1
|
Prelic S, Keesey IW, Lavista-Llanos S, Hansson BS, Wicher D. Innexin expression and localization in the Drosophila antenna indicate gap junction or hemichannel involvement in antennal chemosensory sensilla. Cell Tissue Res 2024; 398:35-62. [PMID: 39174822 PMCID: PMC11424723 DOI: 10.1007/s00441-024-03909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Odor detection in insects is largely mediated by structures on antennae called sensilla, which feature a strongly conserved architecture and repertoire of olfactory sensory neurons (OSNs) and various support cell types. In Drosophila, OSNs are tightly apposed to supporting cells, whose connection with neurons and functional roles in odor detection remain unclear. Coupling mechanisms between these neuronal and non-neuronal cell types have been suggested based on morphological observations, concomitant physiological activity during odor stimulation, and known interactions that occur in other chemosensory systems. For instance, it is not known whether cell-cell coupling via gap junctions between OSNs and neighboring cells exists, or whether hemichannels interconnect cellular and extracellular sensillum compartments. Here, we show that innexins, which form hemichannels and gap junctions in invertebrates, are abundantly expressed in adult drosophilid antennae. By surveying antennal transcriptomes and performing various immunohistochemical stainings in antennal tissues, we discover innexin-specific patterns of expression and localization, with a majority of innexins strongly localizing to glial and non-neuronal cells, likely support and epithelial cells. Finally, by injecting gap junction-permeable dye into a pre-identified sensillum, we observe no dye coupling between neuronal and non-neuronal cells. Together with evidence of non-neuronal innexin localization, we conclude that innexins likely do not conjoin neurons to support cells, but that junctions and hemichannels may instead couple support cells among each other or to their shared sensillum lymph to achieve synchronous activity. We discuss how coupling of sensillum microenvironments or compartments may potentially contribute to facilitate chemosensory functions of odor sensing and sensillum homeostasis.
Collapse
Affiliation(s)
- Sinisa Prelic
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian W Keesey
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
2
|
Krishnamurthy A, Lee AS, Bayin NS, Stephen DN, Nasef O, Lao Z, Joyner AL. Engrailed transcription factors direct excitatory cerebellar neuron diversity and survival. Development 2024; 151:dev202502. [PMID: 38912572 PMCID: PMC11369685 DOI: 10.1242/dev.202502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The neurons of the three cerebellar nuclei (CN) are the primary output neurons of the cerebellum. The excitatory neurons (e) of the medial (m) CN (eCNm) were recently divided into molecularly defined subdomains in the adult; however, how they are established during development is not known. We define molecular subdomains of the mouse embryonic eCNm using single-cell RNA-sequencing and spatial expression analysis, showing that they evolve during embryogenesis to prefigure the adult. Furthermore, eCNm are transcriptionally divergent from cells in the other nuclei by embryonic day 14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to loss of approximately half of the embryonic eCNm. We demonstrate that mutation of En1/2 in the embryonic eCNm results in death of specific posterior eCNm molecular subdomains and downregulation of TBR2 (EOMES) in an anterior embryonic subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the other excitatory neurons (granule and unipolar brush cells). Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.
Collapse
Affiliation(s)
- Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Andrew S. Lee
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Olivia Nasef
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
3
|
Hembach S, Schmidt S, Orschmann T, Burtscher I, Lickert H, Giesert F, Weisenhorn DV, Wurst W. Engrailed 1 deficiency induces changes in ciliogenesis during human neuronal differentiation. Neurobiol Dis 2024; 194:106474. [PMID: 38518837 DOI: 10.1016/j.nbd.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation. Although the EN1 ko didn't interfere with neuronal differentiation and generation of tyrosine hydroxylase positive (TH+) neurons per se, the neurons exhibited shorter neurites. Furthermore, mitochondrial respiration, as well as mitochondrial complex I abundance was significantly reduced in fully differentiated neurons. To understand the implications of an EN1 ko during differentiation, we performed a transcriptome analysis of human neuronal precursor cells (hNPCs) which unveiled alterations in cilia-associated pathways. Further analysis of ciliary morphology revealed an elongation of primary cilia in EN1-deficient hNPCs. Besides, also Wnt signaling pathways were severely affected. Upon stimulating hNPCs with Wnt which drastically increased EN1 expression in WT lines, the phenotypes concerning mitochondrial function and cilia were exacerbated in EN1 ko hNPCs. They failed to enhance the expression of the complex I subunits NDUFS1 and 3, and now displayed a reduced mitochondrial respiration. Furthermore, Wnt stimulation decreased ciliogenesis in EN1 ko hNPCs but increased ciliary length even further. This further highlights the relevance of primary cilia next to mitochondria for the functionality and correct maintenance of human DAns and provides new possibilities to establish neuroprotective therapies for PD.
Collapse
Affiliation(s)
- Sina Hembach
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Neurobiological Engineering, Munich Institute of Biomedical Engineering, TUM School of Natural Sciences, Garching, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany
| | - Tanja Orschmann
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technische Universität München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany
| | | | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg, Germany; Deutsche Zentrum für Psychische Gesundheit (DZPG), Site Munich-Augsburg, Munich, Germany; Technische Universität München-Weihenstephan, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| |
Collapse
|
4
|
Krishnamurthy A, Lee AS, Bayin NS, Stephen DN, Nasef O, Lao Z, Joyner AL. Engrailed transcription factors direct excitatory cerebellar neuron diversity and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569445. [PMID: 38077070 PMCID: PMC10705369 DOI: 10.1101/2023.11.30.569445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The excitatory neurons of the three cerebellar nuclei (eCN) form the primary output for the cerebellar circuit. The medial eCN (eCNm) were recently divided into molecularly defined subdomains in the adult, however how they are established during development is not known. We define molecular subdomains of the eCNm using scRNA-seq and spatial expression analysis and show they evolve during embryogenesis to resemble the adult. Furthermore, the eCNm is transcriptionally divergent from the rest of the eCN by E14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to death of a subset of embryonic eCNm. We demonstrate that mutation of En1/2 in embryonic eCNm results in cell death of specific posterior eCNm molecular subdomains and loss of TBR2 (EOMES) expression in an anterior subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the two other cerebellar excitatory neuron types. Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.
Collapse
|
5
|
Cheong HSJ, Boone KN, Bennett MM, Salman F, Ralston JD, Hatch K, Allen RF, Phelps AM, Cook AP, Phelps JS, Erginkaya M, Lee WCA, Card GM, Daly KC, Dacks AM. Organization of an Ascending Circuit that Conveys Flight Motor State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544074. [PMID: 37333334 PMCID: PMC10274802 DOI: 10.1101/2023.06.07.544074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Natural behaviors are a coordinated symphony of motor acts which drive self-induced or reafferent sensory activation. Single sensors only signal presence and magnitude of a sensory cue; they cannot disambiguate exafferent (externally-induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to make appropriate decisions and initiate adaptive behavioral outcomes. This is mediated by predictive motor signaling mechanisms, which emanate from motor control pathways to sensory processing pathways, but how predictive motor signaling circuits function at the cellular and synaptic level is poorly understood. We use a variety of techniques, including connectomics from both male and female electron microscopy volumes, transcriptomics, neuroanatomical, physiological and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs), which putatively provide predictive motor signals to several sensory and motor neuropil. Both AHN pairs receive input primarily from an overlapping population of descending neurons, many of which drive wing motor output. The two AHN pairs target almost exclusively non-overlapping downstream neural networks including those that process visual, auditory and mechanosensory information as well as networks coordinating wing, haltere, and leg motor output. These results support the conclusion that the AHN pairs multi-task, integrating a large amount of common input, then tile their output in the brain, providing predictive motor signals to non-overlapping sensory networks affecting motor control both directly and indirectly.
Collapse
Affiliation(s)
- Han S. J. Cheong
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States of America
| | - Kaitlyn N. Boone
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Marryn M. Bennett
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Jacob D. Ralston
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Kaleb Hatch
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Raven F. Allen
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Alec M. Phelps
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Andrew P. Cook
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mert Erginkaya
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Wei-Chung A. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States of America
- Zuckerman Institute, Columbia University, New York, NY 10027, United States of America
| | - Kevin C. Daly
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, United States of America
| | - Andrew M. Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, United States of America
| |
Collapse
|
6
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
7
|
Zhang N, Guo L, Simpson JH. Spatial Comparisons of Mechanosensory Information Govern the Grooming Sequence in Drosophila. Curr Biol 2020; 30:988-1001.e4. [PMID: 32142695 PMCID: PMC7184881 DOI: 10.1016/j.cub.2020.01.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 01/28/2023]
Abstract
Animals integrate information from different sensory modalities, body parts, and time points to inform behavioral choice, but the relevant sensory comparisons and the underlying neural circuits are still largely unknown. We use the grooming behavior of Drosophila melanogaster as a model to investigate the sensory comparisons that govern a motor sequence. Flies perform grooming movements spontaneously, but when covered with dust, they clean their bodies following an anterior-to-posterior sequence. After investigating different sensory modalities that could detect dust, we focus on mechanosensory bristle neurons, whose optogenetic activation induces a similar sequence. Computational modeling predicts that higher sensory input strength to the head will cause anterior grooming to occur first. We test this prediction using an optogenetic competition assay whereby two targeted light beams independently activate mechanosensory bristle neurons on different body parts. We find that the initial choice of grooming movement is determined by the ratio of sensory inputs to different body parts. In dust-covered flies, sensory inputs change as a result of successful cleaning movements. Simulations from our model suggest that this change results in sequence progression. One possibility is that flies perform frequent comparisons between anterior and posterior sensory inputs, and the changing ratios drive different behavior choices. Alternatively, flies may track the temporal change in sensory input to a given body part to measure cleaning effectiveness. The first hypothesis is supported by our optogenetic competition experiments: iterative spatial comparisons of sensory inputs between body parts is essential for organizing grooming movements in sequence. Zhang et al. find that Drosophila covered with dust compare sensory inputs from mechanosensory bristles on different body parts during grooming. The ratio of anterior:posterior sensory input and its dynamics, rather than the rate of dust removal from the anterior, drives the anterior-to-posterior grooming sequence.
Collapse
Affiliation(s)
- Neil Zhang
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li Guo
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Kim H, Horigome M, Ishikawa Y, Li F, Lauritzen JS, Card G, Bock DD, Kamikouchi A. Wiring patterns from auditory sensory neurons to the escape and song-relay pathways in fruit flies. J Comp Neurol 2020; 528:2068-2098. [PMID: 32012264 DOI: 10.1002/cne.24877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Many animals rely on acoustic cues to decide what action to take next. Unraveling the wiring patterns of the auditory neural pathways is prerequisite for understanding such information processing. Here, we reconstructed the first step of the auditory neural pathway in the fruit fly brain, from primary to secondary auditory neurons, at the resolution of transmission electron microscopy. By tracing axons of two major subgroups of auditory sensory neurons in fruit flies, low-frequency tuned Johnston's organ (JO)-B neurons and high-frequency tuned JO-A neurons, we observed extensive connections from JO-B neurons to the main second-order neurons in both the song-relay and escape pathways. In contrast, JO-A neurons connected strongly to a neuron in the escape pathway. Our findings suggest that heterogeneous JO neuronal populations could be recruited to modify escape behavior whereas only specific JO neurons contribute to courtship behavior. We also found that all JO neurons have postsynaptic sites at their axons. Presynaptic modulation at the output sites of JO neurons could affect information processing of the auditory neural pathway in flies.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Mihoko Horigome
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuki Ishikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Feng Li
- HHMI Janelia Research Campus, Ashburn, Virginia
| | | | | | - Davi D Bock
- HHMI Janelia Research Campus, Ashburn, Virginia
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Blagburn JM. A new method of recording from the giant fiber of Drosophila melanogaster shows that the strength of its auditory inputs remains constant with age. PLoS One 2020; 15:e0224057. [PMID: 31910219 PMCID: PMC6946141 DOI: 10.1371/journal.pone.0224057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022] Open
Abstract
There have been relatively few studies of how central synapses age in adult Drosophila melanogaster. In this study we investigate the aging of the synaptic inputs to the Giant Fiber (GF) from auditory Johnston's Organ neurons (JONs). In previously published experiments an indirect assay of this synaptic connection was used; here we describe a new, more direct assay, which allows reliable detection of the GF action potential in the neck connective, and long term recording of its responses to sound. Genetic poisoning using diphtheria toxin expressed in the GF with R68A06-GAL4 was used to confirm that this signal indeed arose from the GF and not from other descending neurons. As before, the sound-evoked action potentials (SEPs) in the antennal nerve were recorded via an electrode inserted at the base of the antenna. It was noted that an action potential in the GF elicited an antennal twitch, which in turn evoked a mechanosensory response from the JONs in the absence of sound. We then used these extracellular recording techniques in males and female of different ages to quantify the response of the JONs to a brief sound impulse, and also to measure the strength of the connection between the JONs and the GF. At no age was there any significant difference between males and females, for any of the parameters measured. The sensitivity of the JONs to a sound impulse approximately doubled between 1 d and 10 d after eclosion, which corresponds to the period when most mating is taking place. Subsequently JON sensitivity decreased with age, being approximately half as sensitive at 20 d and one-third as sensitive at 50 d, as compared to 10 d. However, the strength of the connection between the auditory input and the GF itself remained unchanged with age, although it did show some variability that could mask any small changes.
Collapse
Affiliation(s)
- Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR, United States of America
| |
Collapse
|
10
|
Kennedy T, Broadie K. Newly Identified Electrically Coupled Neurons Support Development of the Drosophila Giant Fiber Model Circuit. eNeuro 2018; 5:ENEURO.0346-18.2018. [PMID: 30627638 PMCID: PMC6325540 DOI: 10.1523/eneuro.0346-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
The Drosophila giant fiber (GF) escape circuit is an extensively studied model for neuron connectivity and function. Researchers have long taken advantage of the simple linear neuronal pathway, which begins at peripheral sensory modalities, travels through the central GF interneuron (GFI) to motor neurons, and terminates on wing/leg muscles. This circuit is more complex than it seems, however, as there exists a complex web of coupled neurons connected to the GFI that widely innervates the thoracic ganglion. Here, we define four new neuron clusters dye coupled to the central GFI, which we name GF coupled (GFC) 1-4. We identify new transgenic Gal4 drivers that express specifically in these neurons, and map both neuronal architecture and synaptic polarity. GFC1-4 share a central site of GFI connectivity, the inframedial bridge, where the neurons each form electrical synapses. Targeted apoptotic ablation of GFC1 reveals a key role for the proper development of the GF circuit, including the maintenance of GFI connectivity with upstream and downstream synaptic partners. GFC1 ablation frequently results in the loss of one GFI, which is always compensated for by contralateral innervation from a branch of the persisting GFI axon. Overall, this work reveals extensively coupled interconnectivity within the GF circuit, and the requirement of coupled neurons for circuit development. Identification of this large population of electrically coupled neurons in this classic model, and the ability to genetically manipulate these electrically synapsed neurons, expands the GF system capabilities for the nuanced, sophisticated circuit dissection necessary for deeper investigations into brain formation.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
11
|
Jezzini SH, Merced A, Blagburn JM. Shaking-B misexpression increases the formation of gap junctions but not chemical synapses between auditory sensory neurons and the giant fiber of Drosophila melanogaster. PLoS One 2018; 13:e0198710. [PMID: 30118493 PMCID: PMC6097648 DOI: 10.1371/journal.pone.0198710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
The synapse between auditory Johnston's Organ neurons (JONs) and the giant fiber (GF) of Drosophila is structurally mixed, being composed of cholinergic chemical synapses and Neurobiotin- (NB) permeable gap junctions, which consist of the innexin Shaking-B (ShakB). Previous observations showed that misexpression of one ShakB isoform, ShakB(N+16), in a subset of JONs that do not normally form gap junctions results in their de novo dye coupling to the GF. Misexpression of the transcription factor Engrailed (En) in these neurons also has this effect, and in addition causes the formation of new chemical synapses. These results, along with earlier studies suggesting that gap junctions are required for the development of some chemical synapses, led to the hypothesis that ShakB would, like En, have an instructive effect on the distribution of mixed chemical/electrical contacts. To test this, we first confirmed quantitatively that ShakB(N+16) misexpression increased the dye-coupling of JONs with the GF, indicating the formation of ectopic gap junctions. Conversely, expression of the 'incorrect' isoform, ShakB(N), abolished dye coupling. Immunocytochemistry of the ShakB protein showed that ShakB(N+16) increased gap junctional plaques in JON axons but ShakB(N) did not. To test our hypothesis, fluorescently-labeled presynaptic active zone protein (Brp) was expressed in JONs and the changes in its distribution on the GF dendrites was assayed with confocal microscopy in animals with misexpression of ShakB(N+16), ShakB(N) or, as a positive control, En. Using different methods of image analysis, we confirmed our previous result that En misexpression increased the chemical synapses with the GF and the amount of GF medial dendrite branching. However, contrary to our hypothesis, misexpression of ShakB did not increase these parameters. Immunostaining showed no association between presynaptic active zones and the new ShakB plaques, further evidence against the hypothesis. We conclude that both subsets of JON form chemical synapses onto the GF dendrites but only one population forms gap junctions, comprised of ShakB(N+16). Misexpression of this isoform in all JONs does not instruct the formation of new mixed chemical/electrical synapses, but results in the insertion of new gap junctions, presumably at the sites of existing chemical synaptic contacts with the GF.
Collapse
Affiliation(s)
- Sami H. Jezzini
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Amelia Merced
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| |
Collapse
|
12
|
Fast intensity adaptation enhances the encoding of sound in Drosophila. Nat Commun 2018; 9:134. [PMID: 29317624 PMCID: PMC5760620 DOI: 10.1038/s41467-017-02453-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
To faithfully encode complex stimuli, sensory neurons should correct, via adaptation, for stimulus properties that corrupt pattern recognition. Here we investigate sound intensity adaptation in the Drosophila auditory system, which is largely devoted to processing courtship song. Mechanosensory neurons (JONs) in the antenna are sensitive not only to sound-induced antennal vibrations, but also to wind or gravity, which affect the antenna's mean position. Song pattern recognition, therefore, requires adaptation to antennal position (stimulus mean) in addition to sound intensity (stimulus variance). We discover fast variance adaptation in Drosophila JONs, which corrects for background noise over the behaviorally relevant intensity range. We determine where mean and variance adaptation arises and how they interact. A computational model explains our results using a sequence of subtractive and divisive adaptation modules, interleaved by rectification. These results lay the foundation for identifying the molecular and biophysical implementation of adaptation to the statistics of natural sensory stimuli.
Collapse
|
13
|
Azevedo AW, Wilson RI. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons. Neuron 2017; 96:446-460.e9. [PMID: 28943231 DOI: 10.1016/j.neuron.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/26/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na+ and K+ conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol Phylogenet Evol 2017; 112:230-243. [DOI: 10.1016/j.ympev.2017.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
|
15
|
Wan Y, Otsuna H, Holman HA, Bagley B, Ito M, Lewis AK, Colasanto M, Kardon G, Ito K, Hansen C. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis. BMC Bioinformatics 2017; 18:280. [PMID: 28549411 PMCID: PMC5446689 DOI: 10.1186/s12859-017-1694-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/18/2017] [Indexed: 12/05/2022] Open
Abstract
Background Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Results Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. Conclusion The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1694-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wan
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA.
| | - Hideo Otsuna
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Holly A Holman
- Department of Bioengineering, University of Utah, Salt Lake City, USA
| | - Brig Bagley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Masayoshi Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - A Kelsey Lewis
- Department of Biology, University of Florida, Gainesville, USA
| | - Mary Colasanto
- Department of Human Genetics, University of Utah, Salt Lake City, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, USA
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | - Charles Hansen
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| |
Collapse
|
16
|
Pézier AP, Jezzini SH, Bacon JP, Blagburn JM. Shaking B Mediates Synaptic Coupling between Auditory Sensory Neurons and the Giant Fiber of Drosophila melanogaster. PLoS One 2016; 11:e0152211. [PMID: 27043822 PMCID: PMC4833477 DOI: 10.1371/journal.pone.0152211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
The Johnston’s Organ neurons (JONs) form chemical and electrical synapses onto the giant fiber neuron (GF), as part of the neuronal circuit that mediates the GF escape response in Drosophila melanogaster. The purpose of this study was to identify which of the 8 Drosophila innexins (invertebrate gap junction proteins) mediates the electrical connection at this synapse. The GF is known to express Shaking B (ShakB), specifically the ShakB(N+16) isoform only, at its output synapses in the thorax. The shakB2 mutation disrupts these GF outputs and also abolishes JON-GF synaptic transmission. However, the identity of the innexin that forms the presynaptic hemichannels in the JONs remains unknown. We used electrophysiology, immunocytochemistry and dye injection, along with presynaptically-driven RNA interference, to investigate this question. The amplitude of the compound action potential recorded in response to sound from the base of the antenna (sound-evoked potential, or SEP) was reduced by RNAi of the innexins Ogre, Inx3, Inx6 and, to a lesser extent Inx2, suggesting that they could be required in JONs for proper development, excitability, or synchronization of action potentials. The strength of the JON-GF connection itself was reduced to background levels only by RNAi of shakB, not of the other seven innexins. ShakB knockdown prevented Neurobiotin coupling between GF and JONs and removed the plaques of ShakB protein immunoreactivity that are present at the region of contact. Specific shakB RNAi lines that are predicted to target the ShakB(L) or ShakB(N) isoforms alone did not reduce the synaptic strength, implying that it is ShakB(N+16) that is required in the presynaptic neurons. Overexpression of ShakB(N+16) in JONs caused the formation of ectopic dye coupling, whereas ShakB(N) prevented it altogether, supporting this conclusion and also suggesting that gap junction proteins may have an instructive role in synaptic target choice.
Collapse
Affiliation(s)
- Adeline P. Pézier
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Sami H. Jezzini
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Jonathan P. Bacon
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
17
|
Matsuo E, Seki H, Asai T, Morimoto T, Miyakawa H, Ito K, Kamikouchi A. Organization of projection neurons and local neurons of the primary auditory center in the fruit fly
Drosophila melanogaster. J Comp Neurol 2016; 524:1099-164. [DOI: 10.1002/cne.23955] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Eriko Matsuo
- Graduate School of ScienceNagoya UniversityNagoya464‐8602 Japan
| | - Haruyoshi Seki
- School of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji Tokyo Japan
| | - Tomonori Asai
- Graduate School of ScienceNagoya UniversityNagoya464‐8602 Japan
| | - Takako Morimoto
- School of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji Tokyo Japan
| | - Hiroyoshi Miyakawa
- School of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji Tokyo Japan
| | - Kei Ito
- Institute of Molecular and Cellular BiosciencesThe University of TokyoYayoi, Bunkyo‐ku Tokyo113‐0032 Japan
| | - Azusa Kamikouchi
- Graduate School of ScienceNagoya UniversityNagoya464‐8602 Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyTokyo102‐0076 Japan
| |
Collapse
|
18
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
19
|
Abstract
There are two main modalities of communication between neurons, known as electrical and chemical synaptic transmission. Despite striking differences in their underlying mechanisms, new evidence suggests that the formation of electrically and chemically mediated synapses is under common regulatory processes.
Collapse
Affiliation(s)
- Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
20
|
Zhou C, Franconville R, Vaughan AG, Robinett CC, Jayaraman V, Baker BS. Central neural circuitry mediating courtship song perception in male Drosophila. eLife 2015; 4. [PMID: 26390382 PMCID: PMC4575990 DOI: 10.7554/elife.08477] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Animals use acoustic signals across a variety of social behaviors, particularly courtship. In Drosophila, song is detected by antennal mechanosensory neurons and further processed by second-order aPN1/aLN(al) neurons. However, little is known about the central pathways mediating courtship hearing. In this study, we identified a male-specific pathway for courtship hearing via third-order ventrolateral protocerebrum Projection Neuron 1 (vPN1) neurons and fourth-order pC1 neurons. Genetic inactivation of vPN1 or pC1 disrupts song-induced male-chaining behavior. Calcium imaging reveals that vPN1 responds preferentially to pulse song with long inter-pulse intervals (IPIs), while pC1 responses to pulse song closely match the behavioral chaining responses at different IPIs. Moreover, genetic activation of either vPN1 or pC1 induced courtship chaining, mimicking the behavioral response to song. These results outline the aPN1-vPN1-pC1 pathway as a labeled line for the processing and transformation of courtship song in males. DOI:http://dx.doi.org/10.7554/eLife.08477.001 The seemingly simple fruit fly engages in an intricate courtship ritual before it mates. Male flies use their wings to ‘sing’ a complex song that makes females more willing to mate. The song also encourages nearby males to start courting, and these males may then intervene to compete for the female. Each species of fruit fly has its own song, and it is important for both males and females to detect the right song. The sounds of the courtship song are detected by vibration-sensitive neurons on the flies' antennae. These neurons send signals to the fly's brain. But little is known about how this information is then processed, or how information about the song can be integrated with other courtship cues. Zhou et al. have now identified a pathway of neurons in male flies that is responsible for hearing the courtship song. This pathway stretches from the antennae to neurons deep within the brain. These neural pathways are different in males and females, suggesting that the two sexes use different circuits of neurons for hearing courtship songs. Zhou et al. then used genetic techniques to show that males need every neuron in this pathway to hear courtship songs. Further experiments revealed that stimulating the ‘deep layer’ neurons caused male flies to respond as if they are hearing the courtship song. These neurons are likely to integrate the song with information from other senses and may encode a general signal for arousal. These findings now pave the way to deepen our understanding of how information from different senses—for example, courtship songs, visual cues, and pheromones—can be integrated to drive specific behaviors. The next challenge is to explore how species-specific songs are detected and recognized, a goal that has yet to be achieved in any species. DOI:http://dx.doi.org/10.7554/eLife.08477.002
Collapse
Affiliation(s)
- Chuan Zhou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Carmen C Robinett
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Bruce S Baker
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
21
|
Albert JT, Göpfert MC. Hearing in Drosophila. Curr Opin Neurobiol 2015; 34:79-85. [PMID: 25710304 PMCID: PMC4582067 DOI: 10.1016/j.conb.2015.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/01/2022]
Abstract
The dissection of the Drosophila auditory system has revealed multiple parallels between fly and vertebrate hearing. Recent studies have analyzed the operation of auditory sensory cells and the processing of sound in the fly's brain. Neuronal responses to sound have been characterized, and novel classes of auditory neurons have been defined; transient receptor potential (TRP) channels were implicated in auditory transduction, and genetic and environmental causes of auditory dysfunctions have been identified. This review discusses the implications of these recent advances on our understanding of how hearing happens in the fly.
Collapse
Affiliation(s)
- Jörg T Albert
- Ear Institute, University College London, 332 Gray's Inn Rd, London WC1X 8EE, UK.
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.
| |
Collapse
|
22
|
Engrailed homeoproteins in visual system development. Cell Mol Life Sci 2014; 72:1433-45. [PMID: 25432704 PMCID: PMC4366559 DOI: 10.1007/s00018-014-1776-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 12/28/2022]
Abstract
Engrailed is a homeoprotein transcription factor. This family of transcription factors is characterized by their DNA-binding homeodomain and some members, including Engrailed, can transfer between cells and regulate protein translation in addition to gene transcription. Engrailed is intimately involved in the development of the vertebrate visual system. Early expression of Engrailed in dorsal mesencephalon contributes to the development and organization of a visual structure, the optic tectum/superior colliculus. This structure is an important target for retinal ganglion cell axons that carry visual information from the retina. Engrailed regulates the expression of Ephrin axon guidance cues in the tectum/superior colliculus. More recently it has been reported that Engrailed itself acts as an axon guidance cue in synergy with the Ephrin system and is proposed to enhance retinal topographic precision.
Collapse
|