1
|
Matsuda K, Fukuda J, Sato G, Matsuoka M, Kamakura T, Uno A, Kondo E, Azuma T, Kitamura Y, Tomita K, Kitahara T, Takeda N. The effects of continuous administration of diazepam on the recovery of lesion-induced nystagmus in unilaterally labyrinthectomised rats. Acta Otolaryngol 2023; 143:675-680. [PMID: 37606190 DOI: 10.1080/00016489.2023.2241511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Diazepam, a gamma-aminobutyric acid type A receptor agonist, is classified as a vestibular suppressant and is effective in treating acute vertigo. However, its effects on vestibular compensation (VC) remain unclear. OBJECTIVES We examined the effects of continuous administration of diazepam on the frequency of spontaneous nystagmus (SN) after unilateral labyrinthectomy (UL) as an index of the initial process of VC in rats. MATERIALS AND METHODS Diazepam was continuously administered at doses of 3.5 and 7.0 mg/kg/day, intraperitoneally, via an osmotic minipump. The frequency of SN beating against the lesion side after UL was measured. Potassium chloride (KCl) solution (1 M) was injected intratympanically to induce SN beating to the injection side. RESULTS Continuous administration of diazepam significantly and dose-dependently decreased the frequency of SN after UL, and also reduced the x intercept of the nonlinear regression curve of the decline in UL-induced SN with time in rats. However, the continuous administration of diazepam did not affect the frequency of intratympanic KCl-induced SN in the rats. CONCLUSION These findings suggested that continuous administration of diazepam accelerates the initial process of VC; however, it does not suppress the nystagmus-driving mechanisms in rats.
Collapse
Affiliation(s)
- Kazunori Matsuda
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Otolaryngology, Tokushima Prefectural Central Hospital, Tokushima, Japan
| | - Junya Fukuda
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Go Sato
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Momoyo Matsuoka
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takefumi Kamakura
- Department of Otolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsuhiko Uno
- Department of Otolaryngology-Head and Neck Surgery, Osaka General Medical Center, Osaka, Japan
| | - Eiji Kondo
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takahiro Azuma
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tomita
- Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, University of Tokushima Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
2
|
Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2022; 227:89-110. [PMID: 34510281 PMCID: PMC8741722 DOI: 10.1007/s00429-021-02375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
To better understand GABAergic transmission at two targets of basal ganglia downstream projections, the pedunculopontine (PPN) and laterodorsal (LDT) tegmental nuclei, the anatomical localization of GABAA and GABAB receptors was investigated in both nuclei. Specifically, the total number of neurons expressing the GABAA receptor γ2 subunit (GABAAR γ2) and the GABAB receptor R2 subunit (GABAB R2) in PPN and LDT was estimated using stereological methods, and the neurochemical phenotype of cells expressing each subunit was also determined. The mean number of non-cholinergic cells expressing GABAAR γ2 was 9850 ± 1856 in the PPN and 8285 ± 962 in the LDT, whereas those expressing GABAB R2 were 7310 ± 1970 and 9170 ± 1900 in the PPN and LDT, respectively. In addition, all cholinergic neurons in both nuclei co-expressed GABAAR γ2 and 95-98% of them co-expressed GABAB R2. Triple labeling using in situ hybridization revealed that 77% of GAD67 mRNA-positive cells in the PPT and 49% in the LDT expressed GABAAR γ2, while 90% (PPN) and 65% (LDT) of Vglut2 mRNA-positive cells also expressed GABAAR γ2. In contrast, a similar proportion (~2/3) of glutamatergic and GABAergic cells co-expressed GABAB R2 in both nuclei. The heterogeneous distribution of GABAAR and GABABR among non-cholinergic cells in PPN and LDT may give rise to physiological differences within each neurochemical subpopulation. In addition, the dissimilar proportion of GABAAR γ2-expressing glutamatergic and GABAergic neurons in the PPN and LDT may contribute to some of the functional differences found between the two nuclei.
Collapse
Affiliation(s)
- Esther Luquin
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Beatriz Paternain
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Inés Zugasti
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Santomá
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Elisa Mengual
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Yorgason JT, Wadsworth HA, Anderson EJ, Williams BM, Brundage JN, Hedges DM, Stockard AL, Jones ST, Arthur SB, Hansen DM, Schilaty ND, Jang EY, Lee AM, Wallner M, Steffensen SC. Modulation of dopamine release by ethanol is mediated by atypical GABA A receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol 2022; 27:e13108. [PMID: 34713509 DOI: 10.1111/adb.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 β3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, Utah, USA
| | - Hillary A Wadsworth
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elizabeth J Anderson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Benjamin M Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - James N Brundage
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David M Hedges
- Enterprise Information Management, Billings Clinic, Billings, Montana, USA
| | - Alyssa L Stockard
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Stephen T Jones
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Summer B Arthur
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David Micah Hansen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Nathan D Schilaty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Eun Young Jang
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
6
|
Sparrow EL, James S, Hussain K, Beers SA, Cragg MS, Bogdanov YD. Activation of GABA(A) receptors inhibits T cell proliferation. PLoS One 2021; 16:e0251632. [PMID: 34014994 PMCID: PMC8136847 DOI: 10.1371/journal.pone.0251632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The major sites for fast synaptic inhibition in the central nervous system (CNS) are ion channels activated by γ-aminobutyric acid (GABA). These receptors are referred as GABA(A) receptors (GABA(A)R). Recent evidence indicates a role of GABA(A)R in modulating the immune response. This work aimed to discern the role of GABA and GABA(A)Rs in human and mouse T cell activity. METHODS Mouse splenocytes or human peripheral blood mononuclear cells (PBMCs) were activated with anti-CD3 antibodies and the proliferation of both CD8+ and CD4+ T cells assessed through flow cytometry. Subsequently, the effects on T cell proliferation of either GABA(A)R modulation by diazepam that is also capable of activating mitochondrial based translocator protein (TSPO), alprazolam and allopregnanolone or inhibition by bicucculine methiodide (BMI) and (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) were assessed. RESULTS Positive modulation of GABA(A)Rs either by benzodiazepines or the neurosteroid allopregnanolone inhibits both mouse and human T cell proliferation. GABAergic inhibition of T cell proliferation by benzodiazepines could be rescued by GABA(A)R blocking. Our data suggest that benzodiazepines influence T cell proliferation through both TSPO and GABA(A)Rs activation. CONCLUSIONS We conclude that activation of GABA(A)Rs provides immunosuppression by inhibiting T cell proliferation.
Collapse
Affiliation(s)
- Emma L. Sparrow
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Khiyam Hussain
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Yury D. Bogdanov
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| |
Collapse
|
7
|
Eliasen JN, Krall J, Frølund B, Kohlmeier KA. Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine. Dev Neurobiol 2020; 80:178-199. [PMID: 32628361 DOI: 10.1002/dneu.22772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Smoking during pregnancy is associated with deleterious physiological and cognitive effects on the offspring, which are likely due to nicotine-induced alteration in the development of neurotransmitter systems. Prenatal nicotine exposure (PNE) in rodents is associated with changes in behaviors controlled in part by the pontine laterodorsal tegmentum (LDT), and LDT excitatory signaling is altered in a sex and age-dependent manner by PNE. As effects on GABAergic LDT signaling are unknown, we used calcium imaging to evaluate GABAA receptor- (GABAA R as well as GABAA -ρ R) and GABAB receptor (GABAB R)-mediated calcium responses in LDT brain slices from female and male PNE mice in two different age groups. Overall, in older PNE females, changes in calcium induced by stimulation of GABAA R and GABAB R, including GABAA -ρ R were shifted toward calcium rises. In both young and old males, PNE was associated with alterations in calcium mediated by all three receptors; however, the GABAA R was the most affected. These results show for the first time that PNE is associated with alterations in GABAergic transmission in the LDT in a sex- and age-dependent manner, and these data are the first to show PNE-associated alterations in functionality of GABA receptors in any nucleus. PNE-associated alterations in LDT GABAergic transmission within the LDT would be expected to alter output to target regions and could play a role in LDT-implicated, negative behavioral outcomes following gestational exposure to smoking. Accordingly, our data provide further supportive evidence of the importance of eliminating the consumption of nicotine during pregnancy.
Collapse
Affiliation(s)
- Jannik Nicklas Eliasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
9
|
Flores-Hernández J, Garzón-Vázquez JA, Hernández-Carballo G, Nieto-Mendoza E, Ruíz-Luna EA, Hernández-Echeagaray E. Striatal Neurodegeneration that Mimics Huntington's Disease Modifies GABA-induced Currents. Brain Sci 2018; 8:E217. [PMID: 30563250 PMCID: PMC6316731 DOI: 10.3390/brainsci8120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a degenerative disease which produces cognitive and motor disturbances. Treatment with GABAergic agonists improves the behavior and activity of mitochondrial complexes in rodents treated with 3-nitropropionic acid to mimic HD symptomatology. Apparently, GABA receptors activity may protect striatal medium spiny neurons (MSNs) from excitotoxic damage. This study evaluates whether mitochondrial inhibition with 3-NP that mimics the early stages of HD, modifies the kinetics and pharmacology of GABA receptors in patch clamp recorded dissociated MSNs cells. The results show that MSNs from mice treated with 3-NP exhibited differences in GABA-induced dose-response currents and pharmacological responses that suggests the presence of GABAC receptors in MSNs. Furthermore, there was a reduction in the effect of the GABAC antagonist that demonstrates a lessening of this GABA receptor subtype activity as a result of mitochondria inhibition.
Collapse
Affiliation(s)
- Jorge Flores-Hernández
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, México.
| | | | | | - Elizabeth Nieto-Mendoza
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, México, FES-Iztacala, Av. de Los Barrios #1, Los Reyes Iztacala, Tlalnepantla C.P.54090, México.
| | - Evelyn A Ruíz-Luna
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, México.
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, México, FES-Iztacala, Av. de Los Barrios #1, Los Reyes Iztacala, Tlalnepantla C.P.54090, México.
| |
Collapse
|
10
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABA A Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [PMID: 30275042 DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
GABAA receptors are the major inhibitory transmitter receptors in the brain. They are ligand-gated chloride channels and the site of action of benzodiazepines, barbiturates, neuroactive steroids, anesthetics, and convulsants. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 homologous subunits and their distinct regional, cellular, and subcellular distribution gives rise to a large number of GABAA receptor subtypes with distinct pharmacology, which modulate different functions of the brain. A variety of compounds have been identified that were claimed to modulate selectively individual GABAA receptor subtypes. However, many of these compounds have only incompletely been investigated or, in addition to a preferential modulation of a receptor subtype, also modulate other subtypes at similar concentrations. Although their differential efficacy at distinct receptor subtypes reduced side effects in behavioral experiments in rodents, the exact receptor subtypes mediating their behavioral effects cannot be unequivocally delineated. In addition, the discrepant in vivo effects of some of these compounds in rodents and man raised doubts on the applicability of the concept of receptor subtype selectivity as a guide for the development of clinically useful drugs. Here, we provide an up-to-date review on the currently available GABAA receptor subtype-selective ligands. We present data on their actual activity at GABAA receptor subtypes, discuss the translational aspect of subtype-selective drugs, and make proposals for the future development of ligands with better anxioselectivity in humans. Finally, we discuss possible ways to strengthen the conclusions of behavioral studies with the currently available drugs.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.) and Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (M.M.S.)
| | - Miroslav M Savić
- Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.) and Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (M.M.S.)
| |
Collapse
|
11
|
Rosas-Arellano A, Tejeda-Guzmán C, Lorca-Ponce E, Palma-Tirado L, Mantellero CA, Rojas P, Missirlis F, Castro MA. Huntington's disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol Dis 2018; 110:142-153. [DOI: 10.1016/j.nbd.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 01/24/2023] Open
|
12
|
Naffaa MM, Hung S, Chebib M, Johnston GAR, Hanrahan JR. GABA-ρ receptors: distinctive functions and molecular pharmacology. Br J Pharmacol 2017; 174:1881-1894. [PMID: 28258627 DOI: 10.1111/bph.13768] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 01/14/2023] Open
Abstract
The homomeric GABA-ρ ligand-gated ion channels (also known as GABAC or GABAA -ρ receptors) are similar to heteromeric GABAA receptors in structure, function and mechanism of action. However, their distinctive pharmacological properties and distribution make them of special interest. This review focuses on GABA-ρ ion channel structure, ligand selectivity toward ρ receptors over heteromeric GABAA receptor sub-types and selectivity between different homomeric ρ sub-type receptors. Several GABA analogues show selectivity at homomeric GABA-ρ receptors over heteromeric GABAA receptors. More recently, some synthetic ligands have been found to show selectivity at receptors formed from one ρ subtype over others. The unique pharmacological profiles of these agents are discussed in this review. The classical binding site of GABA within the orthosteric site of GABA-ρ homomeric receptors is discussed in detail regarding the loops and residues that constitute the binding site. The ligand-residue interactions in this classical binding and those of mutant receptors are discussed. The structure and conformations of GABA are discussed in regard to its flexibility and molecular properties. Although the binding mode of GABA is difficult to predict, several interactions between GABA and the receptor assist in predicting its potential conformation and mode of action. The structure-activity relationships of GABA and structurally key ligands at ρ receptors are described and discussed.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Sandy Hung
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | - Jane R Hanrahan
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons. Neuroscience 2016; 330:191-204. [PMID: 27246441 DOI: 10.1016/j.neuroscience.2016.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations.
Collapse
|
14
|
Domingos-Souza G, Meschiari CA, Buzelle SL, Callera JC, Antunes-Rodrigues J. Sodium and water intake are not affected by GABAC receptor activation in the lateral parabrachial nucleus of sodium-depleted rats. J Chem Neuroanat 2016; 74:47-54. [PMID: 26970564 DOI: 10.1016/j.jchemneu.2016.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/13/2016] [Accepted: 03/05/2016] [Indexed: 11/16/2022]
Abstract
The activation of GABAergic receptors, GABAA and GABAB, in the lateral parabrachial nucleus (LPBN) increases water and sodium intake in satiated and fluid-depleted rats. The present study investigated the presence of the GABAC receptor in the LPBN, its involvement in water and sodium intake, and its effects on cardiovascular parameters during the acute fluid depletion induced by furosemide combined with captopril (Furo/Cap). One group of male Wistar rats (290-300g) with bilateral stainless steel LPBN cannulas was used to test the effects of a GABAC receptor agonist and antagonist on the fluid intake and cardiovascular parameters. We investigated the effects of bilateral LPBN injections of trans-4-aminocrotonic acid (TACA) on the intake of water and 0.3M NaCl induced by acute fluid depletion (subcutaneous injection of Furo/Cap). c-Fos expression increased (P<0.05), suggesting LPBN neuronal activation. The injection of different doses of TACA (0.5, 2.0 and 160 nmol) in the LPBN did not change the sodium or water intake in Furo/Cap-treated rats (P>0.05). Treatment with the GABAC receptor antagonist (Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid sulfate (ZAPA, 10nmol) or with ZAPA (10nmol) plus TACA (160nmol) did not change the sodium or water intake compared with that for vehicle (saline) (P>0.05). Bilateral injections of the GABAC agonist in the LPBN of Furo/Cap-treated rats did not affect the mean arterial pressure (MAP) or heart rate (HR). The GABAC receptor expression in the LPBN was confirmed by the presence of a 50kDa band. Although LPBN neurons might express GABAC receptors, their activation produced no change in water and sodium intake or in the cardiovascular parameters in the acute fluid depletion rats. Therefore, the GABAC receptors in the LPBN might not interfere with fluid and blood pressure regulation.
Collapse
Affiliation(s)
- Gean Domingos-Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Cesar Arruda Meschiari
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Samyra Lopes Buzelle
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Carlos Callera
- Department of Basic Sciences, School of Dentistry, UNESP - Universidade Estadual Paulista, Rodovia, Araçatuba, SP, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
15
|
Rae C, Nasrallah FA, Balcar VJ, Rowlands BD, Johnston GAR, Hanrahan JR. Metabolomic Approaches to Defining the Role(s) of GABAρ Receptors in the Brain. J Neuroimmune Pharmacol 2015; 10:445-56. [PMID: 25577264 DOI: 10.1007/s11481-014-9579-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
The inhibitory neurotransmitter γ-aminobutyric acid (GABA) acts through various types of receptors in the central nervous system. GABAρ receptors, defined by their characteristic pharmacology and presence of ρ subunits in the channel structure, are poorly understood and their role in the cortex is ill-defined. Here, we used a targeted pharmacological, NMR-based functional metabolomic approach in Guinea pig brain cortical tissue slices to identify a distinct role for these receptors. We compared metabolic fingerprints generated by a range of ligands active at GABAρ and included these in a principal components analysis with a library of other metabolic fingerprints obtained using ligands active at GABAA and GABAB, with inhibitors of GABA uptake and with compounds acting to inhibit enzymes active in the GABAergic system. This enabled us to generate a metabolic "footprint" of the GABAergic system which revealed classes of metabolic activity associated with GABAρ which are distinct from other GABA receptors. Antagonised GABAρ produce large metabolic effects at extrasynaptic sites suggesting they may be involved in tonic inhibition.
Collapse
Affiliation(s)
- Caroline Rae
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia,
| | | | | | | | | | | |
Collapse
|
16
|
Unsaturated Analogues of the Neurotransmitter GABA: trans-4-Aminocrotonic, cis-4-Aminocrotonic and 4-Aminotetrolic Acids. Neurochem Res 2015; 41:476-80. [DOI: 10.1007/s11064-015-1619-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
17
|
Wong LW, Tae HS, Cromer BA. Role of the ρ1 GABA(C) receptor N-terminus in assembly, trafficking and function. ACS Chem Neurosci 2014; 5:1266-77. [PMID: 25347026 DOI: 10.1021/cn500220t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The GABAC receptor and closely related GABAA receptor are members of the pentameric ligand-gated ion channels (pLGICs) superfamily and mediate inhibitory fast synaptic transmission in the nervous system. Each pLGIC subunit comprises an N-terminal extracellular agonist-binding domain followed by a channel domain and a variable intracellular domain. Available structural information shows that the core of the agonist-binding domain is a β sandwich of ten β-strands, which form the agonist-binding pocket at the subunit interface. This β-sandwich is preceded by an N-terminal α-helix in eukaryotic structures but not in prokaryotic structures. The N-terminal α-helix has been shown to be functionally essential in α7 nicotinic acetylcholine receptors. Sequence analysis of GABAC and GABAA receptors predicts an α-helix in a similar position but preceded by 8 to 46 additional residues, of unknown function, which we term the N-terminal extension. To test the functional role of both the N-terminal extension and the putative N-terminal α-helix in the ρ1 GABAC receptor, we created a series of deletions from the N-terminus. The N-terminal extension was not functionally essential, but its removal did reduce both cell surface expression and cooperativity of agonist-gated channel function. Further deletion of the putative N-terminal α-helix abolished receptor function by preventing cell-surface expression. Our results further demonstrate the essential role of the N-terminal α-helix in the assembly and trafficking of eukaryotic pLGICs. They also provide evidence that the N-terminal extension, although not essential, contributes to receptor assembly, trafficking and conformational changes associated with ligand gating.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- Department
of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Han-Shen Tae
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Brett A. Cromer
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
18
|
Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM, Hanrahan JR, Johnston GAR, Chebib M, Harris RA. GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS One 2014; 9:e85525. [PMID: 24454882 PMCID: PMC3894180 DOI: 10.1371/journal.pone.0085525] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022] Open
Abstract
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.
Collapse
Affiliation(s)
- Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jillian M. Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Courtney R. Leiter
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - David Johnson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Cecilia M. Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jane R. Hanrahan
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | | | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Gao H, Derbenev AV. Synaptic and extrasynaptic transmission of kidney-related neurons in the rostral ventrolateral medulla. J Neurophysiol 2013; 110:2637-47. [PMID: 24027107 DOI: 10.1152/jn.00155.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rostral ventrolateral medulla (RVLM) is a critical component of the sympathetic nervous system regulating homeostatic functions including arterial blood pressure. Using the transsynaptic retrograde viral tracer PRV-152, we identified kidney-related neurons in the RVLM. We found that PRV-152-labeled RVLM neurons displayed an unusually large persistent, tonic current to both glutamate, via N-methyl-d-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/kainate receptors, and to γ-aminobutyric acid (GABA), via GABAA receptors, in the absence of large-scale phasic neurotransmission with whole cell patch-clamp recordings. A cocktail of potent NMDA and AMPA/kainate ionotropic glutamate receptor antagonists AP-5 (50 μM) and CNQX (10 μM) revealed a two-component somatic tonic excitatory current with an overall amplitude of 42.6 ± 13.4 pA. Moreover, application of the GABAA receptor blockers gabazine (15 μM) and bicuculline (30 μM) revealed a robust somatic tonic inhibitory current with an average amplitude of 196.3 ± 39.3 pA. These findings suggest that the tonic current plays a role in determining the resting membrane potential, input resistance, and firing rate of RVLM neurons. The magnitude of the tonic inhibitory current demonstrates that GABAergic inhibition plays a critical role in regulation of kidney-related RVLM neurons. Our results indicate that the GABAergic tonic current may determine the basal tone of firing activity in kidney-related RVLM neurons.
Collapse
Affiliation(s)
- Hong Gao
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | | |
Collapse
|
20
|
Corns LF, Deuchars J, Deuchars SA. GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord. Neurosci Lett 2013; 553:57-62. [PMID: 23872091 PMCID: PMC3809510 DOI: 10.1016/j.neulet.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
Extensive dye-coupling occurs between mammalian spinal cord ependymal cells. GABA depolarised all spinal cord ependymal cells tested. GABA effects were mediated by GABAA receptors but not GABA uptake transporters.
The area surrounding the central canal of the postnatal mammalian spinal cord is a highly plastic region that exhibits many similarities to other postnatal neurogenic niches, such as the subventricular zone. Within this region, ependymal cells have been identified as neural stem cells however very little is known about their properties and how the local environment, including neurotransmitters, is capable of affecting them. The neurotransmitter GABA is present around the central canal and is known to affect cells within other postnatal neurogenic niches. This study used whole cell patch clamp electrophysiology and intracellular dye-loading in in vitro Wistar rat spinal cord slices to characterise ependymal cells and their ability to respond to GABA. Ependymal cells were defined by their passive response properties and low input resistances. Extensive dye-coupling was observed between ependymal cells; this was confirmed as gap junction coupling using the gap junction blocker, 18β-glycyrrhetinic acid, which significantly increased the input resistance of ependymal cells. GABA depolarised all ependymal cells tested; the partial antagonism of this response by bicuculline and gabazine indicates that GABAA receptors contribute to this response. A lack of effect by baclofen suggests that GABAB receptors do not contribute to the GABAergic response. The ability of ependymal cells to respond to GABA suggests that GABA could be capable of influencing the proliferation and differentiation of cells within the neurogenic niche of the postnatal spinal cord.
Collapse
Affiliation(s)
- Laura F Corns
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
21
|
Isoflurane regulates atypical type-A γ-aminobutyric acid receptors in alveolar type II epithelial cells. Anesthesiology 2013; 118:1065-75. [PMID: 23485993 DOI: 10.1097/aln.0b013e31828e180e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics act primarily through upregulating the activity of γ-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. METHODS The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. RESULTS ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µM. Isoflurane (0.1-250 µM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. CONCLUSIONS GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.
Collapse
|
22
|
mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl Psychiatry 2013; 3:e271. [PMID: 23778581 PMCID: PMC3693405 DOI: 10.1038/tp.2013.46] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that targets ∼5% of all mRNAs expressed in the brain. Previous work by our laboratory demonstrated significantly lower protein levels for FMRP in lateral cerebella of subjects with schizophrenia, bipolar disorder and major depression when compared with controls. Absence of FMRP expression in animal models of fragile X syndrome (FXS) has been shown to reduce expression of gamma-aminobutyric acid A (GABAA) receptor mRNAs. Previous work by our laboratory has found reduced expression of FMRP, as well as multiple GABAA and GABAB receptor subunits in subjects with autism. Less is known about levels for GABAA subunit protein expression in brains of subjects with schizophrenia and mood disorders. In the current study, we have expanded our previous studies to examine the protein and mRNA expression of two novel GABAA receptors, theta (GABRθ) and rho 2 (GABRρ2) as well as FMRP, and metabotropic glutamate receptor 5 (mGluR5) in lateral cerebella of subjects with schizophrenia, bipolar disorder, major depression and healthy controls, and in superior frontal cortex (Brodmann Area 9 (BA9)) of subjects with schizophrenia, bipolar disorder and healthy controls. We observed multiple statistically significant mRNA and protein changes in levels of GABRθ, GABRρ2, mGluR5 and FMRP molecules including concordant reductions in mRNA and proteins for GABRθ and mGluR5 in lateral cerebella of subjects with schizophrenia; for increased mRNA and protein for GABRρ2 in lateral cerebella of subjects with bipolar disorder; and for reduced mRNA and protein for mGluR5 in BA9 of subjects with bipolar disorder. There were no significant effects of confounds on any of the results.
Collapse
|
23
|
Lee BH, Choi SH, Hwang SH, Kim HJ, Lee JH, Nah SY. Resveratrol Inhibits GABAC ρ Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:175-80. [PMID: 23626481 PMCID: PMC3634096 DOI: 10.4196/kjpp.2013.17.2.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Resveratrol is a phytoalexin found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-inflammatory, and life-prolonging effects. However, relatively little is known about the effects of resveratrol on the regulation of ligand-gated ion channels. We have previously reported that resveratrol regulates subsets of homomeric ligand-gated ion channels such as those of 5-HT3A receptors. The γ-aminobutyric acidC (GABAC) receptor is mainly expressed in retinal bipolar cells and plays an important role in visual processing. In the present study, we examined the effects of resveratrol on the channel activity of homomeric GABAC receptor expressed in Xenopus oocytes injected with cRNA encoding human GABAC ρ subunits. Our data show that the application of GABA elicits an inward peak current (IGABA) in oocytes that express the GABAC receptor. Resveratrol treatment had no effect on oocytes injected with H2O or with GABAC receptor cRNA. Co-treatment with resveratrol and GABA inhibited IGABA in oocytes with GABAC receptors. The inhibition of IGABA by resveratrol was in a reversible and concentration-dependent manner. The IC50 of resveratrol was 28.9±2.8 µM in oocytes expressing GABAC receptor. The inhibition of IGABA by resveratrol was in voltage-independent and non-competitive manner. These results indicate that resveratrol might regulate GABAC receptor expression and that this regulation might be one of the pharmacological actions of resveratrol on the nervous system.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and Bio-Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
24
|
GABAρ expression in the medial nucleus of the trapezoid body. Neurosci Lett 2013; 532:23-8. [DOI: 10.1016/j.neulet.2012.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/03/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
|
25
|
Zou QZ, Shang XL. Effect of salicylate on the large GABAergic neurons in the inferior colliculus of rats. Acta Neurol Belg 2012; 112:367-74. [PMID: 22644808 DOI: 10.1007/s13760-012-0090-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022]
Abstract
Salicylate, the anti-inflammatory component of aspirin, induces transient tinnitus and hearing loss in clinical and animal experiments. However, the affected sites and mechanisms of generation remain unclear. Recently, down-regulation of inhibitory transmission mediated by γ-aminobutyric acid type A receptors was suggested to be crucial in generating tinnitus. However, the cell-specific pathways involved in this process were far from being understood. Here, we describe changes of inhibitory neurotransmitter, receptor, and glutamatergic axosomatic terminals in certain large GABAergic neurons (LGNs) in the inferior colliculus of rats treated with high doses of salicylate. Based on these results, we suggest that salicylate may affect inhibitory projection pathways from the inferior colliculus to the auditory cortex and lead to neural hyperactivity, perhaps by affecting the function of the LGNs.
Collapse
Affiliation(s)
- Qiao-Zhi Zou
- Department of Neurology, Affiliated First Hospital, China Medical University, No. 155 Nanjingbei Road, Heping District, Shenyang 110001, People's Republic of China
| | | |
Collapse
|
26
|
Chesnoy-Marchais D. Bicuculline- and neurosteroid-sensitive tonic chloride current in rat hypoglossal motoneurons and atypical dual effect of SR95531. Eur J Neurosci 2012. [PMID: 23190086 DOI: 10.1111/ejn.12074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypoglossal motoneurons (HMs) are known to be under 'permanent' bicuculline-sensitive inhibition and to show 'transient' synaptic γ-aminobutyric acid (GABA)(A) and glycine inhibitory responses. The present paper describes a permanent bicuculline-sensitive current that should contribute to their tonic inhibition. This current was recorded in brainstem slices superfused without any exogenous agonist and remained detectable with tetrodotoxin. It could also be blocked by the other GABA(A) antagonists picrotoxin (PTX) and 2-(3-carboxypropyl)-3-amino-6-(4 methoxyphenyl)pyridazinium bromide) (SR95531; gabazine), but persisted in the presence of a specific blocker of α5-containing GABA(A) receptors. Addition of 2 μm 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride (THIP), known to preferentially activate GABA(A) receptors devoid of a γ-subunit, induced a sustained anionic current that could be further enhanced by neurosteroids such as allopregnanolone (100 nm). Thus, HMs show a tonic inhibitory current carried by extrasynaptic γ-free GABA(A) receptors, highly sensitive to neurosteroids. A second result was obtained by using SR95531 at concentrations sufficiently high to rapidly block the tonic current above the chloride equilibrium potential (E(C) (l)). Surprisingly, below E(C) (l) , SR95531 (10-40 μm) activated a sustained inward current, associated with a conductance increase, and resistant to bicuculline or PTX (100 μm). Similarly, after blockade of the bicuculline-sensitive current, SR95531 activated an outward current above E(C) (l). The bicuculline-resistant anionic current activated by SR95531 could be blocked by a GABA(C) receptor antagonist. Thus, two types of inhibitory GABA receptors, belonging to the GABA(A) and GABA(C) families, are able to show a sustained activity in HMs and provide promising targets for neuroprotection under overexcitatory situations known to easily damage these particularly fragile neurons.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- UMR788 INSERM et Université Paris-Sud, Bátiment Grégory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicětre Cedex, France.
| |
Collapse
|
27
|
McDougall SJ, Andresen MC. Low-fidelity GABA transmission within a dense excitatory network of the solitary tract nucleus. J Physiol 2012; 590:5677-89. [PMID: 22946100 DOI: 10.1113/jphysiol.2012.241976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Visceral primary afferents enter the CNS at the caudal solitary tract nucleus (NTS), and activate central pathways key to autonomic and homeostatic regulation. Excitatory transmission from primary solitary tract (ST)-afferents consists of multiple contacts originating from single axons that offer a remarkably high probability of glutamate release and high safety factor for ST afferent excitation. ST afferent activation sometimes triggers polysynaptic GABAergic circuits, which feedback onto second-order NTS neurons. Although inhibitory transmission is observed at second-order neurons, much less is known about the organization and mechanisms regulating GABA transmission. Here, we used a focal pipette to deliver minimal stimulus shocks near second-order NTS neurons in rat brainstem slices and directly activated single GABAergic axons. Most minimal focal shocks activated low jitter EPSCs from single axons with characteristics resembling ST afferents. Much less commonly (9% of sites), minimal focal shocks activated monosynaptic IPSCs at fixed latency (low jitter) that often failed (30%) and had no frequency-dependent facilitation or depression. These GABA release characteristics contrasted markedly to the unfailing, large amplitudes for glutamate released during ST-EPCSs recorded from the same neurons. Surprisingly, unitary GABAergic IPSCs were only weakly calcium dependent. In some neurons, strong focal shocks evoked compound IPSCs indicating convergent summation of multiple inhibitory axons. Our studies demonstrate that second-order NTS neurons receive GABAergic transmission from a diffuse network of inhibitory axons that rely on an intrinsically less reliable and substantially weaker release apparatus than ST excitation. Effective inhibition depends on co-activation of convergent inputs to blunt excitatory drive.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland OR, USA.
| | | |
Collapse
|
28
|
Rosas-Arellano A, Machuca-Parra AI, Reyes-Haro D, Miledi R, Martínez-Torres A. Expression of GABAρ receptors in the neostriatum: localization in aspiny, medium spiny neurons and GFAP-positive cells. J Neurochem 2012; 122:900-10. [PMID: 22168837 DOI: 10.1111/j.1471-4159.2011.07621.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GABAergic transmission in the neostriatum plays a central role in motor coordination, in which a plethora of GABA-A receptor subunits combine to modulate neural inhibition. GABAρ receptors were originally described in the mammalian retina. These receptors possess special electrophysiological and pharmacological properties, forming a characteristic class of ionotropic receptors. In previous studies, we suggested that GABAρ receptors are expressed in the neostriatum, and in this report we show that they are indeed present in all the calretinin-positive interneurons of the neostriatum. In addition, they are located in calbindin-positive interneurons and projection neurons that express the dopamine D(2) receptor. GABAρ receptors were also located in 30% of the glial fibrillary acidic protein-positive cells, and may therefore also contribute to gliotransmission. Quantitative reverse transcription-PCR suggested that the mRNAs of this receptor do not express as much as in the retina, and that GABAρ2 is more abundant than GABAρ1. Electrophysiological recordings in brain slices provided evidence of neurons expressing a cis-4-aminocrotonic acid-activated, 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid-sensitive ionotropic GABA receptor, indicating the presence of functional GABAρ receptors in the neostriatum. Finally, electron-microscopy and immunogold located the receptors mainly in perisynaptic as well as in extrasynaptic sites. All these observations reinforce the importance of GABAρ receptors in the neostriatum and contribute to the diversity of inhibitory regulation in this area.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Querétaro, Mexico
| | | | | | | | | |
Collapse
|
29
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|
30
|
Rosas-Arellano A, Parodi J, Machuca-Parra AI, Sánchez-Gutiérrez A, Inestrosa NC, Miledi R, Martínez-Torres A. The GABA(A)ρ receptors in hippocampal spontaneous activity and their distribution in hippocampus, amygdala and visual cortex. Neurosci Lett 2011; 500:20-5. [PMID: 21683123 DOI: 10.1016/j.neulet.2011.05.235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/13/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
A bicuculline-resistant and TPMPA-sensitive GABAergic component was identified in hippocampal neurons in culture and in acute isolated brain slices. In both preparations, total GABAergic activity showed two inactivation kinetics: fast and slow. RT-PCR, in situ hybridization (ISH) and immunohistochemistry detected expression of GABAρ subunits. Immunogold and electron microscopy indicated that the receptors are mostly extrasynaptic. In addition, by RT-PCR and immunofluorescence we found GABAρ present in amygdala and visual cortex.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, QRO 76230, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Memic A, Volgina VV, Gussin HA, Pepperberg DR, Kay BK. Generation of recombinant guinea pig antibody fragments to the human GABAC receptor. J Immunol Methods 2011; 368:36-44. [PMID: 21362428 DOI: 10.1016/j.jim.2011.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 12/22/2010] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
To generate monoclonal antibodies to the human ρ1 GABA(C) receptor, a ligand-gated chloride ion channel that is activated by the neurotransmitter γ-aminobutyric acid (GABA), we recovered the immunoglobulin variable heavy chain (V(H)) and light chain (V(L)) regions of a guinea pig immunized with a 14-mer peptide segment of the N-terminal extracellular domain of the ρ1 subunit. Oligonucleotide primers were designed and used to amplify the V(H) and V(L) regions of guinea pig RNA by the reverse transcriptase polymerase chain reaction. The amplified and cloned V(H) and V(L) regions were transferred together into a phagemid vector, yielding a library of 5×10(6) members, which displayed chimeric fragments of antigen binding (Fabs) with guinea pig variable and human constant regions fused to protein III of M13 bacteriophage. Through affinity selection of this phage-display library with the biotinylated 14-mer peptide segment of GABA(C), we isolated four different antibody fragments that bound specifically to the immunogenic peptide. Phage particles displaying two of these antibodies, but not negative controls, bound selectively to the surface of neuroblastoma cells expressing the ρ1 GABA(C) receptor. Such antibody fragments will be useful in future studies involving targeting of specific neural tissues that express the GABA(C) receptor.
Collapse
Affiliation(s)
- Adnan Memic
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
The inhibitory neurotransmitter, GABA, is a low-molecular-weight molecule that can achieve many low-energy conformations, which are recognized by GABA receptors and transporters. In this article, we assess the structure–activity relationship profiles of GABA analogs at the ionotropic ρ GABAC receptor. Such studies have significantly contributed to the design and development of potent and selective agonists and antagonists for this subclass of GABA receptors. With these tools in hand, the role of ρ GABAC receptors is slowly being realized. Of particular interest is the development of selective phosphinic acid analogs of GABA and their potential use in sleep disorders, inhibiting the development of myopia, and in improving learning and memory.
Collapse
|
33
|
Flores-Gracia C, Nuche-Bricaire A, Crespo-Ramírez M, Miledi R, Fuxe K, Pérez de la Mora M. GABA(A) ρ receptor mechanisms in the rat amygdala and its role in the modulation of fear and anxiety. Psychopharmacology (Berl) 2010; 212:475-84. [PMID: 20689940 DOI: 10.1007/s00213-010-1973-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/20/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE Accumulating evidence for the presence of GABA(A) ρ receptors within the amygdala which differ from other members of the GABA(A) receptor family in both subunit composition and functional properties has been recently obtained. OBJECTIVES This work was conducted to study whether GABA(A) ρ receptors may have a putative role in the amygdaloid modulation of fear and anxiety. RESULTS It was found that the bilateral intra-amygdaloid administration (6-240 pmol/side) of (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid, a selective GABA(A) ρ receptor antagonist, reduced dose-dependently the exploration of the open arms of the elevated plus-maze without affecting locomotion and increased the plasma levels of corticosterone. In contrast, bicuculline in the dose range used (1.8-60 pmol/side) induced seizures, but had no effects on the exploration of the maze. CONCLUSIONS It is suggested that GABA(A) ρ receptors may have a role in the amygdaloid modulation of fear and anxiety.
Collapse
Affiliation(s)
- Candy Flores-Gracia
- Division of Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
34
|
Dionisio L, José De Rosa M, Bouzat C, Esandi MDC. An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 2010; 60:513-9. [PMID: 21093461 DOI: 10.1016/j.neuropharm.2010.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 11/01/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
γ-amino butyric acid (GABA) is an ubiquitous neurotransmitter in the central nervous system and it is also present in non-neuronal cells. In this study we investigated the presence of neuronal components of the GABAergic system in lymphocytes and its functional significance. By using RT-PCR we detected mRNA expression of different components of the GABAergic system in resting and mitogen-activated lymphocytes: i) GAD67, an isoform of the enzyme that synthetizes GABA; ii) VIAAT, the vesicular protein involved in GABA storage; iii) GABA transporters (GAT-1 and GAT-2); iv) GABA-T, the enzyme that catabolizes GABA; and v) subunits that conform ionotropic GABA receptors. The presence of VIAAT protein in resting and activated cells was confirmed by immunocytochemistry. The functionality of GABA transporters was evaluated by measuring the uptake of radioactive GABA. The results show that [(3)H]GABA uptake is 5-fold higher in activated than in resting lymphocytes. To determine if GABA subunits assemble into functional channels, we performed whole-cell recordings in activated lymphocytes. GABA and muscimol, a specific agonist of ionotropic GABA receptors, elicit macroscopic currents in about 10-15% of the cells. Finally, by using [(3)H]thymidine incorporation assays, we determined that the presence of agonists of GABA receptor during activation inhibits lymphocyte proliferation. Our results reveal that lymphocytes have a functional GABAergic system, similar to the neuronal one, which may operate as a modulator of T-cell activation. Pharmacological modulation of this system may provide new approaches for regulation of T-cell response.
Collapse
Affiliation(s)
- Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La, Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
35
|
GABAC receptors are functionally expressed in the intermediate zone and regulate radial migration in the embryonic mouse neocortex. Neuroscience 2010; 167:124-34. [DOI: 10.1016/j.neuroscience.2010.01.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 01/09/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
|
36
|
Xuei X, Flury-Wetherill L, Dick D, Goate A, Tischfield J, Nurnberger J, Schuckit M, Kramer J, Kuperman S, Hesselbrock V, Porjesz B, Foroud T, Edenberg HJ. GABRR1 and GABRR2, encoding the GABA-A receptor subunits rho1 and rho2, are associated with alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:418-427. [PMID: 19536785 PMCID: PMC2829340 DOI: 10.1002/ajmg.b.30995] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The genes encoding several GABA-A receptor subunits, including GABRA2, have been associated with alcoholism, suggesting that variations in gaba signaling contribute to risk. Therefore, as part of a comprehensive evaluation of the GABA receptor genes, we evaluated the potential association of GABRR1 and GABRR2, which encode the rho1 and rho2 subunits of the pentameric GABA-A/GABA-C receptors. GABRR1 and GABRR2 lie in a head to tail orientation spanning 137 kb on chromosome 6q14-16. We genotyped 73 single nucleotide polymorphisms (SNPs), covering both genes and extending 31 kb upstream of GABRR2 and 95 kb downstream of GABRR1, in a sample of 1923 European Americans from 219 multiplex alcohol-dependent families. Family-based association analyses demonstrated that SNPs in both GABRR1 and GABRR2 were significantly associated with alcohol dependence. Among the associated SNPs was rs282129, a coding SNP (Met430Thr) in GABRR2. Secondary analysis using a median split for age of onset suggests that the association is strongest when the analysis is focused upon those with earlier onset of alcohol dependence. Haplotypes in each gene were significantly overtransmitted to family members who did not meet criteria for alcohol dependence (P < 0.04), and a haplotype in GABRR2 was significantly overtransmitted to family members who met a broader definition of alcoholism (P = 0.002) as well as DSM-IV dependence (P = 0.04).
Collapse
Affiliation(s)
- Xiaoling Xuei
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah Flury-Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Danielle Dick
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Jay Tischfield
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - John Nurnberger
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marc Schuckit
- Department of Psychiatry, University of California-San Diego, San Diego, California
| | - John Kramer
- Psychiatry Research, University of Iowa College of Medicine, Iowa City, Iowa
| | - Sam Kuperman
- Division of Child Psychiatry, University of Iowa Hospitals, Iowa City, Iowa
| | - Victor Hesselbrock
- Department of Psychiatry, University of Connecticut Health Center, Farmington, Connecticut
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, New York
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
37
|
Gao H, Smith BN. Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol 2009; 103:904-14. [PMID: 20018836 DOI: 10.1152/jn.00511.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type A gamma-aminobutyric acid (GABA(A)) receptors expressed in the dorsal motor nucleus of vagus (DMV) critically regulate the activity of vagal motor neurons and, by inference, the gastrointestinal (GI) tract. Two types of GABA(A) receptor-mediated inhibition have been identified in the brain, represented by phasic (I(phasic)) and tonic (I(tonic)) inhibitory currents. The hypothesis that I(tonic) regulates neuron activity was tested in the DMV using whole cell patch-clamp recordings in transverse brain stem slices from rats. An I(tonic) was present in a subset of DMV neurons, which was determined to be mediated by different receptors than those mediating fast, synaptic currents. Preapplication of tetrodotoxin significantly decreased the resting I(tonic) amplitude in DMV neurons, suggesting that most of the current was due to action potential (AP)-dependent GABA release. Blocking GABA transport enhanced I(tonic) and multiple GABA transporters cooperated to regulate I(tonic). The I(tonic) was composed of both a gabazine-insensitive component that was nearly saturated under basal conditions and a gabazine-sensitive component that was activated when extracellular GABA concentration was elevated. Perfusion of THIP (10 muM) significantly increased I(tonic) amplitude without increasing I(phasic) amplitude. The I(tonic) played a major role in determining the overall excitability of DMV neurons by contributing to resting membrane potential and AP frequency. Our results indicate that I(tonic) contributes to DMV neuron membrane potential and activity and is thus an important regulator of vagally mediated GI function.
Collapse
Affiliation(s)
- Hong Gao
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | | |
Collapse
|
38
|
Law RJ, Lightstone FC. Modeling neuronal nicotinic and GABA receptors: important interface salt-links and protein dynamics. Biophys J 2009; 97:1586-94. [PMID: 19751663 DOI: 10.1016/j.bpj.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 05/21/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022] Open
Abstract
Protein motions in the Cys-loop ligand-gated ion receptors that govern the gating mechanism are still not well understood. The details as to how motions in the ligand-binding domain are translated to the transmembrane domain and how subunit rotations are linked to bring about the cooperative movements involved in gating are under investigation. Homology models of the alpha4beta2 nicotinic acetylcholine (nACh) and beta2alpha1gamma2 GABA receptors were constructed based on the torpedo neuromuscular-like nicotinic receptor structure. The template constructed for the full electron microscopy structure must be considered more reliable for structure-function studies due to the preservation of the E45-R209 salt-link. Many other salt-links are seen to transiently form, including switching off of the E45-R209 link, within a network of potential salt-links at the binding domain to the transmembrane domain interface region. Several potentially important intersubunit salt-links form in both the nAChR and GABAR structures during the simulation and appear conserved across many subunit combinations, such as the salt-link between alpha4.E262 and beta2.K255 in nAChR (beta2.E262 and alpha1.K263 in GABAR), at the top of the pore-lining M2 helices, and the intersubunit link of R210 on the M1-linker to E168 on the beta8-sheet of the adjacent subunit in the GABA receptor (E175-K46 being the structurally equivalent link in the nAChR, with reversed polarity). A network of other salt-links may be vital for transmitting the cooperative gating motions between subunits that become biased upon ligand binding. The changes seen in the simulations suggest that this network of salt-links helps to set limits and specific states for the conformational changes involved in gating of the receptor. We hope that these hypotheses will be tested experimentally in the near future.
Collapse
Affiliation(s)
- Richard J Law
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | |
Collapse
|
39
|
Jin YH, Zhang Z, Mendelowitz D, Andresen MC. Presynaptic actions of propofol enhance inhibitory synaptic transmission in isolated solitary tract nucleus neurons. Brain Res 2009; 1286:75-83. [PMID: 19559683 DOI: 10.1016/j.brainres.2009.06.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
General anesthetics variably enhance inhibitory synaptic transmission that relies on (-aminobutyric acid (GABA) and GABAA receptor function with distinct differences across brain regions. Activation of "extra-synaptic" GABAA receptors produces a tonic current considered the most sensitive target for general anesthetics, particularly in forebrain neurons. To evaluate the contribution of poor drug access to neurons in slices, we tested the intravenous anesthetic propofol in mechanically isolated neurons from the solitary tract nucleus (NTS). Setting chloride concentrations to ECl=-29 mV made GABA currents inward at holding potentials of -60 mV. Propofol triggered pronounced but slowly-developing tonic currents that reversed with 5 min washing. Effective concentrations in isolated cells were lower than in slices and propofol enhanced phasic IPSCs more potently than tonic currents (1 microM increased phasic decay-time constant vs. >3 microM tonic currents). Propofol increased IPSC frequency (>3 microM), a presynaptic action. Bicuculline blocked all propofol actions. Gabazine blocked only phasic IPSCs. IPSCs persisted in TTX and/or cadmium but these agents prevented propofol-induced increases in IPSC frequency. Furosemide (>1 mM) reversibly blocked propofol-evoked IPSC frequency changes without altering waveforms. We conclude that presynaptic actions of propofol depend on a depolarizing chloride gradient across presynaptic inhibitory terminals. Our results in isolated neurons indicate that propofol pharmacokinetics intrinsically trigger the tonic currents slowly and the time course is not related to slow permeation or delivery. Unlike forebrain, phasic NTS GABAA receptors are more sensitive to propofol than tonic receptors but that presynaptic GABAA receptor mechanisms regulate GABA release.
Collapse
Affiliation(s)
- Young-Ho Jin
- Department of Physiology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
40
|
Wahle P, Schmidt M. GABAC receptors are expressed in GABAergic and non-GABAergic neurons of the rat superior colliculus and visual cortex. Exp Brain Res 2009; 199:245-52. [DOI: 10.1007/s00221-009-1710-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
|
41
|
Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56:141-8. [PMID: 18760291 PMCID: PMC3525320 DOI: 10.1016/j.neuropharm.2008.07.045] [Citation(s) in RCA: 732] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 12/12/2022]
Abstract
This mini-review attempts to update experimental evidence on the existence of GABA(A) receptor pharmacological subtypes and to produce a list of those native receptors that exist. GABA(A) receptors are chloride channels that mediate inhibitory neurotransmission. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. They are assembled from a family of 19 homologous subunit gene products and form numerous receptor subtypes with properties that depend upon subunit composition, mostly hetero-oligomeric. These vary in their regulation and developmental expression, and importantly, in brain regional, cellular, and subcellular localization, and thus their role in brain circuits and behaviors. We propose several criteria for including a receptor hetero-oligomeric subtype candidate on a list of native subtypes, and a working GABA(A) receptor list. These criteria can be applied to all the members of the LGIC superfamily. The list is divided into three categories of native receptor subtypes: "Identified", "Existence with High Probability", and "Tentative", and currently includes 26 members, but will undoubtedly grow, with future information. This list was first presented by Olsen & Sieghart (in press).
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1735, USA.
| | | |
Collapse
|
42
|
Sanchez A, Mustapic S, Zuperku EJ, Stucke AG, Hopp FA, Stuth EAE. Role of inhibitory neurotransmission in the control of canine hypoglossal motoneuron activity in vivo. J Neurophysiol 2008; 101:1211-21. [PMID: 19091929 DOI: 10.1152/jn.90279.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoglossal motoneurons (HMNs) innervate all tongue muscles and are vital for maintenance of upper airway patency during inspiration. The relative contributions of the various synaptic inputs to the spontaneous discharge of HMNs in vivo are incompletely understood, especially at the cellular level. The purpose of this study was to determine the role of endogenously activated GABA(A) and glycine receptors in the control of the inspiratory HMN (IHMN) activity in a decerebrate dog model. Multibarrel micropipettes were used to record extracellular unit activity of individual IHMNs during local antagonism of GABA(A) receptors with bicuculline and picrotoxin or glycine receptors with strychnine. Only bicuculline had a significant effect on peak and average discharge frequency and on the slope of the augmenting neuronal discharge pattern. These parameters were increased by 30 +/- 7% (P < 0.001), 30 +/- 8% (P < 0.001), and 25 +/- 7% (P < 0.001), respectively. The effects of picrotoxin and strychnine on the spontaneous neuronal discharge and its pattern were negligible. Our data suggest that bicuculline-sensitive GABAergic, but not picrotoxin-sensitive GABAergic or glycinergic, inhibitory mechanisms actively attenuate the activity of IHMNs in vagotomized decerebrate dogs during hyperoxic hypercapnia. The pattern of GABAergic attenuation of IHMN discharge is characteristic of gain modulation similar to that in respiratory bulbospinal premotor neurons, but the degree of attenuation ( approximately 25%) is less than that seen in bulbospinal premotor neurons ( approximately 60%). The current studies only assess effects on active neuron discharge and do not resolve whether the lack of effect of picrotoxin and strychnine on IHMNs also extends to the inactive expiratory phase.
Collapse
Affiliation(s)
- Antonio Sanchez
- Department of Anesthesiology, Medical College of Wisconsin, Pediatric Anesthesia, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
43
|
Xu JY, Yang B, Sastry BR. The involvement of GABA-C receptors in paired-pulse depression of inhibitory postsynaptic currents in rat hippocampal CA1 pyramidal neurons. Exp Neurol 2008; 216:243-6. [PMID: 19100735 DOI: 10.1016/j.expneurol.2008.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/04/2008] [Accepted: 11/19/2008] [Indexed: 11/25/2022]
Abstract
In rat hippocampal CA1 pyramidal neurons, gamma-aminobutyric acid (GABA) A receptor-mediated inhibitory postsynaptic currents (IPSCs) undergo a paired-pulse depression (PPD) by the second of two pulses, with inter-pulse intervals of 100-2000 ms, applied to the stratum radiatum. While GABA-C receptors are described in the CA1 area, their functional significance is unknown. In this study, the involvement of GABA-C receptors in PPD was examined using an in vitro hippocampal slice preparation. IPSCs evoked by stimulations in stratum radiatum were recorded with patch pipettes from CA1 pyramidal cells. PPD, when induced in the above fashion, was blocked by the GABA-C receptor antagonist (1,2,5,6-Tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA, 10 muM, applied in the superfusing medium). GABA-A and GABA-B receptor-mediated IPSCs, as well as the baclofen-induced suppression of the GABA-A receptor mediated IPSC, were not antagonized by TPMPA (10-20 muM). These results indicate that PPD of the IPSC is mediated by the activation of GABA-C receptors.
Collapse
Affiliation(s)
- J-Y Xu
- Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
44
|
Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 2008; 60:243-60. [PMID: 18790874 PMCID: PMC2847512 DOI: 10.1124/pr.108.00505] [Citation(s) in RCA: 817] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review we attempt to summarize experimental evidence on the existence of defined native GABA(A) receptor subtypes and to produce a list of receptors that actually seem to exist according to current knowledge. This will serve to update the most recent classification of GABA(A) receptors (Pharmacol Rev 50:291-313, 1998) approved by the Nomenclature Committee of the International Union of Pharmacology. GABA(A) receptors are chloride channels that mediate the major form of fast inhibitory neurotransmission in the central nervous system. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. GABA(A) receptors are assembled from a family of 19 homologous subunit gene products and form numerous, mostly hetero-oligomeric, pentamers. Such receptor subtypes with properties that depend on subunit composition vary in topography and ontogeny, in cellular and subcellular localization, in their role in brain circuits and behaviors, in their mechanisms of regulation, and in their pharmacology. We propose several criteria, which can be applied to all the members of the LGIC superfamily, for including a receptor subtype on a list of native hetero-oligomeric subtypes. With these criteria, we develop a working GABA(A) receptor list, which currently includes 26 members, but will undoubtedly be modified and grow as information expands. The list is divided into three categories of native receptor subtypes: "identified," "existence with high probability," and "tentative."
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at UCLA, Room CHS 23-120, 650 Young Drive South, Los Angeles, CA 90095-1735, USA.
| | | |
Collapse
|
45
|
Li S, Zhang Y, Liu H, Yan Y, Li Y. Identification and expression of GABACreceptor in rat testis and spermatozoa. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00453.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
A reciprocal connection between the ventral lateral geniculate nucleus and the pretectal nuclear complex and the superior colliculus: Anin vitrocharacterization in the rat. Vis Neurosci 2008; 25:39-51. [DOI: 10.1017/s0952523808080048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 11/14/2007] [Indexed: 11/07/2022]
Abstract
The ventral lateral geniculate nucleus (vLGN), the pretectal nuclear complex (PNC) and the superior colliculus (SC) are structures that all receive retinal input. All three structures are important relay stations of the subcortical visual system. They are strongly connected with each other and involved in circadian and/or visuomotor processes. However, the information transferred along these pathways is unknown and their possible functions are, therefore, not well understood. Here, we characterized multiple pathways between the vLGN, the PNC, and the SC electrophysiologically and anatomically in anin vitrostudy using acute rat brain slices. Using orthodromic and antidromic electrical stimulation, we first characterized vLGN neurons that receive pretectal input and those that project to the PNC. Morphological reconstructions of cells labeled after patch clamp recordings identified these neurons as geniculo-tectal neurons and as medium-sized multipolar neurons. We identified inhibitory connections in both pathways and we could show that inhibitory postsynaptic currents (IPSCs) evoked from the PNC in vLGN neurons are mediated only by GABAAreceptors, while IPSCs evoked in PNC neurons by vLGN stimulation are either mediated by both, GABAAand GABACreceptors or by a GABA receptor with mixed GABAAand GABACreceptor-like pharmacology. Finally, retrograde double labeling experiments with two different fluorescent dextran amines indicated that pretectal neurons which project to the ipsilateral vLGN also project to the ipsilateral SC.
Collapse
|
47
|
McDougall SJ, Bailey TW, Mendelowitz D, Andresen MC. Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS). Neuropharmacology 2007; 54:552-63. [PMID: 18082229 DOI: 10.1016/j.neuropharm.2007.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 10/26/2007] [Accepted: 11/04/2007] [Indexed: 02/07/2023]
Abstract
The anesthetic propofol is thought to induce rapid hypnotic sedation by facilitating a GABAergic tonic current in forebrain neurons. The depression of cardiovascular and respiratory regulation often observed during propofol suggests potential additional actions within the brainstem. Here we determined the impacts of propofol on both GABAergic and glutamatergic synaptic mechanisms in a class of solitary tract nucleus (NTS) neurons common to brainstem reflex pathways. In horizontal brainstem slices, we recorded from NTS neurons directly activated by solitary tract (ST) axons. We identified these second-order NTS neurons by time-invariant ("jitter"<200 micros), "all-or-none" glutamatergic excitatory postsynaptic currents (EPSCs) in response to shocks to the ST. In order to assess propofol actions, we measured ST-evoked, spontaneous and miniature EPSCs and inhibitory postsynaptic currents (IPSCs) during propofol exposure. Propofol prolonged miniature IPSC decay time constants by 50% above control at 1.8 microM. Low concentrations of gabazine (SR-95531) blocked phasic GABA currents. At higher concentrations, propofol (30 microM) induced a gabazine-insensitive tonic current that was blocked by picrotoxin or bicuculline. In contrast, total propofol concentrations up to 30 microM had no effect on EPSCs. Thus, propofol enhanced phasic GABA events in NTS at lower concentrations than tonic current induction, opposite to the relative sensitivity observed in forebrain regions. These data suggest that therapeutic levels of propofol facilitate phasic (synaptic) inhibitory transmission in second-order NTS neurons which likely inhibits autonomic reflex pathways during anesthesia.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology and Pharmacology L334, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland OR 97239-3098, USA.
| | | | | | | |
Collapse
|
48
|
Mitchell EA, Herd MB, Gunn BG, Lambert JJ, Belelli D. Neurosteroid modulation of GABAA receptors: molecular determinants and significance in health and disease. Neurochem Int 2007; 52:588-95. [PMID: 18055067 DOI: 10.1016/j.neuint.2007.10.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/30/2007] [Accepted: 10/10/2007] [Indexed: 11/18/2022]
Abstract
Over the past 20 years it has become apparent that certain steroids, synthesised de novo in the brain, hence named neurosteroids, produce immediate changes (within seconds) in neuronal excitability, a time scale that precludes a genomic locus of action. Identified molecular targets underlying modulation of brain excitability include both the inhibitory GABA(A) and the excitatory NMDA receptor. Of particular interest is the interaction of certain neurosteroids with the GABA(A) receptor, the major inhibitory receptor in mammalian brain. During the last decade, compelling evidence has accrued to reveal that locally produced neurosteroids may selectively "fine tune" neuronal inhibition. A range of molecular mechanisms including the subunit composition of the receptor(s), phosphorylation and local steroid metabolism, underpin the region- and neuronal selectivity of action of neurosteroids at synaptic and extrasynaptic GABA(A) receptors. The relative contribution played by each of these mechanisms in a variety of physiological and pathophysiological scenarios is currently being scrutinised at a cellular and molecular level. However, it is not known how such mechanisms may act in concert to influence behavioural profiles in health and disease. An important question concerns the identification of the anatomical substrates mediating the repertoire of behaviours produced by neurosteroids. "Knock-in" mice expressing mutant GABA(A) subunits engineered to be insensitive to benzodiazepines or general anaesthetics have proved invaluable in evaluating the role of GABA(A) receptor subtypes in complex behaviours such as sedation, cognition and anxiety [Rudolph, U., Mohler, H., 2006. GABA-based therapeutic approaches: GABA(A) receptor subtype functions. Curr. Opin. Pharmacol. 6, 18-23]. However, the development of a similar approach for neurosteroids has been hampered by the limited knowledge that, until recently, has surrounded the identity of the amino acid residues contributing to the neurosteroid binding pocket. Here, we will review recent progress in identifying the neurosteroid binding site on the GABA(A) receptor, and discuss how these discoveries will impact on our understanding of the role of neurosteroids in health and disease.
Collapse
Affiliation(s)
- Elizabeth A Mitchell
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Li W, Jin X, Covey DF, Steinbach JH. Neuroactive steroids and human recombinant rho1 GABAC receptors. J Pharmacol Exp Ther 2007; 323:236-47. [PMID: 17636008 DOI: 10.1124/jpet.107.127365] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gamma-aminobutyric acid type C (GABAC) receptor is structurally related to the GABAA receptors, yet quite distinct physiologically and pharmacologically. Neuroactive steroids are known to be potent and efficacious modulators of the GABAA receptor, but they are less well characterized in their actions on the GABAC receptor. We have examined the actions of neuroactive steroids and analogs on rho1 (GABAC) receptors expressed in Xenopus laevis oocytes, with two goals in mind. First, we tested a larger number of endogenous steroids, to determine whether particularly potent steroids could be found. Second, we examined the structure-activity relationship for steroid actions, and some mechanistic features, to determine the possible numbers of steroid binding sites and mechanisms of action. In total, 41 compounds were examined. Estradiols are inhibitors, essentially equipotent with picrotoxinin. No endogenous steroid tested was highly efficacious at potentiation. The results of the structure-activity studies and the effects of two mutations to the second transmembrane region of the rho1 GABAC receptor indicate that there are several mechanisms by which steroids can inhibit the receptor. Surprisingly, estradiol shares some features with picrotoxin. Inhibition by negatively charged compounds was not sensitive to membrane potential, and inhibition by all compounds tested was reduced at higher concentrations of GABA. The data indicate that the binding sites mediating potentiation and inhibition differ from each other and that there are several (three or more) mechanisms for producing inhibition.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, USA
| | | | | | | |
Collapse
|
50
|
Poole SL, Deuchars J, Lewis DI, Deuchars SA. Subdivision-specific responses of neurons in the nucleus of the tractus solitarius to activation of mu-opioid receptors in the rat. J Neurophysiol 2007; 98:3060-71. [PMID: 17898143 DOI: 10.1152/jn.00755.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microinjection of opioid receptor agonists into the nucleus tractus solitarius (NTS) has differential effects on cardiovascular, respiratory, and gastrointestinal responses. This can be achieved either by presynaptic modulation of inputs onto neurons or by postsynaptic activation of receptors on neurons in specific regions. Therefore we sought to determine whether responses of neurons to activation of opioid receptors were dependent on their location within the NTS. Using whole cell patch-clamp recordings from neurons within the NTS, the mu opioid receptor (MOR) agonist [D-Ala(2), N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO, 100 nM) hyperpolarized a proportion of neurons in the medial, dorsomedial and dorsolateral NTS, whereas no postsynaptic responses were observed in remaining subdivisions. DAMGO reduced the amplitude of solitary tract-evoked excitatory postsynaptic potentials (EPSPs) in all neurons tested, regardless of subdivision. The kappa opioid receptor (KOR) agonist U69593 (10-20 microM) also hyperpolarized a small fraction of neurons (6/79) and decreased the amplitude of EPSPs in 50% of neurons. In contrast, the delta-opioid receptor agonist DPDPE (1-4 microM) had no presynaptic or postsynaptic effects on NTS neurons even after preincubation with bradykinin. Anatomical data at the light and electron microscopic level complemented electrophysiological observations with respect to MOR location and further showed that MORs were present at both presynaptic and postsynaptic sites in the dorsolateral NTS, often at the same synapse. These data demonstrate site specific responses of neurons to activation of MORs and KORs, which may underlie their ability to modulate different autonomic reflexes.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Animals, Newborn
- Drug Interactions
- Electric Stimulation/methods
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- In Vitro Techniques
- Male
- Microscopy, Immunoelectron/methods
- Neurons/physiology
- Neurons/ultrastructure
- Patch-Clamp Techniques/methods
- Rats
- Rats, Wistar
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/ultrastructure
- Solitary Nucleus/cytology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- Sarah L Poole
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|