1
|
Shrestha L, Leier A. Identification of a circRNA-miRNA-mRNA interactome associated with Parkinson's disease progression. JOURNAL OF PARKINSON'S DISEASE 2025:1877718X251331930. [PMID: 40183359 DOI: 10.1177/1877718x251331930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundCircular RNAs (circRNAs) constitute a distinctive subclass of RNAs that are known for their regulatory roles in fundamental cellular processes. Due to their increased stability and ubiquitous expression, circular RNAs have been widely studied as potential molecular targets in various diseases, including neurodegenerative diseases. While several studies have found differentially expressed circRNAs associated with Parkinson's disease (PD), none has looked specifically into PD progression.ObjectiveTo elucidate the role of circRNAs in the progression of PD by identifying dysregulated circRNAs associated with PD progression and to pinpoint potential downstream miRNAs and associated differentially expressed gene targets.MethodsIn this study, we have utilized large-scale, longitudinal, and deep RNA-seq data from two independent cohorts, namely the Parkinson's Progression Marker Initiative (PPMI) and the Parkinson's Disease Biomarker Program (PDBP), to characterize circRNA expression in patients of early PD stage.ResultsWe identified six circRNAs significantly differentially expressed in whole blood samples obtained from PD patients over time. Additionally, we were able to map a competing endogenous RNA (ceRNA) network with potential downstream miRNA-mRNA targets and, with the help of co-expression analysis, to identify genes associated with PD progression. Our findings provide compelling evidence for a dysregulated circRNA interactome as an indicator of PD progression, with changes in the expression of these circRNAs and downstream gene targets being significantly associated with changes in UPDRS III scores in PD patients.ConclusionsOur results strongly indicate the association of circular RNAs with PD progression and emphasize its significance as a critical molecular marker.
Collapse
Affiliation(s)
- Lisa Shrestha
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Cell, Development and Integrative Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| |
Collapse
|
2
|
Campos-Díaz A, Morejón-García P, Monte-Serrano E, Ros-Pardo D, Marcos-Alcalde I, Gómez-Puertas P, Lazo PA. Pathogenic effects of Leu200Pro and Arg387His VRK1 protein variants on phosphorylation targets and H4K16 acetylation in distal hereditary motor neuropathy. J Mol Med (Berl) 2024; 102:801-817. [PMID: 38554151 PMCID: PMC11106162 DOI: 10.1007/s00109-024-02442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Rare recessive variants in the human VRK1 gene are associated with several motor neuron diseases (MND), such as amyotrophic lateral sclerosis, spinal muscular atrophy, or distal hereditary motor neuropathies (dHMN). A case with dHMN carrying two novel VRK1 gene variants, expressing Leu200Pro (L200P) and Arg387His (R387H) variant proteins, identified that these protein variants are functionally different. The Leu200Pro variant shares with several variants in the catalytic domain the loss of the kinase activity on different substrates, such as histones, p53, or coilin. However, the distal Arg387His variant and the distal Trp375* (W375X) chinese variant, both located at the end of the low complexity C-terminal region and proximal to the termination codon, retain their catalytic activity on some substrates, and mechanistically their functional impairment is different. The L200P variant, as well as most VRK1 pathogenic variants, impairs the phosphorylation of BAF and histone H4K16 acetylation, which are required for DNA attachment to the nuclear envelope and chromatin accessibility to DNA repair mechanisms, respectively. The R387H variant impairs phosphorylation of H2AX, an early step in different types of DNA damage responses. The functional variability of VRK1 protein variants and their different combinations are a likely contributor to the clinical phenotypic heterogeneity of motor neuron and neurological diseases associated with rare VRK1 pathogenic variants. KEY MESSAGES: VRK1 variants implicated in motor neuron diseases are functionally different. The L200P variant is kinase inactive, and the R387H variant is partially active. VRK1 variants alter H4K16 acetylation and loss of coilin and BAF phosphorylation. VRK1 variants alter Cajal bodies and DNA damage responses. VRK1 variant combination determines the neurological phenotype heterogeneity.
Collapse
Affiliation(s)
- Aurora Campos-Díaz
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Eva Monte-Serrano
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - David Ros-Pardo
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28040, Madrid, Spain
| | - Iñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28040, Madrid, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28040, Madrid, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
3
|
Ghasemi MR, Tehrani Fateh S, Moeinafshar A, Sadeghi H, Karimzadeh P, Mirfakhraie R, Rezaei M, Hashemi-Gorji F, Rezvani Kashani M, Fazeli Bavandpour F, Bagheri S, Moghimi P, Rostami M, Madannejad R, Roudgari H, Miryounesi M. Broadening the phenotype and genotype spectrum of novel mutations in pontocerebellar hypoplasia with a comprehensive molecular literature review. BMC Med Genomics 2024; 17:51. [PMID: 38347586 PMCID: PMC10863249 DOI: 10.1186/s12920-024-01810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Pontocerebellar hypoplasia is an umbrella term describing a heterogeneous group of prenatal neurodegenerative disorders mostly affecting the pons and cerebellum, with 17 types associated with 25 genes. However, some types of PCH lack sufficient information, which highlights the importance of investigating and introducing more cases to further elucidate the clinical, radiological, and biochemical features of these disorders. The aim of this study is to provide an in-depth review of PCH and to identify disease genes and their inheritance patterns in 12 distinct Iranian families with clinically confirmed PCH. METHODS Cases included in this study were selected based on their phenotypic and genetic information available at the Center for Comprehensive Genetic Services. Whole-exome sequencing (WES) was used to discover the underlying genetic etiology of participants' problems, and Sanger sequencing was utilized to confirm any suspected alterations. We also conducted a comprehensive molecular literature review to outline the genetic features of the various subtypes of PCH. RESULTS This study classified and described the underlying etiology of PCH into three categories based on the genes involved. Twelve patients also were included, eleven of whom were from consanguineous parents. Ten different variations in 8 genes were found, all of which related to different types of PCH. Six novel variations were reported, including SEPSECS, TSEN2, TSEN54, AMPD2, TOE1, and CLP1. Almost all patients presented with developmental delay, hypotonia, seizure, and microcephaly being common features. Strabismus and elevation in lactate levels in MR spectroscopy were novel phenotypes for the first time in PCH types 7 and 9. CONCLUSIONS This study merges previously documented phenotypes and genotypes with unique novel ones. Due to the diversity in PCH, we provided guidance for detecting and diagnosing these heterogeneous groups of disorders. Moreover, since certain critical conditions, such as spinal muscular atrophy, can be a differential diagnosis, providing cases with novel variations and clinical findings could further expand the genetic and clinical spectrum of these diseases and help in better diagnosis. Therefore, six novel genetic variants and novel clinical and paraclinical findings have been reported for the first time. Further studies are needed to elucidate the underlying mechanisms and potential therapeutic targets for PCH.
Collapse
Affiliation(s)
- Mohammad-Reza Ghasemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran
| | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Mofid Children's Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran
| | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Rezvani Kashani
- Pediatric Neurology Department, Mofid Children's Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saman Bagheri
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Parinaz Moghimi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Masoumeh Rostami
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Madannejad
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Roudgari
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, , Tehran, Iran.
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lazo PA, Morejón-García P. VRK1 variants at the cross road of Cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol Dis 2023; 183:106172. [PMID: 37257665 DOI: 10.1016/j.nbd.2023.106172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Distal hereditary neuropathies and neuro motor diseases are complex neurological phenotypes associated with pathogenic variants in a large number of genes, but in some the origin is unknown. Recently, rare pathogenic variants of the human VRK1 gene have been associated with these neurological phenotypes. All VRK1 pathogenic variants are recessive, and their clinical presentation occurs in either homozygous or compound heterozygous patients. The pathogenic VRK1 gene pathogenic variants are located in three clusters within the protein sequence. The main, and initial, shared clinical phenotype among VRK1 pathogenic variants is a distal progressive loss of motor and/or sensory function, which includes diseases such as spinal muscular atrophy, Charcot-Marie-Tooth, amyotrophic lateral sclerosis and hereditary spastic paraplegia. In most cases, symptoms start early in infancy, or in utero, and are slowly progressive. Additional neurological symptoms vary among non-related patients, probably because of their different VRK1 variants and their genetic background. The underlying common pathogenic mechanism, by its functional impairment, is a likely consequence of the roles that the VRK1 protein plays in the regulation on the stability and assembly of Cajal bodies, which affect RNA maturation and processing, neuronal migration of RNPs along axons, and DNA-damage responses. Alterations of these processes are associated with several neuro sensory or motor syndromes. The clinical heterogeneity of the neurological phenotypes associated with VRK1 is a likely consequence of the protein complexes in which VRK1 is integrated, which include several proteins known to be associated with Cajal bodies and DNA damage responses. Several hereditary distal neurological diseases are a consequence of pathogenic variants in genes that alter these cellular functions. We conclude that VRK1-related distal hereditary neuropathies and motor neuron diseases represent a novel subgroup of Cajal body related neurological syndromes.
Collapse
Affiliation(s)
- Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
5
|
So J, Mabe NW, Englinger B, Chow KH, Moyer SM, Yerrum S, Trissal MC, Marques JG, Kwon JJ, Shim B, Pal S, Panditharatna E, Quinn T, Schaefer DA, Jeong D, Mayhew DL, Hwang J, Beroukhim R, Ligon KL, Stegmaier K, Filbin MG, Hahn WC. VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. JCI Insight 2022; 7:e158755. [PMID: 36040810 PMCID: PMC9675470 DOI: 10.1172/jci.insight.158755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.
Collapse
Affiliation(s)
- Jonathan So
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nathaniel W Mabe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Bernhard Englinger
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kin-Hoe Chow
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sydney M Moyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Smitha Yerrum
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria C Trissal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joana G Marques
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason J Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Brian Shim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sangita Pal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eshini Panditharatna
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Quinn
- Department of Oncologic Pathology and
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel A Schaefer
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Daeun Jeong
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David L Mayhew
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Radiation Oncology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Justin Hwang
- Department of Medicine and
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Oncologic Pathology and
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Bashirzade AA, Zabegalov KN, Volgin AD, Belova AS, Demin KA, de Abreu MS, Babchenko VY, Bashirzade KA, Yenkoyan KB, Tikhonova MA, Amstislavskaya TG, Kalueff AV. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138:104679. [PMID: 35490912 DOI: 10.1016/j.neubiorev.2022.104679] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.
Collapse
Affiliation(s)
- Alim A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | | | - Andrey D Volgin
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Alisa S Belova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov Medical Research Center, St. Petersburg, Russia
| | | | - Vladislav Ya Babchenko
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Kseniya A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia
| | - Maria A Tikhonova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Allan V Kalueff
- The Russian Academy of Sciences, Moscow, Russia; Ural Federal University, Yekaterinburg, Russia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia.
| |
Collapse
|
7
|
Sun X, Zhao W, Wang Q, Zhao J, Yang D, Yang Y. Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/β-catenin axis. BMB Rep 2022. [PMID: 35410639 PMCID: PMC9152580 DOI: 10.5483/bmbrep.2022.55.5.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenindependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.
Collapse
Affiliation(s)
- Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Weiwei Zhao
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jiaqi Zhao
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
8
|
Budziszewski GR, Zhao Y, Spangler CJ, Kedziora KM, Williams M, Azzam D, Skrajna A, Koyama Y, Cesmat A, Simmons H, Arteaga E, Strauss J, Kireev D, McGinty R. Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucleic Acids Res 2022; 50:4355-4371. [PMID: 35390161 PMCID: PMC9071384 DOI: 10.1093/nar/gkac198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
A key role of chromatin kinases is to phosphorylate histone tails during mitosis to spatiotemporally regulate cell division. Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase that phosphorylates histone H3 threonine 3 (H3T3) along with other chromatin-based targets. While structural studies have defined how several classes of histone-modifying enzymes bind to and function on nucleosomes, the mechanism of chromatin engagement by kinases is largely unclear. Here, we paired cryo-electron microscopy with biochemical and cellular assays to demonstrate that VRK1 interacts with both linker DNA and the nucleosome acidic patch to phosphorylate H3T3. Acidic patch binding by VRK1 is mediated by an arginine-rich flexible C-terminal tail. Homozygous missense and nonsense mutations of this acidic patch recognition motif in VRK1 are causative in rare adult-onset distal spinal muscular atrophy. We show that these VRK1 mutations interfere with nucleosome acidic patch binding, leading to mislocalization of VRK1 during mitosis, thus providing a potential new molecular mechanism for pathogenesis.
Collapse
Affiliation(s)
| | - Yani Zhao
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Bioinformatics and Analytics Research Collaborative, University of North Carolina, Chapel Hill, NC, USA
| | - Michael R Williams
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Dalal N Azzam
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Yuka Koyama
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Andrew P Cesmat
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Holly C Simmons
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Eyla C Arteaga
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Joshua D Strauss
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dmitri Kireev
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Robert K McGinty
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Umeda R, Teranishi H, Hada K, Shimizu N, Shiraishi H, Urushibata H, Shaohong L, Shide M, Apolinario MEC, Higa R, Shikano K, Shin T, Mimata H, Hikida T, Hanada T, Hanada R. Vrk2 deficiency elicits aggressive behavior in female zebrafish. Genes Cells 2022; 27:254-265. [DOI: 10.1111/gtc.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ryohei Umeda
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kazumasa Hada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | | | - Lai Shaohong
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Masahito Shide
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | | | - Ryoko Higa
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kenshiro Shikano
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Toshitaka Shin
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Hiromitsu Mimata
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions Institute for Protein Research Osaka University Osaka Japan
| | - Toshikatsu Hanada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Reiko Hanada
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| |
Collapse
|
10
|
Morejon-Garcia P, Keren B, Marcos-Alcalde I, Gomez-Puertas P, Mochel F, Lazo PA. Dysfunctional Homozygous VRK1-D263G Variant Impairs the Assembly of Cajal Bodies and DNA Damage Response in Hereditary Spastic Paraplegia. NEUROLOGY-GENETICS 2021; 7:e624. [PMID: 34504951 PMCID: PMC8422991 DOI: 10.1212/nxg.0000000000000624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Background and Objectives To conduct a genetic and molecular functional study of a family with members affected of hereditary spastic paraplegia (HSP) of unknown origin and carrying a novel pathogenic vaccinia-related kinase 1 (VRK1) variant. Methods Whole-exome sequencing was performed in 2 patients, and their parents diagnosed with HSP. The novel VRK1 variant was detected by whole-exome sequencing, molecularly modeled and biochemically characterized in kinase assays. Functionally, we studied the role of this VRK1 variant in DNA damage response and its effect on the assembly of Cajal bodies (CBs). Results We have identified a very rare homozygous variant VRK1-D263G with a neurologic phenotype associated with HSP and moderate intellectual disability. The molecular modeling of this VRK1 variant protein predicted an alteration in the folding of a loop that interferes with the access to the kinase catalytic site. The VRK1-D263G variant is kinase inactive and does not phosphorylate histones H2AX and H3, transcription factors activating transcription factor 2 and p53, coilin needed for assembly of CBs, and p53 binding protein 1, a DNA repair protein. Functionally, this VRK1 variant protein impairs CB formation and the DNA damage response. Discussion This report expands the neurologic spectrum of neuromotor syndromes associated with a new and rare VRK1 variant, representing a novel pathogenic participant in complicated HSP and demonstrates that CBs and the DNA damage response are impaired in these patients.
Collapse
Affiliation(s)
- Patricia Morejon-Garcia
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Boris Keren
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Iñigo Marcos-Alcalde
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Paulino Gomez-Puertas
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Fanny Mochel
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| |
Collapse
|
11
|
Colmenero-Repiso A, Gómez-Muñoz MA, Rodríguez-Prieto I, Amador-Álvarez A, Henrich KO, Pascual-Vaca D, Okonechnikov K, Rivas E, Westermann F, Pardal R, Vega FM. Identification of VRK1 as a New Neuroblastoma Tumor Progression Marker Regulating Cell Proliferation. Cancers (Basel) 2020; 12:cancers12113465. [PMID: 33233777 PMCID: PMC7699843 DOI: 10.3390/cancers12113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common pediatric cancers and presents a poor survival rate in affected children. Current pretreatment risk assessment relies on a few known molecular parameters, like the amplification of the oncogene MYCN. However, a better molecular knowledge about the aggressive progression of the disease is needed to provide new therapeutical targets and prognostic markers and to improve patients' outcomes. The human protein kinase VRK1 phosphorylates various signaling molecules and transcription factors to regulate cell cycle progression and other processes in physiological and pathological situations. Using neuroblastoma tumor expression data, tissue microarrays from fresh human samples and patient-derived xenografts (PDXs), we have determined that VRK1 kinase expression stratifies patients according to tumor aggressiveness and survival, allowing the identification of patients with worse outcome among intermediate risk. VRK1 associates with cell cycle signaling pathways in NB and its downregulation abrogates cell proliferation in vitro and in vivo. Through the analysis of ChIP-seq and methylation data from NB tumors, we show that VRK1 is a MYCN gene target, however VRK1 correlates with NB aggressiveness independently of MYCN gene amplification, synergizing with the oncogene to drive NB progression. Our study also suggests that VRK1 inhibition may constitute a novel cell-cycle-targeted strategy for anticancer therapy in neuroblastoma.
Collapse
Affiliation(s)
- Ana Colmenero-Repiso
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.C.-R.); (M.A.G.-M.); (I.R.-P.); (A.A.-Á.)
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41013 Seville, Spain
| | - María A. Gómez-Muñoz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.C.-R.); (M.A.G.-M.); (I.R.-P.); (A.A.-Á.)
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41013 Seville, Spain
| | - Ismael Rodríguez-Prieto
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.C.-R.); (M.A.G.-M.); (I.R.-P.); (A.A.-Á.)
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41013 Seville, Spain
| | - Aida Amador-Álvarez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.C.-R.); (M.A.G.-M.); (I.R.-P.); (A.A.-Á.)
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Kai-Oliver Henrich
- German Cancer Research Center (DKFZ), Division Neuroblastoma Genomics, 69120 Heidelberg, Germany; (K.-O.H.); (F.W.)
| | - Diego Pascual-Vaca
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain; (D.P.-V.); (E.R.)
| | | | - Eloy Rivas
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain; (D.P.-V.); (E.R.)
| | - Frank Westermann
- German Cancer Research Center (DKFZ), Division Neuroblastoma Genomics, 69120 Heidelberg, Germany; (K.-O.H.); (F.W.)
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.C.-R.); (M.A.G.-M.); (I.R.-P.); (A.A.-Á.)
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41013 Seville, Spain
- Correspondence: (R.P.); (F.M.V.)
| | - Francisco M. Vega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain; (A.C.-R.); (M.A.G.-M.); (I.R.-P.); (A.A.-Á.)
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
- Correspondence: (R.P.); (F.M.V.)
| |
Collapse
|
12
|
Marcos AT, Martín‐Doncel E, Morejón‐García P, Marcos‐Alcalde I, Gómez‐Puertas P, Segura‐Puimedon M, Armengol L, Navarro‐Pando JM, Lazo PA. VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Ann Clin Transl Neurol 2020; 7:808-818. [PMID: 32365420 PMCID: PMC7261760 DOI: 10.1002/acn3.51050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. PATIENT AND METHODS In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. RESULTS A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. CONCLUSION The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation.
Collapse
Affiliation(s)
- Ana T. Marcos
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
| | - Elena Martín‐Doncel
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Patricia Morejón‐García
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Iñigo Marcos‐Alcalde
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
- School of Experimental SciencesBiosciences Research InstituteUniversidad Francisco de VitoriaPozuelo de Alarcón, MadridSpain
| | - Paulino Gómez‐Puertas
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
| | - María Segura‐Puimedon
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - José M. Navarro‐Pando
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
- Cátedra de Reproducción y Genética HumanaFacultad de Ciencias de la SaludUniversidad Europea del AtlánticoSantanderSpain
- Fundación Universitaria Iberoamericana (FUNIBER)BarcelonaSpain
| | - Pedro A. Lazo
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| |
Collapse
|
13
|
Silva DP, Soeiro E Sá M, Silveira F, Pinto S, Gromicho M, Sousa AB, Leão M, De Carvalho M. VRK1 variants in two Portuguese unrelated patients with childhood-onset motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:291-295. [PMID: 32242460 DOI: 10.1080/21678421.2020.1746343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
VRK1 encodes a serine/protein kinase possibly involved in pathways related to amyotrophic lateral sclerosis (ALS) pathogenesis. Pathogenic variants in VRK1 have been related to different phenotypes. We describe the clinical phenotype of two unrelated Portuguese patients with different VRK1 variants. Both patients presented a bilateral distal weakness in lower limbs beginning in childhood slowly progressing to upper limbs, associated with pyramidal signs, without bulbar, respiratory or cognitive involvement, according to probable ALS. Imaging and nerve conduction studies were unremarkable in both patients. Genetic testing in patient 1 identified two VRK1 variants in heterozygosity: c.265C > T, p.(Arg89*) and c.769G > A, p.(Gly257Ser), classified as pathogenic and variant of uncertain significance, respectively. In patient 2, two probably pathogenic variants in VRK1 were identified in heterozygosity: c.710-14T > C in intron 8 and c.721C > T, p.(Arg241Cys) in exon 9. We report two unrelated patients with different variants in VRK1 displaying a similar childhood-onset motor neuron disease/ALS, further expanding the phenotypic spectrum associated to VRK1 variants.
Collapse
Affiliation(s)
- Daniela Pimenta Silva
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa-Norte, Lisbon, Portugal
| | - Mariana Soeiro E Sá
- Medical Genetics Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa-Norte, Lisbon, Portugal
| | - Fernando Silveira
- Department of Neurology, Centro Hospitalar Universitário de S. João, Porto, Portugal
| | - Susana Pinto
- Faculdade de Medicina-Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal, and
| | - Marta Gromicho
- Faculdade de Medicina-Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal, and
| | - Ana Berta Sousa
- Medical Genetics Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa-Norte, Lisbon, Portugal
| | - Miguel Leão
- Neurogenetics Unit, Department of Medical Genetics, Centro Hospitalar Universitário de S. João, Porto, Portugal
| | - Mamede De Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa-Norte, Lisbon, Portugal.,Faculdade de Medicina-Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal, and
| |
Collapse
|
14
|
Greenbaum L, Barel O, Nikitin V, Hersalis-Eldar A, Kol N, Reznik-Wolf H, Dominissini D, Pras E, Dori A. Identification of a homozygous VRK1 mutation in two patients with adult-onset distal hereditary motor neuropathy. Muscle Nerve 2020; 61:395-400. [PMID: 31837156 DOI: 10.1002/mus.26779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult-onset hereditary motor neuropathies are caused by mutations in multiple genes. Mutations within the vaccinia-related kinase 1 (VRK1) gene were associated with a wide spectrum of recessively inherited motor neuropathies, characterized by childhood to early adulthood age of onset and an occasionally non-lower motor neuron involvement. METHODS We describe two patients with adult-onset (aged 48 and 40 years) length-dependent motor neuropathy from unrelated consanguineous families of Moroccan Jewish descent. One also demonstrated mild nocturnal respiratory difficulty and sensory symptoms. Whole-exome sequencing (WES) was performed. RESULTS A homozygous mutation in VRK1 (c.1160G>A (p.Arg387His)), shared by both patients, was identified. This rare mutation segregated with the disease in the two families, and was absent in 120 controls of Jewish Moroccan origin. CONCLUSIONS Our findings support VRK1 as a causative gene for adult-onset distal hereditary motor neuropathy, and indicate its relevance for evaluation of individuals with similar motor impairment.
Collapse
Affiliation(s)
- Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Vera Nikitin
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Nitzan Kol
- Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Haike Reznik-Wolf
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Dan Dominissini
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Elon Pras
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Dori
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
15
|
Pontocerebellar hypoplasia with rhombencephalosynapsis and microlissencephaly expands the spectrum of PCH type 1B. Eur J Med Genet 2019; 63:103814. [PMID: 31770597 DOI: 10.1016/j.ejmg.2019.103814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022]
Abstract
Rhombencephalosynapsis is a rare cerebellar malformation developing during embryogenesis defined by vermian agenesis or hypogenesis with fusion of the cerebellar hemispheres. It occurs either alone or in association with other cerebral and/or extracerebral anomalies. Its association with microlissencephaly is exceedingly rare and to date, only a heterozygous de novo missense variant in ADGRL2, a gene encoding Adhesion G-Protein-Coupled Receptor L2, has been identified. We report on two siblings of Roma origin presenting with severe growth retardation, fetal akinesia, microlissencephaly and small cerebellum with vermian agenesis. Neuropathological studies revealed extreme paucity in pontine transverse fibres, rudimentary olivary nuclei and rhombencephalosynapsis with vanishing spinal motoneurons in both fetuses. Comparative fetus-parent exome sequencing revealed in both fetuses a homozygous variant in exon 1 of the EXOSC3 gene encoding a core component of the RNA exosome, c.92G > C; p.(Gly31Ala). EXOSC3 accounts for 40%-75% of patients affected by ponto-cerebellar hypoplasia with spinal muscular atrophy (PCH1B). The c.92G > C variant is a founder mutation in the Roma population and has been reported in severe PCH1B. PCH1B is characterized by a broad phenotypic spectrum, ranging from mild phenotypes with spasticity, mild to moderate intellectual disability, pronounced distal muscular and cerebellar atrophy/hypoplasia, to severe phenotypes with profound global developmental delay, progressive microcephaly and atrophy of the cerebellar hemispheres. In PCH1B, the usual cerebellar lesions affect mainly the hemispheres with relative sparing of vermis that radically differs from rhombencephalosynapsis. This unusual foetal presentation expands the spectrum of PCH1B and highlights the diversity of rhombencephalosynapsis etiologies.
Collapse
|
16
|
Sedghi M, Moslemi AR, Olive M, Etemadifar M, Ansari B, Nasiri J, Emrahi L, Mianesaz HR, Laing NG, Tajsharghi H. Motor neuron diseases caused by a novel VRK1 variant - A genotype/phenotype study. Ann Clin Transl Neurol 2019; 6:2197-2204. [PMID: 31560180 PMCID: PMC6856620 DOI: 10.1002/acn3.50912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/16/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Motor neuron disorders involving upper and lower neurons are a genetically and clinically heterogenous group of rare neuromuscular disorders with overlap among spinal muscular atrophies (SMAs) and amyotrophic lateral sclerosis (ALS). Classical SMA caused by recessive mutations in SMN1 is one of the most common genetic causes of mortality in infants. It is characterized by degeneration of anterior horn cells in the spinal cord, leading to progressive muscle weakness and atrophy. Non‐SMN1‐related spinal muscular atrophies are caused by variants in a number of genes, including VRK1, encoding the vaccinia‐related kinase 1 (VRK1). VRK1 variants have been segregated with motor neuron diseases including SMA phenotypes or hereditary complex motor and sensory axonal neuropathy (HMSN), with or without pontocerebellar hypoplasia or microcephaly. Results Here, we report an association of a novel homozygous splice variant in VRK1 (c.1159 + 1G>A) with childhood‐onset SMA or juvenile lower motor disease with brisk tendon reflexes without pontocerebellar hypoplasia and normal intellectual ability in a family with five affected individuals. We show that the VRK1 splice variant in patients causes decreased splicing efficiency and a mRNA frameshift that escapes the nonsense‐mediated decay machinery and results in a premature termination codon. Conclusions Our findings unveil the impact of the variant on the VRK1 transcript and further support the implication of VRK1 in the pathogenesis of lower motor neuron diseases.
Collapse
Affiliation(s)
- Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Montse Olive
- Institute of Neuropathology, Department of Pathology, Institut Investigació Biomèdica de Bellvitge (IDIBELL)-Hospital de Bellvitge, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, Institut Investigació Biomèdica de Bellvitge-(IDIBELL)-Hospital de Bellvitge, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Masoud Etemadifar
- Department of Functional Neursurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Nasiri
- Department of Pediatric Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Emrahi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hamid-Reza Mianesaz
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Homa Tajsharghi
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia.,School of Health Sciences, Division Biomedicine and Translational Medicine, University of Skovde, Skovde, Sweden
| |
Collapse
|
17
|
Martín-Doncel E, Rojas AM, Cantarero L, Lazo PA. VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes. Sci Rep 2019; 9:13381. [PMID: 31527692 PMCID: PMC6746721 DOI: 10.1038/s41598-019-49821-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Very rare polymorphisms in the human VRK1 (vaccinia-related kinase 1) gene have been identified in complex neuromotor phenotypes associated to spinal muscular atrophy (SMA), pontocerebellar hypoplasia (PCH), microcephaly, amyotrophic lateral sclerosis (ALS) and distal motor neuron dysfunctions. The mechanisms by which these VRK1 variant proteins contribute to the pathogenesis of these neurological syndromes are unknown. The syndromes are manifested when both of these rare VRK1 polymorphic alleles are implicated, either in homozygosis or compound heterozygosis. In this report, to identify the common underlying pathogenic mechanism of VRK1 polymorphisms, we have studied all human VRK1 variants identified in these neurological phenotypes from a biochemical point of view by molecular modeling, protein stability and kinase activity assays. Molecular modelling predicted that VRK1 variant proteins are either unstable or have an altered kinase activity. The stability and kinase activity of VRK1 pathogenic variants detected two groups. One composed by variants with a reduced protein stability: R133C, R358X, L195V, G135R and R321C. The other group includes VRK1variants with a reduced kinase activity tested on several substrates: histones H3 and H2AX, p53, c-Jun, coilin and 53BP1, a DNA repair protein. VRK1 variants with reduced kinase activity are H119R, R133C, G135R, V236M, R321C and R358X. The common underlying effect of VRK1 pathogenic variants with reduced protein stability or kinase activity is a functional insufficiency of VRK1 in patients with neuromotor developmental syndromes. The G135 variant cause a defective formation of 53BP1 foci in response to DNA damage, and loss Cajal bodies assembled on coilin.
Collapse
Affiliation(s)
- Elena Martín-Doncel
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana M Rojas
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Lara Cantarero
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Laboratorio de Neurogenética y Medicina Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
18
|
Biallelic variants in AGTPBP1, involved in tubulin deglutamylation, are associated with cerebellar degeneration and motor neuropathy. Eur J Hum Genet 2019; 27:1419-1426. [PMID: 30976113 DOI: 10.1038/s41431-019-0400-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 11/08/2022] Open
Abstract
The ATP/GTP-Binding Protein 1 (AGTPBP1) gene (OMIM *606830) catalyzes deglutamylation of polyglutamylated proteins, and its deficiency manifests by cerebellar ataxia and peripheral neuropathy in mice and lower motor neuron-like disease in sheep. In the mutant mice, cerebellar atrophy due to Purkinje cell degeneration is observed, likely due to increased tubulin polyglutamylation in affected brain areas. We report two unrelated individuals who presented with early onset cerebellar atrophy, developmental arrest with progressive muscle weakness, and feeding and respiratory difficulties, accompanied by severe motor neuronopathy. Whole exome sequencing followed by segregation analysis in the families and cDNA studies revealed deleterious biallelic variants in the AGTPBP1 gene. We conclude that complete loss-of-function of AGTPBP1 in humans, just like in mice and sheep, is associated with cerebellar and motor neuron disease, reminiscent of Pontocerebellar Hypoplasia Type 1 (PCH1).
Collapse
|
19
|
El-Bazzal L, Rihan K, Bernard-Marissal N, Castro C, Chouery-Khoury E, Desvignes JP, Atkinson A, Bertaux K, Koussa S, Lévy N, Bartoli M, Mégarbané A, Jabbour R, Delague V. Loss of Cajal bodies in motor neurons from patients with novel mutations in VRK1. Hum Mol Genet 2019; 28:2378-2394. [DOI: 10.1093/hmg/ddz060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of diseases, resembling Charcot–Marie–Tooth syndromes, but characterized by an exclusive involvement of the motor part of the peripheral nervous system.
Here, we describe two new compound heterozygous mutations in VRK1, the vaccinia-related kinase 1 gene, in two siblings from a Lebanese family, affected with dHMN associated with upper motor neurons (MNs) signs. The mutations lead to severely reduced levels of VRK1 by impairing its stability, and to a shift of nuclear VRK1 to cytoplasm. Depletion of VRK1 from the nucleus alters the dynamics of coilin, a phosphorylation target of VRK1, by reducing its stability through increased proteasomal degradation. In human-induced pluripotent stem cell-derived MNs from patients, we demonstrate that this drop in VRK1 levels leads to Cajal bodies (CBs) disassembly and to defects in neurite outgrowth and branching. Mutations in VRK1 have been previously reported in several neurological diseases affecting lower or both upper and lower MNs. Here, we describe a new phenotype linked to VRK1 mutations, presenting as a classical slowly progressive motor neuropathy, beginning in the second decade of life, with associated upper MN signs. We provide, for the first time, evidence for a role of VRK1 in regulating CB assembly in MNs. The observed MN defects are consistent with a length dependent axonopathy affecting lower and upper MNs, and we propose that diseases due to mutations in VRK1 should be grouped under a unique entity named `VRK1-related motor neuron disease’.
Collapse
Affiliation(s)
- Lara El-Bazzal
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Khalil Rihan
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | - Eliane Chouery-Khoury
- Unité de Génétique Médicale, Université Saint Joseph, Campus des Sciences Médicales, Beirut, Lebanon
| | | | | | - Karine Bertaux
- Medical Genetics, Biological Resource Center—Tissue, DNA, Cells, CRB TAC, La Timone Children’s Hospital, Marseille, France
| | - Salam Koussa
- Department of Neurology, Lebanese University Hospital-Geitaoui, Beirut, Lebanon
| | - Nicolas Lévy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Children’s Hospital La Timone, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - André Mégarbané
- Centre Médical et Psychopédagogique, Beirut, Lebanon
- Institut Jérôme Lejeune, Paris, France
| | - Rosette Jabbour
- Neurology Division, Department of Internal Medicine, St George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | | |
Collapse
|
20
|
Li N, Wang L, Sun X, Lu Z, Suo X, Li J, Peng J, Peng R. A novel mutation in VRK1 associated with distal spinal muscular atrophy. J Hum Genet 2019; 64:215-219. [PMID: 30617279 DOI: 10.1038/s10038-018-0553-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/11/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023]
Abstract
Distal spinal muscular atrophy (dSMA) is a rare clinically and genetically heterogeneous group of inherited disorders characterized by progressive distal muscle weakness and wasting. So far, more than 65% of patients with dSMA have undiscovered genetic mutations. Recently, compound heterozygous mutations in the vaccinia-related kinase 1 (VRK1) gene have been identified for the first time in two siblings with adult-onset dSMA from an Ashkenazi Jewish family. Here, we also report two affected siblings with adult-onset dSMA in a Chinese family. Whole exome sequencing and subsequent Sanger sequencing identified a novel nonsense mutation (c.1124G >A, p.W375*) in exon 12 of the VRK1 gene, co-segregating with the dSMA phenotype in an autosomal recessive pattern. In conclusion, our findings identify a novel nonsense mutation p.W375* in the VRK1 gene in a Chinese family with autosomal recessive dSMA and broaden the genetic spectrum of VRK1-associated dSMA.
Collapse
Affiliation(s)
- Nannan Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyi Sun
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongjiao Lu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junying Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxin Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Reches A, Hiersch L, Simchoni S, Barel D, Greenberg R, Ben Sira L, Malinger G, Yaron Y. Whole-exome sequencing in fetuses with central nervous system abnormalities. J Perinatol 2018; 38:1301-1308. [PMID: 30108342 DOI: 10.1038/s41372-018-0199-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We describe our experience with whole-exome sequencing (WES) in fetuses with central nervous system (CNS) abnormalities following a normal chromosomal microarray result. METHODS During the study period (2014-2017) 7 cases (9 fetuses) with prenatally diagnosed CNS abnormality, whose chromosomal microarray analysis was negative, were offered whole-exome sequencing analysis. RESULTS A pathogenic or a likely pathogenic variant was found in 5 cases including a previously described, likely pathogenic de novo TUBA1A variant (Case #1); a previously described homozygous VRK1 variant (Case #2); an X-linked ARX variant (Case #3); a likely pathogenic heterozygous variant in the TUBB3 gene (Case #5). Finally, in two fetuses of the same couple (Case #6), a compound heterozygous state was detected, consisting of the NPHP1 gene deletion and a sequence variant of uncertain significance. Two additional cases had normal WES results. CONCLUSION Whole-exome sequencing may improve prenatal diagnosis in fetuses with CNS abnormalities.
Collapse
Affiliation(s)
- Adi Reches
- Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Liran Hiersch
- Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel. .,Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.
| | - Sharon Simchoni
- Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Dalit Barel
- Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Rotem Greenberg
- Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Liat Ben Sira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Radiology Department, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Gustavo Malinger
- Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Yaron
- Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
22
|
Vinograd-Byk H, Renbaum P, Levy-Lahad E. Vrk1 partial Knockdown in Mice Results in Reduced Brain Weight and Mild Motor Dysfunction, and Indicates Neuronal VRK1 Target Pathways. Sci Rep 2018; 8:11265. [PMID: 30050127 PMCID: PMC6062608 DOI: 10.1038/s41598-018-29215-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in Vaccinia-related kinase 1 (VRK1) have emerged as a cause of severe neuronal phenotypes in human, including brain developmental defects and degeneration of spinal motor neurons, leading to Spinal Muscular Atrophy (SMA) or early onset Amyotrophic Lateral Sclerosis (ALS). Vrk1 gene-trap partial Knockout (KO) mice (Vrk1GT3/GT3), which express decreased levels of Vrk1, are sterile due to impaired gamete production. Here, we examined whether this mouse model also presents neuronal phenotypes. We found a 20-50% reduction in Vrk1 expression in neuronal tissues of the Vrk1GT3/GT3 mice, leading to mild neuronal phenotypes including significant but small reduction in brain mass and motor (rotarod) impairment. Analysis of gene expression in the Vrk1GT3/GT3 cortex predicts novel roles for VRK1 in neuronal pathways including neurotrophin signaling, axon guidance and pathways implicated in the pathogenesis of ALS. Together, our studies of the partial KO Vrk1 mice reveal that even moderately reduced levels of Vrk1 expression result in minor neurological impairment and indicate new neuronal pathways likely involving VRK1.
Collapse
Affiliation(s)
- Hadar Vinograd-Byk
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel.
- Hebrew University Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
23
|
Ivanov I, Atkinson D, Litvinenko I, Angelova L, Andonova S, Mumdjiev H, Pacheva I, Panova M, Yordanova R, Belovejdov V, Petrova A, Bosheva M, Shmilev T, Savov A, Jordanova A. Pontocerebellar hypoplasia type 1 for the neuropediatrician: Genotype-phenotype correlations and diagnostic guidelines based on new cases and overview of the literature. Eur J Paediatr Neurol 2018; 22:674-681. [PMID: 29656927 DOI: 10.1016/j.ejpn.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Pontocerebellar hypoplasia type 1 (PCH1) is a major cause of non-5q spinal muscular atrophy (SMA). We screened 128 SMN1-negative SMA patients from Bulgaria for a frequent mutation -p.G31A in EXOSC3, and performed a literature review of all genetically verified PCH1 cases. Homozygous p.G31A/EXOSC3 mutation was identified in 14 Roma patients, representing three fourths of all our SMN1-negative Roma SMA cases. The phenotype of the p.G31A/EXOSC3 homozygotes was compared to the clinical presentation of all reported to date genetically verified PCH1 cases. Signs of antenatal onset of disease present at birth were common in all PCH1 sub-types except in the homozygous p.D132A/EXOSC3 patients. The PCH1sub-types with early death (between ages 1 day and 17 months), seen in patients with p.G31A/EXOSC3 or SLC25A46 mutations have a SMA type 1-like clinical presentation but with global developmental delay, visual and hearing impairment, with or without microcephaly, nystagmus and optic atrophy. Mutations with milder presentation (homozygous p.D132A/EXOSC3 or VRK1) may display additionally signs of upper motor neuron impairment, dystonia or ataxia and die at age between 5 and 18 years. Other EXOSC3 mutations and EXOSC8 cases are intermediate - SMA type 1-like presentation, spasticity (mostly in EXOSC8) and death between 3 months and 5 years. There is no correlation between neurological onset and duration of life. We add marble-like skin and congenital laryngeal stridor as features of PCH1. We show that imaging signs of cerebellar and pontine hypoplasia may be missing early in infancy. EMG signs of anterior horn neuronopathy may be missing in PCH1 patients with SLC25A46 mutations. Thus, there is considerable phenotypic variability in PCH1, with some cases being more SMA-like, than PCH-like. Detailed clinical evaluation and ethnicity background may guide genetic testing and subsequent genetic counseling.
Collapse
Affiliation(s)
- I Ivanov
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - D Atkinson
- VIB Center for Molecular Neurology, University of Antwerp, Belgium.
| | - I Litvinenko
- Department of Pediatrics, SBALDB "Prof. D-r Ivan Mitev", Medical University-Sofia, Sofia, Bulgaria.
| | - L Angelova
- Department of Medical Genetics, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria.
| | - S Andonova
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - H Mumdjiev
- Department of Neonatology, Prof. Stoyan Kirkovich University Hospital, Medical Faculty of Tracian University, Stara Zagora, Bulgaria.
| | - I Pacheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Panova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - R Yordanova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - V Belovejdov
- Department of Pathology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Petrova
- Department of Radiology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Bosheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - T Shmilev
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Savov
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - A Jordanova
- VIB Center for Molecular Neurology, University of Antwerp, Belgium; Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
24
|
van Dijk T, Baas F, Barth PG, Poll-The BT. What's new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet J Rare Dis 2018; 13:92. [PMID: 29903031 PMCID: PMC6003036 DOI: 10.1186/s13023-018-0826-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Background Pontocerebellar hypoplasia (PCH) describes a rare, heterogeneous group of neurodegenerative disorders mainly with a prenatal onset. Patients have severe hypoplasia or atrophy of cerebellum and pons, with variable involvement of supratentorial structures, motor and cognitive impairments. Based on distinct clinical features and genetic causes, current classification comprises 11 types of PCH. Main text In this review we describe the clinical, neuroradiological and genetic characteristics of the different PCH subtypes, summarize the differential diagnosis and reflect on potential disease mechanisms in PCH. Seventeen PCH-related genes are now listed in the OMIM database, most of them have a function in RNA processing or translation. It is unknown why defects in these apparently ubiquitous processes result in a brain-specific phenotype. Conclusions Many new PCH related genes and phenotypes have been described due to the appliance of next generation sequencing techniques. By including such a broad range of phenotypes, including non-degenerative and postnatal onset disorders, the current classification gives rise to confusion. Despite the discovery of new pathways involved in PCH, treatment is still symptomatic. However, correct diagnosis of PCH is important to provide suitable care and counseling regarding prognosis, and offer appropriate (prenatal) genetic testing to families.
Collapse
Affiliation(s)
- Tessa van Dijk
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G Barth
- Department of Pediatric Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Ivanova EL, Mau-Them FT, Riazuddin S, Kahrizi K, Laugel V, Schaefer E, de Saint Martin A, Runge K, Iqbal Z, Spitz MA, Laura M, Drouot N, Gérard B, Deleuze JF, de Brouwer APM, Razzaq A, Dollfus H, Assir MZ, Nitchké P, Hinckelmann MV, Ropers H, Riazuddin S, Najmabadi H, van Bokhoven H, Chelly J. Homozygous Truncating Variants in TBC1D23 Cause Pontocerebellar Hypoplasia and Alter Cortical Development. Am J Hum Genet 2017; 101:428-440. [PMID: 28823707 DOI: 10.1016/j.ajhg.2017.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/19/2017] [Indexed: 01/03/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare recessive disorders with prenatal onset, characterized by hypoplasia of pons and cerebellum. Mutations in a small number of genes have been reported to cause PCH, and the vast majority of PCH cases are explained by mutations in TSEN54, which encodes a subunit of the tRNA splicing endonuclease complex. Here we report three families with homozygous truncating mutations in TBC1D23 who display moderate to severe intellectual disability and microcephaly. MRI data from available affected subjects revealed PCH, small normally proportioned cerebellum, and corpus callosum anomalies. Furthermore, through in utero electroporation, we show that downregulation of TBC1D23 affects cortical neuron positioning. TBC1D23 is a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs). Members of this protein family negatively regulate RAB proteins and modulate the signaling between RABs and other small GTPases, some of which have a crucial role in the trafficking of intracellular vesicles and are involved in neurological disorders. Here, we demonstrate that dense core vesicles and lysosomal trafficking dynamics are affected in fibroblasts harboring TBC1D23 mutation. We propose that mutations in TBC1D23 are responsible for a form of PCH with small, normally proportioned cerebellum and should be screened in individuals with syndromic pontocereballar hypoplasia.
Collapse
Affiliation(s)
- Ekaterina L Ivanova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Frédéric Tran Mau-Them
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Saima Riazuddin
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, 1985713834 Tehran, Iran
| | - Vincent Laugel
- Department of Pediatrics, Strasbourg University Hospital, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Anne de Saint Martin
- Department of Pediatrics, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Karen Runge
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Zafar Iqbal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Neurology, Oslo University Hospital, 0450 Oslo, Norway
| | - Marie-Aude Spitz
- Department of Pediatrics, Strasbourg University Hospital, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - Mary Laura
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Bénédicte Gérard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Attia Razzaq
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan
| | - Hélène Dollfus
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Muhammad Zaman Assir
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan; Allama Iqbal Medical College, University of Health Sciences, 54000 Lahore, Pakistan
| | - Patrick Nitchké
- Institut Imagine, Bioinformatics Platform, Université Paris Descartes, 75015 Paris, France
| | - Maria-Victoria Hinckelmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Hilger Ropers
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan; Allama Iqbal Medical College, University of Health Sciences, 54000 Lahore, Pakistan
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, 1985713834 Tehran, Iran
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jamel Chelly
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
26
|
Sapir T, Levy T, Kozer N, Shin I, Zamor V, Haffner-Krausz R, McGlade JC, Reiner O. Notch Activation by Shootin1 Opposing Activities on 2 Ubiquitin Ligases. Cereb Cortex 2017; 28:3115-3128. [DOI: 10.1093/cercor/bhx180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Talia Levy
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Noga Kozer
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Irina Shin
- Biological Services Unit, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Vanessa Zamor
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| | - Jane C McGlade
- The Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON,Canada
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot, Israel
| |
Collapse
|
27
|
Deletion of the Vaccinia Virus B1 Kinase Reveals Essential Functions of This Enzyme Complemented Partly by the Homologous Cellular Kinase VRK2. J Virol 2017; 91:JVI.00635-17. [PMID: 28515294 DOI: 10.1128/jvi.00635-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
The vaccinia virus B1 kinase is highly conserved among poxviruses and is essential for the viral life cycle. B1 exhibits a remarkable degree of similarity to vaccinia virus-related kinases (VRKs), a family of cellular kinases, suggesting that the viral enzyme has evolved to mimic VRK activity. Indeed, B1 and VRKs have been demonstrated to target a shared substrate, the DNA binding protein BAF, elucidating a signaling pathway important for both mitosis and the antiviral response. In this study, we further characterize the role of B1 during vaccinia infection to gain novel insights into its regulation and integration with cellular signaling pathways. We begin by describing the construction and characterization of the first B1 deletion virus (vvΔB1) produced using a complementing cell line expressing the viral kinase. Examination of vvΔB1 revealed that B1 is critical for the production of infectious virions in various cell types and is sufficient for BAF phosphorylation. Interestingly, the severity of the defect in DNA replication following the loss of B1 varied between cell types, leading us to posit that cellular VRKs partly complement for the absence of B1 in some cell lines. Using cell lines devoid of either VRK1 or VRK2, we tested this hypothesis and discovered that VRK2 expression facilitates DNA replication and allows later stages of the viral life cycle to proceed in the absence of B1. Finally, we present evidence that the impact of VRK2 on vaccinia virus is largely independent of BAF phosphorylation. These data support a model in which B1 and VRK2 share additional substrates important for the replication of cytoplasmic poxviruses.IMPORTANCE Viral mimicry of cellular signaling modulators provides clear evidence that the pathogen targets an important host pathway during infection. Poxviruses employ numerous viral homologs of cellular proteins, the study of which have yielded insights into signaling pathways used by both virus and cells alike. The vaccinia virus B1 protein is a homolog of cellular vaccinia virus-related kinases (VRKs) and is needed for viral DNA replication and likely other stages of the viral life cycle. However, much remains to be learned about how B1 and VRKs overlap functionally. This study utilizes new tools, including a B1 deletion virus and VRK knockout cells, to further characterize the functional links between the viral and cellular enzymes. As a result, we have discovered that B1 and VRK2 target a common set of substrates vital to productive infection of this large cytoplasmic DNA virus.
Collapse
|
28
|
Stoll M, Teoh H, Lee J, Reddel S, Zhu Y, Buckley M, Sampaio H, Roscioli T, Farrar M, Nicholson G. Novel motor phenotypes in patients with VRK1 mutations without pontocerebellar hypoplasia. Neurology 2016; 87:65-70. [PMID: 27281532 PMCID: PMC4932233 DOI: 10.1212/wnl.0000000000002813] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Objective: To describe the phenotypes in 2 families with vaccinia-related kinase 1 (VRK1) mutations including one novel VRK1 mutation. Methods: VRK1 mutations were found by whole exome sequencing in patients presenting with motor neuron disorders. Results: We identified pathogenic mutations in the VRK1 gene in the affected members of 2 families. In family 1, compound heterozygous mutations were identified in VRK1, c.356A>G; p.H119R, and c.1072C>T; p.R358*, in 2 siblings with adult onset distal spinal muscular atrophy (SMA). In family 2, a novel VRK1 mutation, c.403G>A; p.G135R and c.583T>G; p.L195V, were identified in a child with motor neuron disease. Conclusions: VRK1 mutations can produce adult-onset SMA and motor neuron disease in children without pontocerebellar hypoplasia.
Collapse
Affiliation(s)
- Marion Stoll
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Hooiling Teoh
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - James Lee
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Stephen Reddel
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Ying Zhu
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Michael Buckley
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Hugo Sampaio
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Tony Roscioli
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Michelle Farrar
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia
| | - Garth Nicholson
- From the Molecular Medicine Laboratory (M.S., G.N.), Neurology Department (J.L.), ANZAC Research Institute (G.N.), and NSW Health Pathology (G.N.), Concord Hospital (S.R.); Departments of Neurology (H.T., H.S., M.F.) and Genetics (T.R.), Sydney Children's Hospital; Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine (H.T., H.S., M.F.), and St Vincent's Clinical School (T.R.), The University of New South Wales, Sydney; Kolling Institute (Y.Z.), Royal North Shore Hospital, Newcastle GOLD Service, Hunter Genetics, Waratah; SEALS Haematology and Genetics Laboratory (M.B.), Prince of Wales Hospital, Sydney; Kinghorn Centre for Clinical Genomics (T.R.); and Sydney Medical School (G.N.), University of Sydney, Australia.
| |
Collapse
|
29
|
VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:760-9. [PMID: 26869104 DOI: 10.1016/j.bbamcr.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 01/08/2023]
Abstract
NBS1 is an early component in DNA-Damage Response (DDR) that participates in the initiation of the responses aiming to repair double-strand breaks caused by different mechanisms. Early steps in DDR have to react to local alterations in chromatin that are induced by DNA damage. NBS1 participates in the early detection of DNA damage and functions as a platform for the recruitment and assembly of components that are sequentially required for the repair process. In this work we have studied whether the VRK1 chromatin kinase can affect the activation of NBS1 in response to DNA damage induced by ionizing radiation. VRK1 is forming a basal preassembled complex with NBS1 in non-damaged cells. Knockdown of VRK1 resulted in the loss of NBS1 foci induced by ionizing radiation, an effect that was also detected in cell-cycle arrested cells and in ATM (-/-) cells. The phosphorylation of NBS1 in Ser343 by VRK1 is induced by either doxorubicin or IR in ATM (-/-) cells. Phosphorylated NBS1 is also complexed with VRK1. NBS1 phosphorylation by VRK1 cooperates with ATM. This phosphorylation of NBS1 by VRK1 contributes to the stability of NBS1 in ATM (-/-) cells, and the consequence of its loss can be prevented by treatment with the MG132 proteasome inhibitor of RNF8. We conclude that VRK1 regulation of NBS1 contributes to the stability of the repair complex and permits the sequential steps in DDR.
Collapse
|
30
|
VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Sci Rep 2015; 5:10543. [PMID: 26068304 PMCID: PMC4464288 DOI: 10.1038/srep10543] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.
Collapse
|