1
|
Diamond NB, Simpson S, Baena D, Murray B, Fogel S, Levine B. Sleep selectively and durably enhances memory for the sequence of real-world experiences. Nat Hum Behav 2025; 9:746-757. [PMID: 40069368 DOI: 10.1038/s41562-025-02117-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/16/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to play a critical role in the retention of memory for past experiences (episodic memory), reducing the rate of forgetting compared with wakefulness. Yet it remains unclear whether and how sleep actively transforms the way we remember multidimensional real-world experiences, and how such memory transformation unfolds over the days, months and years that follow. In an exception to the law of forgetting, we show that sleep actively and selectively improves the accuracy of memory for a one-time, real-world experience (an art tour)-specifically boosting memory for the order of tour items (sequential associations) versus perceptual details from the tour (featural associations). This above-baseline boost in sequence memory was not evident after a matched period of wakefulness. Moreover, the preferential retention of sequence relative to featural memory observed after a night's sleep grew over time up to 1 year post-encoding. Finally, overnight polysomnography showed that sleep-related memory enhancement was associated with the duration and neurophysiological hallmarks of slow-wave sleep previously linked to sequential neural replay, particularly spindle-slow wave coupling. These results suggest that sleep serves a crucial and selective role in enhancing sequential organization in our memory for past events at the expense of perceptual details, linking sleep-related neural mechanisms to the days-to-years-long transformation of memory for complex real-life experiences.
Collapse
Affiliation(s)
- N B Diamond
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Simpson
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - D Baena
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Murray
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - S Fogel
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Levine
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada.
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Yang Y, Huang Z, Yang Y, Fan M, Yin D. Time-dependent consolidation mechanisms of durable memory in spaced learning. Commun Biol 2025; 8:535. [PMID: 40169798 PMCID: PMC11962080 DOI: 10.1038/s42003-025-07964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Emerging studies suggest that time-dependent consolidation enables memory stabilization by promoting memory integration and hippocampal-cortical transfer. Compared to massed learning, how time-dependent consolidation contributes to forming durable memory and what neural signatures predict durable memory in spaced learning remain unclear. We recruited 48 participants who underwent either 3-day spaced learning or 1-day massed learning, and both resting-state and task-based fMRI data were collected in multiple delayed tests (i.e., immediate, 1-week, and 1-month). We use representational similarity analysis to assess neural integration and replay in the hippocampus and default mode network (DMN) subsystems. In contrast with massed learning, spaced learning induces higher neural pattern similarity during immediate retrieval only in DMN subsystems. Particularly, the neural pattern similarity in the dorsal-medial DMN (DMNdm) and medial-temporal DMN subsystems predicts the durable memory defined by 1-month delay. Moreover, we find increased neural replay of durable memory in the DMNdm for spaced learning and in the hippocampus for both spaced and massed learning. Our findings suggest that time-dependent consolidation promotes neural integration and replay in the cortex rather than in the hippocampus, which may underlie the formation of durable memory after spaced learning.
Collapse
Affiliation(s)
- Yifeixue Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yun Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
3
|
Chapman R, Najima S, Tylinski Sant'Ana T, Lee CCK, Filice F, Babineau J, Mollayeva T. Sex differences in electrical activity of the brain during sleep: a systematic review of electroencephalographic findings across the human lifespan. Biomed Eng Online 2025; 24:33. [PMID: 40069824 PMCID: PMC11899717 DOI: 10.1186/s12938-025-01354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND With the explosion of techniques for recording electrical brain activity, our recognition of neurodiversity has expanded significantly. Yet, uncertainty exists regarding sex differences in electrical activity during sleep and whether these differences, if any, are associated with social parameters. We synthesised existing evidence applying the PROGRESS-Plus framework, which captures social parameters that may influence brain activity and function. METHODS We searched five databases from inception to December 2024, and included English language peer-reviewed research examining sex differences in electrical activity during sleep in healthy participants. We performed risk of bias assessment following recommended criteria for observational studies. We reported results on sex differences by wave frequency (delta, theta, alpha, sigma, beta, and gamma) and waveforms (spindle and sawtooth), positioning results across age-related developmental stages. We created visualizations of results linking study quality and consideration of PROGRESS-Plus parameters, which facilitated certainty assessment. RESULTS Of the 2,783 unique citations identified, 28 studies with a total of 3,374 participants (47% male, age range 4-5 months to 101 years) were included in data synthesis. Evidence of high certainty reported no sex differences in alpha and delta relative power among participants in middle-to-late adulthood. Findings of moderate certainty suggest no sex differences in alpha power; and theta, sigma and beta relative power; and delta density. There is evidence of moderate certainty suggesting that female participants had a steeper delta wave slope and male participants had greater normalized delta power. Evidence that female participants have higher spindle power density is of low certainty. All other findings were regarded as very low in certainty. The PROGRESS-Plus parameters were rarely integrated into the methodology of studies included in this review. CONCLUSION Evidence on the topic of sex differences in sleep wave parameters is variable. It is possible that the reported results reflect unmeasured social parameters, instead of biological sex. Future research on sex differences in sleep should be discussed in relevance to functional or clinical outcomes. Development of uniform testing procedures across research settings is timely. PROSPERO CRD42022327644. FUNDING Canada Research Chairs (Neurological Disorders and Brain Health, CRC-2021-00074); UK Pilot Award for Global Brain Health Leaders (GBHI ALZ UK-23-971123).
Collapse
Key Words
- Brain
- EEG
- Electroencephalogram
- Equity, diversity, and inclusion
- Health equity
- Inequity
- Integrated ethics
- Method
- Neurobiology
- Neurodiversity
- Neuroimaging
- PROGRESS-Plus (Place of residence, Race/ethnicity, Occupation, Gender/Sex, Religion, Education, Socioeconomic status, Social capital; other contextual parameters, including age)
- Sex differences
- Sleep stages
- Social determinants of health
Collapse
Affiliation(s)
- Rhea Chapman
- KITE Toronto Rehabilitation Institute, University Health Network, 550 University Avenue 11th Floor, Rm 11-183, Toronto, ON, M5G 2A2, Canada
- Biology Department, University of Toronto, Mississauga, ON, Canada
| | - Sarasa Najima
- KITE Toronto Rehabilitation Institute, University Health Network, 550 University Avenue 11th Floor, Rm 11-183, Toronto, ON, M5G 2A2, Canada
- Arts and Science Department, University of Toronto, Toronto, ON, Canada
| | - Thaisa Tylinski Sant'Ana
- KITE Toronto Rehabilitation Institute, University Health Network, 550 University Avenue 11th Floor, Rm 11-183, Toronto, ON, M5G 2A2, Canada
| | - Christy Chi Kiu Lee
- KITE Toronto Rehabilitation Institute, University Health Network, 550 University Avenue 11th Floor, Rm 11-183, Toronto, ON, M5G 2A2, Canada
| | - Francesco Filice
- KITE Toronto Rehabilitation Institute, University Health Network, 550 University Avenue 11th Floor, Rm 11-183, Toronto, ON, M5G 2A2, Canada
- Arts and Science Department, University of Toronto, Toronto, ON, Canada
| | - Jessica Babineau
- Library and Information Services, University Health Network, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
- The Institute for Education Research, University Health Network, Toronto, ON, Canada
| | - Tatyana Mollayeva
- KITE Toronto Rehabilitation Institute, University Health Network, 550 University Avenue 11th Floor, Rm 11-183, Toronto, ON, M5G 2A2, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Temetry Faculty of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Global Brain Health Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Bein O, Niv Y. Schemas, reinforcement learning and the medial prefrontal cortex. Nat Rev Neurosci 2025; 26:141-157. [PMID: 39775183 DOI: 10.1038/s41583-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Schemas are rich and complex knowledge structures about the typical unfolding of events in a context; for example, a schema of a dinner at a restaurant. In this Perspective, we suggest that reinforcement learning (RL), a computational theory of learning the structure of the world and relevant goal-oriented behaviour, underlies schema learning. We synthesize literature about schemas and RL to offer that three RL principles might govern the learning of schemas: learning via prediction errors, constructing hierarchical knowledge using hierarchical RL, and dimensionality reduction through learning a simplified and abstract representation of the world. We then suggest that the orbitomedial prefrontal cortex is involved in both schemas and RL due to its involvement in dimensionality reduction and in guiding memory reactivation through interactions with posterior brain regions. Last, we hypothesize that the amount of dimensionality reduction might underlie gradients of involvement along the ventral-dorsal and posterior-anterior axes of the orbitomedial prefrontal cortex. More specific and detailed representations might engage the ventral and posterior parts, whereas abstraction might shift representations towards the dorsal and anterior parts of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Psychology Department, Princeton University, Princeton, NJ, USA
| |
Collapse
|
5
|
Denis D, Bottary R, Cunningham TJ, Davidson P, Yuksel C, Milad MR, Pace-Schott EF. Slow oscillation-sleep spindle coupling is associated with fear extinction retention in trauma-exposed individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634866. [PMID: 39974936 PMCID: PMC11838212 DOI: 10.1101/2025.01.27.634866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Posttraumatic stress disorder (PTSD) can be characterized as a disorder of fear learning and memory, in which there is a failure to retain memory for the extinction of conditioned fear. Sleep has been implicated in successful extinction retention. The coupling of sleep spindles to slow oscillations (SOs) during non-rapid eye movement sleep has been shown to broadly underpin sleep's beneficial effect on memory consolidation. However, the role of this oscillatory coupling in the retention of extinction memories is unknown. In a large sample of 124 trauma-exposed individuals, we investigated SO-spindle coupling in relation to fear extinction memory. We found that participants with a PTSD diagnosis, relative to trauma-exposed controls, showed significantly altered SO-spindle timing, such that PTSD participants exhibited spindle coupling further away from the peak of the SO. Across participants, the amount of coupling significantly predicted extinction retention, with coupled spindles uniquely predicting successful extinction retention compared to uncoupled spindles. These results suggest that SO-spindle coupling is critical for successful retention of extinguished fear, and that SO-spindle coupling dynamics are altered in PTSD. These alterations in the mechanics of sleep may have substantial clinical implications, meriting further investigation.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York, United Kingdom
| | - Ryan Bottary
- Institute for Graduate Clinical Psychology, Widener University, Chester, PA, USA
| | - Tony J. Cunningham
- Center for Sleep and Cognition, Psychiatry Department, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Per Davidson
- Department of Psychology, Kristianstad University, Kristianstad, Sweden
| | - Cagri Yuksel
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Edward F. Pace-Schott
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Mass General Brigham, Charlestown, MA, USA
| |
Collapse
|
6
|
Laing PAF, Dunsmoor JE. Event Segmentation Promotes the Reorganization of Emotional Memory. J Cogn Neurosci 2025; 37:110-134. [PMID: 39231276 DOI: 10.1162/jocn_a_02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Event boundaries help structure the content of episodic memories by segmenting continuous experiences into discrete events. Event boundaries may also serve to preserve meaningful information within an event, thereby actively separating important memories from interfering representations imposed by past and future events. Here, we tested the hypothesis that event boundaries organize emotional memory based on changing dynamics as events unfold. We developed a novel threat-reversal learning task whereby participants encoded trial-unique exemplars from two semantic categories across three phases: preconditioning, fear acquisition, and reversal. Shock contingencies were established for one category during acquisition (CS+) and then switched to the other during reversal (CS-). Importantly, reversal was either separated by a perceptible event boundary (Experiment 1) or occurred immediately after acquisition, with no perceptible context shift (Experiment 2). In a surprise recognition memory test the next day, memory performance tracked the learning contingencies from encoding in Experiment 1, such that participants selectively recognized more threat-associated CS+ exemplars from before (retroactive) and during acquisition, but this pattern reversed toward CS- exemplars encoded during reversal. By contrast, participants with continuous encoding-without a boundary between conditioning and reversal-exhibited undifferentiated memory for exemplars from both categories encoded before acquisition and after reversal. Further analyses highlight nuanced effects of event boundaries on reversing conditioned fear, updating mnemonic generalization, and emotional biasing of temporal source memory. These findings suggest that event boundaries provide anchor points to organize memory for distinctly meaningful information, thereby adaptively structuring memory based on the content of our experiences.
Collapse
|
7
|
Tompary A, Davachi L. Integration of overlapping sequences emerges with consolidation through medial prefrontal cortex neural ensembles and hippocampal-cortical connectivity. eLife 2024; 13:e84359. [PMID: 39545928 PMCID: PMC11567667 DOI: 10.7554/elife.84359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Systems consolidation theories propose two mechanisms that enable the behavioral integration of related memories: coordinated reactivation between hippocampus and cortex, and the emergence of cortical traces that reflect overlap across memories. However, there is limited empirical evidence that links these mechanisms to the emergence of behavioral integration over time. In two experiments, participants implicitly encoded sequences of objects with overlapping structure. Assessment of behavioral integration showed that response times during a recognition task reflected behavioral priming between objects that never occurred together in time but belonged to overlapping sequences. This priming was consolidation-dependent and only emerged for sequences learned 24 hr prior to the test. Critically, behavioral integration was related to changes in neural pattern similarity in the medial prefrontal cortex and increases in post-learning rest connectivity between the posterior hippocampus and lateral occipital cortex. These findings suggest that memories with a shared predictive structure become behaviorally integrated through a consolidation-related restructuring of the learned sequences, providing insight into the relationship between different consolidation mechanisms that support behavioral integration.
Collapse
|
8
|
McDevitt EA, Kim G, Turk-Browne NB, Norman KA. The role of REM sleep in neural differentiation of memories in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621588. [PMID: 39553942 PMCID: PMC11566016 DOI: 10.1101/2024.11.01.621588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
When faced with a familiar situation, we can use memory to make predictions about what will happen next. If such predictions turn out to be erroneous, the brain can adapt by differentiating the representations of the cues that generated the prediction from the mispredicted item itself, reducing the likelihood of future prediction errors. Prior work by Kim et al. (2017) found that violating a sequential association in a statistical learning paradigm triggered differentiation of the neural representations of the associated items in the hippocampus. Here, we used fMRI to test the preregistered hypothesis that this hippocampal differentiation occurs only when violations are followed by rapid eye movement (REM) sleep. In the morning, participants first learned that some items predict others (e.g., A predicts B) then encountered a violation in which a predicted item (B) failed to appear when expected after its associated item (A); the predicted item later appeared on its own after an unrelated item. Participants were then randomly assigned to one of three conditions: remain awake, take a nap containing non-REM sleep only, or take a nap with both non-REM and REM sleep. While the predicted results were not observed in the preregistered left CA2/3/DG ROI, we did observe evidence for our hypothesis in closely related hippocampal ROIs, uncorrected for multiple comparisons: In right CA2/3/DG, differentiation in the group with REM sleep was greater than in the groups without REM sleep (wake and non-REM nap); this differentiation was item-specific and concentrated in right DG. Differentiation effects were also greater in bilateral DG when the predicted item was more strongly reactivated during the violation. Overall, the results presented here provide initial evidence linking REM sleep to changes in the hippocampal representations of memories in humans.
Collapse
|
9
|
Rehel S, Duivon M, Doidy F, Champetier P, Clochon P, Grellard JM, Segura-Djezzar C, Geffrelot J, Emile G, Allouache D, Levy C, Viader F, Eustache F, Joly F, Giffard B, Perrier J. Sleep oscillations related to memory consolidation during aromatases inhibitors for breast cancer. Sleep Med 2024; 121:210-218. [PMID: 39004011 DOI: 10.1016/j.sleep.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Aromatase inhibitors (AIs) are associated with sleep difficulties in breast cancer (BC) patients. Sleep is known to favor memory consolidation through the occurrence of specific oscillations, i.e., slow waves (SW) and sleep spindles, allowing a dialogue between prefrontal cortex and the hippocampus. Interestingly, neuroimaging studies in BC patients have consistently shown structural and functional modifications in these two brain regions. With the aim to evaluate sleep oscillations related to memory consolidation during AIs, we collected polysomnography data in BC patients treated (AI+, n = 17) or not (AI-, n = 17) with AIs compared to healthy controls (HC, n = 21). None of the patients had received chemotherapy and radiotherapy was finished since at least 6 months, that limit the confounding effects of other treatments than AIs. Fast and slow spindles were detected during sleep stage 2 at centro-parietal and frontal electrodes respectively. SW were detected at frontal electrodes during stage 3. Here, we show lower frontal SW densities in AI + patients compared to HC. These results concord with previous reports about frontal cortical alterations in cancer following AIs administration. Moreover, AI + patients tended to have lower spindle density at C4 electrode. Regression analyses showed that, in both patient groups, spindle density at C4 electrode explained a large variance of memory performances. Slow spindle characteristics did not differ between groups and sleep oscillations characteristics of AI- patients did not differ significantly from those of both AI + patients and HC. Overall, our results add to the compelling evidence of the systemic effects of AIs previously reported in animals, with deleterious effects on cortical activity during sleep and associated memory consolidation in the current study. There is thus a need to further investigate sleep modifications during AIs administration. Longitudinal studies are needed to confirm these findings and investigation in other cancers on this topic should be conducted.
Collapse
Affiliation(s)
- S Rehel
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| | - M Duivon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Doidy
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Champetier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Clochon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - J M Grellard
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Segura-Djezzar
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - J Geffrelot
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - G Emile
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - D Allouache
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Levy
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - F Viader
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Joly
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; INSERM, Normandie Univ, UNICAEN, U1086 ANTICIPE, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - B Giffard
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - J Perrier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
10
|
Brown A, Gervais NJ, Gravelsins L, O'Byrne J, Calvo N, Ramana S, Shao Z, Bernardini M, Jacobson M, Rajah MN, Einstein G. Effects of early midlife ovarian removal on sleep: Polysomnography-measured cortical arousal, homeostatic drive, and spindle characteristics. Horm Behav 2024; 165:105619. [PMID: 39178647 DOI: 10.1016/j.yhbeh.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) prior to age 48 is associated with elevated risk for both Alzheimer's disease (AD) and sleep disorders such as insomnia and sleep apnea. In early midlife, individuals with BSO show reduced hippocampal volume, function, and hippocampal-dependent verbal episodic memory performance associated with changes in sleep. It is unknown whether BSO affects fine-grained sleep measurements (sleep microarchitecture) and how these changes might relate to hippocampal-dependent memory. We recruited thirty-six early midlife participants with BSO. Seventeen of these participants were taking 17β-estradiol therapy (BSO+ET) and 19 had never taken ET (BSO). Twenty age-matched control participants with intact ovaries (AMC) were also included. Overnight at-home polysomnography recordings were collected, along with subjective sleep quality and hot flash frequency. Multivariate Partial Least Squares (PLS) analysis was used to assess how sleep varied between groups. Compared to AMC, BSO without ET was associated with significantly decreased time spent in non-rapid eye movement (NREM) stage 2 sleep as well as increased NREM stage 2 and 3 beta power, NREM stage 2 delta power, and spindle power and maximum amplitude. Increased spindle maximum amplitude was negatively correlated with verbal episodic memory performance. Decreased sleep latency, increased sleep efficiency, and increased time spent in rapid eye movement sleep were observed for BSO+ET. Findings suggest there is an association between ovarian hormone loss and sleep microarchitecture, which may contribute to poorer cognitive outcomes and be ameliorated by ET.
Collapse
Affiliation(s)
- Alana Brown
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9712 CP, the Netherlands.
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Jordan O'Byrne
- Psychology Department, University of Montreal, Montreal H3T 1J4, Canada; Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal H3G 1M8, Canada.
| | - Noelia Calvo
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Zhuo Shao
- Genetics Program, North York General Hospital, Toronto M2K 1E1, Canada; Department of Pediatrics, University of Toronto, Toronto M5G 1X8, Canada.
| | | | - Michelle Jacobson
- Princess Margaret Hospital, Toronto M5G 2C4, Canada; Women's College Hospital, Toronto M5S 1B2, Canada.
| | - M Natasha Rajah
- Department of Psychology, Toronto Metropolitan University, Toronto M5B 2K3, Canada.
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto M6A 2E1, Canada; Tema Genus, Linköping University, Linköping 581 83, Sweden.
| |
Collapse
|
11
|
Lahlou S, Kaminska M, Doyon J, Carrier J, Sharp M. Sleep spindle density and temporal clustering are associated with sleep-dependent memory consolidation in Parkinson's disease. J Clin Sleep Med 2024; 20:1153-1162. [PMID: 38427318 PMCID: PMC11217638 DOI: 10.5664/jcsm.11080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
STUDY OBJECTIVES Sleep is required for successful memory consolidation. Sleep spindles, bursts of oscillatory activity occurring during non-rapid eye movement sleep, are known to be crucial for this process and, recently, it has been proposed that the temporal organization of spindles into clusters might additionally play a role in memory consolidation. In Parkinson's disease, spindle activity is reduced, and this reduction has been found to be predictive of cognitive decline. However, it remains unknown whether alterations in sleep spindles in Parkinson's disease are predictive of sleep-dependent cognitive processes such as memory consolidation, leaving open questions about the possible mechanisms linking sleep and a more general cognitive state in Parkinson's patients. METHODS The current study sought to fill this gap by recording overnight polysomnography and measuring overnight declarative memory consolidation in a sample of 35 patients with Parkinson's. Memory consolidation was measured using a verbal paired-associates task administered before and after the night of recorded sleep. RESULTS We found that lower sleep spindle density at frontal leads during non-rapid eye movement stage 3 was associated with worse overnight declarative memory consolidation. We also found that patients who showed less temporal clustering of spindles exhibited worse declarative memory consolidation. CONCLUSIONS These results suggest alterations to sleep spindles, which are known to be a consequence of Parkinson's disease, might represent a mechanism by which poor sleep leads to worse cognitive function in Parkinson's patients. CITATION Lahlou S, Kaminska M, Doyon J, Carrier J, Sharp M. Sleep spindle density and temporal clustering are associated with sleep-dependent memory consolidation in Parkinson's disease. J Clin Sleep Med. 2024;20(7):1153-1162.
Collapse
Affiliation(s)
- Soraya Lahlou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Marta Kaminska
- Department of Medicine, McGill University, Montreal, Canada
| | - Julien Doyon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Julie Carrier
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Madeleine Sharp
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Mushtaq M, Marshall L, ul Haq R, Martinetz T. Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study. PLoS One 2024; 19:e0306218. [PMID: 38924001 PMCID: PMC11207127 DOI: 10.1371/journal.pone.0306218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep spindles are one of the prominent EEG oscillatory rhythms of non-rapid eye movement sleep. In the memory consolidation, these oscillations have an important role in the processes of long-term potentiation and synaptic plasticity. Moreover, the activity (spindle density and/or sigma power) of spindles has a linear association with learning performance in different paradigms. According to the experimental observations, the sleep spindle activity can be improved by closed loop acoustic stimulations (CLAS) which eventually improve memory performance. To examine the effects of CLAS on spindles, we propose a biophysical thalamocortical model for slow oscillations (SOs) and sleep spindles. In addition, closed loop stimulation protocols are applied on a thalamic network. Our model results show that the power of spindles is increased when stimulation cues are applied at the commencing of an SO Down-to-Up-state transition, but that activity gradually decreases when cues are applied with an increased time delay from this SO phase. Conversely, stimulation is not effective when cues are applied during the transition of an Up-to-Down-state. Furthermore, our model suggests that a strong inhibitory input from the reticular (RE) layer to the thalamocortical (TC) layer in the thalamic network shifts leads to an emergence of spindle activity at the Up-to-Down-state transition (rather than at Down-to-Up-state transition), and the spindle frequency is also reduced (8-11 Hz) by thalamic inhibition.
Collapse
Affiliation(s)
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
- University Clinic Hospital Schleswig Holstein, Lübeck, Germany
| | - Rizwan ul Haq
- Department of Pharmacy, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
| |
Collapse
|
13
|
Zhong Z, Yan F, Xie C. Waking Up Brain with Electrical Stimulation to Boost Memory in Sleep: A Neuroscience Exploration. Neurosci Bull 2024; 40:852-854. [PMID: 38573557 PMCID: PMC11178686 DOI: 10.1007/s12264-024-01200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Zhe Zhong
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Fuling Yan
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Chunming Xie
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China.
- Institute of Neuropsychiatry, Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China.
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Cabrera Y, Koymans KJ, Poe GR, Kessels HW, Van Someren EJW, Wassing R. Overnight neuronal plasticity and adaptation to emotional distress. Nat Rev Neurosci 2024; 25:253-271. [PMID: 38443627 DOI: 10.1038/s41583-024-00799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.
Collapse
Affiliation(s)
- Yesenia Cabrera
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Karin J Koymans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Gina R Poe
- Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Synaptic Plasticity and Behaviour, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Society for Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology and Psychiatry, VU University, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, VU University, Amsterdam UMC, Amsterdam, Netherlands
| | - Rick Wassing
- Sleep and Circadian Research, Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia.
- School of Psychological Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.
- Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
16
|
Pedrosa R, Nazari M, Kergoat L, Bernard C, Mohajerani M, Stella F, Battaglia F. Hippocampal ripples coincide with "up-state" and spindles in retrosplenial cortex. Cereb Cortex 2024; 34:bhae083. [PMID: 38494417 DOI: 10.1093/cercor/bhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Loig Kergoat
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Christophe Bernard
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Francesco Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
17
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
18
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
19
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
20
|
Denis D, Cairney SA. Neural reactivation during human sleep. Emerg Top Life Sci 2023; 7:487-498. [PMID: 38054531 PMCID: PMC10754334 DOI: 10.1042/etls20230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, U.K
| | - Scott A. Cairney
- Department of Psychology, University of York, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, York YO10 5DD, U.K
| |
Collapse
|
21
|
Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife 2023; 12:e83565. [PMID: 37999945 PMCID: PMC10672804 DOI: 10.7554/elife.83565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
The synchronization of canonical fast sleep spindle activity (12.5-16 Hz, adult-like) precisely during the slow oscillation (0.5-1 Hz) up peak is considered an essential feature of adult non-rapid eye movement sleep. However, there is little knowledge on how this well-known coalescence between slow oscillations and sleep spindles develops. Leveraging individualized detection of single events, we first provide a detailed cross-sectional characterization of age-specific patterns of slow and fast sleep spindles, slow oscillations, and their coupling in children and adolescents aged 5-6, 8-11, and 14-18 years, and an adult sample of 20- to 26-year-olds. Critically, based on this, we then investigated how spindle and slow oscillation maturity substantiate age-related differences in their precise orchestration. While the predominant type of fast spindles was development-specific in that it was still nested in a frequency range below the canonical fast spindle range for the majority of children, the well-known slow oscillation-spindle coupling pattern was evident for sleep spindles in the adult-like canonical fast spindle range in all four age groups-but notably less precise in children. To corroborate these findings, we linked personalized measures of fast spindle maturity, which indicate the similarity between the prevailing development-specific and adult-like canonical fast spindles, and slow oscillation maturity, which reflects the extent to which slow oscillations show frontal dominance, with individual slow oscillation-spindle coupling patterns. Importantly, we found that fast spindle maturity was uniquely associated with enhanced slow oscillation-spindle coupling strength and temporal precision across the four age groups. Taken together, our results suggest that the increasing ability to generate adult-like canonical fast sleep spindles actuates precise slow oscillation-spindle coupling patterns from childhood through adolescence and into young adulthood.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
- Hertie-Institute for Clinical Brain Research, University Medical Center Tuebingen, Tuebingen, Germany
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- The Siesta Group, Vienna, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
22
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Memory ability and retention performance relate differentially to sleep depth and spindle type. iScience 2023; 26:108154. [PMID: 37876817 PMCID: PMC10590735 DOI: 10.1016/j.isci.2023.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling between cortical slow oscillations (SO, ∼1 Hz) and thalamic spindles (∼12 Hz) have been proposed to contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investigated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding memory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of spindle dynamics (slow versus fast), SO-phase, and most importantly NREM sleep depth for cognitive processing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model underscored this relationship, and furthermore that fast spindle properties were predictive of overnight memory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle temporal coupling, spindle properties, and brain sleep state.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| |
Collapse
|
23
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal Mechanisms Support Cortisol-Induced Memory Enhancements. J Neurosci 2023; 43:7198-7212. [PMID: 37813570 PMCID: PMC10601369 DOI: 10.1523/jneurosci.0916-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution fMRI, and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure (in both sexes). Behaviorally, hydrocortisone promoted the encoding of subjectively arousing, positive associative memories. Neurally, hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional associations. Cortisol also modified the relationship between hippocampal representations and associative memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional associative memory enhancements under cortisol.SIGNIFICANCE STATEMENT Our daily lives are filled with stressful events, which powerfully shape the way we form episodic memories. For example, stress and stress-related hormones can enhance our memory for emotional events. However, the mechanisms underlying these memory benefits are unclear. In the current study, we combined functional neuroimaging, behavioral tests of memory, and double-blind, placebo-controlled hydrocortisone administration to uncover the effects of the stress-related hormone cortisol on the function of the human hippocampus, a brain region important for episodic memory. We identified novel ways in which cortisol can enhance hippocampal function to promote emotional memories, highlighting the adaptive role of cortisol in shaping memory formation.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, University of Pennsylvania, Philadelphia 19104
| | - Bailey B Harris
- Department of Psychology, UCLA, Los Angeles, California 90095
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
| | - Elizabeth V Goldfarb
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut 06477
| |
Collapse
|
24
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
25
|
Guo D, Chen H, Wang L, Yang J. Effects of prior knowledge on brain activation and functional connectivity during memory retrieval. Sci Rep 2023; 13:13650. [PMID: 37608065 PMCID: PMC10444832 DOI: 10.1038/s41598-023-40966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
Previous studies have shown that the ventral medial prefrontal cortex (vmPFC) plays an important role in schema-related memory. However, there is an intensive debate to what extent the activation of subregions of the hippocampus is involved in retrieving schema-related memory. In addition, it is unclear how the functional connectivity (FC) between the vmPFC and the hippocampus, as well as the connectivity of the vmPFC with other regions, are modulated by prior knowledge (PK) during memory retrieval over time. To address these issues, participants learned paragraphs that described features of each unfamiliar word from familiar and unfamiliar categories (i.e., high and low PK conditions) 20 min, 1 day, and 1 week before the test. They then performed a recognition task to judge whether the sentences were old in the scanner. The results showed that the activation of the anterior-medial hippocampus (amHPC) cluster was stronger when the old sentences with high (vs. low) PK were correctly retrieved. The activation of the posterior hippocampus (pHPC) cluster, as well as the vmPFC, was stronger when the new sentences with high (vs. low) PK were correctly rejected (i.e., CR trials), whereas the cluster of anterior-lateral hippocampus (alHPC) showed the opposite. The FC of the vmPFC with the amHPC and perirhinal cortex/inferior temporal gyrus was stronger in the high (vs. low) PK condition, whereas the FC of the vmPFC with the alHPC, thalamus and frontal regions showed the opposite for the CR trials. This study highlighted that different brain networks, which were associated with the vmPFC, subregions of the hippocampus and cognitive control regions, were responsible for retrieving the information with high and low PK.
Collapse
Affiliation(s)
- Dingrong Guo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Haoyu Chen
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Lingwei Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
| |
Collapse
|
26
|
Antony JW, Schechtman E. Reap while you sleep: Consolidation of memories differs by how they were sown. Hippocampus 2023; 33:922-935. [PMID: 36973868 PMCID: PMC10429120 DOI: 10.1002/hipo.23526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
Newly formed memories are spontaneously reactivated during sleep, leading to their strengthening. This reactivation process can be manipulated by reinstating learning-related stimuli during sleep, a technique termed targeted memory reactivation. Numerous studies have found that delivering cues during sleep improves memory for simple associations, in which one cue reactivates one tested memory. However, real-life memories often live in rich, complex networks of associations. In this review, we will examine recent forays into investigating how targeted sleep reactivation affects memories within complex paradigms, in which one cue can reactivate multiple tested memories. A common theme across studies is that reactivation consequences do not merely depend on whether memories reside in complex arrangements, but on how memories interact with one another during acquisition. We therefore emphasize how intricate study design details that alter the nature of learning and/or participant intentions impact the outcomes of sleep reactivation. In some cases, complex networks of memories interact harmoniously to bring about mutual memory benefits; in other cases, memories interact antagonistically and produce selective impairments in retrieval. Ultimately, although this burgeoning area of research has yet to be systematically explored, results suggest that the fate of reactivated stimuli within complex arrangements depends on how they were learned.
Collapse
Affiliation(s)
- James W. Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California, USA
| | - Eitan Schechtman
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| |
Collapse
|
27
|
Wang X, Leong ATL, Tan SZK, Wong EC, Liu Y, Lim LW, Wu EX. Functional MRI reveals brain-wide actions of thalamically-initiated oscillatory activities on associative memory consolidation. Nat Commun 2023; 14:2195. [PMID: 37069169 PMCID: PMC10110623 DOI: 10.1038/s41467-023-37682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
As a key oscillatory activity in the brain, thalamic spindle activities are long believed to support memory consolidation. However, their propagation characteristics and causal actions at systems level remain unclear. Using functional MRI (fMRI) and electrophysiology recordings in male rats, we found that optogenetically-evoked somatosensory thalamic spindle-like activities targeted numerous sensorimotor (cortex, thalamus, brainstem and basal ganglia) and non-sensorimotor limbic regions (cortex, amygdala, and hippocampus) in a stimulation frequency- and length-dependent manner. Thalamic stimulation at slow spindle frequency (8 Hz) and long spindle length (3 s) evoked the most robust brain-wide cross-modal activities. Behaviorally, evoking these global cross-modal activities during memory consolidation improved visual-somatosensory associative memory performance. More importantly, parallel visual fMRI experiments uncovered response potentiation in brain-wide sensorimotor and limbic integrative regions, especially superior colliculus, periaqueductal gray, and insular, retrosplenial and frontal cortices. Our study directly reveals that thalamic spindle activities propagate in a spatiotemporally specific manner and that they consolidate associative memory by strengthening multi-target memory representation.
Collapse
Affiliation(s)
- Xunda Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shawn Z K Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Eddie C Wong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lee-Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
28
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Halpern DJ, Tubridy S, Davachi L, Gureckis TM. Identifying causal subsequent memory effects. Proc Natl Acad Sci U S A 2023; 120:e2120288120. [PMID: 36952384 PMCID: PMC10068819 DOI: 10.1073/pnas.2120288120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/12/2022] [Indexed: 03/24/2023] Open
Abstract
Over 40 y of accumulated research has detailed associations between neuroimaging signals measured during a memory encoding task and later memory performance, across a variety of brain regions, measurement tools, statistical approaches, and behavioral tasks. But the interpretation of these subsequent memory effects (SMEs) remains unclear: if the identified signals reflect cognitive and neural mechanisms of memory encoding, then the underlying neural activity must be causally related to future memory. However, almost all previous SME analyses do not control for potential confounders of this causal interpretation, such as serial position and item effects. We collect a large fMRI dataset and use an experimental design and analysis approach that allows us to statistically adjust for nearly all known exogenous confounding variables. We find that, using standard approaches without adjustment, we replicate several univariate and multivariate subsequent memory effects and are able to predict memory performance across people. However, we are unable to identify any signal that reliably predicts subsequent memory after adjusting for confounding variables, bringing into doubt the causal status of these effects. We apply the same approach to subjects' judgments of learning collected following an encoding period and show that these behavioral measures of mnemonic status do predict memory after adjustments, suggesting that it is possible to measure signals near the time of encoding that reflect causal mechanisms but that existing neuroimaging measures, at least in our data, may not have the precision and specificity to do so.
Collapse
Affiliation(s)
- David J. Halpern
- Department of Psychology, New York University, New York, NY10003
| | - Shannon Tubridy
- Department of Psychology, New York University, New York, NY10003
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY10027
| | - Todd M. Gureckis
- Department of Psychology, New York University, New York, NY10003
| |
Collapse
|
30
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal mechanisms support cortisol-induced memory enhancements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527745. [PMID: 36798309 PMCID: PMC9934703 DOI: 10.1101/2023.02.08.527745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution functional magnetic resonance imaging (fMRI), and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure. Hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional information. Cortisol also modified the relationship between hippocampal representations and memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional memory enhancements under stress.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth V Goldfarb
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
- Department of Psychiatry, Yale University
| |
Collapse
|
31
|
Roüast NM, Schönauer M. Continuously changing memories: a framework for proactive and non-linear consolidation. Trends Neurosci 2023; 46:8-19. [PMID: 36428193 DOI: 10.1016/j.tins.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
The traditional view of long-term memory is that memory traces mature in a predetermined 'linear' process: their neural substrate shifts from rapidly plastic medial temporal regions towards stable neocortical networks. We propose that memories remain malleable, not by repeated reinstantiations of this linear process but instead via dynamic routes of proactive and non-linear consolidation: memories change, their trajectory is flexible and reversible, and their physical basis develops continuously according to anticipated demands. Studies demonstrating memory updating, increasing hippocampal dependence to support adaptive use, and rapid neocortical plasticity provide evidence for continued non-linear consolidation. Although anticipated demand can affect all stages of memory formation, the extent to which it shapes the physical memory trace repeatedly and proactively will require further dedicated research.
Collapse
Affiliation(s)
- Nora Malika Roüast
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| | - Monika Schönauer
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Kim T, Shin I, Lee SH. False memory confidence depends on the prefrontal reinstatement of true memory. Neuroimage 2022; 263:119597. [PMID: 36044945 DOI: 10.1016/j.neuroimage.2022.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
For confidence of memory, a neural basis such as traces of stored memories should be required. However, because false memories have never been stored, the neural basis for false memory confidence remains unclear. Here we monitored the brain activity in participants while they viewed learned or novel objects, subsequently decided whether each presented object was learned and assessed their confidence levels. We found that when novel objects are presented, false memory confidence significantly depends on the shared representations with learned objects in the prefrontal cortex. However, such a tendency was not found in posterior regions including the visual cortex, which may be involved in the processing of perceptual gist. Furthermore, the confidence-dependent shared representations were not observed when participants correctly answered novel objects as non-learned objects. These results demonstrate that false memory confidence is critically based on the reinstatement of high-level semantic gist of stored memories in the prefrontal cortex.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Inho Shin
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
33
|
Audrain S, McAndrews MP. Schemas provide a scaffold for neocortical integration of new memories over time. Nat Commun 2022; 13:5795. [PMID: 36184668 PMCID: PMC9527246 DOI: 10.1038/s41467-022-33517-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Memory transformation is increasingly acknowledged in theoretical accounts of systems consolidation, yet how memory quality and neural representation change over time and how schemas influence this process remains unclear. We examined the behavioral quality and neural representation of schema-congruent and incongruent object-scene pairs retrieved across 10-minutes and 72-hours using fMRI. When a congruent schema was available, memory became coarser over time, aided by post-encoding coupling between the anterior hippocampus and medial prefrontal cortex (mPFC). Only schema-congruent representations were integrated in the mPFC over time, and were organized according to schematic context. In the hippocampus, pattern similarity changed across 72-hours such that the posterior hippocampus represented specific details and the anterior hippocampus represented the general context of specific memories, irrespective of congruency. Our findings suggest schemas are used as a scaffold to facilitate neocortical integration of congruent information, and illustrate evolution in hippocampal organization of detailed contextual memory over time.
Collapse
Affiliation(s)
- Sam Audrain
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
34
|
Laing PAF, Felmingham KL, Davey CG, Harrison BJ. The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework. Neurosci Biobehav Rev 2022; 142:104882. [PMID: 36150453 DOI: 10.1016/j.neubiorev.2022.104882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| |
Collapse
|
35
|
Takehara-Nishiuchi K. Flexibility of memory for future-oriented cognition. Curr Opin Neurobiol 2022; 76:102622. [PMID: 35994840 DOI: 10.1016/j.conb.2022.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Memories of daily experiences contain incidental details unique to each experience as well as common latent patterns shared with others. Neural representations focusing on the latter aspect can be reinstated by similar new experiences even though their perceptual features do not match the original experiences perfectly. Such flexible memory use allows for faster learning and better decision-making in novel situations. Here, I review evidence from rodent and primate electrophysiological studies to discuss how memory flexibility is implemented in the spiking activity of neuronal ensembles. These findings uncovered innate and learned coding properties and their potential refinement during sleep that support flexible integration and application of memories for better future adaptation.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G3, Canada; Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
36
|
Rubega M, Ciringione L, Bertuccelli M, Paramento M, Sparacino G, Vianello A, Masiero S, Vallesi A, Formaggio E, Del Felice A. High-density EEG sleep correlates of cognitive and affective impairment at 12-month follow-up after COVID-19. Clin Neurophysiol 2022; 140:126-135. [PMID: 35763985 PMCID: PMC9292469 DOI: 10.1016/j.clinph.2022.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Objective To disentangle the pathophysiology of cognitive/affective impairment in Coronavirus Disease-2019 (COVID-19), we studied long-term cognitive and affective sequelae and sleep high-density electroencephalography (EEG) at 12-month follow-up in people with a previous hospital admission for acute COVID-19. Methods People discharged from an intensive care unit (ICU) and a sub-intensive ward (nonICU) between March and May 2020 were contacted between March and June 2021. Participants underwent cognitive, psychological, and sleep assessment. High-density EEG recording was acquired during a nap. Slow and fast spindles density/amplitude/frequency and source reconstruction in brain gray matter were extracted. The relationship between psychological and cognitive findings was explored with Pearson correlation. Results We enrolled 33 participants ( 17 nonICU) and 12 controls. We observed a lower Physical Quality of Life index, higher post-traumatic stress disorder (PTSD) score, and a worse executive function performance in nonICU participants. Higher PTSD and Beck Depression Inventory scores correlated with lower executive performance. The same group showed a reorganization of spindle cortical generators. Conclusions Our results show executive and psycho-affective deficits and spindle alterations in COVID-19 survivors – especially in nonICU participants – after 12 months from discharge. Significance These findings may be suggestive of a crucial contribution of stress experienced during hospital admission on long-term cognitive functioning.
Collapse
Affiliation(s)
- Maria Rubega
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy.
| | - Luciana Ciringione
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy.
| | - Margherita Bertuccelli
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Matilde Paramento
- Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova 35131, Italy.
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova 35131, Italy.
| | - Andrea Vianello
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, via Giustiniani, 2, Padova 35128, Italy.
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Antonino Vallesi
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani, 3, Padova 35128, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, Padova 35129, Italy.
| |
Collapse
|
37
|
Yang J. Beyond the hippocampus: boundary conditions for cortical connectivity and activity over time. Cogn Neurosci 2022; 13:156-157. [PMID: 35621182 DOI: 10.1080/17588928.2022.2080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
By including four different time intervals and controlling for behavioral confounds, Tallman et al. (this issue) found that brain connectivity of cortical regions with the vmPFC or with the hippocampus changed over time, although hippocampal activity did not change significantly. This study shed light on how memory is consolidated as it ages. Further studies could clarify the extent to which other factors, such as memory content, influence brain connectivity with more than two time intervals. The roles of different cortical regions in memory consolidation should also be addressed.
Collapse
Affiliation(s)
- Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Haidian, Beijing, China
| |
Collapse
|
38
|
Bastian L, Samanta A, Ribeiro de Paula D, Weber FD, Schoenfeld R, Dresler M, Genzel L. Spindle-slow oscillation coupling correlates with memory performance and connectivity changes in a hippocampal network after sleep. Hum Brain Mapp 2022; 43:3923-3943. [PMID: 35488512 PMCID: PMC9374888 DOI: 10.1002/hbm.25893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
After experiences are encoded, post‐encoding reactivations during sleep have been proposed to mediate long‐term memory consolidation. Spindle–slow oscillation coupling during NREM sleep is a candidate mechanism through which a hippocampal‐cortical dialogue may strengthen a newly formed memory engram. Here, we investigated the role of fast spindle‐ and slow spindle–slow oscillation coupling in the consolidation of spatial memory in humans with a virtual watermaze task involving allocentric and egocentric learning strategies. Furthermore, we analyzed how resting‐state functional connectivity evolved across learning, consolidation, and retrieval of this task using a data‐driven approach. Our results show task‐related connectivity changes in the executive control network, the default mode network, and the hippocampal network at post‐task rest. The hippocampal network could further be divided into two subnetworks of which only one showed modulation by sleep. Decreased functional connectivity in this subnetwork was associated with higher spindle–slow oscillation coupling power, which was also related to better memory performance at test. Overall, this study contributes to a more holistic understanding of the functional resting‐state networks and the mechanisms during sleep associated to spatial memory consolidation.
Collapse
Affiliation(s)
- Lisa Bastian
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anumita Samanta
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Demetrius Ribeiro de Paula
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frederik D Weber
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Martin Dresler
- Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Aghayan Golkashani H, Leong RLF, Ghorbani S, Ong JL, Fernández G, Chee MWL. A sleep schedule incorporating naps benefits the transformation of hierarchical knowledge. Sleep 2022; 45:6516991. [PMID: 35090173 PMCID: PMC8996033 DOI: 10.1093/sleep/zsac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
The learning brain establishes schemas (knowledge structures) that benefit subsequent learning. We investigated how sleep and having a schema might benefit initial learning followed by rearranged and expanded memoranda. We concurrently examined the contributions of sleep spindles and slow-wave sleep to learning outcomes.
Methods
Fifty-three adolescents were randomly assigned to an 8 h Nap schedule (6.5 h nocturnal sleep with a 90-minute daytime nap) or an 8 h No-Nap, nocturnal-only sleep schedule. The study spanned 14 nights, simulating successive school weeks. We utilized a transitive inference task involving hierarchically ordered faces. Initial learning to set up the schema was followed by rearrangement of the hierarchy (accommodation) and hierarchy expansion (assimilation). The expanded sequence was restudied. Recall of hierarchical knowledge was tested after initial learning and at multiple points for all subsequent phases. As a control, both groups underwent a No-schema condition where the hierarchy was introduced and modified without opportunity to set up a schema. Electroencephalography accompanied the multiple sleep opportunities.
Results
There were main effects of Nap schedule and Schema condition evidenced by superior recall of initial learning, reordered and expanded memoranda. Improved recall was consistently associated with higher fast spindle density but not slow-wave measures. This was true for both nocturnal sleep and daytime naps.
Conclusion
A sleep schedule incorporating regular nap opportunities compared to one that only had nocturnal sleep benefited building of robust and flexible schemas, facilitating recall of the subsequently rearranged and expanded structured knowledge. These benefits appear to be strongly associated with fast spindles.
Clinical Trial registration
NCT04044885 (https://clinicaltrials.gov/ct2/show/NCT04044885).
Collapse
Affiliation(s)
- Hosein Aghayan Golkashani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shohreh Ghorbani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Solano A, Riquelme LA, Perez-Chada D, Della-Maggiore V. Visuomotor Adaptation Modulates the Clustering of Sleep Spindles Into Trains. Front Neurosci 2022; 16:803387. [PMID: 35368282 PMCID: PMC8966394 DOI: 10.3389/fnins.2022.803387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Sleep spindles are thought to promote memory consolidation. Recently, we have shown that visuomotor adaptation (VMA) learning increases the density of spindles and promotes the coupling between spindles and slow oscillations, locally, with the level of spindle-SO synchrony predicting overnight memory retention. Yet, growing evidence suggests that the rhythmicity in spindle occurrence may also influence the stabilization of declarative and procedural memories. Here, we examined if VMA learning promotes the temporal organization of sleep spindles into trains. We found that VMA increased the proportion of spindles and spindle-SO couplings in trains. In agreement with our previous work, this modulation was observed over the contralateral hemisphere to the trained hand, and predicted overnight memory retention. Interestingly, spindles grouped in a cluster showed greater amplitude and duration than isolated spindles. The fact that these features increased as a function of train length, provides evidence supporting a biological advantage of this temporal arrangement. Our work opens the possibility that the periodicity of NREM oscillations may be relevant in the stabilization of procedural memories.
Collapse
Affiliation(s)
- Agustín Solano
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luis A. Riquelme
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Perez-Chada
- Department of Internal Medicine, Pulmonary and Sleep Medicine Service, Austral University Hospital, Buenos Aires, Argentina
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Valeria Della-Maggiore,
| |
Collapse
|
41
|
Spencer ER, Chinappen D, Emerton BC, Morgan AK, Hämäläinen MS, Manoach DS, Eden UT, Kramer MA, Chu CJ. Source EEG reveals that Rolandic epilepsy is a regional epileptic encephalopathy. Neuroimage Clin 2022; 33:102956. [PMID: 35151039 PMCID: PMC8844714 DOI: 10.1016/j.nicl.2022.102956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 01/15/2023]
Abstract
Children with RE have fewer spindles but they have typical time–frequency features. Spindle deficits extend to multiple cortical regions in Rolandic epilepsy. Cognitive deficits are predicted by spindle rate in Rolandic epilepsy. Regional spindle rate predicts motor deficits better than Rolandic spindle deficit. Spindle features in RE identify a regional thalamocortical epileptic encephalopathy.
Rolandic epilepsy is the most common form of epileptic encephalopathy, characterized by sleep-potentiated inferior Rolandic epileptiform spikes, seizures, and cognitive deficits in school-age children that spontaneously resolve by adolescence. We recently identified a paucity of sleep spindles, physiological thalamocortical rhythms associated with sleep-dependent learning, in the Rolandic cortex during the active phase of this disease. Because spindles are generated in the thalamus and amplified through regional thalamocortical circuits, we hypothesized that: 1) deficits in spindle rate would involve but extend beyond the inferior Rolandic cortex in active epilepsy and 2) regional spindle deficits would better predict cognitive function than inferior Rolandic spindle deficits alone. To test these hypotheses, we obtained high-resolution MRI, high-density EEG recordings, and focused neuropsychological assessments in children with Rolandic epilepsy during active (n = 8, age 9–14.7 years, 3F) and resolved (seizure free for > 1 year, n = 10, age 10.3–16.7 years, 1F) stages of disease and age-matched controls (n = 8, age 8.9–14.5 years, 5F). Using a validated spindle detector applied to estimates of electrical source activity in 31 cortical regions, including the inferior Rolandic cortex, during stages 2 and 3 of non-rapid eye movement sleep, we compared spindle rates in each cortical region across groups. Among detected spindles, we compared spindle features (power, duration, coherence, bilateral synchrony) between groups. We then used regression models to examine the relationship between spindle rate and cognitive function (fine motor dexterity, phonological processing, attention, and intelligence, and a global measure of all functions). We found that spindle rate was reduced in the inferior Rolandic cortices in active but not resolved disease (active P = 0.007; resolved P = 0.2) compared to controls. Spindles in this region were less synchronous between hemispheres in the active group (P = 0.005; resolved P = 0.1) compared to controls; but there were no differences in spindle power, duration, or coherence between groups. Compared to controls, spindle rate in the active group was also reduced in the prefrontal, insular, superior temporal, and posterior parietal regions (i.e., “regional spindle rate”, P < 0.039 for all). Independent of group, regional spindle rate positively correlated with fine motor dexterity (P < 1e-3), attention (P = 0.02), intelligence (P = 0.04), and global cognitive performance (P < 1e-4). Compared to the inferior Rolandic spindle rate alone, models including regional spindle rate trended to improve prediction of global cognitive performance (P = 0.052), and markedly improved prediction of fine motor dexterity (P = 0.006). These results identify a spindle disruption in Rolandic epilepsy that extends beyond the epileptic cortex and a potential mechanistic explanation for the broad cognitive deficits that can be observed in this epileptic encephalopathy.
Collapse
Affiliation(s)
- Elizabeth R Spencer
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Dhinakaran Chinappen
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Britt C Emerton
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114
| | - Amy K Morgan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114
| | - Matti S Hämäläinen
- Harvard Medical School, Boston, MA 02115; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129; Massachusetts General Hospital, Department of Radiology, Boston, MA 02114
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; Harvard Medical School, Boston, MA 02115; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215; Center for Systems Neuroscience, Boston University, Boston, MA 02215
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215; Center for Systems Neuroscience, Boston University, Boston, MA 02215
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114.
| |
Collapse
|
42
|
Abstract
By linking the past with the future, our memories define our sense of identity. Because human memory engages the conscious realm, its examination has historically been approached from language and introspection and proceeded largely along separate parallel paths in humans and other animals. Here, we first highlight the achievements and limitations of this mind-based approach and make the case for a new brain-based understanding of declarative memory with a focus on hippocampal physiology. Next, we discuss the interleaved nature and common physiological mechanisms of navigation in real and mental spacetime. We suggest that a distinguishing feature of memory types is whether they subserve actions for single or multiple uses. Finally, in contrast to the persisting view of the mind as a highly plastic blank slate ready for the world to make its imprint, we hypothesize that neuronal networks are endowed with a reservoir of neural trajectories, and the challenge faced by the brain is how to select and match preexisting neuronal trajectories with events in the world.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA;
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY 10027, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
43
|
Baena D, Cantero JL, Atienza M. Stability of neural encoding moderates the contribution of sleep and repeated testing to memory consolidation. Neurobiol Learn Mem 2021; 185:107529. [PMID: 34597816 DOI: 10.1016/j.nlm.2021.107529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
There is evidence suggesting that online consolidation during retrieval-mediated learning interacts with offline consolidation during subsequent sleep to transform memory. Here we investigate whether this interaction persists when retrieval-mediated learning follows post-training sleep and whether the direction of this interaction is conditioned by the quality of encoding resulting from manipulation of the amount of sleep on the previous night. The quality of encoding was determined by computing the degree of similarity between EEG-activity patterns across restudy of face pairs in two groups of young participants, one who slept the last 4 h of the pre-training night, and another who slept 8 h. The offline consolidation was assessed by computing the degree of coupling between slow oscillations (SOs) and spindles (SPs) during post-training sleep, while the online consolidation was evaluated by determining the degree of similarity between EEG-activity patterns recorded during the study phase and during repeated recognition of either the same face pair (i.e., specific similarity) or face pairs sharing sex and profession (i.e., categorical similarity) to evaluate differentiation and generalization, respectively. The study and recognition phases were separated by a night of normal sleep duration. Mixed-effects models revealed that the stability of neural encoding moderated the relationship between sleep- and retrieval-mediated consolidation processes over left frontal regions. For memories showing lower encoding stability, the enhanced SO-SP coupling was associated with increased reinstatement of category-specific encoding-related activity at the expense of content-specific activity, whilst the opposite occurred for memories showing greater encoding stability. Overall, these results suggest that offline consolidation during post-training sleep interacts with online consolidation during retrieval the next day to favor the reorganization of memory contents, by increasing specificity of stronger memories and generalization of the weaker ones.
Collapse
Affiliation(s)
- Daniel Baena
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain.
| |
Collapse
|
44
|
Samanta A, van Rongen LS, Rossato JI, Jacobse J, Schoenfeld R, Genzel L. Sleep Leads to Brain-Wide Neural Changes Independent of Allocentric and Egocentric Spatial Training in Humans and Rats. Cereb Cortex 2021; 31:4970-4985. [PMID: 34037203 PMCID: PMC8491695 DOI: 10.1093/cercor/bhab135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
Sleep is important for memory consolidation and systems consolidation in particular, which is thought to occur during sleep. While there has been a significant amount of research regarding the effect of sleep on behavior and certain mechanisms during sleep, evidence that sleep leads to consolidation across the system has been lacking until now. We investigated the role of sleep in the consolidation of spatial memory in both rats and humans using a watermaze task involving allocentric- and egocentric-based training. Analysis of immediate early gene expression in rodents, combined with functional magnetic resonance imaging in humans, elucidated similar behavioral and neural effects in both species. Sleep had a beneficial effect on behavior in rats and a marginally significant effect in humans. Interestingly, sleep led to changes across multiple brain regions at the time of retrieval in both species and in both training conditions. In rats, sleep led to increased gene expression in the hippocampus, striatum, and prefrontal cortex. In the humans, sleep led to an activity increase in brain regions belonging to the executive control network and a decrease in activity in regions belonging to the default mode network. Thus, we provide cross-species evidence for system-level memory consolidation occurring during sleep.
Collapse
Affiliation(s)
- Anumita Samanta
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Laurens S van Rongen
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Janine I Rossato
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Justin Jacobse
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Robby Schoenfeld
- Institute of Psychology, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Lisa Genzel
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.,Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Raven F, Aton SJ. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Front Neural Circuits 2021; 15:750541. [PMID: 34588960 PMCID: PMC8473837 DOI: 10.3389/fncir.2021.750541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Brain states such as arousal and sleep play critical roles in memory encoding, storage, and recall. Recent studies have highlighted the role of engram neurons-populations of neurons activated during learning-in subsequent memory consolidation and recall. These engram populations are generally assumed to be glutamatergic, and the vast majority of data regarding the function of engram neurons have focused on glutamatergic pyramidal or granule cell populations in either the hippocampus, amygdala, or neocortex. Recent data suggest that sleep and wake states differentially regulate the activity and temporal dynamics of engram neurons. Two potential mechanisms for this regulation are either via direct regulation of glutamatergic engram neuron excitability and firing, or via state-dependent effects on interneuron populations-which in turn modulate the activity of glutamatergic engram neurons. Here, we will discuss recent findings related to the roles of interneurons in state-regulated memory processes and synaptic plasticity, and the potential therapeutic implications of understanding these mechanisms.
Collapse
Affiliation(s)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Cowan ET, Liu AA, Henin S, Kothare S, Devinsky O, Davachi L. Time-dependent transformations of memory representations differ along the long axis of the hippocampus. Learn Mem 2021; 28:329-340. [PMID: 34400534 PMCID: PMC8372564 DOI: 10.1101/lm.053438.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Research has shown that sleep is beneficial for the long-term retention of memories. According to theories of memory consolidation, memories are gradually reorganized, becoming supported by widespread, distributed cortical networks, particularly during postencoding periods of sleep. However, the effects of sleep on the organization of memories in the hippocampus itself remains less clear. In a 3-d study, participants encoded separate lists of word-image pairs differing in their opportunity for sleep-dependent consolidation. Pairs were initially studied either before or after an overnight sleep period, and were then restudied in a functional magnetic resonance imaging (fMRI) scan session. We used multivariate pattern similarity analyses to examine fine-grained effects of consolidation on memory representations in the hippocampus. We provide evidence for a dissociation along the long axis of the hippocampus that emerges with consolidation, such that representational patterns for object-word memories initially formed prior to sleep become differentiated in anterior hippocampus and more similar, or overlapping, in posterior hippocampus. Differentiation in anterior hippocampal representations correlated with subsequent behavioral performance. Furthermore, representational overlap in posterior hippocampus correlated with the duration of intervening slow wave sleep. Together, these results demonstrate that sleep-dependent consolidation promotes the reorganization of memory traces along the long axis of the hippocampus.
Collapse
Affiliation(s)
- Emily T Cowan
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Anli A Liu
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Simon Henin
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Sanjeev Kothare
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Lila Davachi
- Psychology Department, Columbia University, New York, New York 10027, USA
- Nathan Kline Institute, Orangeburg, New York 10962, USA
| |
Collapse
|
47
|
Abstract
We rely on our long-term memories to guide future behaviors, making it adaptive to prioritize the retention of goal-relevant, salient information in memory. In this review, we discuss findings from rodent and human research to demonstrate that active processes during post-encoding consolidation support the selective stabilization of recent experience into adaptive, long-term memories. Building upon literatures focused on dynamics at the cellular level, we highlight that consolidation also transforms memories at the systems level to support future goal-relevant behavior, resulting in more generalized memory traces in the brain and behavior. We synthesize previous literatures spanning animal research, human cognitive neuroscience, and cognitive psychology to propose an integrative framework for adaptive consolidation by which goal-relevant memoranda are "tagged" for subsequent consolidation, resulting in selective transformations to the structure of memories that support flexible, goal-relevant behaviors.
Collapse
|
48
|
Sterpenich V, van Schie MKM, Catsiyannis M, Ramyead A, Perrig S, Yang HD, Van De Ville D, Schwartz S. Reward biases spontaneous neural reactivation during sleep. Nat Commun 2021; 12:4162. [PMID: 34230462 PMCID: PMC8260738 DOI: 10.1038/s41467-021-24357-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Sleep favors the reactivation and consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information to be reprocessed during sleep remains largely unknown. From an evolutionary perspective, individuals must retain information that promotes survival, such as avoiding dangers, finding food, or obtaining praise or money. Here, we test whether neural representations of rewarded (compared to non-rewarded) events have priority for reactivation during sleep. Using functional MRI and a brain decoding approach, we show that patterns of brain activity observed during waking behavior spontaneously reemerge during slow-wave sleep. Critically, we report a privileged reactivation of neural patterns previously associated with a rewarded task (i.e., winning at a complex game). Moreover, during sleep, activity in task-related brain regions correlates with better subsequent memory performance. Our study uncovers a neural mechanism whereby rewarded life experiences are preferentially replayed and consolidated while we sleep.
Collapse
Affiliation(s)
- Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.
| | - Mojca K M van Schie
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
- Leiden University Medical Center, Leiden, Netherlands
| | - Maximilien Catsiyannis
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Avinash Ramyead
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Stephen Perrig
- Center of Sleep Medicine, Division of Pneumology, University Hospital Geneva, Geneva, Switzerland
| | - Hee-Deok Yang
- Department of Computer Engineering, Chosun University, Seosuk-dong, Dong-ku, Gwangju, Korea
| | - Dimitri Van De Ville
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
49
|
Gilboa A, Moscovitch M. No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron 2021; 109:2239-2255. [PMID: 34015252 DOI: 10.1016/j.neuron.2021.04.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Memory systems consolidation is often conceived as the linear, time-dependent, neurobiological shift of memory from hippocampal-cortical to cortico-cortical dependency. We argue that contrary to this unidirectional view of memory reorganization, information about events may be retained in multiple forms (e.g., event-specific sensory-near episodic memory, event-specific gist information, event-general schematic information, or abstract semantic memory). These representations can all form at the time of the event and may continue to coexist for long durations. Their relative strength, composition, and dominance of expression change with time and experience, with task demands, and through their dynamic interaction with one another. These different psychological mnemonic representations depend on distinct functional and structural neurobiological substrates such that there is a neural-psychological representation correspondence (NPRC) among them. We discuss how the dynamics of psychological memory representations are reflected in multiple levels of neurobiological markers and their interactions. By this view, there are only variations of synaptic consolidation and memory dynamics without assuming a distinct systems consolidation process.
Collapse
Affiliation(s)
- Asaf Gilboa
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
50
|
Sleep Spindles Preferentially Consolidate Weakly Encoded Memories. J Neurosci 2021; 41:4088-4099. [PMID: 33741722 DOI: 10.1523/jneurosci.0818-20.2021] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
Sleep has been shown to be critical for memory consolidation, with some research suggesting that certain memories are prioritized for consolidation. Initial strength of a memory appears to be an important boundary condition in determining which memories are consolidated during sleep. However, the role of consolidation-mediating oscillations, such as sleep spindles and slow oscillations, in this preferential consolidation has not been explored. Here, 54 human participants (76% female) studied pairs of words to three distinct encoding strengths, with recall being tested immediately following learning and again 6 h later. Thirty-six had a 2 h nap opportunity following learning, while the remaining 18 remained awake throughout. Results showed that, across 6 h awake, weakly encoded memories deteriorated the fastest. In the nap group, however, this effect was attenuated, with forgetting rates equivalent across encoding strengths. Within the nap group, consolidation of weakly encoded items was associated with fast sleep spindle density during non-rapid eye movement sleep. Moreover, sleep spindles that were coupled to slow oscillations predicted the consolidation of weak memories independently of uncoupled sleep spindles. These relationships were unique to weakly encoded items, with spindles not correlating with memory for intermediate or strong items. This suggests that sleep spindles facilitate memory consolidation, guided in part by memory strength.SIGNIFICANCE STATEMENT Given the countless pieces of information we encode each day, how does the brain select which memories to commit to long-term storage? Sleep is known to aid in memory consolidation, and it appears that certain memories are prioritized to receive this benefit. Here, we found that, compared with staying awake, sleep was associated with better memory for weakly encoded information. This suggests that sleep helps attenuate the forgetting of weak memory traces. Fast sleep spindles, a hallmark oscillation of non-rapid eye movement sleep, mediate consolidation processes. We extend this to show that fast spindles were uniquely associated with the consolidation of weakly encoded memories. This provides new evidence for preferential sleep-based consolidation and elucidates a physiological correlate of this benefit.
Collapse
|