1
|
Zhang M, Zhang Y, Chen Y, Cen Z, Li J, Li S, Li H, Wan L, Xiao X, Long Q. Mechanistic insights and therapeutic approaches in tic disorders: The distinctive role of ethnomedicine and modern medical interventions. Neurosci Biobehav Rev 2025; 172:106130. [PMID: 40169089 DOI: 10.1016/j.neubiorev.2025.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/14/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Tic disorders (TDs) are a class of neurodevelopmental disorders that have received considerable scientific attention. The genesis of TDs is increasingly understood as a complex interplay of neurobiological, genetic, and immunological factors. Animal model studies have elucidated the pathophysiology of TDs, paving the way for innovative therapeutic approaches. This review provides a comprehensive analysis of the etiologic basis, experimental framework, and treatment strategies for TDs, highlighting the contributions of ethnomedicine and modern medicine. Our synthesis aims to deepen the understanding of the disease and spur the development of superior treatments. In addition, we present new insights and hypotheses for the future management of TDs, emphasizing the need for continued research into their etiology and progression, as well as the pursuit of more effective therapies. We advocate personalized, holistic care strategies that focus on symptom relief and improving patients' quality of life. Overall, this review provides a critical compendium for TD researchers and practitioners to help navigate the complexities of these disorders.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan 454600, China
| | - Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
| | - Haipeng Li
- Department of Traditional Chinese Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lisheng Wan
- Department of Traditional Chinese Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan 454600, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiyuan Neurohealth Industry Research Institute of Guangdong Pharmaceutical University, Jiyuan 454600, China.
| |
Collapse
|
2
|
Caffino L, Targa G, Mottarlini F, Thielens S, Rizzi B, Villers A, Ris L, Gainetdinov RR, Leo D, Fumagalli F. Memantine-induced functional rewiring of the glutamate synapse in the striatum of dopamine transporter knockout rats. Br J Pharmacol 2025; 182:1377-1393. [PMID: 39653030 DOI: 10.1111/bph.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Slow-acting biogenic amines, such as dopamine, are known to modulate fast neurotransmitters e.g. glutamate. In the striatum, dopamine (DA) interacts with glutamate, influencing neural excitability and promoting synaptic plasticity. The exact mechanism of such interaction is not fully understood. This study investigates, in detail, how dopamine overactivity in dopamine transporter knockout (DAT-/-) rats, alters the homeostasis of the striatal glutamate synapse from a molecular, behavioural and functional point of view. EXPERIMENTAL APPROACH The expression, localisation, retention and electrophysiological properties of N-methyl-D-aspartate (NMDA) receptors as well as dendritic spine density and morphology were investigated in the striatum of DAT-/- rats, at baseline and after treatment with the non-competitive NMDA receptor antagonist memantine (30 mg kg-1). KEY RESULTS Dopamine overactivity dramatically reorganises the striatal glutamate synapse, redistributing NMDA receptors in the synapse as typified by reduced synaptic availability and reduced expression of NMDA scaffolding proteins, as well as by increased GluN2B-containing NMDA receptors in the extra synapse. Such changes are accompanied by reduced spine density, suggesting dopamine-induced structural rearrangements. These results converge into a compromised plasticity, as shown by the impaired ability to promote long-term depression (LTD) in the striatum of DAT-/-rats. Notably, memantine counteracts hyperlocomotion, reverses spine alterations and abolishes the extrasynaptic movements of NMDA receptors in the striatum of DAT-/- rats, thus restoring functional LTD. CONCLUSION AND IMPLICATIONS A hyperdopaminergic condition seems to alter striatal homeostasis by increasing extrasynaptic NMDA receptors. These findings may be relevant to manipulate disorders characterised by elevated dopaminergic activity.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Sarah Thielens
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Agnes Villers
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Poceviciute I, Brazaityte A, Buisas R, Vengeliene V. Scopolamine animal model of memory impairment. Behav Brain Res 2025; 479:115344. [PMID: 39566583 DOI: 10.1016/j.bbr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
In this study, we reassessed the suitability of a commonly used pharmacological animal model of Alzheimer's disease (AD) - scopolamine-induced memory impairment. The goal of the study was to explore if this animal model induces other behavioral changes associated with AD. One of the key behavioral features of AD, manifesting already during the early stages of the illness, is apathy-like behavior. We also evaluated how behavioral alterations induced by scopolamine compare to those seen in healthy aging animals. To achieve these goals, locomotor activity and short-term memory of young male Wistar rats were tested in the open field, novel object recognition (NOR) and T-maze spontaneous alternation tests before, during and after 21 daily administrations of scopolamine. Three-, ten- and nineteen-month-old male and female rats were used to measure age-related changes in these behaviors. Our data showed that although both scopolamine treatment and aging reduced the number of approaches to the objects and their exploration time during the NOR test, correlation with impaired object recognition memory was only observed in the scopolamine treated animals. Furthermore, treatment with scopolamine significantly increased the locomotor activity, which could be observed even one week after treatment discontinuation. Contrary, locomotor activity in older rats was significantly lower than that of younger rats. These findings demonstrate that the animal model of scopolamine-induced memory impairment fails to incorporate apathy-like symptoms characteristic to the AD and age-related reduction in physical activity of older rats.
Collapse
Affiliation(s)
- Ieva Poceviciute
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Agne Brazaityte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Rokas Buisas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Valentina Vengeliene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania.
| |
Collapse
|
4
|
An D, You Y, Ma Q, Xu Z, Liu Z, Liao R, Chen H, Wang Y, Wang Y, Dai H, Li H, Jiang L, Chen Z, Hu W. Deficiency of histamine H 2 receptors in parvalbumin-positive neurons leads to hyperactivity, impulsivity, and impaired attention. Neuron 2025; 113:572-589.e6. [PMID: 39788124 DOI: 10.1016/j.neuron.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H2 receptor (H2R) in parvalbumin-positive neurons in substantia nigra pars recticulata (PVSNr) attenuates PV+ neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased H2R expression was observed in PVSNr in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by H2R agonist treatment. Dysfunction of PVSNr efferents to the substantia nigra pars compacta dopaminergic neurons and superior colliculus differently contributes to H2R-deficiency-induced behavioral disorders. Collectively, our results demonstrate that H2R deficiency in PV+ neurons contributes to hyperactivity, impulsivity, and inattention by dampening PVSNr activity and involving different efferents in mice. It may enhance understanding of the molecular and circuit-level basis of ADHD and afford new potential therapeutic targets for ADHD-like psychiatric diseases.
Collapse
Affiliation(s)
- Dadao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengyi Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zonghan Liu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruichu Liao
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiquan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou 310013, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haohong Li
- The MOE Frontier Research Center of Brain and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
5
|
Shinada T, Takahashi M, Uno A, Soga K, Taki Y. Effects of group music sessions on cognitive and psychological functions in healthy older adults. FRONTIERS IN AGING 2025; 6:1513359. [PMID: 39995889 PMCID: PMC11847865 DOI: 10.3389/fragi.2025.1513359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Introduction With the rapid aging of the population worldwide and the prevalence of dementia and mental health problems among older adults, it is important to extend healthy life expectancy by maintaining brain and mental health. Playing musical instruments, which requires the integration of auditory, visual, and somatosensory functions, is considered an effective way to prevent the development of dementia. However, the effectiveness of group (band) music sessions in healthy older adults has not been investigated. Our purpose, therefore, was to investigate the effects of group music sessions on cognitive and psychological functions among healthy older adults. Methods In this open-label randomized controlled trial, participants aged 65-74, who had no musical experience, were randomly assigned to either the intervention or control group. The intervention group received in weekly 90-minute sessions with the instrument for 16 weeks. The control group received no intervention. Results The results showed that the Mini-Mental State Examination (MMSE) total score and the Wechsler Memory Scale Logical Memory Ⅱ (WMS-LM Ⅱ) score improved significantly, and the Vigor-Activity subscale score of the Profile of Mood States 2nd Edition (POMS 2) tended to improve. Discussion These findings indicated that group music sessions have a potentially beneficial effect for maintaining and improving cognitive and psychological functions in healthy older adults.
Collapse
Affiliation(s)
| | | | - Akari Uno
- Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Keishi Soga
- Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Apryatin SA. The Neurometabolic Function of the Dopamine-Aminotransferase System. Metabolites 2025; 15:21. [PMID: 39852364 PMCID: PMC11767981 DOI: 10.3390/metabo15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES The neurometabolic function is controlled by a complex multi-level physiological system that includes neurochemical, hormonal, immunological, sensory, and metabolic components. Functional disorders of monoamine systems are often detected in clinical practice together with metabolic dysfunctions. An important part of the mentioned pathological conditions are associated with disturbances in protein metabolism, some of the most important biomarkers which are aminotransferases and transcription factors that regulate and direct the most important metabolic reactions. Another important part of energy metabolism is the dopamine-mediated regulation of protein metabolism. METHODS The review describes research results into the dopamine-mediated mechanism of metabolic regulation in humans and animals. Particular attention is paid to the neurometabolic mechanisms of protein metabolism. RESULTS The dopamine-aminotransferase system of the energy metabolism regulation is a separate, independent, regulatory and diagnostically significant biochemical pathway controlled by the hormonal system, the key hormone is cortisol, the key neurotransmitter is dopamine, the key transcription factor is CREB, and the key regulatory enzymes are alanine aminotransferase, aspartate aminotransferase, and tyrosine aminotransferase. CONCLUSIONS This review presents an original study describing the discovery of a new regulatory mechanism for neurometabolic physiological function in humans and animals. A key part of this mechanism is the dopamine-aminotransferase system.
Collapse
Affiliation(s)
- Sergey A Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
7
|
Inagaki R, Kita S, Niwa N, Fukunaga K, Iwamoto T, Moriguchi S. Aberrant extracellular dopamine clearance in the prefrontal cortex exhibits ADHD-like behavior in NCX3 heterozygous mice. FEBS J 2025; 292:426-444. [PMID: 39624860 PMCID: PMC11734882 DOI: 10.1111/febs.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that involves dopaminergic dysfunction in the prefrontal cortex (PFC), manifesting hyperactivity, inattention, and cognitive deficits. However, the ADHD-associated candidate genes underlying dopaminergic neurotransmission alterations remain poorly defined. Here, we identified the abundant localization of sodium-calcium exchanger 3 (NCX3) levels in the dopaminergic neurons of the ventral tegmental area, a major source of dopaminergic innervation to the PFC. We confirmed that NCX3 knockdown in N27 cells caused aberrant dopamine influx through the strong interaction between calcium/calmodulin-dependent protein kinase II alpha and dopamine transporter. In addition, we assessed behavioral changes and underlying molecular properties in NCX3 heterozygous (NCX3+/-) mice. NCX3+/- mice exhibited hyperactivity, cognitive deficits, and social dysfunction which were alleviated by treating with methylphenidate. Furthermore, NCX3+/- mice displayed a persistent elevation of basal dopamine levels and decreased extracellular levels of dopamine triggered by social stimuli in the PFC of NCX3+/- mice. In agreement with the rise in extracellular dopamine levels in the PFC, NCX3+/- mice showed activation of dopamine D1 receptor signaling pathways in the PFC compared to wild-type mice. Thus, deficiency of NCX3 leads to impaired dopaminergic neurotransmission in the PFC, which likely accounts for the ADHD-like behavior in NCX3+/- mice.
Collapse
Affiliation(s)
- Ryo Inagaki
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Satomi Kita
- Department of Pharmacology, Faculty of Pharmaceutical SciencesTokushima Bunri UniversityJapan
| | - Nozomu Niwa
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Takahiro Iwamoto
- Department of Pharmacology, Faculty of MedicineFukuoka UniversityJapan
| | - Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
8
|
Simon TB, Sierra J, Williams A, Wright G, Rhee A, Horn J, Lou J, Sharafeddin F, Ontiveros-Ángel P, Figueroa JD. Shifts in naturalistic behaviors induced by early social isolation stress are associated with adult binge-like eating in female rats. Front Behav Neurosci 2024; 18:1519558. [PMID: 39726771 PMCID: PMC11669510 DOI: 10.3389/fnbeh.2024.1519558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Binge eating (BE) is a highly pervasive maladaptive coping strategy in response to severe early life stress such as emotional and social neglect. BE is described as repeated episodes of uncontrolled eating and is tightly linked with comorbid mental health concerns. Despite social stressors occurring at a young age, the onset of BE typically does not occur until adulthood providing an interval for potential therapeutic intervention. Currently, our knowledge of longitudinal noninvasive digital biomarkers predictive of BE needs further development. Monitoring longitudinal impacts of adolescent social isolation stress on naturalistic behaviors in rats will enable the identification of noninvasive digital markers of disease progression to predict adult eating strategies. Recognizing adolescent naturalistic behaviors shaped by social stress informs our understanding of the underlying neurocircuits most effected. This study aimed to monitor and identify longitudinal behavioral shifts to enhance predictive capabilities in a rat model of social isolation stress-induced BE. We placed Paired (n = 12) and Socially Isolated (SI, n = 12) female rats in observational home cages weekly for seven weeks to evaluate the effect of SI on 10 naturalistic behaviors. All 10 naturalistic behaviors were simultaneously detected and tracked using Noldus Ethovision XT automated recognition software. Composite phenotypic z-scores were calculated by standardizing all 10 behaviors. When transitioning into adulthood, all rats underwent conventional emotionality testing and were exposed to a Western-like high fat diet (WD, 43% kcal from fat) to evaluate BE. Longitudinal assessments revealed SI-induced shifts in adolescent phenotypic z-scores and that sniffing, unsupported rearing, jumping, and twitching were the most susceptible to SI. SI increased emotionality compared to the Paired controls. Finally, we identified adolescent twitching as a digital biomarker of adult WD consumption. Our findings suggest that home cage monitoring can detect disrupted naturalistic behaviors associated with maladaptive coping.
Collapse
Affiliation(s)
- Timothy B. Simon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Julio Sierra
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Arianna Williams
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Giara Wright
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Allison Rhee
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Julius Horn
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - John Lou
- Loma Linda University School of Behavioral Health, Loma Linda, CA, United States
| | - Fransua Sharafeddin
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Perla Ontiveros-Ángel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
9
|
Park S, Heu J, Hoener MC, Kilduff TS. Wakefulness Induced by TAAR1 Partial Agonism in Mice Is Mediated Through Dopaminergic Neurotransmission. Int J Mol Sci 2024; 25:11351. [PMID: 39518904 PMCID: PMC11547084 DOI: 10.3390/ijms252111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is a negative regulator of dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in rodents and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake regulation were due, in part, to DA release. Male C57BL6/J mice (n = 8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R + D2R antagonists, or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle per os. EEG, EMG, subcutaneous temperature, and activity were recorded across the 8 treatments and sleep architecture was analyzed for 6 h post-dosing. As described previously, RO5263397 increased wakefulness and delayed NREM and REM sleep onset. D1, D2, and D1 + D2 pretreatment reduced RO5263397-induced wakefulness for 1-2 h after dosing but only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected the TAAR1-mediated suppression of REM sleep. These results suggest that, whereas the TAAR1 effects on wakefulness are mediated, in part, through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. In contrast, the TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| | - Marius C. Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland;
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| |
Collapse
|
10
|
Fesenko Z, Ptukha M, da Silva MM, de Carvalho RSM, Tsytsarev V, Gainetdinov RR, Faber J, Volnova AB. Electrophysiological and Behavioral Markers of Hyperdopaminergia in DAT-KO Rats. Biomedicines 2024; 12:2114. [PMID: 39335627 PMCID: PMC11428849 DOI: 10.3390/biomedicines12092114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Dopamine dysfunction (DA) is a hallmark of many neurological disorders. In this case, the mechanism of changes in dopamine transmission on behavior remains unclear. This study is a look into the intricate link between disrupted DA signaling, neuronal activity patterns, and behavioral abnormalities in a hyperdopaminergic animal model. Methods: To study the relationship between altered DA levels, neuronal activity, and behavioral deficits, local field potentials (LFPs) were recorded during four different behaviors in dopamine transporter knockout rats (DAT-KO). At the same time, local field potentials were recorded in the striatum and prefrontal cortex. Correlates of LFP and accompanying behavioral patterns in genetically modified (DAT-KO) and control animals were studied. Results: DAT-KO rats exhibited desynchronization between LFPs of the striatum and prefrontal cortex, particularly during exploratory behavior. A suppressive effect of high dopamine levels on the striatum was also observed. Wild-type rats showed greater variability in LFP patterns across certain behaviors, while DAT-KO rats showed more uniform patterns. Conclusions: The decisive role of the synchrony of STR and PFC neurons in the organization of motor acts has been revealed. The greater variability of control animals in certain forms of behavior probably suggests greater adaptability. More uniform patterns in DAT-KO rats, indicating a loss of striatal flexibility when adapting to specific motor tasks. It is likely that hyperdopaminergy in the DAT-KO rat reduces the efficiency of information processing due to less synchronized activity during active behavior.
Collapse
Affiliation(s)
- Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Centre for Youth Mental Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria 3010, Australia;
| | - Marcelo M. da Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Raquel S. Marques de Carvalho
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 190121, Russia
| | - Jean Faber
- Department of Neurology and Neurosurgery, Division of Neuroscience, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
11
|
Park S, Heu J, Hoener MC, Kilduff TS. Wakefulness Induced by TAAR1 Partial Agonism is Mediated Through Dopaminergic Neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612122. [PMID: 39314371 PMCID: PMC11419104 DOI: 10.1101/2024.09.09.612122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) is known to negatively regulate dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in mice, rats, and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake were due, at least in part, to DA release. Male C57BL6/J mice (n=8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R+D2R antagonists or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle (10% DMSO in DI water) at ZT6 per os. EEG, EMG, subcutaneous temperature, and activity were recorded in each mouse across the 8 treatment conditions and sleep architecture was analyzed for 6 hours post-dosing. Consistent with our previous reports, RO5263397 increased wakefulness as well as the latency to NREM and REM sleep. D1, D2, and D1+D2 pretreatment reduced RO5263397-induced wakefulness during the first 1-2 hours after dosing, but only the D1+D2 combination attenuated the wake-promoting effect of RO5263397 from ZT6-8, mostly by increasing NREM sleep. Although D1+D2 antagonism blocked the wake-promoting effect of RO5263397, only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected TAAR1-mediated suppression of REM sleep. These results suggest that, whereas TAAR1 effects on wakefulness are mediated in part through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. By contrast, TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Marius C. Hoener
- Neuroscience, Ophthalmology and Rare Diseases DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| |
Collapse
|
12
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
13
|
Belskaya A, Kurzina N, Savchenko A, Sukhanov I, Gromova A, Gainetdinov RR, Volnova A. Rats Lacking the Dopamine Transporter Display Inflexibility in Innate and Learned Behavior. Biomedicines 2024; 12:1270. [PMID: 38927477 PMCID: PMC11200708 DOI: 10.3390/biomedicines12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Playing a key role in the organization of striatal motor output, the dopamine (DA)-ergic system regulates both innate and complex learned behaviors. Growing evidence clearly indicates the involvement of the DA-ergic system in different forms of repetitive (perseverative) behavior. Some of these behaviors accompany such disorders as obsessive-compulsive disorder (OCD), Tourette's syndrome, schizophrenia, and addiction. In this study, we have traced how the inflexibility of repetitive reactions in the recently developed animal model of hyper-DA-ergia, dopamine transporter knockout rats (DAT-KO rats), affects the realization of innate behavior (grooming) and the learning of spatial (learning and reversal learning in T-maze) and non-spatial (extinction of operant reaction) tasks. We found that the microstructure of grooming in DAT-KO rats significantly differed in comparison to control rats. DAT-KO rats more often demonstrated a fixed syntactic chain, making fewer errors and very rarely missing the chain steps in comparison to control rats. DAT-KO rats' behavior during inter-grooming intervals was completely different to the control animals. During learning and reversal learning in the T-maze, DAT-KO rats displayed pronounced patterns of hyperactivity and perseverative (stereotypical) activity, which led to worse learning and a worse performance of the task. Most of the DAT-KO rats could not properly learn the behavioral task in question. During re-learning, DAT-KO rats demonstrated rigid perseverative activity even in the absence of any reinforcement. In operant tasks, the mutant rats demonstrated poor extinction of operant lever pressing: they continued to perform lever presses despite no there being reinforcement. Our results suggest that abnormally elevated DA levels may be responsible for behavioral rigidity. It is conceivable that this phenomenon in DAT-KO rats reflects some of the behavioral traits observed in clinical conditions associated with endogenous or exogenous hyper-DA-ergia, such as schizophrenia, substance abuse, OCD, patients with Parkinson disease treated with DA mimetics, etc. Thus, DAT-KO rats may be a valuable behavioral model in the search for new pharmacological approaches to treat such illnesses.
Collapse
Affiliation(s)
- Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Ilya Sukhanov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Arina Gromova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Saint Petersburg University Hospital, Saint Petersburg 190121, Russia
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
14
|
Belov D, Fesenko Z, Lakstygal A, Efimov A, Tikhonravov D. Dependence of rhythmic activity and oddball effects in the rat cortex on the depth of sedation during dissociative anesthesia. Cereb Cortex 2024; 34:bhae249. [PMID: 38879757 DOI: 10.1093/cercor/bhae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 01/28/2025] Open
Abstract
The reactions to novelty manifesting in mismatch negativity in the rat brain were studied. During dissociative anesthesia, mismatch negativity-like waves were recorded from the somatosensory cortex using an epidural 32-electrode array. Experimental animals: 7 wild-type Wistar rats and 3 transgenic rats. During high-dose anesthesia, deviant 1,500 Hz tones were presented randomly among many standard 1,000 Hz tones in the oddball paradigm. "Deviant minus standard_before_deviant" difference waves were calculated using both the classical method of Naatanen and method of cross-correlation of sub-averages. Both methods gave consistent results: an early phasic component of the N40 and later N100 to 200 (mismatch negativity itself) tonic component. The gamma and delta rhythms power and the frequency of down-states (suppressed activity periods) were assessed. In all rats, the amplitude of tonic component grew with increasing sedation depth. At the same time, a decrease in gamma power with a simultaneous increase in delta power and the frequency of down-states. The earlier phasic frontocentral component is associated with deviance detection, while the later tonic one over the auditory cortex reflects the orienting reaction. Under anesthesia, this slow mismatch negativity-like wave most likely reflects the tendency of the system to respond to any influences with delta waves, K-complexes and down-states, or produce them spontaneously.
Collapse
Affiliation(s)
- Dmitry Belov
- Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg 197341, Russia
| | - Zoia Fesenko
- Department of Physiology, Saint Petersburg State University, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
- Saint Petersburg State University, Institute of Translational Biomedicine, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
| | - Anton Lakstygal
- Department of Physiology, Saint Petersburg State University, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
| | - Andrey Efimov
- Saint Petersburg State University, Institute of Translational Biomedicine, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
| | - Dmitry Tikhonravov
- Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg 197341, Russia
| |
Collapse
|
15
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
16
|
Puzzo C, Festucci F, Curcio G, Gigantesco A, Adriani W. Exploring transgenerational inheritance in epigenotypes of DAT heterozygous rats: Circadian anomalies and attentional vulnerability. Behav Brain Res 2024; 464:114921. [PMID: 38408522 DOI: 10.1016/j.bbr.2024.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Dopamine (DA) is mainly involved in locomotor activity, reward processes and maternal behaviors. Rats with KO gene for dopamine transporter (DAT), coding for a truncated DAT protein, are in hyperdopaminergic conditions and thus develop stereotyped behaviors and hyperactivity. Our aim was to test the prior transgenerational modulation of wild and truncated alleles as expressed in heterozygous DAT rats: specifically, we addressed the possible sequelae due to genotype and gender of the ancestors, with regard to behavioral differences in F1, F2, F3 rats. We studied non-classical DAT heterozygotes (HETs) based on two specular lines, with putative grand-maternal vs. grand-paternal imprinting. MAT females (F1; offspring of KO male and WT female) mated with a KO male to generate MIX offspring (F2). Specularly, PAT females (F1; offspring of KO female and WT male) mated with a KO male to generate PIX offspring (F2). Similarly to PAT, we obtained MUX (F2; HET offspring of MAT sire and KO dam); we also observed the F3 (MYX: HET offspring of KO male and MUX female, thus with DAT-KO maternal grandmother like also for PIX). We studied their circadian cycle of locomotor activity and their behavior in the elevated-plus-maze (EPM). Locomotor hyper-activity occurs in F1, the opposite occurs in F2, with MYX rats appearing undistinguishable from WT ones. Open-arm preference emerged in PIX and MIX rats. Only MAT and MYX rats showed a significant vulnerability for ADHD-like inattentive symptoms (duration of rearing in the EPM; Viggiano et al., 2002). A risk-taking profile is evident in the F2 phenotype, while inattentiveness from F1 progeny tends to be transferred to F3. We hypothesize that DAT-related phenotypes result from effective inheritance through pedigree of imprints that are dependent on grandparents, suggesting a protective role for gestation within a hyperdopaminergic uterus. For major features, similar odd (F1, F3) generations appear opposed to even (F2) ones; for minor specific features, the phenotype transfer may affect the progenies with a male but not a female DAT-KO ancestor.
Collapse
Affiliation(s)
- Concetto Puzzo
- Faculty of Psychology, Università Telematica Internazionale Uninettuno, Rome, Italy; Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Festucci
- Dept. of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
| | - Giuseppe Curcio
- Dept. of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy.
| | - Antonella Gigantesco
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Faculty of Psychology, Università Telematica Internazionale Uninettuno, Rome, Italy; Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
17
|
Siafis S, Chiocchia V, Macleod MR, Austin C, Homiar A, Tinsdeall F, Friedrich C, Ramage FJ, Kennett J, Nomura N, Maksym O, Rutigliano G, Vano LJ, McCutcheon RA, Gilbert D, Ostinelli EG, Stansfield C, Dehdarirad H, Juma DO, Wright S, Simple O, Elugbadebo O, Tonia T, Mantas I, Howes OD, Furukawa TA, Milligan L, Moreno C, Elliott JH, Hastings J, Thomas J, Michie S, Sena ES, Seedat S, Egger M, Potts J, Cipriani A, Salanti G, Leucht S. Trace amine-associated receptor 1 (TAAR1) agonism for psychosis: a living systematic review and meta-analysis of human and non-human data. Wellcome Open Res 2024; 9:182. [PMID: 39036710 PMCID: PMC11258611 DOI: 10.12688/wellcomeopenres.21302.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 07/23/2024] Open
Abstract
Background Trace amine-associated receptor 1 (TAAR1) agonism shows promise for treating psychosis, prompting us to synthesise data from human and non-human studies. Methods We co-produced a living systematic review of controlled studies examining TAAR1 agonists in individuals (with or without psychosis/schizophrenia) and relevant animal models. Two independent reviewers identified studies in multiple electronic databases (until 17.11.2023), extracted data, and assessed risk of bias. Primary outcomes were standardised mean differences (SMD) for overall symptoms in human studies and hyperlocomotion in animal models. We also examined adverse events and neurotransmitter signalling. We synthesised data with random-effects meta-analyses. Results Nine randomised trials provided data for two TAAR1 agonists (ulotaront and ralmitaront), and 15 animal studies for 10 TAAR1 agonists. Ulotaront and ralmitaront demonstrated few differences compared to placebo in improving overall symptoms in adults with acute schizophrenia (N=4 studies, n=1291 participants; SMD=0.15, 95%CI: -0.05, 0.34), and ralmitaront was less efficacious than risperidone (N=1, n=156, SMD=-0.53, 95%CI: -0.86, -0.20). Large placebo response was observed in ulotaront phase-III trials. Limited evidence suggested a relatively benign side-effect profile for TAAR1 agonists, although nausea and sedation were common after a single dose of ulotaront. In animal studies, TAAR1 agonists improved hyperlocomotion compared to control (N=13 studies, k=41 experiments, SMD=1.01, 95%CI: 0.74, 1.27), but seemed less efficacious compared to dopamine D 2 receptor antagonists (N=4, k=7, SMD=-0.62, 95%CI: -1.32, 0.08). Limited human and animal data indicated that TAAR1 agonists may regulate presynaptic dopaminergic signalling. Conclusions TAAR1 agonists may be less efficacious than dopamine D 2 receptor antagonists already licensed for schizophrenia. The results are preliminary due to the limited number of drugs examined, lack of longer-term data, publication bias, and assay sensitivity concerns in trials associated with large placebo response. Considering their unique mechanism of action, relatively benign side-effect profile and ongoing drug development, further research is warranted. Registration PROSPERO-ID: CRD42023451628.
Collapse
Affiliation(s)
- Spyridon Siafis
- Department of Psychiatry and Psychotherapy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site München/Augsburg, Germany
| | - Virginia Chiocchia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Charlotte Austin
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Ava Homiar
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Francesca Tinsdeall
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Claire Friedrich
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Fiona J. Ramage
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Jaycee Kennett
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Nobuyuki Nomura
- Department of Psychiatry and Psychotherapy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site München/Augsburg, Germany
| | - Olena Maksym
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Luke J. Vano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Robert A. McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - David Gilbert
- GALENOS Global Experiential Advisory Board, InHealth Associates, London, UK
| | - Edoardo G. Ostinelli
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Claire Stansfield
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Hossein Dehdarirad
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Damian Omari Juma
- My Mind Our Humanity, Young Leaders for Global Mental Health, Mombasa, Kenya
| | - Simonne Wright
- Stellenbosch University/South African Medical Research Council Genomics of Brain Disorders Extramural Research Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ouma Simple
- Stellenbosch University/South African Medical Research Council Genomics of Brain Disorders Extramural Research Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Olufisayo Elugbadebo
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, England, UK
| | - Toshi A. Furukawa
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
- Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | | | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense de Madrid, Madrid, Community of Madrid, Spain
| | - Julian H. Elliott
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Future Evidence Foundation, Melbourne, Australia
| | - Janna Hastings
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- School of Medicine, University of St. Gallen, St. Gallen, Switzerland
| | - James Thomas
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Susan Michie
- Centre for Behaviour Change, University College London, London, England, UK
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Soraya Seedat
- Stellenbosch University/South African Medical Research Council Genomics of Brain Disorders Extramural Research Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jennifer Potts
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Georgia Salanti
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site München/Augsburg, Germany
| |
Collapse
|
18
|
Riley B, Gould E, Lloyd J, Hallum LE, Vlajkovic S, Todd K, Freestone PS. Dopamine transmission in the tail striatum: Regional variation and contribution of dopamine clearance mechanisms. J Neurochem 2024; 168:251-268. [PMID: 38308566 DOI: 10.1111/jnc.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.
Collapse
Affiliation(s)
- Bronwyn Riley
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily Gould
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jordan Lloyd
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Luke E Hallum
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland, New Zealand
| | - Srdjan Vlajkovic
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Todd
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Faculty of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Peter S Freestone
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Bellia F, Girella A, Annunzi E, Benatti B, Vismara M, Priori A, Festucci F, Fanti F, Compagnone D, Adriani W, Dell'Osso B, D'Addario C. Selective alterations of endocannabinoid system genes expression in obsessive compulsive disorder. Transl Psychiatry 2024; 14:118. [PMID: 38409080 PMCID: PMC10897168 DOI: 10.1038/s41398-024-02829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Obsessive Compulsive Disorder (OCD) is listed as one of the top 10 most disabling neuropsychiatric conditions in the world. The neurobiology of OCD has not been completely understood and efforts are needed in order to develop new treatments. Beside the classical neurotransmitter systems and signalling pathways implicated in OCD, the possible involvement of the endocannabinoid system (ECS) has emerged in pathophysiology of OCD. We report here selective downregulation of the genes coding for enzymes allowing the synthesis of the endocannabinoids. We found reduced DAGLα and NAPE-PLD in blood samples of individuals with OCD (when compared to healthy controls) as well as in the amygdala complex and prefrontal cortex of dopamine transporter (DAT) heterozygous rats, manifesting compulsive behaviours. Also mRNA levels of the genes coding for cannabinoid receptors type 1 and type 2 resulted downregulated, respectively in the rat amygdala and in human blood. Moreover, NAPE-PLD changes in gene expression resulted to be associated with an increase in DNA methylation at gene promoter, and the modulation of this gene in OCD appears to be correlated to the progression of the disease. Finally, the alterations observed in ECS genes expression appears to be correlated with the modulation in oxytocin receptor gene expression, consistently with what recently reported. Overall, we confirm here a role for ECS in OCD at both preclinical and clinical level. Many potential biomarkers are suggested among its components, in particular NAPE-PLD, that might be of help for a prompt and clear diagnosis.
Collapse
Affiliation(s)
- Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d' Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Matteo Vismara
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Alberto Priori
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Fabiana Festucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161, Rome, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy.
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy.
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institute, 10316, Stockholm, Sweden.
| |
Collapse
|
20
|
Savchenko A, Belozertseva I, Leo D, Sukhanov I. Hyperdopaminergia in rats is associated with reverse effort-cost dependent performance. J Psychopharmacol 2023; 37:1238-1248. [PMID: 37962090 DOI: 10.1177/02698811231211225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Dopamine is implicated in the effort-based control of motivational processes; however, whether tonic dopamine regulates the effort-cost impact on motivation, is still debated. AIMS The rats lacking the dopamine transporter (DAT), which have dramatically increased levels of the synaptic dopamine, were used in the present study to elucidate the role of the synaptic dopamine in motivational processes. METHODS To study the reward-related processes, the progressive ratio 3 (PR3) operant schedule of food reinforcement (the ratio increases by 3 after each earned reinforcer) was performed in adult male rats (DAT knockouts (DAT-KO), heterozygotes (DAT-HT) and wild-types (DAT-WT)). RESULTS During the PR3 session, the response rate of DAT-KO rats was gradually increased following the augmented required number of responses. In contrast, the local response rate of DAT-WT and DAT-HT decreased. d-Amphetamine sulfate salt (3 mg/kg, i.p.) altered the local response rate dynamics in DAT-WT, which became similar to that of DAT-KO. Interestingly, the reduction in response rate at low effort demands was associated with decreased rate of entries into the magazine tray in DAT-WT rats treated with amphetamine (3 mg/kg) but not in DAT-KO rats. CONCLUSIONS Our results suggest that the elevated tonic synaptic dopamine can strongly affect motivation/effort-cost relation in rodents.
Collapse
Affiliation(s)
- Artem Savchenko
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Irina Belozertseva
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Ilya Sukhanov
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| |
Collapse
|
21
|
Sagheddu C, Cancedda E, Bagheri F, Kalaba P, Muntoni AL, Lubec J, Lubec G, Sanna F, Pistis M. The Atypical Dopamine Transporter Inhibitor CE-158 Enhances Dopamine Neurotransmission in the Prefrontal Cortex of Male Rats: A Behavioral, Electrophysiological, and Microdialysis Study. Int J Neuropsychopharmacol 2023; 26:784-795. [PMID: 37725477 PMCID: PMC10674083 DOI: 10.1093/ijnp/pyad056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Dopamine plays a key role in several physiological functions such as motor control, learning and memory, and motivation and reward. The atypical dopamine transporter inhibitor S,S stereoisomer of 5-(((S)-((S)-(3-bromophenyl)(phenyl)methyl)sulfinyl)methyl)thiazole (CE-158) has been recently reported to promote behavioral flexibility and restore learning and memory in aged rats. METHODS Adult male rats were i.p. administered for 1 or 10 days with CE-158 at the dose of 1 or 10 mg/kg and tested for extracellular dopamine in the medial prefrontal cortex by means of intracerebral microdialysis and single unit cell recording in the same brain area. Moreover, the effects of acute and chronic CE-158 on exploratory behavior, locomotor activity, prepulse inhibition, working memory, and behavioral flexibility were also investigated. RESULTS CE-158 dose-dependently potentiated dopamine neurotransmission in the medial prefrontal cortex as assessed by intracerebral microdialysis. Moreover, repeated exposure to CE-158 at 1 mg/kg was sufficient to increase the number of active pyramidal neurons and their firing frequency in the same brain area. In addition, CE-158 at the dose of 10 mg/kg stimulates exploratory behavior to the same extent after acute or chronic treatment. Noteworthy, the chronic treatment at both doses did not induce any behavioral alterations suggestive of abuse potential (e.g., motor behavioral sensitization) or pro-psychotic-like effects such as disruption of sensorimotor gating or impairments in working memory and behavioral flexibility as measured by prepulse inhibition and Y maze. CONCLUSIONS Altogether, these findings confirm CE-158 as a promising pro-cognitive agent and contribute to assessing its preclinical safety profile in a chronic administration regimen for further translational testing.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Enzo Cancedda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Farshid Bagheri
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Predrag Kalaba
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| |
Collapse
|
22
|
Cichero E, Francesconi V, Casini B, Casale M, Kanov E, Gerasimov AS, Sukhanov I, Savchenko A, Espinoza S, Gainetdinov RR, Tonelli M. Discovery of Guanfacine as a Novel TAAR1 Agonist: A Combination Strategy through Molecular Modeling Studies and Biological Assays. Pharmaceuticals (Basel) 2023; 16:1632. [PMID: 38004497 PMCID: PMC10674299 DOI: 10.3390/ph16111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative-structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α2-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α2-ADR putative selectivity. These computational methods allowed the identification of the α2A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α2-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation.
Collapse
Affiliation(s)
- Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Valeria Francesconi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Beatrice Casini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Monica Casale
- Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, 16148 Genoa, Italy;
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey S. Gerasimov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| |
Collapse
|
23
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Marti-Prats L, Giuliano C, Domi A, Puaud M, Peña-Oliver Y, Fouyssac M, McKenzie C, Everitt BJ, Belin D. The development of compulsive coping behavior depends on dorsolateral striatum dopamine-dependent mechanisms. Mol Psychiatry 2023; 28:4666-4678. [PMID: 37770577 PMCID: PMC10914627 DOI: 10.1038/s41380-023-02256-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Humans greatly differ in how they cope with stress, a natural behavior learnt through negative reinforcement. Some individuals engage in displacement activities, others in exercise or comfort eating, and others still in alcohol use. Across species, adjunctive behaviors, such as polydipsic drinking, are used as a form of displacement activity that reduces stress. Some individuals, in particular those that use alcohol to self-medicate, tend to lose control over such coping behaviors, which become excessive and compulsive. However, the psychological and neural mechanisms underlying this individual vulnerability have not been elucidated. Here we tested the hypothesis that the development of compulsive adjunctive behaviors stems from the functional engagement of the dorsolateral striatum (DLS) dopamine-dependent habit system after a prolonged history of adjunctive responding. We measured in longitudinal studies in male Sprague Dawley rats the sensitivity of early established vs compulsive polydipsic water or alcohol drinking to a bilateral infusion into the anterior DLS (aDLS) of the dopamine receptor antagonist α-flupentixol. While most rats acquired a polydipsic drinking response with water, others only did so with alcohol. Whether drinking water or alcohol, the acquisition of this coping response was insensitive to aDLS dopamine receptor blockade. In contrast, after prolonged experience, adjunctive drinking became dependent on aDLS dopamine at a time when it was compulsive in vulnerable individuals. These data suggest that habits may develop out of negative reinforcement and that the engagement of their underlying striatal system is necessary for the manifestation of compulsive adjunctive behaviors.
Collapse
Affiliation(s)
- Lucia Marti-Prats
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Chiara Giuliano
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Astra Zeneca, R&D Biopharmaceuticals, Fleming Building (B623), Babraham Research Park, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Ana Domi
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Box 410, Gothenburg, 405 30, Sweden
| | - Mickaël Puaud
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Yolanda Peña-Oliver
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Research and Enterprise Services, University of Sussex, Brighton, UK
| | - Maxime Fouyssac
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Colin McKenzie
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| |
Collapse
|
25
|
Traktirov DS, Nazarov IR, Artemova VS, Gainetdinov RR, Pestereva NS, Karpenko MN. Alterations in Serotonin Neurotransmission in Hyperdopaminergic Rats Lacking the Dopamine Transporter. Biomedicines 2023; 11:2881. [PMID: 38001881 PMCID: PMC10669523 DOI: 10.3390/biomedicines11112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Biogenic amines dopamine (DA) and serotonin (5-HT) are among the most significant monoaminergic neurotransmitters in the central nervous system (CNS). Separately, the physiological roles of DA and 5-HT have been studied in detail, and progress has been made in understanding their roles in normal and various pathological conditions (Parkinson's disease, schizophrenia, addiction, depression, etc.). In this article we showed that knockout of the gene encoding DAT leads not only to a profound dysregulation of dopamine neurotransmission in the striatum but also in the midbrain, prefrontal cortex, hippocampus, medulla oblongata and spinal cord. Furthermore, significant changes were observed in the production of mRNA of enzymes of monoamine metabolism, as well as to a notable alteration in the tissue level of serotonin, most clearly manifested in the cerebellum and the spinal cord. The observed region-specific changes in the tissue levels of serotonin and in the expression of dopamine and serotonergic metabolism enzymes in rats with an excess of dopamine can indicate important consequences for the pharmacotherapy of drugs that modulate the dopaminergic system. The drugs that affect the dopaminergic system could potently affect the serotonergic system, and this fact is important to consider when predicting their possible therapeutic or side effects.
Collapse
Affiliation(s)
- Dmitrii S. Traktirov
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
| | - Ilya R. Nazarov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Valeria S. Artemova
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Nina S. Pestereva
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
| | - Marina N. Karpenko
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
26
|
Zhao Y, Zhong Y, Chen W, Chang S, Cao Q, Wang Y, Yang L. Ocular and neural genes jointly regulate the visuospatial working memory in ADHD children. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:14. [PMID: 37658396 PMCID: PMC10472596 DOI: 10.1186/s12993-023-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder (ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) in ADHD using wide-ranging genetic analyses. METHODS The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immediate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), obsessive compulsive disorders (OCD), and substance use disorder (SUD). RESULTS Analyses at the single-marker level did not yield significant results (5E-08). However, the potential signals with P values less than E-05 and their mapped genes suggested the regulation of VSWM involved both ocular and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as significantly associated with DD scores (P = 1.96E-06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E-04, Padj = 0.025), and dopamine transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048). CONCLUSIONS Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China.
| |
Collapse
|
27
|
Puzzo C, D'Angiò R, Albanese S, Orlando D, Mangili I, Capobianco M, Liberati AS, Adriani W. Inheritance of wild and truncated DAT alleles from grand-parents: Opposite transgenerational consequences on the behavioral phenotype in adolescent DAT heterozygous rats. Neurosci Lett 2023; 810:137352. [PMID: 37321389 DOI: 10.1016/j.neulet.2023.137352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Dopamine plays important roles in implicit memory and motivation of behavior. Environmental inputs can produce transgenerational epigenetic changes. This concept also includes the uterus: experimentally, we sought to create hyper-dopaminergic uterine conditions through ineffective dopamine-transporter (DAT) protein, obtained by inserting a stop-codon into the SLC6A3 gene. By crossing WT-dam with KO-sire (or vice-versa), we obtained a 100% DAT-heterozygous (HET) offspring with known derivation of the wild allele: MAT rats are offspring of WT-female and KO-male; PAT rats are offspring of KO-female and WT-male. We reconstructed inheritance of alleles, by crossing PAT-male with MAT-female or vice-versa, obtaining GIX (PAT-male with MAT-female) and DIX (MAT-male with PAT-female) rats (such offspring present specular paths in allele inheritance from grandparents). We conducted three experiments: first, we assessed maternal behaviour (four epigenotypes: WT, MAT, PAT and WHZ=HET-pups fostered-to-a WT-dam); in the second, we analysed sleep-wake cycles of GIX and DIX epigenotypes with their WIT siblings as controls; in the third, we explored the impact of WT or MAT mother on WT or HET pups. MAT-dams (with GIX-pups) express excessive licking/grooming. However, in the mere presence of "sick" epigenotype, PAT-dams (with DIX-pups) and also WHZ (i.e., WT-dams but with HET-pups) expressed greater nest-building care towards the offspring, compared to "true-wild" litters (WT-dams with WT-pups). In Exp. 2 at adolescence, GIX epigenotype showed locomotor hyperactivity during late waking-phase, while DIX epigenotype exhibited pronounced hypoactivity compared to controls. In Exp. 3, we confirmed that HET adolescent pups receiving cares from a MAT-dam may develop additional hyperactivity when awake, but additional hypoactivity during rest-hours. Thus, behavioral changes observed in DAT-heterozygous offspring have opposite courses based on of DAT-allele inheritance from a grandparent through the sire or the dam. In conclusion, behavioural changes in the offspring have antithetic courses with respect to inheritance of DAT-allele via sperm or egg.
Collapse
Affiliation(s)
- Concetto Puzzo
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy; Center for Behavioral Sciences and Mental Health, IstitutoSuperiore di Sanità, Rome, Italy
| | - Roberta D'Angiò
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Sara Albanese
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Daniela Orlando
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Ileana Mangili
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Micaela Capobianco
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Anna Sara Liberati
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy; Forensic Science Academy, Via Palmiro Togliatti 11, Castel San Giorgio, Salerno, Italy
| | - Walter Adriani
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy; Center for Behavioral Sciences and Mental Health, IstitutoSuperiore di Sanità, Rome, Italy.
| |
Collapse
|
28
|
Kuvarzin SR, Sukhanov I, Onokhin K, Zakharov K, Gainetdinov RR. Unlocking the Therapeutic Potential of Ulotaront as a Trace Amine-Associated Receptor 1 Agonist for Neuropsychiatric Disorders. Biomedicines 2023; 11:1977. [PMID: 37509616 PMCID: PMC10377193 DOI: 10.3390/biomedicines11071977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Savelii R Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov Medical University, 197022 Saint Petersburg, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Accellena Research and Development Inc., 199106 Saint Petersburg, Russia
| | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
29
|
Vilca S, Wahlestedt C, Izenwasser S, Gainetdinov RR, Pardo M. Dopamine Transporter Knockout Rats Display Epigenetic Alterations in Response to Cocaine Exposure. Biomolecules 2023; 13:1107. [PMID: 37509143 PMCID: PMC10377455 DOI: 10.3390/biom13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Samara Vilca
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
| | - Marta Pardo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
30
|
Kalinina DS, Lyakhovetskii VA, Gorskii OV, Shkorbatova PY, Pavlova NV, Bazhenova EY, Sysoev YI, Gainetdinov RR, Musienko PE. Alteration of Postural Reactions in Rats with Different Levels of Dopamine Depletion. Biomedicines 2023; 11:1958. [PMID: 37509596 PMCID: PMC10377029 DOI: 10.3390/biomedicines11071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine (DA) is the critical neurotransmitter involved in the unconscious control of muscle tone and body posture. We evaluated the general motor capacities and muscle responses to postural disturbance in three conditions: normal DA level (wild-type rats, WT), mild DA deficiency (WT after administration of α-methyl-p-tyrosine-AMPT, that blocks DA synthesis), and severe DA depletion (DAT-KO rats after AMPT). The horizontal displacements in WT rats elicited a multi-component EMG corrective response in the flexor and extensor muscles. Similar to the gradual progression of DA-related diseases, we observed different degrees of bradykinesia, rigidity, and postural instability after AMPT. The mild DA deficiency impaired the initiation pattern of corrective responses, specifically delaying the extensor muscles' activity ipsilaterally to displacement direction and earlier extensor activity from the opposite side. DA depletion in DAT-KO rats after AMPT elicited tremors, general stiffness, and akinesia, and caused earlier response to horizontal displacements in the coactivated flexor and extensor muscles bilaterally. The data obtained show the specific role of DA in postural reactions and suggest that this experimental approach can be used to investigate sensorimotor control in different dopamine-deficient states and to model DA-related diseases.
Collapse
Affiliation(s)
- Daria S Kalinina
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia
| | | | - Oleg V Gorskii
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Polina Yu Shkorbatova
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Natalia V Pavlova
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena Yu Bazhenova
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Yurii I Sysoev
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 St. Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Pavel E Musienko
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Life Improvement by Future Technologies Center "LIFT", 143025 Moscow, Russia
| |
Collapse
|
31
|
Pelevin A, Kurzina N, Zavialov V, Volnova A. A Custom Solution for Acoustic Startle Response Setup with Spike2-Based Data Acquisition Interface. Methods Protoc 2023; 6:57. [PMID: 37368001 DOI: 10.3390/mps6030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
This article presents a low-cost and flexible software solution for acoustic startle response (ASR) test that can be used with a Spike2-based interface. ASR is a reflexive response to an unexpected, loud acoustic stimulus, and prepulse inhibition (PPI) is a phenomenon in which the startle response is reduced when preceded by a weak prestimulus of the same modality. Measuring PPI is important because changes in PPI have been observed in patients with various psychiatric and neurological disorders. Commercial ASR testing systems are expensive, and their closed source code affects their transparency and result reproducibility. The proposed software is easy to install and use. The Spike2 script is customizable and supports a wide range of PPI protocols. As an example of PPI recording, the article presents data obtained in female rats, both wild-type (WT) and dopamine transporter knockout (DAT-KO), showing the same tendency as the data obtained in males, with ASR on a single pulse higher than ASR on prepulse+pulse, and PPI reduced in DAT-KO rats compared to WT.
Collapse
Affiliation(s)
- Arseniy Pelevin
- Faculty of Biology, St Petersburg University, 199034 Saint Petersburg, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, St Petersburg University, 199034 Saint Petersburg, Russia
| | - Vladislav Zavialov
- Faculty of Biology, St Petersburg University, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, St Petersburg University, 199034 Saint Petersburg, Russia
| | - Anna Volnova
- Faculty of Biology, St Petersburg University, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, St Petersburg University, 199034 Saint Petersburg, Russia
| |
Collapse
|
32
|
Hlavacova N, Hrivikova K, Karailievova L, Karailiev P, Homberg JR, Jezova D. Altered responsiveness to glutamatergic modulation by MK-801 and to repeated stress of immune challenge in female dopamine transporter knockout rats. Prog Neuropsychopharmacol Biol Psychiatry 2023:110804. [PMID: 37247803 DOI: 10.1016/j.pnpbp.2023.110804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Chronic stress is a key factor in psychiatric and neurological disorders often worsening disease symptoms. In this study, a unique animal model, the dopamine transporter knockout (DAT-KO) rat exhibiting behavioral signs resembling those occurring in mania, schizophrenia, attention deficit hyperactivity disorder, and obsessive-compulsive disorder was used. We have tested the hypothesis that the hyperdopaminergic state in DAT-KO rats (i) modulates behavioral response to the NMDA antagonist MK-801 (dizocilpine) and (ii) leads to abnormal endocrine and immune activation under subchronic stress induced by an immune challenge. Glutamatergic modulation with MK-801 induced a different behavioral pattern. While the WT rats responded to MK-801 injection with a robust rise in their locomotor activity, the hyperactive DAT-KO rats exhibited reduced locomotion. Signs of chronic stress including increased basal corticosterone and aldosterone but blunted anxiety were demonstrated in rats lacking the DAT. Repeated injections of increasing doses of lipopolysaccharide (LPS, 5 days) did not modify plasma prolactin concentrations which were however significantly lower in DAT-KO than in WT rats. Concentrations of plasma high mobility group box 1 (HMGB1) protein were significantly higher in LPS-treated DAT-KO than in WT rats. The gene expression of interleukin-6 in the anterior pituitary increased under the stress induced by the immune challenge in the WT but not the DAT-KO rats. The most evident differences between the genotypes were revealed in the spleen. The splenic gene expression of interleukin-1β, interleukin-6, and HMGB1 was lower and that of ferritin was higher in DAT-KO compared to WT rats. Obtained results emphasize the functional interaction of the endocrine and immune systems with monoamine and glutamatergic neurotransmission in the mechanisms leading to behavioral alterations and psychiatric disorders associated with dopamine dysfunction.
Collapse
Affiliation(s)
- Natasa Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Katarina Hrivikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Lucia Karailievova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, the Netherlands
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia.
| |
Collapse
|
33
|
Martín-González E, Olmedo-Córdoba M, Prados-Pardo Á, Cruz-Garzón DJ, Flores P, Mora S, Moreno-Montoya M. Behavioral domains in compulsive rats: implications for understanding compulsive spectrum disorders. Front Behav Neurosci 2023; 17:1175137. [PMID: 37273281 PMCID: PMC10234153 DOI: 10.3389/fnbeh.2023.1175137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Compulsive behavior has been proposed as a transdiagnostic trait observed in different neuropsychiatric disorders, such as obsessive-compulsive disorder, autism, and schizophrenia. Research Domain Criteria (RDoC) strategy could help to disentangle the neuropsychological basis of compulsivity for developing new therapeutic and preventive approaches. In preclinical research, the selection of high-drinker (HD) vs. low-drinker (LD) animals by schedule-induced polydipsia (SIP) is considered a putative model of compulsivity, which includes a well-differentiated behavioral pattern. Methods The purpose of this research was to assess the cognitive control and the negative valence system domains in a phenotype of compulsive HD rats. After the selection of animals as HD or LD, we assessed behavioral inflexibility by probabilistic spatial reversal learning (PSRL), motor and cognitive impulsivity by variable delay-to-signal (VDS), and risky decision-making by rodent gambling task (rGT). Results HD rats performed fewer reversals and showed less probability of pressing the same lever that was previously reinforced on PSRL, more premature responses after the exposure to longer delays on VDS, and more disadvantageous risky choices on rGT. Moreover, HD animals performed more perseverative responses under the punishment period on rGT. Discussion These results highlight that HD compulsive phenotype exhibits behavioral inflexibility, insensitivity to positive feedback, waiting impulsivity, risky decision-making, and frustrative non-reward responsiveness. Moreover, these findings demonstrate the importance of mapping different behavioral domains to prevent, treat, and diagnose compulsive spectrum disorders correctly.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Manuela Olmedo-Córdoba
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Ángeles Prados-Pardo
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Daniel J. Cruz-Garzón
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Pilar Flores
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Santiago Mora
- Department of Neuroscience and Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| |
Collapse
|
34
|
Xu Y, Peremans K, Salden S, Audenaert K, Dobbeleir A, Van Eeckhaut A, De Bundel D, Saunders JH, Baeken C. Accelerated high frequency rTMS induces time-dependent dopaminergic alterations: a DaTSCAN brain imaging study in healthy beagle dogs. Front Vet Sci 2023; 10:1154596. [PMID: 37261109 PMCID: PMC10228829 DOI: 10.3389/fvets.2023.1154596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Aim The neurobiological effects of repetitive transcranial magnetic stimulation are believed to run in part through the dopaminergic system. Accelerated high frequency rTMS (aHF-rTMS), a new form of stimuli delivery, is currently being tested for its usefulness in treating human and canine mental disorders. However, the short-and long-term neurobiological effects are still unclear, including the effects on the dopaminergic system. In aHF-rTMS, multiple sessions are delivered within 1 day instead of one session per day, not only to accelerate the time to response but also to increase clinical efficacy. To gain more insight into the neurobiology of aHF-rTMS, we investigated whether applying five sessions in 1 day has direct and/or delayed effects on the dopamine transporter (DAT), and on dopamine metabolites of cerebrospinal fluid (CSF) in beagles. Materials and methods Thirteen beagles were randomly divided into two groups: five active stimulation sessions (n = 9), and 5 sham stimulation sessions (n = 4). Using DaTSCAN, DAT binding indices (BI) were obtained at baseline, after 1 day, 1 month, and 3 months post stimulation. CSF samples were collected after each scan. Results Active aHF-rTMS significantly reduced striatal DAT BI 1 day post-active stimulation session (p < 0.01), and the effect lasted to 1 month (p < 0.01). No significant DAT BI change was found in sham group. No significant changes in dopamine metabolites of CSF were found. Conclusion Although no significant effects on CSF dopamine metabolites were observed, five sessions of active aHF-rTMS significantly decreased striatal DAT BI after 1 day and up to 1 month post stimulation, indicating immediate and delayed effects on the brain dopaminergic system. Our findings in healthy beagles further substantiate the assumption that (a)HF-rTMS affects the brain dopaminergic system and it may pave the way to apply (a)HF-rTMS treatment in behaviorally disturbed dogs.
Collapse
Affiliation(s)
- Yangfeng Xu
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Salden
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kurt Audenaert
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Andre Dobbeleir
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jimmy H Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
35
|
Savchenko A, Targa G, Fesenko Z, Leo D, Gainetdinov RR, Sukhanov I. Dopamine Transporter Deficient Rodents: Perspectives and Limitations for Neuroscience. Biomolecules 2023; 13:806. [PMID: 37238676 PMCID: PMC10216310 DOI: 10.3390/biom13050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The key element of dopamine (DA) neurotransmission is undoubtedly DA transporter (DAT), a transmembrane protein responsible for the synaptic reuptake of the mediator. Changes in DAT's function can be a key mechanism of pathological conditions associated with hyperdopaminergia. The first strain of gene-modified rodents with a lack of DAT were created more than 25 years ago. Such animals are characterized by increased levels of striatal DA, resulting in locomotor hyperactivity, increased levels of motor stereotypes, cognitive deficits, and other behavioral abnormalities. The administration of dopaminergic and pharmacological agents affecting other neurotransmitter systems can mitigate those abnormalities. The main purpose of this review is to systematize and analyze (1) known data on the consequences of changes in DAT expression in experimental animals, (2) results of pharmacological studies in these animals, and (3) to estimate the validity of animals lacking DAT as models for discovering new treatments of DA-related disorders.
Collapse
Affiliation(s)
- Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy Str. 6-8, 197022 St. Petersburg, Russia;
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Zoia Fesenko
- Institute of Translational Biomedicine, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Damiana Leo
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, Fontanka River Emb. 154, 190121 St. Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy Str. 6-8, 197022 St. Petersburg, Russia;
- St. Petersburg University Hospital, St. Petersburg State University, Fontanka River Emb. 154, 190121 St. Petersburg, Russia
| |
Collapse
|
36
|
Russo EE, Zovko LE, Nazari R, Steenland H, Ramsey AJ, Salahpour A. Evaluation and Validation of Commercially Available Dopamine Transporter Antibodies. eNeuro 2023; 10:10/5/ENEURO.0341-22.2023. [PMID: 37142435 PMCID: PMC10162361 DOI: 10.1523/eneuro.0341-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
With a wide variety of dopamine transporter (DAT) antibodies available commercially, it is important to validate which antibodies provide sufficient immunodetection for reproducibility purpose and for accurate analysis of DAT levels and/or location. Commercially available DAT antibodies that are commonly used were tested in western blotting (WB) on wild-type (WT) and DAT-knock-out (DAT-KO) brain tissue and with immunohistology (IH) techniques against coronal slices of unilaterally lesioned 6-OHDA rats, in addition to wild-type and DAT-knock-out mice. DAT-KO mice and unilateral 6-OHDA lesions in rats were used as a negative control for DAT antibody specificity. Antibodies were tested at various concentrations and rated based on signal detection varying from no signal to optimal signal detection. Commonly used antibodies, including AB2231 and PT-22 524-1-AP, did not provide specific DAT signals in WB and IH. Although certain antibodies provided a good DAT signal, such as SC-32258, D6944, and MA5-24796, they also presented nonspecific bands in WB. Many DAT antibodies did not detect the DAT as advertised, and this characterization of DAT antibodies may provide a guide for immunodetection of DAT for molecular studies.
Collapse
Affiliation(s)
- Emma E Russo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lola E Zovko
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Reza Nazari
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hendrik Steenland
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
37
|
Zabegalov KN, Costa F, Viktorova YA, Maslov GO, Kolesnikova TO, Gerasimova EV, Grinevich VP, Budygin EA, Kalueff AV. Behavioral profile of adult zebrafish acutely exposed to a selective dopamine uptake inhibitor, GBR 12909. J Psychopharmacol 2023:2698811231166463. [PMID: 37125702 DOI: 10.1177/02698811231166463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The dopamine transporter (DAT) is the main regulator of dopamine concentration in the extrasynaptic space. The pharmacological inhibition of the DAT results in a wide spectrum of behavioral manifestations, which have been identified so far in a limited number of species, mostly in rodents. AIM Here, we used another well-recognized model organism, the zebrafish (Danio rerio), to explore the behavioral effects of GBR 12909, a highly-affine selective DAT blocker. METHODS We evaluated zebrafish locomotion, novelty-related exploration, spatial cognition, and social phenotypes in the novel tank, habituation and shoaling tests, following acute 20-min water immersion in GBR 12909. RESULTS Our findings show hypolocomotion, anxiety-like state, and impaired spatial cognition in fish acutely treated with GBR 12909. This behavioral profile generally parallels that of the DAT knockout rodents and zebrafish, and it overlaps with behavioral effects of other DAT-inhibiting drugs of abuse, such as cocaine and D-amphetamine. CONCLUSION Collectively, our data support the utility of zebrafish in translational studies on DAT targeting neuropharmacology and strongly implicate DAT aberration as an important mechanisms involved in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Fabiano Costa
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Yuliya A Viktorova
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Gleb O Maslov
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
- Ural Federal University, Yekaterinburg, Sverdlovsk Region, Russia
| | - Tatiana O Kolesnikova
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Elena V Gerasimova
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Vladimir P Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Evgeny A Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Allan V Kalueff
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
- Ural Federal University, Yekaterinburg, Sverdlovsk Region, Russia
| |
Collapse
|
38
|
Obergasteiger J, Castonguay AM, Pizzi S, Magnabosco S, Frapporti G, Lobbestael E, Baekelandt V, Hicks AA, Pramstaller PP, Gravel C, Corti C, Lévesque M, Volta M. The small GTPase Rit2 modulates LRRK2 kinase activity, is required for lysosomal function and protects against alpha-synuclein neuropathology. NPJ Parkinsons Dis 2023; 9:44. [PMID: 36973269 PMCID: PMC10042831 DOI: 10.1038/s41531-023-00484-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Anne-Marie Castonguay
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Stefano Magnabosco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Claude Gravel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada.
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy.
| |
Collapse
|
39
|
Dysregulation of AMPA Receptor Trafficking and Intracellular Vesicular Sorting in the Prefrontal Cortex of Dopamine Transporter Knock-Out Rats. Biomolecules 2023; 13:biom13030516. [PMID: 36979451 PMCID: PMC10046215 DOI: 10.3390/biom13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Dopamine (DA) and glutamate interact, influencing neural excitability and promoting synaptic plasticity. However, little is known regarding the molecular mechanisms underlying this crosstalk. Since perturbation of DA-AMPA receptor interaction might sustain pathological conditions, the major aim of our work was to evaluate the effect of the hyperactive DA system on the AMPA subunit composition, trafficking, and membrane localization in the prefrontal cortex (PFC). Taking advantage of dopamine transporter knock-out (DAT−/−) rats, we found that DA overactivity reduced the translation of cortical AMPA receptors and their localization at both synaptic and extra-synaptic sites through, at least in part, altered intracellular vesicular sorting. Moreover, the reduced expression of AMPA receptor-specific anchoring proteins and structural markers, such as Neuroligin-1 and nCadherin, likely indicate a pattern of synaptic instability. Overall, these data reveal that a condition of hyperdopaminergia markedly alters the homeostatic plasticity of AMPA receptors, suggesting a general destabilization and depotentiation of the AMPA-mediated glutamatergic neurotransmission in the PFC. This effect might be functionally relevant for disorders characterized by elevated dopaminergic activity.
Collapse
|
40
|
Niello M, Sideromenos S, Gradisch R, O´Shea R, Schwazer J, Maier J, Kastner N, Sandtner W, Jäntsch K, Lupica CR, Hoffman AF, Lubec G, Loland CJ, Stockner T, Pollak DD, Baumann MH, Sitte HH. Persistent binding at dopamine transporters determines sustained psychostimulant effects. Proc Natl Acad Sci U S A 2023; 120:e2114204120. [PMID: 36730201 PMCID: PMC9963675 DOI: 10.1073/pnas.2114204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
Psychostimulants interacting with the dopamine transporter (DAT) can be used illicitly or for the treatment of specific neuropsychiatric disorders. However, they can also produce severe and persistent adverse events. Often, their pharmacological properties in vitro do not fully correlate to their pharmacological profile in vivo. Here, we investigated the pharmacological effects of enantiomers of pyrovalerone, α-pyrrolidinovalerophenone, and 3,4-methylenedioxypyrovalerone as compared to the traditional psychostimulants cocaine and methylphenidate, using a variety of in vitro, computational, and in vivo approaches. We found that in vitro drug-binding kinetics at DAT correlate with the time-course of in vivo psychostimulant action in mice. In particular, a slow dissociation (i.e., slow koff) of S-enantiomers of pyrovalerone analogs from DAT predicts their more persistent in vivo effects when compared to cocaine and methylphenidate. Overall, our findings highlight the critical importance of drug-binding kinetics at DAT for determining the in vivo profile of effects produced by psychostimulant drugs.
Collapse
Affiliation(s)
- Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Spyridon Sideromenos
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Ronan O´Shea
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Jakob Schwazer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Nina Kastner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Walter Sandtner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Kathrin Jäntsch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Carl R. Lupica
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Alexander F. Hoffman
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020Salzburg, Austria
| | - Claus J. Loland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Daniela D. Pollak
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
- AddRess, Center for Addiction Research and Science, Medical University of Vienna, 1090Vienna, Austria
| |
Collapse
|
41
|
Volnova A, Kurzina N, Belskaya A, Gromova A, Pelevin A, Ptukha M, Fesenko Z, Ignashchenkova A, Gainetdinov RR. Noradrenergic Modulation of Learned and Innate Behaviors in Dopamine Transporter Knockout Rats by Guanfacine. Biomedicines 2023; 11:222. [PMID: 36672730 PMCID: PMC9856099 DOI: 10.3390/biomedicines11010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.
Collapse
Affiliation(s)
- Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arina Gromova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arseniy Pelevin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 199034, Russia
| |
Collapse
|
42
|
D’Elia A, Schiavi S, Manduca A, Rava A, Buzzelli V, Ascone F, Orsini T, Putti S, Soluri A, Galli F, Soluri A, Mattei M, Cicconi R, Massari R, Trezza V. FMR1 deletion in rats induces hyperactivity with no changes in striatal dopamine transporter availability. Sci Rep 2022; 12:22535. [PMID: 36581671 PMCID: PMC9800572 DOI: 10.1038/s41598-022-26986-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder emerging in early life characterized by impairments in social interaction, poor verbal and non-verbal communication, and repetitive patterns of behaviors. Among the best-known genetic risk factors for ASD, there are mutations causing the loss of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) leading to Fragile X syndrome (FXS), a common form of inherited intellectual disability and the leading monogenic cause of ASD. Being a pivotal regulator of motor activity, motivation, attention, and reward processing, dopaminergic neurotransmission has a key role in several neuropsychiatric disorders, including ASD. Fmr1 Δexon 8 rats have been validated as a genetic model of ASD based on FMR1 deletion, and they are also a rat model of FXS. Here, we performed behavioral, biochemical and in vivo SPECT neuroimaging experiments to investigate whether Fmr1 Δexon 8 rats display ASD-like repetitive behaviors associated with changes in striatal dopamine transporter (DAT) availability assessed through in vivo SPECT neuroimaging. At the behavioral level, Fmr1 Δexon 8 rats displayed hyperactivity in the open field test in the absence of repetitive behaviors in the hole board test. However, these behavioral alterations were not associated with changes in striatal DAT availability as assessed by non-invasive in vivo SPECT and Western blot analyses.
Collapse
Affiliation(s)
- Annunziata D’Elia
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy ,grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Sara Schiavi
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Antonia Manduca
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Rava
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Valeria Buzzelli
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Fabrizio Ascone
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Tiziana Orsini
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Sabrina Putti
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Andrea Soluri
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy ,grid.9657.d0000 0004 1757 5329Unit of Molecular Neurosciences, University Campus Bio-Medico, Rome, Rome, Italy
| | - Filippo Galli
- grid.7841.aNuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Alessandro Soluri
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Maurizio Mattei
- grid.6530.00000 0001 2300 0941Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, “Tor Vergata” University, Rome, Italy
| | - Rosella Cicconi
- grid.6530.00000 0001 2300 0941Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, “Tor Vergata” University, Rome, Italy
| | - Roberto Massari
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Viviana Trezza
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
43
|
Sukhanov I, Dorotenko A, Fesenko Z, Savchenko A, Efimova EV, Mor MS, Belozertseva IV, Sotnikova TD, Gainetdinov RR. Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson's Disease Therapy. Biomolecules 2022; 13:biom13010009. [PMID: 36671394 PMCID: PMC9855999 DOI: 10.3390/biom13010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative pathology. Due to the limitations of existing therapeutic approaches, novel anti-parkinsonian medicines with non-dopamine mechanisms of action are clearly needed. One of the promising pharmacological targets for anti-Parkinson drug development is phosphodiesterase (PDE) 10A. The stimulating motor effects of PDE10A inhibition were detected only under the conditions of partial dopamine depletion. The results raise the question of whether PDE10A inhibitors are able to restore locomotor activity when dopamine levels are very low. To address this issue, we (1) developed and validated the rat model of acute severe dopamine deficiency and (2) tested the action of PDE10A inhibitor MP-10 in this model. All experiments were performed in dopamine transporter knockout (DAT-KO) rats. A tyrosine hydroxylase inhibitor, α-Methyl-DL-tyrosine (αMPT), was used as an agent to cause extreme dopamine deficiency. In vivo tests included estimation of locomotor activity and catalepsy levels in the bar test. Additionally, we evaluated the tissue content of dopamine in brain samples by HPLC analysis. The acute administration of αMPT to DAT-KO rats caused severe depletion of dopamine, immobility, and catalepsy (Dopamine-Deficient DAT-KO (DDD) rats). As expected, treatment with the L-DOPA and carbidopa combination restored the motor functions of DDD rats. Strikingly, administration of MP-10 also fully reversed immobility and catalepsy in DDD rats. According to neurochemical studies, the action of MP-10, in contrast to L-DOPA + carbidopa, seems to be dopamine-independent. These observations indicate that targeting PDE10A may represent a new promising approach in the development of non-dopamine therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (I.S.); (R.R.G.); Tel.: +7-(812)-346-39-25 (I.S.); +7-(812)-363-69-39 (R.R.G.)
| | - Artem Dorotenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Mikael S. Mor
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina V. Belozertseva
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Tatyana D. Sotnikova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (I.S.); (R.R.G.); Tel.: +7-(812)-346-39-25 (I.S.); +7-(812)-363-69-39 (R.R.G.)
| |
Collapse
|
44
|
Pardo M, Martin M, Gainetdinov RR, Mash DC, Izenwasser S. Heterozygote Dopamine Transporter Knockout Rats Display Enhanced Cocaine Locomotion in Adolescent Females. Int J Mol Sci 2022; 23:ijms232315414. [PMID: 36499749 PMCID: PMC9736933 DOI: 10.3390/ijms232315414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine's reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. We used the novel DAT transgenic rat model to study the effects of cocaine on locomotor behaviors in adolescent rats, with an emphasis on sex. Female rats showed higher response rates to cocaine at lower acute and chronic doses, highlighting a higher vulnerability and perceived gender effects. In contrast, locomotor responses to an acute high dose of cocaine were more marked and sustained in male DAT heterozygous (HET) adolescents. The results demonstrate the augmented effects of chronic cocaine in HET DAT adolescent female rats. Knockout (KO) DAT led to a level of hyperdopaminergia which caused a marked basal hyperactivity that was unchanged, consistent with a possible ceiling effect. We suggest a role of alpha synuclein (α-syn) and PICK 1 protein expressions to the increased vulnerability in female rats. These proteins showed a lower expression in female HET and KO rats. This study highlights gender differences associated with mutations which affect DAT expression and can increase susceptibility to cocaine abuse in adolescence.
Collapse
Affiliation(s)
- Marta Pardo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-786-230-7181
| | - Michele Martin
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Deborah C Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
45
|
Argyrofthalmidou M, Polissidis A, Karaliota S, Papapanagiotou I, Sotiriou E, Manousaki M, Papadopoulou-Daifoti Z, Spillantini MG, Stefanis L, Vassilatis DK. Functional Interaction Between α-Synuclein and Nurr1 in Dopaminergic Neurons. Neuroscience 2022; 506:114-126. [PMID: 36270413 DOI: 10.1016/j.neuroscience.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Increased expression of alpha-synuclein (ASYN) and decreased expression of Nurr1 are associated with Parkinson's disease (PD) pathogenesis. These two proteins interact functionally and ASYN overexpression suppresses Nurr1 levels. ASYN pan-neuronal overexpression coupled with Nurr1 hemizygosity followed by Nurr1 repression in aging mice results in the manifestation of a typical PD-related phenotype and pathology. Here we investigated in mice the effects of C-terminally truncated ASYN(120) overexpression in dopaminergic (DA-ergic) neurons compounded with Nurr1 hemizygosity ('2-hit-DA'). We report that '2-hit-DA' animals did not manifest a characteristic PD-related phenotype, despite further substantia nigra ASYN-overexpression-dependent and age dependent Nurr1 protein downregulation. However, they displayed increased energy expenditure, reduced striatal dopamine (DA) and prolonged hyperactivity to a novel environment indicating impaired habituation. This DA-ergic dysfunction was observed in young adult '2-hit-DA' mice, persisted throughout life and it was associated with ASYN and Nurr1 synergistic alterations of DAT levels and function. Our experiments indicate that the expression levels of ASYN and Nurr1 are critical in the dysregulation of the nigrostriatal DA system and may be involved in neuropsychiatric aspects of PD.
Collapse
Affiliation(s)
- Maria Argyrofthalmidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Alexia Polissidis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Sevasti Karaliota
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece; Basic Science Program, Frederick National Laboratory for Cancer Research, NCI/NIH, Frederick, MD 21702-1201, USA
| | - Ioanna Papapanagiotou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelos Sotiriou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Maria Manousaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, UK
| | - Leonidas Stefanis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece; Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
| | - Demetrios K Vassilatis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.
| |
Collapse
|
46
|
Zhu J, Quizon PM, Wang Y, Adeniran CA, Strauss MJ, Jiménez-Torres AC, Patel P, Cirino TJ, Eans SO, Hammond HR, Deliscar LS, O'Hara P, Saini SK, Ofori E, Vekariya RH, Zhang S, Moukha-Chafiq O, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhan CG, McLaughlin JP. SRI-32743, a novel allosteric modulator, attenuates HIV-1 Tat protein-induced inhibition of the dopamine transporter and alleviates the potentiation of cocaine reward in HIV-1 Tat transgenic mice. Neuropharmacology 2022; 220:109239. [PMID: 36126727 DOI: 10.1016/j.neuropharm.2022.109239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Cocaine abuse increases the incidence of HIV-1-associated neurocognitive disorders. We have demonstrated that HIV-1 transactivator of transcription (Tat) allosterically modulates dopamine (DA) reuptake through the human DA transporter (hDAT), potentially contributing to Tat-induced cognitive impairment and potentiation of cocaine conditioned place preference (CPP). This study determined the effects of a novel allosteric modulator of DAT, SRI-32743, on the interactions of HIV-1 Tat, DA, cocaine, and [3H]WIN35,428 with hDAT in vitro. SRI-32743 (50 nM) attenuated Tat-induced inhibition of [3H]DA uptake and decreased the cocaine-mediated dissociation of [3H]WIN35,428 binding in CHO cells expressing hDAT, suggesting a SRI-32743-mediated allosteric modulation of the Tat-DAT interaction. In further in vivo studies utilizing doxycycline-inducible Tat transgenic (iTat-tg) mice, 14 days of Tat expression significantly reduced the recognition index by 31.7% in the final phase of novel object recognition (NOR) and potentiated cocaine-CPP 2.7-fold compared to responses of vehicle-treated control iTat-tg mice. The Tat-induced NOR deficits and potentiation of cocaine-CPP were not observed in saline-treated iTat-tg or doxycycline-treated G-tg (Tat-null) mice. Systemic administration (i.p.) of SRI-32743 prior to behavioral testing ameliorated Tat-induced impairment of NOR (at a dose of 10 mg/kg) and the Tat-induced potentiation of cocaine-CPP (at doses of 1 or 10 mg/kg). These findings demonstrate that Tat and cocaine interactions with DAT may be regulated by compounds interacting at the DAT allosteric modulatory sites, suggesting a potential therapeutic intervention for HIV-infected patients with concurrent cocaine abuse.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Yingying Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Charles A Adeniran
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana C Jiménez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Palak Patel
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Haylee R Hammond
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Laure S Deliscar
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Priscilla O'Hara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Surendra K Saini
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Edward Ofori
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Rakesh H Vekariya
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | | | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
47
|
Stewart A, Mayer FP, Gowrishankar R, Davis GL, Areal LB, Gresch PJ, Katamish RM, Peart R, Stilley SE, Spiess K, Rabil MJ, Diljohn FA, Wiggins AE, Vaughan RA, Hahn MK, Blakely RD. Behaviorally penetrant, anomalous dopamine efflux exposes sex and circuit dependent regulation of dopamine transporters. Mol Psychiatry 2022; 27:4869-4880. [PMID: 36117213 DOI: 10.1038/s41380-022-01773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023]
Abstract
Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Felix P Mayer
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gwynne L Davis
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Paul J Gresch
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Rania M Katamish
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Rodeania Peart
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Samantha E Stilley
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Keeley Spiess
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian J Rabil
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Angelica E Wiggins
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Maureen K Hahn
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA. .,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
48
|
Gumus C, Yazici IP, Yazici KU, Ustundag B. Increased Serum Brain-derived Neurotrophic Factor, Nerve Growth Factor, Glial-derived Neurotrophic Factor and Galanin Levels in Children with Attention Deficit Hyperactivity Disorder, and the Effect of 10 Weeks Methylphenidate Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:635-648. [PMID: 36263639 PMCID: PMC9606423 DOI: 10.9758/cpn.2022.20.4.635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/10/2021] [Accepted: 02/12/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This study aimed to investigate the levels of serum brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial cell-derived neurotrophic factor (GDNF) and galanin in children with attention deficit hyperactivity disorder (ADHD). METHODS The study included 58 cases with ADHD and 60 healthy controls. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL) together with Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) criteria were used for diagnostic evaluation. Sociodemographic data form and Conners' Parent/Teacher Rating Scale-Revised:Long Form were applied to all cases. The serum levels of BDNF, NGF, GDNF, and galanin were evaluated in all subjects. Afterwards, methylphenidate was started in the ADHD group. ADHD cases were reevaluated in terms of the serum levels of BDNF, NGF, GDNF, galanin at the 10th week of treatment. RESULTS Before the treatment, the levels of BDNF, NGF, GDNF, galanin were significantly higher in the ADHD group compared to the control group. The levels of BDNF, NGF, GDNF, galanin were found to be significantly lower after treatment in ADHD group compared to pre-treatment. No correlation was between scale scores and the serum levels of BDNF, NGF, GDNF, galanin. CONCLUSION The levels of neurotrophic factors and galanin were thought to be parameters worth evaluating in ADHD. Further studies on the subject with longer-term treatments and larger sample groups are required.
Collapse
Affiliation(s)
- Cavithan Gumus
- Department of Child and Adolescent Psychiatry, Karaman Training and Research Hospital, Karaman, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey,Address for correspondence: Ipek Percinel Yazici Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig 230000, Turkey, E-mail: , ORCID: https://orcid.org/0000-0002-6807-655X
| | - Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
49
|
Ptukha M, Fesenko Z, Belskaya A, Gromova A, Pelevin A, Kurzina N, Gainetdinov RR, Volnova A. Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats. Biomolecules 2022; 12:biom12101484. [PMID: 36291693 PMCID: PMC9599468 DOI: 10.3390/biom12101484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Changes in dopaminergic and noradrenergic transmission are considered to be the underlying cause of attention deficit and hyperactivity disorder (ADHD). Atomoxetine (ATX) is a selective norepinephrine transporter (NET) inhibitor that is currently used for ADHD treatment. In this study, we aimed to evaluate the effect of atomoxetine on the behavior and brain activity of dopamine transporter knockout (DAT-KO) rats, which are characterized by an ADHD-like behavioral phenotype. Prepulse inhibition (PPI) was assessed in DAT-KO and wild type rats after saline and ATX injections, as well as behavioral parameters in the Hebb-Williams maze and power spectra and coherence of electrophysiological activity. DAT-KO rats demonstrated a pronounced behavioral and electrophysiological phenotype, characterized by hyperactivity, increased number of errors in the maze, repetitive behaviors and disrupted PPI, changes in cortical and striatal power spectra and interareal coherence. Atomoxetine significantly improved PPI and decreased repetitive behaviors in DAT-KO rats and influenced behavior of wild-type rats. ATX also led to significant changes in power spectra and coherence of DAT-KO and wild type rats. Assessment of noradrenergic modulation effects in DAT-KO provides insight into the intricate interplay of monoaminergic systems, although further research is still required to fully understand the complexity of this interaction.
Collapse
Affiliation(s)
- Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (M.P.); (A.V.)
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Arina Gromova
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Arseniy Pelevin
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg State University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (M.P.); (A.V.)
| |
Collapse
|
50
|
Krasavin M, Peshkov AA, Lukin A, Komarova K, Vinogradova L, Smirnova D, Kanov EV, Kuvarzin SR, Murtazina RZ, Efimova EV, Gureev M, Onokhin K, Zakharov K, Gainetdinov RR. Discovery and In Vivo Efficacy of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 4-(2-Aminoethyl)- N-(3,5-dimethylphenyl)piperidine-1-carboxamide Hydrochloride (AP163) for the Treatment of Psychotic Disorders. Int J Mol Sci 2022; 23:ijms231911579. [PMID: 36232878 PMCID: PMC9569940 DOI: 10.3390/ijms231911579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Starting from a screening hit, a set of analogs was synthesized based on a 4-(2-aminoethyl)piperidine core not associated previously with trace amine-associated receptor 1 (TAAR1) modulation in the literature. Several structure–activity relationship generalizations have been drawn from the observed data, some of which were corroborated by molecular modeling against the crystal structure of TAAR1. The four most active compounds (EC50 for TAAR1 agonistic activity ranging from 0.033 to 0.112 μM) were nominated for evaluation in vivo. The dopamine transporter knockout (DAT-KO) rat model of dopamine-dependent hyperlocomotion was used to evaluate compounds’ efficacy in vivo. Out of four compounds, only one compound (AP163) displayed a statistically significant and dose-dependent reduction in hyperlocomotion in DAT-KO rats. As such, compound AP163 represents a viable lead for further preclinical characterization as a potential novel treatment option for disorders associated with increased dopaminergic function, such as schizophrenia.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| | - Anatoly A. Peshkov
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Daria Smirnova
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeny V. Kanov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Savelii R. Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maxim Gureev
- Center of Bio- and Chemoinformatics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Konstantin Zakharov
- Accellena Research and Development Inc., 88A Sredniy pr. V.O., Saint Petersburg 199106, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| |
Collapse
|