PLoS One 2017; 12:e0178854. [PMID: 28575069 PMCID: PMC5456414 DOI: 10.1371/journal.pone.0178854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/21/2017] [Indexed: 12/29/2022] Open
Abstract
Adult vertebrates have retained the ability to regenerate peripheral nerves after injury, although regeneration is frequently incomplete, often leading to functional impairments. Small molecule screens using whole organisms have high potential to identify biologically relevant targets, yet currently available assays for in vivo peripheral nerve regeneration are either very laborious and/or require complex technology. Here we take advantage of the optical transparency of larval zebrafish to develop a simple and fast pectoral fin removal assay that measures peripheral nerve regeneration in vivo. Twenty-four hours after fin amputation we observe robust and stereotyped nerve regrowth at the fin base. Similar to laser mediated nerve transection, nerve regrowth after fin amputation requires Schwann cells and FGF signaling, confirming that the fin amputation assay identifies pathways relevant for peripheral nerve regeneration. From a library of small molecules with known targets, we identified 21 compounds that impair peripheral nerve regeneration. Several of these compounds target known regulators of nerve regeneration, further validating the fin removal assay. Twelve of the identified compounds affect targets not previously known to control peripheral nerve regeneration. Using a laser-mediated nerve transection assay we tested ten of those compounds and confirmed six of these compounds to impair peripheral nerve regeneration: an EGFR inhibitor, a glucocorticoid, prostaglandin D2, a retinoic acid agonist, an inhibitor of calcium channels and a topoisomerase I inhibitor. Thus, we established a technically simple assay to rapidly identify valuable entry points into pathways critical for vertebrate peripheral nerve regeneration.
Collapse
Affiliation(s)
- Juliane Bremer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julianne Skinner
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
29
|
Xin DQ, Hu ZM, Huo HJ, Yang XJ, Han D, Xing WH, Zhao Y, Qiu QH. Schisandrin B attenuates the inflammatory response, oxidative stress and apoptosis induced by traumatic spinal cord injury via inhibition of p53 signaling in adult rats. Mol Med Rep 2017; 16:533-538. [PMID: 28560444 PMCID: PMC5482126 DOI: 10.3892/mmr.2017.6622] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Schisandrin B is an active monomer of the Chinese magnolia vine (Schisandra chinensis) that can reduce transaminase activity in liver cells, inhibit lipid peroxidation, enhance antioxidant status, has protective effects in the liver and has antitumor effects. The present study investigated the potential protective effects of schisandrin B on the p53 signaling pathway in attenuating the inflammatory response, oxidative stress and apoptosis induced by traumatic spinal cord injury (TSCI) in adult rats. Behavioral examination, inclined plate test and spinal cord water content were used to evaluate the protective effect of schisandrin B in TSCI rats. The expression levels of superoxide dismutase (SOD), malondialdehyde (MDA), nuclear factor (NF)-κB subunit p65 and tumor necrosis factor (TNF)-α were examined using ELISA kits. Western blot analysis was performed to analyze the protein expression of caspase-3 and phosphorylated (p)-p53 in TSCI rats. In the present study, schisandrin B improved behavioral examination results and the maximum angle of inclined plate test, and inhibited spinal cord water content in rats with TSCI. Notably, schisandrin B reduced the activation of traumatic injury-associated pathways, including SOD, MDA, NF-κB p65 and TNF-α, in TSCI rats. In addition, schisandrin B suppressed the TSCI-induced expression of caspase-3 and p-p53 in TSCI rats. These results indicated that schisandrin B may attenuate the inflammatory response, oxidative stress and apoptosis in TSCI rats by inhibiting the p53 signaling pathway in adult rats.
Collapse
Affiliation(s)
- D Q Xin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Z M Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - H J Huo
- Department of Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - X J Yang
- Department of Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - D Han
- Department of Cardiovascular Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - W H Xing
- Department of Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Y Zhao
- Department of Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Q H Qiu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
30
|
Nissen JC, Tsirka SE. Tuftsin-driven experimental autoimmune encephalomyelitis recovery requires neuropilin-1. Glia 2016; 64:923-36. [PMID: 26880314 DOI: 10.1002/glia.22972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/31/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of demyelinating autoimmune disease, such as multiple sclerosis (MS), which is characterized by central nervous system white matter lesions, microglial activation, and peripheral T-cell infiltration secondary to blood-brain barrier disruption. We have previously shown that treatment with tuftsin, a tetrapeptide generated from IgG proteolysis, dramatically improves disease symptoms in EAE. Here, we report that microglial expression of Neuropilin-1 (Nrp1) is required for tuftsin-driven amelioration of EAE symptoms. Nrp1 ablation in microglia blocks microglial signaling and polarization to the anti-inflammatory M2 phenotype, and ablation in either the microglia or immunosuppressive regulatory T cells (Tregs) reduces extended functional contacts between them and Treg activation, implicating a role for microglia in the activation process, and more generally, how immune surveillance is conducted in the CNS. Taken together, our findings delineate the mechanistic action of tuftsin as a candidate therapeutic against immune-mediated demyelinating lesions.
Collapse
Affiliation(s)
- Jillian C Nissen
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, New York, New York
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, New York, New York
| |
Collapse
|
31
|
Abstract
UNLABELLED Understanding why adult CNS neurons fail to regenerate their axons following injury remains a central challenge of neuroscience research. A more complete appreciation of the biological mechanisms shaping the injured nervous system is a crucial prerequisite for the development of robust therapies to promote neural repair. Historically, the identification of regeneration associated signaling pathways has been impeded by the limitations of available genetic and molecular tools. As we progress into an era in which the high-throughput interrogation of gene expression is commonplace and our knowledge base of interactome data is rapidly expanding, we can now begin to assemble a more comprehensive view of the complex biology governing axon regeneration. Here, we highlight current and ongoing work featuring transcriptomic approaches toward the discovery of novel molecular mechanisms that can be manipulated to promote neural repair. SIGNIFICANCE STATEMENT Transcriptional profiling is a powerful technique with broad applications in the field of neuroscience. Recent advances such as single-cell transcriptomics, CNS cell type-specific and developmental stage-specific expression libraries are rapidly enhancing the power of transcriptomics for neuroscience applications. However, extracting biologically meaningful information from large transcriptomic datasets remains a formidable challenge. This mini-symposium will highlight current work using transcriptomic approaches to identify regulatory networks in the injured nervous system. We will discuss analytical strategies for transcriptomics data, the significance of noncoding RNA networks, and the utility of multiomic data integration. Though the studies featured here specifically focus on neural repair, the approaches highlighted in this mini-symposium will be of broad interest and utility to neuroscientists working in diverse areas of the field.
Collapse
|
32
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
33
|
Ji XC, Dang YY, Gao HY, Wang ZT, Gao M, Yang Y, Zhang HT, Xu RX. Local Injection of Lenti-BDNF at the Lesion Site Promotes M2 Macrophage Polarization and Inhibits Inflammatory Response After Spinal Cord Injury in Mice. Cell Mol Neurobiol 2015; 35:881-90. [PMID: 25840805 PMCID: PMC11486196 DOI: 10.1007/s10571-015-0182-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 12/28/2022]
Abstract
There is much evidence to suggest that brain-derived neurotrophic factor (BDNF) is a prominent candidate in promoting neuroprotection, axonal regeneration, and synaptic plasticity following spinal cord injury (SCI). Although some evidence indicates that BDNF has potent anti-oxidative effects and may be involved in the regulation of the immune response, the effects of BDNF in the inflammatory response during the course of secondary damage after SCI is still unclear. The present study was designed to investigate the effects of BDNF with a special focus on their effect on macrophage polarization after SCI. Adult C57 mice underwent T10 spinal cord clip compression injury and received lenti-BDNF vector injections at the epicenter of the lesion site. Four days later, total BDNF levels were greatly increased in animals that received lenti-BDNF injections. Confocal imaging showed that more than 80 % of the lenti-virus infected cells were CD11b-positive macrophages. In addition, the expression of arginase-1 and CD206 (associated with M2 macrophage phenotype) significantly increased in the animals that received lenti-BDNF injections compared with those that received lenti-EGFP injections. On the contrary, the expression of CD16/32 and inducible nitric oxide synthase (M1 phenotype marker) was down-regulated as demonstrated using flow cytometry and immunohistochemistry. Furthermore, the production of interleukin 1β and tumor necrosis factor alpha was significantly reduced whereas the levels of interleukin 10 and interleukin 13 were elevated in subjects that received lenti-BDNF vector injections. The time course of functional recovery revealed that gradual recovery was observed in the subacute phase in lenti-BDNF group, little improvement was observed in lenti-EGFP group. At the axonal level, significant retraction of the CST axons were observed in lenti-EGFP injected animals relative to lenti-BDNF group by biotinylated dextran amine tracing. In addition, compared to lenti-BDNF group markedly demyelination was observed in the lenti-EGFP group using luxol fast blue staining. In conclusion, we found that BDNF could promote the shift of M1 to M2 phenotype and ameliorate the inflammatory microenvironment. Furthermore, the roles of BDNF in immunity modulation may enhance neuroprotective effects and partially contribute to the locomotor functional recovery after SCI.
Collapse
Affiliation(s)
- Xin-Chao Ji
- Graduate School, The Third Military Medical University, Chongqing, 400038 China
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Yuan-Yuan Dang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Hong-Yan Gao
- Medical Administration Department, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Zhao-Tao Wang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Mou Gao
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Yi Yang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
| | - Hong-Tian Zhang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
- The Neurosurgical Research Center of Beijing Military Region PLA, Beijing, 100700 China
| | - Ru-Xiang Xu
- Graduate School, The Third Military Medical University, Chongqing, 400038 China
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing, PLA, Beijing, 100700 China
- The Neurosurgical Research Center of Beijing Military Region PLA, Beijing, 100700 China
| |
Collapse
|
34
|
Wang Y, Schachner M. The intracellular domain of L1CAM binds to casein kinase 2α and is neuroprotective via inhibition of the tumor suppressors PTEN and p53. J Neurochem 2015; 133:828-43. [PMID: 25727698 DOI: 10.1111/jnc.13083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Cell adhesion molecule L1 promotes neuritogenesis and neuronal survival through triggering MAPK pathways. Based on the findings that L1 is associated with casein kinase 2 (CK2), and that deficiency in PTEN promotes neuritogenesis in vitro and regeneration after trauma, we examined the functional relationship between L1 and PTEN. In parallel, we investigated the tumor suppressor p53, which also regulates neuritogenesis. Here, we report that the intracellular domain of L1 binds to the subunit CK2α, and that knockdown of L1 leads to CK2 dephosphorylation and an increase in PTEN and p53 levels. Overexpression of L1, but not the L1 mutants L1 (S1181N, E1184V), which reduced binding between L1 and CK2, reduced expression levels of PTEN and p53 proteins, and enhanced levels of phosphorylated CK2α and mammalian target of rapamycin, which is a downstream effector of PTEN and p53. Treatment of neurons with a CK2 inhibitor or transfection with CK2α siRNA increased levels of PTEN and p53, and inhibited neuritogenesis. The combined observations indicate that L1 downregulates expression of PTEN and p53 via direct binding to CK2α. We suggest that L1 stimulates neuritogenesis by activating CK2α leading to decreased levels of PTEN and p53 via a novel, L1-triggered and CK2α-mediated signal transduction pathway. L1CAM (L1 cell adhesion molecule) is implicated in neural functions through the cognate src/MAP kinase signaling pathway. We now describe a novel signaling platform operating via the alpha subunit of casein kinase 2 which binds to the intracellular domain of L1. Knockdown of L1CAM leads to increased levels of tumor suppressor PTEN (phosphatase and tensin homolog) and p53, known to inhibit neuritogenesis in vitro and recovery from trauma in vivo. By activating this enzyme, L1CAM adds to its beneficial functions by decreasing the levels of PTEN and p53.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
35
|
The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain 2015; 138:1843-62. [DOI: 10.1093/brain/awv125] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
|
36
|
DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci Data 2014; 1:140038. [PMID: 25977793 PMCID: PMC4411011 DOI: 10.1038/sdata.2014.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/11/2014] [Indexed: 01/28/2023] Open
Abstract
The regulatory mechanisms responsible for the gene expression pattern associated with axotomy-dependent signaling affecting the neuronal phenotype, including the axonal regenerative program, remain unclear. To further this understanding, we recently performed DNA methylation temporal profiling in lumbar dorsal root ganglia (DRG) after axotomy of the central spinal (non-regenerating) and of the peripheral sciatic nerve (regenerating) axonal branches. DNA methylation microarrays for mouse gene promoters and CpG islands (Roche/NimbleGen) were employed after immunoprecipitation of 5-methylcytosine-DNA. Here we provide a detailed data descriptor of this DNA methylation dataset, which allows in depth evaluation of the experimental design, assessment of data reproducibility and a full interactive operator-based systematic data analysis. In fact, we offer a methylation ‘hit’ scoring map of the whole microarray data in a workable spreadsheet that allows data sorting by genes, conditions or hits of interests that is ready for functional gene annotation and classification. This dataset allows investigators bioinformatic comparison to other epigenetic and gene expression datasets and further experimental characterization of the role of DNA methylation in axotomy-dependent pathways.
Collapse
|
37
|
Sengupta MB, Basu M, Iswarari S, Mukhopadhyay KK, Sardar KP, Acharyya B, Mohanty PK, Mukhopadhyay D. CSF proteomics of secondary phase spinal cord injury in human subjects: perturbed molecular pathways post injury. PLoS One 2014; 9:e110885. [PMID: 25350754 PMCID: PMC4211693 DOI: 10.1371/journal.pone.0110885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Recovery of sensory and motor functions following traumatic spinal cord injury (SCI) is dependent on injury severity. Here we identified 49 proteins from cerebrospinal fluid (CSF) of SCI patients, eight of which were differentially abundant among two severity groups of SCI. It was observed that the abundance profiles of these proteins change over a time period of days to months post SCI. Statistical analysis revealed that these proteins take part in several molecular pathways including DNA repair, protein phosphorylation, tRNA transcription, iron transport, mRNA metabolism, immune response and lipid and ATP catabolism. These pathways reflect a set of mechanisms that the system may adopt to cope up with the assault depending on the injury severity, thus leading to observed physiological responses. Apart from putting forward a picture of the molecular scenario at the injury site in a human study, this finding further delineates consequent pathways and molecules that may be altered by external intervention to restrict neural degeneration.
Collapse
Affiliation(s)
- Mohor Biplab Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Mahashweta Basu
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Sourav Iswarari
- Department of Physical Medicine & Rehabilitation, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Kiran Kumar Mukhopadhyay
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Krishna Pada Sardar
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Biplab Acharyya
- Department of Orthopaedic Surgery, Nil Ratan Sircar Medical College & Hospital, Kolkata, West Bengal, India
| | - Pradeep K. Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
38
|
PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 2014; 5:3527. [PMID: 24686445 DOI: 10.1038/ncomms4527] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/27/2014] [Indexed: 01/20/2023] Open
Abstract
Axonal regenerative failure is a major cause of neurological impairment following central nervous system (CNS) but not peripheral nervous system (PNS) injury. Notably, PNS injury triggers a coordinated regenerative gene expression programme. However, the molecular link between retrograde signalling and the regulation of this gene expression programme that leads to the differential regenerative capacity remains elusive. Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. Thus, we find a specific epigenetic mechanism that regulates axonal regeneration of CNS axons, suggesting novel targets for clinical application.
Collapse
|
39
|
The tumor suppressor p53 fine-tunes reactive oxygen species levels and neurogenesis via PI3 kinase signaling. J Neurosci 2013; 33:14318-30. [PMID: 24005285 DOI: 10.1523/jneurosci.1056-13.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mounting evidence points to a role for endogenous reactive oxygen species (ROS) in cell signaling, including in the control of cell proliferation, differentiation, and fate. However, the function of ROS and their molecular regulation in embryonic mouse neural progenitor cells (eNPCs) has not yet been clarified. Here, we describe that physiological ROS are required for appropriate timing of neurogenesis in the developing telencephalon in vivo and in cultured NPCs, and that the tumor suppressor p53 plays a key role in the regulation of ROS-dependent neurogenesis. p53 loss of function leads to elevated ROS and early neurogenesis, while restoration of p53 and antioxidant treatment partially reverse the phenotype associated with premature neurogenesis. Furthermore, we describe that the expression of a number of neurogenic and oxidative stress genes relies on p53 and that both p53 and ROS-dependent induction of neurogenesis depend on PI3 kinase/phospho-Akt signaling. Our results suggest that p53 fine-tunes endogenous ROS levels to ensure the appropriate timing of neurogenesis in eNPCs. This may also have implications for the generation of tumors of neurodevelopmental origin.
Collapse
|
40
|
Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward. Neurotherapeutics 2013; 10:771-81. [PMID: 23881454 PMCID: PMC3805867 DOI: 10.1007/s13311-013-0203-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inadequate axonal sprouting and lack of regeneration limit functional recovery following neurologic injury, such as stroke, brain, and traumatic spinal cord injury. Recently, the enhancement of the neuronal regenerative program has led to promising improvements in axonal sprouting and regeneration in animal models of axonal injury. However, precise knowledge of the essential molecular determinants of this regenerative program remains elusive, thus limiting the choice of fully effective therapeutic strategies. Given that molecular regulation of axonal outgrowth and regeneration requires carefully orchestrated waves of gene expression, both temporally and spatially, epigenetic changes may be an ideal regulatory mechanism to address this unique need. While recent evidence suggests that epigenetic modifications could contribute to the regulation of axonal outgrowth and regeneration following axonal injury in models of stroke, and spinal cord and optic nerve injury, a number of unanswered questions remain. Such questions require systematic investigation of the epigenetic landscape between regenerative and non-regenerative conditions for the potential translation of this knowledge into regenerative strategies in human spinal and brain injury, as well as stroke.
Collapse
Affiliation(s)
- Ricco Lindner
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Radhika Puttagunta
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
41
|
Michalakis S, Schäferhoff K, Spiwoks-Becker I, Zabouri N, Koch S, Koch F, Bonin M, Biel M, Haverkamp S. Characterization of neurite outgrowth and ectopic synaptogenesis in response to photoreceptor dysfunction. Cell Mol Life Sci 2013; 70:1831-47. [PMID: 23269435 PMCID: PMC11113940 DOI: 10.1007/s00018-012-1230-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Abstract
In the mammalian retina, light signals generated in photoreceptors are passed to bipolar and horizontal cells via synaptic contacts. In various pathological conditions, these second-order neurons extend neurites into the outer nuclear layer (ONL). However, the molecular events associated with this neurite outgrowth are not known. Here, we characterized the morphological synaptic changes in the CNGA3/CNGB1 double-knockout (A3B1) mouse, a model of retinitis pigmentosa. In these mice, horizontal cells looked normal until postnatal day (p) 11, but started growing neurites into the ONL 1 day later. At p28, the number of sprouting processes decreased, but the remaining sprouts developed synapse-like contacts at rod cell bodies, with an ultrastructural appearance reminiscent of ribbon synapses. Hence, neurite outgrowth and ectopic synaptogenesis in the A3B1 retina were precisely timed events starting at p12 and p28, respectively. We therefore performed microarray analysis of retinal gene expression in A3B1 and wild-type mice at those ages to evaluate the genomic response underlying these two events. This analysis identified 163 differentially regulated genes in the A3B1 retina related to neurite outgrowth or plasticity of synapses. The global changes in gene expression in the A3B1 retina were consistent with activation of signaling pathways related to Tp53, Smad, and Stat3. Moreover, key molecules of these signaling pathways could be localized at or in close proximity to outgrowing neurites. We therefore propose that Tp53, Smad, and Stat3 signaling pathways contribute to the synaptic plasticity in the A3B1 retina.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr 7, 81377 Munich, Germany
| | - Karin Schäferhoff
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Isabella Spiwoks-Becker
- Institute for Microscopic Anatomy and Neurobiology, University Medicine Mainz, Mainz, Germany
| | - Nawal Zabouri
- Neuroanatomy, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| | - Susanne Koch
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr 7, 81377 Munich, Germany
| | - Fred Koch
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr 7, 81377 Munich, Germany
| | - Michael Bonin
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Calwerstr. 7, 72076 Tuebingen, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr 7, 81377 Munich, Germany
| | - Silke Haverkamp
- Neuroanatomy, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| |
Collapse
|
42
|
Quadrato G, Di Giovanni S. Gatekeeper between quiescence and differentiation: p53 in axonal outgrowth and neurogenesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206596 DOI: 10.1016/b978-0-12-398309-1.00005-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factor and tumor suppressor gene p53 regulates a wide range of cellular processes including DNA damage/repair, cell cycle progression, apoptosis, and cell metabolism. In the past several years, a specific novel role for p53 in neuronal biology has emerged. p53 orchestrates the polarity of self-renewing divisions in neural stem cells both during embryonic development and in adulthood and coordinates the timing for cell fate specification. In postmitotic neurons, p53 regulates neurite outgrowth and postinjury axonal regeneration via neurotrophin-dependent and -independent signaling by both transcriptional and posttranslational control of growth cone remodeling. This review provides an insight into the molecular mechanisms upstream and downstream p53 both during neural development and following axonal injury. Their understanding may provide therapeutic targets to enhance neuroregeneration following nervous system injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|