1
|
Zent KH, Dell'Acqua ML. Synapse-to-Nucleus ERK→CREB Transcriptional Signaling Requires Dendrite-to-Soma Ca 2+ Propagation Mediated by L-Type Voltage-Gated Ca 2+ Channels. J Neurosci 2025; 45:e1216242024. [PMID: 39562039 PMCID: PMC11756630 DOI: 10.1523/jneurosci.1216-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
The cAMP-response element-binding protein (CREB) transcription factor controls the expression of the neuronal immediate early genes c-fos, Arc, and Bdnf and is essential for long-lasting synaptic plasticity underlying learning and memory. Despite this critical role, there is still ongoing debate regarding the synaptic excitation-transcription (E-T) coupling mechanisms mediating CREB activation in the nucleus. Here we employed optical uncaging of glutamate to mimic synaptic excitation of distal dendrites in conjunction with simultaneous imaging of intracellular Ca2+ dynamics and transcriptional reporter gene expression to elucidate CREB E-T coupling mechanisms in hippocampal neurons cultured from both male and female rats. Using this approach, we found that CREB-dependent transcription was engaged following dendritic stimulation of N-methyl-d-aspartate receptors (NMDARs) only when Ca2+ signals propagated to the soma via subsequent activation of L-type voltage-gated Ca2+ channels resulting in activation of extracellular signal-regulated kinase MAP kinase signaling to sustain CREB phosphorylation in the nucleus. In contrast, dendrite-restricted Ca2+ signals generated by NMDARs failed to stimulate CREB-dependent transcription. Furthermore, Ca2+-CaM-dependent kinase-mediated signaling pathways that may transiently contribute to CREB phosphorylation following stimulation were ultimately dispensable for downstream CREB-dependent transcription and c-Fos induction. These findings emphasize the essential role that L-type Ca2+ channels play in rapidly relaying signals over long distances from synapses located on distal dendrites to the nucleus to control gene expression.
Collapse
Affiliation(s)
- Katlin H Zent
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
2
|
Nunes EJ, Addy NA. L-type calcium channel regulation of dopamine activity in the ventral tegmental area to nucleus accumbens pathway: Implications for substance use, mood disorders and co-morbidities. Neuropharmacology 2023; 224:109336. [PMID: 36414149 PMCID: PMC11215796 DOI: 10.1016/j.neuropharm.2022.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
L-type calcium channels (LTCCs), including the Cav1.2 and Cav1.3 LTCC subtypes, are important regulators of calcium entry into neurons, which mediates neurotransmitter release and synaptic plasticity. Cav1.2 and Cav1.3 are encoded by the CACNA1C and CACNA1D genes, respectively. These genes are implicated in substance use disorders and depression in humans, as demonstrated by genetic-wide association studies (GWAS). Pre-clinical models have also revealed a critical role of LTCCs on drug and mood related behavior, including the co-morbidity of substance use and mood disorders. Moreover, LTCCs have been shown to regulate the neuronal firing of dopamine (DA) neurons as well as drug and stress-induced plasticity within the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway. Thus, LTCCs are interesting targets for the treatment of neuropsychiatric diseases. In this review, we provide a brief introduction to voltage-gated calcium channels, specifically focusing on the LTCCs. We place particular emphasis on the ability of LTCCs to regulate DA neuronal activity and downstream signaling in the VTA to NAc pathway, and how such processes mediate substance use and mood disorder-related behavioral responses. We also discuss the bi-directional control of VTA LTCCs on drug and mood-related behaviors in pre-clinical models, with implications for co-morbid psychiatric diagnosis. We conclude with a section on the clinical implications of LTCC blockers, many which are already FDA approved as cardiac medications. Thus, pre-clinical and clinical work should examine the potential of LTCC blockers to be repurposed for neuropsychiatric illness. This article is part of the Special Issue on 'L-type calcium channel mechanisms in neuropsychiatric disorders'.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
- Department of Cellular and Molecular Physiology, Yale School of Medicine
- Interdepartmental Neuroscience Program, Yale University
- Wu Tsai Institute, Yale University
| |
Collapse
|
3
|
Sanderson JL, Freund RK, Castano AM, Benke TA, Dell'Acqua ML. The Ca V1.2 G406R mutation decreases synaptic inhibition and alters L-type Ca 2+ channel-dependent LTP at hippocampal synapses in a mouse model of Timothy Syndrome. Neuropharmacology 2022; 220:109271. [PMID: 36162529 PMCID: PMC9644825 DOI: 10.1016/j.neuropharm.2022.109271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Genetic alterations in autism spectrum disorders (ASD) frequently disrupt balance between synaptic excitation and inhibition and alter plasticity in the hippocampal CA1 region. Individuals with Timothy Syndrome (TS), a genetic disorder caused by CaV1.2 L-type Ca2+ channel (LTCC) gain-of function mutations, such as G406R, exhibit social deficits, repetitive behaviors, and cognitive impairments characteristic of ASD that are phenocopied in TS2-neo mice expressing G406R. Here, we characterized hippocampal CA1 synaptic function in male TS2-neo mice and found basal excitatory transmission was slightly increased and inhibitory transmission strongly decreased. We also found distinct impacts on two LTCC-dependent forms of long-term potentiation (LTP) synaptic plasticity that were not readily consistent with LTCC gain-of-function. LTP induced by high-frequency stimulation (HFS) was strongly impaired in TS2-neo mice, suggesting decreased LTCC function. Yet, CaV1.2 expression, basal phosphorylation, and current density were similar for WT and TS2-neo. However, this HFS-LTP also required GABAA receptor activity, and thus may be impaired in TS2-neo due to decreased inhibitory transmission. In contrast, LTP induced in WT mice by prolonged theta-train (PTT) stimulation in the presence of a β-adrenergic receptor agonist to increase CaV1.2 phosphorylation was partially induced in TS2-neo mice by PTT stimulation alone, consistent with increased LTCC function. Overall, our findings provide insights regarding how altered CaV1.2 channel function disrupts basal transmission and plasticity that could be relevant for neurobehavioral alterations in ASD.
Collapse
Affiliation(s)
- Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Anna M Castano
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Timothy A Benke
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA; Departments of Pediatrics, Neurology, and Otolaryngology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8303, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Dhoundiyal A, Goeschl V, Boehm S, Kubista H, Hotka M. Glycerol-3-Phosphate Shuttle Is a Backup System Securing Metabolic Flexibility in Neurons. J Neurosci 2022; 42:7339-7354. [PMID: 35999055 PMCID: PMC9525167 DOI: 10.1523/jneurosci.0193-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Electrical activity in neurons is highly energy demanding and accompanied by rises in cytosolic Ca2+ Cytosolic Ca2+, in turn, secures energy supply by pushing mitochondrial metabolism either through augmented NADH (nicotinamide adenine dinucleotide) transfer into mitochondria via the malate-aspartate shuttle (MAS) or via direct activation of dehydrogenases of the TCA cycle after passing into the matrix through the mitochondrial Ca2+ uniporter (MCU). Another Ca2+-sensitive booster of mitochondrial ATP synthesis is the glycerol-3-phosphate shuttle (G3PS), whose role in neuronal energy supply has remained elusive. Essential components of G3PS are expressed in hippocampal neurons. Single neuron metabolic measurements in primary hippocampal cultures derived from rat pups of either sex reveal only moderate, if any, constitutive activity of G3PS. However, during electrical activity neurons fully rely on G3PS when MAS and MCU are unavailable. Under these conditions, G3PS is required for appropriate action potential firing. Accordingly, G3PS safeguards metabolic flexibility of neurons to cope with energy demands of electrical signaling.SIGNIFICANCE STATEMENT Ca2+ ions are known to provide a link between the energy-demanding electrical activity and an adequate ATP supply in neurons. To do so, Ca2+ acts both from outside and inside of the mitochondrial inner membrane. Neuronal function critically depends on this regulation, and its defects are often found in various neurologic disorders. Although interest in neuronal metabolism has increased, many aspects thereof have remained unresolved. In particular, a Ca2+-sensitive NADH (nicotinamide adenine dinucleotide) shuttling system, the glycerol-3-phosphate shuttle, has been largely ignored with respect to its function in neurons. Our results demonstrate that this shuttle is functional in hippocampal neurons and safeguards ATP supply and appropriate action potential firing when malate aspartate shuttle and mitochondrial Ca2+ uniporter are unavailable, thereby ensuring neuronal metabolic flexibility.
Collapse
Affiliation(s)
- Ankit Dhoundiyal
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vanessa Goeschl
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Azieva AM, Sheynov AA, Kirillova DA, Tatarskiy EV, Georgieva SG, Soshnikova NV. PHF10, a Subunit of the PBAF Chromatin Remodeling Complex, Changes Its Localization and Interacts with c-FOS during the Initiation of Long-Term Potentiation in Neuronal Culture. Mol Biol 2021. [DOI: 10.1134/s0026893321050034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Robinson B, Gu Q, Kanungo J. Antidepressant Actions of Ketamine: Potential Role of L-Type Calcium Channels. Chem Res Toxicol 2021; 34:1198-1207. [PMID: 33566591 DOI: 10.1021/acs.chemrestox.0c00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, the United States Food and Drug Administration approved esketamine, the S-enantiomer of ketamine, as a fast-acting therapeutic drug for treatment-resistant depression. Although ketamine is known as an N-methyl-d-aspartate (NMDA) receptor antagonist, the underlying mechanisms of how it elicits an antidepressant effect, specifically at subanesthetic doses, are not clear and remain an advancing field of research interest. On the other hand, high-dose (more than the anesthetic dose) ketamine-induced neurotoxicity in animal models has been reported. There has been progress in understanding the potential pathways involved in ketamine-induced antidepressant effects, some of which include NMDA-receptor antagonism, modulation of voltage-gated calcium channels, and brain-derived neurotrophic factor (BDNF) signaling. Often these pathways have been shown to be linked. Voltage-gated L-type calcium channels have been shown to mediate the rapid-acting antidepressant effects of ketamine, especially involving induction of BDNF synthesis downstream, while BDNF deficiency decreases the expression of L-type calcium channels. This review focuses on the reported studies linking ketamine's rapid-acting antidepressant actions to L-type calcium channels with an objective to present a perspective on the importance of the modulation of intracellular calcium in mediating the effects of subanesthetic (antidepressant) versus high-dose ketamine (anesthetic and potential neurotoxicant), the latter having the ability to reduce intracellular calcium by blocking the calcium-permeable NMDA receptors, which is implicated in potential neurotoxicity.
Collapse
Affiliation(s)
- Bonnie Robinson
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Qiang Gu
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Jyotshna Kanungo
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|
7
|
Huijgens PT, Snoeren EMS, Meisel RL, Mermelstein PG. Effects of gonadectomy and dihydrotestosterone on neuronal plasticity in motivation and reward related brain regions in the male rat. J Neuroendocrinol 2021; 33:e12918. [PMID: 33340384 DOI: 10.1111/jne.12918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Gonadal hormones affect neuronal morphology to ultimately regulate behaviour. In female rats, oestradiol mediates spine plasticity in hypothalamic and limbic brain structures, contributing to long-lasting effects on motivated behaviour. Parallel effects of androgens in male rats have not been extensively studied. Here, we investigated the effect of both castration and androgen replacement on spine plasticity in the nucleus accumbens shell and core (NAcSh and NAcC), caudate putamen (CPu), medial amygdala (MeA) and medial preoptic nucleus (MPN). Intact and castrated (gonadectomy [GDX]) male rats were treated with dihydrotestosterone (DHT, 1.5 mg) or vehicle (oil) in three experimental groups: intact-oil, GDX-oil and GDX-DHT. Spine density and morphology, measured 24 hours after injection, were determined through three-dimensional reconstruction of confocal z-stacks of DiI-labelled dendritic segments. We found that GDX decreased spine density in the MPN, which was rescued by DHT treatment. DHT also increased spine density in the MeA in GDX animals compared to intact oil-treated animals. By contrast, DHT decreased spine density in the NAcSh compared to GDX males. No effect on spine density was observed in the NAcC or CPu. Spine length and spine head diameter were unaffected by GDX and DHT in the investigated brain regions. In addition, immunohistochemistry revealed that DHT treatment of GDX animals rapidly increased the number of cell bodies in the NAcSh positive for phosphorylated cAMP response-element binding protein, a downstream messenger of the androgen receptor. These findings indicate that androgen signalling plays a role in the regulation of spine plasticity within neurocircuits involved in motivated behaviours.
Collapse
Affiliation(s)
- Patty T Huijgens
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Robert L Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Abstract
Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.
Collapse
Affiliation(s)
- Pablo M Paez
- Department of Pharmacology and Toxicology and Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York 14203, USA;
| | - David A Lyons
- Centre for Discovery Brain Sciences, Centre for Multiple Sclerosis Research, and Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom;
| |
Collapse
|
9
|
Northcutt AJ, Schulz DJ. Molecular mechanisms of homeostatic plasticity in central pattern generator networks. Dev Neurobiol 2019; 80:58-69. [PMID: 31778295 DOI: 10.1002/dneu.22727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023]
Abstract
Central pattern generator (CPG) networks rely on a balance of intrinsic and network properties to produce reliable, repeatable activity patterns. This balance is maintained by homeostatic plasticity where alterations in neuronal properties dynamically maintain appropriate neural output in the face of changing environmental conditions and perturbations. However, it remains unclear just how these neurons and networks can both monitor their ongoing activity and use this information to elicit homeostatic physiological responses to ensure robustness of output over time. Evidence exists that CPG networks use a mixed strategy of activity-dependent, activity-independent, modulator-dependent, and synaptically regulated homeostatic plasticity to achieve this critical stability. In this review, we focus on some of the current understanding of the molecular pathways and mechanisms responsible for this homeostatic plasticity in the context of central pattern generator function, with a special emphasis on some of the smaller invertebrate networks that have allowed for extensive cellular-level analyses that have brought recent insights to these questions.
Collapse
Affiliation(s)
- Adam J Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
10
|
Tyssowski KM, Gray JM. The neuronal stimulation-transcription coupling map. Curr Opin Neurobiol 2019; 59:87-94. [PMID: 31163285 PMCID: PMC6885097 DOI: 10.1016/j.conb.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Neurons transcribe different genes in response to different extracellular stimuli, and these genes regulate neuronal plasticity. Thus, understanding how different stimuli regulate different stimulus-dependent gene modules would deepen our understanding of plasticity. To systematically dissect the coupling between stimulation and transcription, we propose creating a 'stimulation-transcription coupling map' that describes the transcription response to each possible extracellular stimulus. While we are currently far from having a complete map, recent genomic experiments have begun to facilitate its creation. Here, we describe the current state of the stimulation-transcription coupling map as well as the transcriptional regulation that enables this coupling.
Collapse
Affiliation(s)
- Kelsey M Tyssowski
- Harvard Medical School, Department of Genetics, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Jesse M Gray
- Harvard Medical School, Department of Genetics, 77 Ave Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
11
|
West AE. Activity-Dependent Transcription Collaborates with Local Dendritic Translation to Encode Stimulus-Specificity in the Genome Binding of NPAS4. Neuron 2019; 104:634-636. [PMID: 31751544 DOI: 10.1016/j.neuron.2019.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new study in Cell (Brigidi et al., 2019) shows that local dendritic versus somatic translation of the neuronal activity-inducible transcription factor NPAS4 drives the formation of distinct heterodimers that enable stimulus-specificity to be encoded into the pattern of NPAS4 binding across the genome.
Collapse
Affiliation(s)
- Anne E West
- Department of Neurobiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Priya R, Paredes MF, Karayannis T, Yusuf N, Liu X, Jaglin X, Graef I, Alvarez-Buylla A, Fishell G. Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism. Cell Rep 2019; 22:1695-1709. [PMID: 29444424 DOI: 10.1016/j.celrep.2018.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/26/2017] [Accepted: 12/30/2017] [Indexed: 02/03/2023] Open
Abstract
We demonstrate that cortical interneurons derived from ventral eminences, including the caudal ganglionic eminence, undergo programmed cell death. Moreover, with the exception of VIP interneurons, this occurs in a manner that is activity-dependent. In addition, we demonstrate that, within interneurons, Calcineurin, a calcium-dependent protein phosphatase, plays a critical role in sequentially linking activity to maturation (E15-P5) and survival (P5-P20). Specifically, embryonic inactivation of Calcineurin results in a failure of interneurons to morphologically mature and prevents them from undergoing apoptosis. By contrast, early postnatal inactivation of Calcineurin increases apoptosis. We conclude that Calcineurin serves a dual role of promoting first the differentiation of interneurons and, subsequently, their survival.
Collapse
Affiliation(s)
- Rashi Priya
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Mercedes Francisca Paredes
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theofanis Karayannis
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nusrath Yusuf
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xingchen Liu
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Xavier Jaglin
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabella Graef
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gord Fishell
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav 2018; 104:130-137. [PMID: 29505763 PMCID: PMC6131090 DOI: 10.1016/j.yhbeh.2018.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Brian P Head
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Winland CD, Welsh N, Sepulveda-Rodriguez A, Vicini S, Maguire-Zeiss KA. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 2017; 46:2519-2533. [PMID: 28921719 PMCID: PMC5673553 DOI: 10.1111/ejn.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+ ]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+ ]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+ ]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca2+ ]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cations, Divalent/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Inflammation/metabolism
- Inflammation/pathology
- Lipopolysaccharides
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Tissue Culture Techniques
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
Collapse
Affiliation(s)
- Carissa D. Winland
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Nora Welsh
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| | - Alberto Sepulveda-Rodriguez
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Kathleen A. Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| |
Collapse
|
15
|
STIM1 Ca 2+ Sensor Control of L-type Ca 2+-Channel-Dependent Dendritic Spine Structural Plasticity and Nuclear Signaling. Cell Rep 2017; 19:321-334. [PMID: 28402855 DOI: 10.1016/j.celrep.2017.03.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/07/2016] [Accepted: 03/17/2017] [Indexed: 12/23/2022] Open
Abstract
Potentiation of synaptic strength relies on postsynaptic Ca2+ signals, modification of dendritic spine structure, and changes in gene expression. One Ca2+ signaling pathway supporting these processes routes through L-type Ca2+ channels (LTCC), whose activity is subject to tuning by multiple mechanisms. Here, we show in hippocampal neurons that LTCC inhibition by the endoplasmic reticulum (ER) Ca2+ sensor, stromal interaction molecule 1 (STIM1), is engaged by the neurotransmitter glutamate, resulting in regulation of spine ER structure and nuclear signaling by the NFATc3 transcription factor. In this mechanism, depolarization by glutamate activates LTCC Ca2+ influx, releases Ca2+ from the ER, and consequently drives STIM1 aggregation and an inhibitory interaction with LTCCs that increases spine ER content but decreases NFATc3 nuclear translocation. These findings of negative feedback control of LTCC signaling by STIM1 reveal interplay between Ca2+ influx and release from stores that controls both postsynaptic structural plasticity and downstream nuclear signaling.
Collapse
|
16
|
Human native Ca v1 channels in chromaffin cells: contribution to exocytosis and firing of spontaneous action potentials. Eur J Pharmacol 2017; 796:115-121. [PMID: 27988286 DOI: 10.1016/j.ejphar.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/31/2023]
Abstract
The present study was performed to evaluate the Cav1 channel subtypes expressed in human chromaffin cells and the role that these channels play in exocytosis and cell excitability. Here we show that human chromaffin cells obtained from organ donors express Cav1.2 and Cav1.3 subtypes using molecular and pharmacological techniques. Immunocytochemical data demonstrated the presence of Cav1.2 and Cav1.3 subtypes, but not Cav1.1 or Cav1.4. Electrophysiological experiments were conducted to investigate the contribution of Cav1 channels to the exocytotic process and cell excitability. Cav1 channels contribute to the exocytosis of secretory vesicles, evidenced by the block of 3μM nifedipine (36.5±2%) of membrane capacitance increment elicited by 200ms depolarizing pulses. These channels show a minor contribution to the initiation of spontaneous action potential firing, as shown by the 2.5 pA of current at the threshold potential (-34mV), which elicits 10.4mV of potential increment. In addition, we found that only 8% of human chromaffin cells exhibit spontaneous action potentials. These data offer novel information regarding human chromaffin cells and the role of human native Cav1 channels in exocytosis and cell excitability.
Collapse
|
17
|
NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory. Sci Rep 2016; 6:35256. [PMID: 27739540 PMCID: PMC5064360 DOI: 10.1038/srep35256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023] Open
Abstract
The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.
Collapse
|
18
|
McCarthy MJ, Le Roux MJ, Wei H, Beesley S, Kelsoe JR, Welsh DK. Calcium channel genes associated with bipolar disorder modulate lithium's amplification of circadian rhythms. Neuropharmacology 2015; 101:439-48. [PMID: 26476274 DOI: 10.1016/j.neuropharm.2015.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca(2+) changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2::luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 h in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca(2+) less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. CONTROLS We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms.
Collapse
Affiliation(s)
- Michael J McCarthy
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA.
| | - Melissa J Le Roux
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| | - Heather Wei
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA
| | - Stephen Beesley
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| | - John R Kelsoe
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| | - David K Welsh
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| |
Collapse
|
19
|
Berkowitz BA, Bissig D, Roberts R. MRI of rod cell compartment-specific function in disease and treatment in vivo. Prog Retin Eye Res 2015; 51:90-106. [PMID: 26344734 DOI: 10.1016/j.preteyeres.2015.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Rod cell oxidative stress is a major pathogenic factor in retinal disease, such as diabetic retinopathy (DR) and retinitis pigmentosa (RP). Personalized, non-destructive, and targeted treatment for these diseases remains elusive since current imaging methods cannot analytically measure treatment efficacy against rod cell compartment-specific oxidative stress in vivo. Over the last decade, novel MRI-based approaches that address this technology gap have been developed. This review summarizes progress in the development of MRI since 2006 that enables earlier evaluation of the impact of disease on rod cell compartment-specific function and the efficacy of anti-oxidant treatment than is currently possible with other methods. Most of the new assays of rod cell compartment-specific function are based on endogenous contrast mechanisms, and this is expected to facilitate their translation into patients with DR and RP, and other oxidative stress-based retinal diseases.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA; Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - David Bissig
- Dept. of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robin Roberts
- Dept. Of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
20
|
Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res 2014; 1628:157-73. [PMID: 25446457 DOI: 10.1016/j.brainres.2014.11.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 01/02/2023]
Abstract
Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.
Collapse
Affiliation(s)
- Fabio C Cruz
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - F Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - Bruce T Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
21
|
Adaptation in the visual cortex: influence of membrane trajectory and neuronal firing pattern on slow afterpotentials. PLoS One 2014; 9:e111578. [PMID: 25380063 PMCID: PMC4224415 DOI: 10.1371/journal.pone.0111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022] Open
Abstract
The input/output relationship in primary visual cortex neurons is influenced by the history of the preceding activity. To understand the impact that membrane potential trajectory and firing pattern has on the activation of slow conductances in cortical neurons we compared the afterpotentials that followed responses to different stimuli evoking similar numbers of action potentials. In particular, we compared afterpotentials following the intracellular injection of either square or sinusoidal currents lasting 20 seconds. Both stimuli were intracellular surrogates of different neuronal responses to prolonged visual stimulation. Recordings from 99 neurons in slices of visual cortex revealed that for stimuli evoking an equivalent number of spikes, sinusoidal current injection activated a slow afterhyperpolarization of significantly larger amplitude (8.5 ± 3.3 mV) and duration (33 ± 17 s) than that evoked by a square pulse (6.4 ± 3.7 mV, 28 ± 17 s; p<0.05). Spike frequency adaptation had a faster time course and was larger during plateau (square pulse) than during intermittent (sinusoidal) depolarizations. Similar results were obtained in 17 neurons intracellularly recorded from the visual cortex in vivo. The differences in the afterpotentials evoked with both protocols were abolished by removing calcium from the extracellular medium or by application of the L-type calcium channel blocker nifedipine, suggesting that the activation of a calcium-dependent current is at the base of this afterpotential difference. These findings suggest that not only the spikes, but the membrane potential values and firing patterns evoked by a particular stimulation protocol determine the responses to any subsequent incoming input in a time window that spans for tens of seconds to even minutes.
Collapse
|
22
|
O'Leary T, Williams AH, Franci A, Marder E. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 2014; 82:809-21. [PMID: 24853940 DOI: 10.1016/j.neuron.2014.04.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 01/06/2023]
Abstract
How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.
Collapse
Affiliation(s)
- Timothy O'Leary
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Alex H Williams
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Alessio Franci
- Department of Electrical Engineering and Computer Science, University of Liège, 10 Grande Traverse, Liège B 4000, Belgium; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
23
|
AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling. Cell Rep 2014; 7:1577-1588. [PMID: 24835999 DOI: 10.1016/j.celrep.2014.04.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/18/2014] [Accepted: 04/15/2014] [Indexed: 11/23/2022] Open
Abstract
L-type voltage-gated Ca2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.
Collapse
|
24
|
Yuan Q, Shakhawat AMD, Harley CW. Mechanisms underlying early odor preference learning in rats. PROGRESS IN BRAIN RESEARCH 2014; 208:115-56. [PMID: 24767481 DOI: 10.1016/b978-0-444-63350-7.00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early odor preference training in rat pups produces behavioral preferences that last from hours to lifetimes. Here, we discuss the molecular and circuitry changes we have observed in the olfactory bulb (OB) and in the anterior piriform cortex (aPC) following odor training. For normal preference learning, both structures are necessary, but learned behavior can be initiated by initiating local circuit change in either structure. Our evidence relates dynamic molecular and circuit changes to memory duration and storage localization. Results using this developmental model are consistent with biological memory theories implicating N-methyl-D-aspartate (NMDA) receptors and β-adrenoceptors, and their associated cascades, in memory induction and consolidation. Finally, our examination of the odor preference model reveals a primary role for increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor synaptic strength, and in network strength, in the creation and maintenance of preference memory in both olfactory structures.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Amin M D Shakhawat
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
25
|
Nonaka M, Fujii H, Kim R, Kawashima T, Okuno H, Bito H. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130150. [PMID: 24298152 DOI: 10.1098/rstb.2013.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected 'inverse' synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, , Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Meitzen J, Luoma JI, Boulware MI, Hedges VL, Peterson BM, Tuomela K, Britson KA, Mermelstein PG. Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 2013; 154:4293-304. [PMID: 24008343 PMCID: PMC3800757 DOI: 10.1210/en.2013-1172] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In addition to activating nuclear estrogen receptor signaling, 17β-estradiol can also regulate neuronal function via surface membrane receptors. In various brain regions, these actions are mediated by the direct association of estrogen receptors (ERs) activating metabotropic glutamate receptors (mGluRs). These ER/mGluR signaling partners are organized into discrete functional microdomains via caveolin proteins. A central question that remains concerns the underlying mechanism by which these subpopulations of ERs are targeted to the surface membrane. One candidate mechanism is S-palmitoylation, a posttranscriptional modification that affects the subcellular distribution and function of the modified protein, including promoting localization to membranes. Here we test for the role of palmitoylation and the necessity of specific palmitoylacyltransferase proteins in neuronal membrane ER action. In hippocampal neurons, pharmacological inhibition of palmitoylation eliminated 17β-estradiol-mediated phosphorylation of cAMP response element-binding protein, a process dependent on surface membrane ERs. In addition, mutation of the palmitoylation site on estrogen receptor (ER) α blocks ERα-mediated cAMP response element-binding protein phosphorylation. Similar results were obtained after mutation of the palmitoylation site on ERβ. Importantly, mutation of either ERα or ERβ did not affect the ability of the reciprocal ER to signal at the membrane. In contrast, membrane ERα and ERβ signaling were both dependent on the expression of the palmitoylacyltransferase proteins DHHC-7 and DHHC-21. Neither mGluR activity nor caveolin or ER expression was affected by knockdown of DHHC-7 and DHHC-21. These data collectively suggest discrete mechanisms that regulate specific isoform or global membrane ER signaling in neurons separate from mGluR activity or nuclear ER function.
Collapse
Affiliation(s)
- John Meitzen
- PhD, Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, 127 David Clark Laboratories, Campus Box 7617, Raleigh, North Carolina 27695.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Meitzen J, Perry AN, Westenbroek C, Hedges VL, Becker JB, Mermelstein PG. Enhanced striatal β1-adrenergic receptor expression following hormone loss in adulthood is programmed by both early sexual differentiation and puberty: a study of humans and rats. Endocrinology 2013; 154:1820-31. [PMID: 23533220 PMCID: PMC3628022 DOI: 10.1210/en.2012-2131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After reproductive senescence or gonadectomy, changes occur in neural gene expression, ultimately altering brain function. The endocrine mechanisms underlying these changes in gene expression beyond immediate hormone loss are poorly understood. To investigate this, we measured changes in gene expression the dorsal striatum, where 17β-estradiol modulates catecholamine signaling. In human caudate, quantitative PCR determined a significant elevation in β1-adrenergic receptor (β1AR) expression in menopausal females when compared with similarly aged males. No differences were detected in β2-adrenergic and D1- and D2-dopamine receptor expression. Consistent with humans, adult ovariectomized female rats exhibited a similar increase in β1AR expression when compared with gonadectomized males. No sex difference in β1AR expression was detected between intact adults, prepubertal juveniles, or adults gonadectomized before puberty, indicating the necessity of pubertal development and adult ovariectomy. Additionally, increased β1AR expression in adult ovariectomized females was not observed if animals were masculinized/defeminized with testosterone injections as neonates. To generate a model system for assessing functional impact, increased β1AR expression was induced in female-derived cultured striatal neurons via exposure to and then removal of hormone-containing serum. Increased β1AR action on cAMP formation, cAMP response element-binding protein phosphorylation and gene expression was observed. This up-regulation of β1AR action was eliminated with 17β-estradiol addition to the media, directly implicating this hormone as a regulator of β1AR expression. Beyond having implications for the known sex differences in striatal function and pathologies, these data collectively demonstrate that critical periods early in life and at puberty program adult gene responsiveness to hormone loss after gonadectomy and potentially reproductive senescence.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Berglund K, Birkner E, Augustine GJ, Hochgeschwender U. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. PLoS One 2013; 8:e59759. [PMID: 23544095 PMCID: PMC3609769 DOI: 10.1371/journal.pone.0059759] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/18/2013] [Indexed: 01/10/2023] Open
Abstract
Manipulation of neuronal activity through genetically targeted actuator molecules is a powerful approach for studying information flow in the brain. In these approaches the genetically targeted component, a receptor or a channel, is activated either by a small molecule (chemical genetics) or by light from a physical source (optogenetics). We developed a hybrid technology that allows control of the same neurons by both optogenetic and chemical genetic means. The approach is based on engineered chimeric fusions of a light-generating protein (luciferase) to a light-activated ion channel (channelrhodopsin). Ionic currents then can be activated by bioluminescence upon activation of luciferase by its substrate, coelenterazine (CTZ), as well as by external light. In cell lines, expression of the fusion of Gaussia luciferase to Channelrhodopsin-2 yielded photocurrents in response to CTZ. Larger photocurrents were produced by fusing the luciferase to Volvox Channelrhodopsin-1. This version allowed chemical modulation of neuronal activity when expressed in cultured neurons: CTZ treatment shifted neuronal responses to injected currents and sensitized neurons to fire action potentials in response to subthreshold synaptic inputs. These luminescent channelrhodopsins--or luminopsins--preserve the advantages of light-activated ion channels, while extending their capabilities. Our proof-of-principle results suggest that this novel class of tools can be improved and extended in numerous ways.
Collapse
Affiliation(s)
- Ken Berglund
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
| | - Elisabeth Birkner
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- NeuroTransgenic Laboratory, Duke University, Durham, North Carolina, United States of America
| | - George J. Augustine
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ute Hochgeschwender
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- NeuroTransgenic Laboratory, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
29
|
Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc Natl Acad Sci U S A 2013; 110:5175-80. [PMID: 23479613 DOI: 10.1073/pnas.1210735110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.
Collapse
|
30
|
Bengtson CP, Kaiser M, Obermayer J, Bading H. Calcium responses to synaptically activated bursts of action potentials and their synapse-independent replay in cultured networks of hippocampal neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1672-9. [PMID: 23360982 DOI: 10.1016/j.bbamcr.2013.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/29/2022]
Abstract
Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- C Peter Bengtson
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
31
|
Tuckwell HC. Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 2012; 96:1-31. [DOI: 10.1016/j.pneurobio.2011.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
|
32
|
Heimfarth L, Loureiro SO, Reis KP, de Lima BO, Zamboni F, Gandolfi T, Narvaes R, da Rocha JBT, Pessoa-Pureur R. Cross-Talk among Intracellular Signaling Pathways Mediates the Diphenyl Ditelluride Actions on the Hippocampal Cytoskeleton of Young Rats. Chem Res Toxicol 2011; 24:1754-64. [DOI: 10.1021/tx200307u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | | | - Karina Pires Reis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | - Bárbara Ortiz de Lima
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | - Fernanda Zamboni
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | - Talita Gandolfi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | - Rodrigo Narvaes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | | | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brasil
| |
Collapse
|
33
|
Manita S, Miyazaki K, Ross WN. Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage-dependent Ca2+ signalling in rat pyramidal cell dendrites. J Physiol 2011; 589:4903-20. [PMID: 21844002 DOI: 10.1113/jphysiol.2011.216564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Postsynaptic [Ca(2+)](i) changes contribute to several kinds of plasticity in pyramidal neurons. We examined the effects of synaptically activated Ca(2+) waves and NMDA spikes on subsequent Ca(2+) signalling in CA1 pyramidal cell dendrites in hippocampal slices. Tetanic synaptic stimulation evoked a localized Ca(2+) wave in the primary apical dendrites. The [Ca(2+)](i) increase from a backpropagating action potential (bAP) or subthreshold depolarization was reduced if it was generated immediately after the wave. The suppression had a recovery time of 30-60 s. The suppression only occurred where the wave was generated and was not due to a change in bAP amplitude or shape. The suppression also could be generated by Ca(2+) waves evoked by uncaging IP(3), showing that other signalling pathways activated by the synaptic tetanus were not required. The suppression was proportional to the amplitude of the [Ca(2+)](i) change of the Ca(2+) wave and was not blocked by a spectrum of kinase or phosphatase inhibitors, consistent with suppression due to Ca(2+)-dependent inactivation of Ca(2+) channels. The waves also reduced the frequency and amplitude of spontaneous, localized Ca(2+) release events in the dendrites by a different mechanism, probably by depleting the stores at the site of wave generation. The same synaptic tetanus often evoked NMDA spike-mediated [Ca(2+)](i) increases in the oblique dendrites where Ca(2+) waves do not propagate. These NMDA spikes suppressed the [Ca(2+)](i) increase caused by bAPs in those regions. [Ca(2+)](i) increases by Ca(2+) entry through voltage-gated Ca(2+) channels also suppressed the [Ca(2+)](i) increases from subsequent bAPs in regions where the voltage-gated [Ca(2+)](i) increases were largest, showing that all ways of raising [Ca(2+)](i) could cause suppression.
Collapse
Affiliation(s)
- Satoshi Manita
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
34
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
35
|
Luoma JI, Kelley BG, Mermelstein PG. Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 2011; 76:845-55. [PMID: 21371490 PMCID: PMC3129396 DOI: 10.1016/j.steroids.2011.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 12/12/2022]
Abstract
The therapeutic use of progesterone following traumatic brain injury has recently entered phase III clinical trials as a means of neuroprotection. Although it has been hypothesized that progesterone protects against calcium overload following excitotoxic shock, the exact mechanisms underlying the beneficial effects of progesterone have yet to be determined. We found that therapeutic concentrations of progesterone to be neuroprotective against depolarization-induced excitotoxicity in cultured striatal neurons. Through use of calcium imaging, electrophysiology and the measurement of changes in activity-dependent gene expression, progesterone was found to block calcium entry through voltage-gated calcium channels, leading to alterations in the signaling of the activity-dependent transcription factors NFAT and CREB. The effects of progesterone were highly specific to this steroid hormone, although they did not appear to be receptor mediated. In addition, progesterone did not inhibit AMPA or NMDA receptor signaling. This analysis regarding the effect of progesterone on calcium signaling provides both a putative mechanism by which progesterone acts as a neuroprotectant, as well as affords a greater appreciation for its potential far-reaching effects on cellular function.
Collapse
Affiliation(s)
- Jessie I Luoma
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Brooke G Kelley
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
36
|
Progesterone blocks multiple routes of ion flux. Mol Cell Neurosci 2011; 48:137-41. [PMID: 21782024 DOI: 10.1016/j.mcn.2011.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 01/07/2023] Open
Abstract
The administration of progesterone as a neuroprotective agent following traumatic brain injury has recently entered phase III clinical trials. Previous work has demonstrated that therapeutic concentrations of progesterone decrease excitotoxicity through direct inhibition of voltage-gated calcium channels, an action independent of the nuclear progesterone receptor. Here we report using cultured rat striatal neurons that these same concentrations of progesterone also block voltage-gated potassium channels, sodium channels and GABA(A) currents. The actions of progesterone act at the surface membrane of neurons in a steroid specific, voltage-independent, concentration-dependent manner. Notably, these broad actions of progesterone on ion channel and neurotransmitter receptor function mirror those of dihydropyridines, and indicate potential shared mechanisms of action, the prospective of additional therapeutic applications, and possibly, untoward effects.
Collapse
|
37
|
Riquelme D, Alvarez A, Leal N, Adasme T, Espinoza I, Valdés JA, Troncoso N, Hartel S, Hidalgo J, Hidalgo C, Carrasco MA. High-frequency field stimulation of primary neurons enhances ryanodine receptor-mediated Ca2+ release and generates hydrogen peroxide, which jointly stimulate NF-κB activity. Antioxid Redox Signal 2011; 14:1245-59. [PMID: 20836702 DOI: 10.1089/ars.2010.3238] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuronal electrical activity increases intracellular Ca(2+) concentration and generates reactive oxygen species. Here, we show that high frequency field stimulation of primary hippocampal neurons generated Ca(2+) signals with an early and a late component, and promoted hydrogen peroxide generation via a neuronal NADPH oxidase. Hydrogen peroxide generation required both Ca(2+) entry through N-methyl-D-aspartate receptors and Ca(2+) release mediated by ryanodine receptors (RyR). Field stimulation also enhanced nuclear translocation of the NF-κB p65 protein and NF-κB -dependent transcription, and increased c-fos mRNA and type-2 RyR protein content. Preincubation with inhibitory ryanodine or with the antioxidant N-acetyl L-cysteine abolished the increase in hydrogen peroxide generation and the late Ca(2+) signal component induced by electrical stimulation. Primary cortical cells behaved similarly as primary hippocampal cells. Exogenous hydrogen peroxide also activated NF-κB-dependent transcription in hippocampal neurons; inhibitory ryanodine prevented this effect. Selective inhibition of the NADPH oxidase or N-acetyl L-cysteine also prevented the enhanced translocation of p65 in hippocampal cells, while N-acetyl L-cysteine abolished the increase in RyR2 protein content induced by high frequency stimulation. In conclusion, the present results show that electrical stimulation induced reciprocal activation of ryanodine receptor-mediated Ca(2+) signals and hydrogen peroxide generation, which stimulated jointly NF-κB activity.
Collapse
Affiliation(s)
- Denise Riquelme
- Center of Molecular Studies of the Cell, Institute of Biomedical Sciences Programs, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Meitzen J, Luoma JI, Stern CM, Mermelstein PG. β1-Adrenergic receptors activate two distinct signaling pathways in striatal neurons. J Neurochem 2011; 116:984-95. [PMID: 21143600 PMCID: PMC3078043 DOI: 10.1111/j.1471-4159.2010.07137.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine (NE) and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP response element binding protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. NE-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which NE and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how NE and β1-adrenergic receptors may affect striatal physiology.
Collapse
Affiliation(s)
- John Meitzen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
39
|
Dilger EK, Shin HS, Guido W. Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse. J Physiol 2010; 589:919-37. [PMID: 21173075 DOI: 10.1113/jphysiol.2010.202499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In developing cells of the mouse dorsal lateral geniculate nucleus (dLGN), synaptic responses evoked by optic tract (OT) stimulation give rise to long-lasting, high-amplitude depolarizations known as plateau potentials. These events are mediated by L-type Ca2+ channels and occur during early postnatal life, a time when retinogeniculate connections are remodelling. To better understand the relationship between L-type activity and dLGN development we used an in vitro thalamic slice preparation which preserves the retinal connections and intrinsic circuitry in dLGN and examined how synaptic responses evoked by OT stimulation lead to the activation of plateau potentials. By varying the strength and temporal frequency of OT stimulation we identified at least three factors that contribute to the developmental regulation of plateau activity: the degree of retinal convergence, the temporal pattern of retinal stimulation and the emergence of feed-forward inhibition. Before natural eye opening (postnatal day 14), the excitatory synaptic responses of relay cells receiving multiple retinal inputs summated in both the spatial and temporal domains to produce depolarizations sufficient to activate L-type activity. After eye opening, when inhibitory responses are fully developed, plateau activity was rarely evoked even with high temporal rates of OT stimulation. When the bulk of this inhibition was blocked by bath application of bicuculline, the incidence of plateau activity increased significantly. We also made use of a transgenic mouse that lacks the β3 subunit of the L-type Ca2+ channel. These mutants have far fewer membrane-bound Ca2+ channels and attenuated L-type activity. In β3 nulls, L-type plateau activity was rarely observed even at young ages when plateau activity prevails. Thus, in addition to the changing patterns of synaptic connectivity and retinal activity, the expression of L-type Ca2+ channels is a requisite component in the manifestation of plateau activity.
Collapse
Affiliation(s)
- Emily K Dilger
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Centre, Sanger Hall, 1101 E. Marshall St, Richmond, VA 23298, USA
| | | | | |
Collapse
|
40
|
Activity-dependent calcium signaling and ERK-MAP kinases in neurons: a link to structural plasticity of the nucleus and gene transcription regulation. Cell Calcium 2010; 49:296-305. [PMID: 21163523 DOI: 10.1016/j.ceca.2010.11.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 12/11/2022]
Abstract
Activity-dependent gene expression is important for the formation and maturation of neuronal networks, neuronal survival and for plastic modifications within mature networks. At the level of individual neurons, expression of new protein is required for dendritic branching, synapse formation and elimination. Experience-driven synaptic activity induces membrane depolarization, which in turn evokes intracellular calcium transients that are decoded according to their source and strength by intracellular calcium sensing proteins. In order to activate the gene transcription machinery of the cell, calcium signals have to be conveyed from the site of their generation in the cytoplasm to the cell nucleus. This can occur via a variety of mechanisms and with different kinetics depending on the source and amplitude of calcium influx. One mechanism involves the propagation of calcium itself, leading to nuclear calcium transients that subsequently activate transcription. The mitogen-activated protein kinase (MAPK) cascade represents a second central signaling module that transduces information from the site of calcium signal generation at the plasma membrane to the nucleus. Nuclear signaling of the MAPK cascades catalyzes the phosphorylation of transcription factors but also regulates gene transcription more globally at the level of chromatin remodeling as well as through its recently identified role in the modulation of nuclear shape. Here we discuss the possible mechanisms by which the MAPKs ERK1 and ERK2, activated by synaptically evoked calcium influx, can signal to the nucleus and regulate gene transcription. Moreover, we describe how MAPK-dependent structural plasticity of the nuclear envelope enhances nuclear calcium signaling and suggest possible implications for the regulation of gene transcription in the context of nuclear geometry.
Collapse
|
41
|
Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience 2010; 170:1045-55. [PMID: 20709161 PMCID: PMC2949475 DOI: 10.1016/j.neuroscience.2010.08.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/13/2010] [Accepted: 08/09/2010] [Indexed: 01/16/2023]
Abstract
Along with its ability to directly regulate gene expression, estradiol influences cell signaling and brain functions via rapid, membrane-initiated events. In the female rat striatum, estradiol activates membrane-localized estrogen receptors to influence synaptic neurotransmission, calcium channel activity, and behaviors related to motor control. Yet, the mechanism by which estradiol acts to rapidly affect striatal physiology has remained elusive. Here we find that membrane estrogen receptors (ERs) couple to the metabotropic glutamate receptors mGluR5 and mGluR3, providing the framework to understand how membrane estrogen receptors affect striatal function. Using CREB phosphorylation as a downstream measure of ER/mGluR activation, membrane-localized estrogen receptor α (ERα) activates mGluR5 signaling to mediate mitogen-activated protein kinase (MAPK)-dependent CREB phosphorylation. Further, ERα and estrogen receptor β (ERβ) activate mGluR3 to attenuate L-type calcium channel-dependent CREB signaling. Interestingly, while this fundamental mechanism of ER/mGluR signaling was initially characterized in hippocampal neurons, estrogen receptors in striatal neurons are paired with a different set of mGluRs, resulting in the potential to functionally isolate membrane-initiated estrogen signaling across brain regions via use of specific mGluR modulators. These results provide both a mechanism for the rapid actions of estrogens within the female striatum, as well as demonstrate that estrogen receptors can interact with a more diverse set of surface membrane receptors than previously recognized.
Collapse
Affiliation(s)
- D Grove-Strawser
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street, S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
42
|
Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS One 2010; 5:e12486. [PMID: 20824214 PMCID: PMC2930854 DOI: 10.1371/journal.pone.0012486] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Synaptogenesis is a fundamental step in neuronal development. For spiny glutamatergic synapses in hippocampus and cortex, synaptogenesis involves adhesion of pre and postsynaptic membranes, delivery and anchorage of pre and postsynaptic structures including scaffolds such as PSD-95 and NMDA and AMPA receptors, which are glutamate-gated ion channels, as well as the morphological maturation of spines. Although electrical activity-dependent mechanisms are established regulators of these processes, the mechanisms that function during early development, prior to the onset of electrical activity, are unclear. The Eph receptors and ephrins provide cell contact-dependent pathways that regulate axonal and dendritic development. Members of the ephrin-A family are glycosyl-phosphatidylinositol-anchored to the cell surface and activate EphA receptors, which are receptor tyrosine kinases. METHODOLOGY/PRINCIPAL FINDINGS Here we show that ephrin-A5 interaction with the EphA5 receptor following neuron-neuron contact during early development of hippocampus induces a complex program of synaptogenic events, including expression of functional synaptic NMDA receptor-PSD-95 complexes plus morphological spine maturation and the emergence of electrical activity. The program depends upon voltage-sensitive calcium channel Ca2+ fluxes that activate PKA, CaMKII and PI3 kinase, leading to CREB phosphorylation and a synaptogenic program of gene expression. AMPA receptor subunits, their scaffolds and electrical activity are not induced. Strikingly, in contrast to wild type, stimulation of hippocampal slices from P6 EphA5 receptor functional knockout mice yielded no NMDA receptor currents. CONCLUSIONS/SIGNIFICANCE These studies suggest that ephrin-A5 and EphA5 signals play a necessary, activity-independent role in the initiation of the early phases of synaptogenesis. The coordinated expression of the NMDAR and PSD-95 induced by eprhin-A5 interaction with EphA5 receptors may be the developmental switch that induces expression of AMPAR and their interacting proteins and the transition to activity-dependent synaptic regulation.
Collapse
|
43
|
Chen L, Cai W, Chen L, Zhou R, Furuya K, Sokabe M. Modulatory metaplasticity induced by pregnenolone sulfate in the rat hippocampus: a leftward shift in LTP/LTD-frequency curve. Hippocampus 2010; 20:499-512. [PMID: 19475651 DOI: 10.1002/hipo.20649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We recently have found that an acute application of the neurosteroid pregnenolone sulfate (PREGS) at 50 muM to rat hippocampal slices induces a long-lasting potentiation (LLP(PREGS)) via a sustained ERK2/CREB activation at perforant-path/granule-cell synapses in the dentate gyrus. This study is a follow up to investigate whether the expression of LLP(PREGS) influences subsequent frequency-dependent synaptic plasticity. Conditioning electric stimuli (CS) at 0.1-200 Hz were given to the perforant-path of rat hippocampal slices expressing LLP(PREGS) to induce long-term potentiation (LTP) and long-term depression (LTD). The largest LTP was induced at about 20 Hz-CS, which is normally a subthreshold frequency, and the largest LTD at 0.5 Hz-CS, resulting in a leftward-shift of the LTP/LTD-frequency curve. Furthermore, the level of LTP at 100 Hz-CS was significantly attenuated to give band-pass filter characteristics of LTP induction with a center frequency of about 20 Hz. The LTP induced by 20 Hz-CS (termed 20 Hz-LTP) was found to be postsynaptic origin and dependent on L-type voltage-gated calcium channel (L-VGCC) but not on N-methyl-D-aspartate receptor (NMDAr). Moreover, the induction of 20 Hz-LTP required a sustained activation of ERK2 that had been triggered by PREGS. In conclusion, the transient elevation of PREGS is suggested to induce a modulatory metaplasticity through a sustained activation of ERK2 in an L-VGCC dependent manner.
Collapse
Affiliation(s)
- Ling Chen
- Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
44
|
Resende RR, da Costa JL, Kihara AH, Adhikari A, Lorençon E. Intracellular Ca2+ Regulation During Neuronal Differentiation of Murine Embryonal Carcinoma and Mesenchymal Stem Cells. Stem Cells Dev 2010; 19:379-94. [DOI: 10.1089/scd.2008.0289] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rodrigo R. Resende
- Department of Physics, Institute of Exacts Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ensino e Pesquisa Santa Casa de BH (ISCM-BH), Belo Horizante, Brazil
| | - José L. da Costa
- Instrumental Analysis Laboratory, Criminalistic Institute of São Paulo, São Paulo, Brazil; Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre H. Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, Brasil
| | - Avishek Adhikari
- Department of Biological Sciences, Columbia University, New York
| | - Eudes Lorençon
- Department of Physics, Institute of Exacts Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
45
|
Moonat S, Starkman BG, Sakharkar A, Pandey SC. Neuroscience of alcoholism: molecular and cellular mechanisms. Cell Mol Life Sci 2010; 67:73-88. [PMID: 19756388 PMCID: PMC3747955 DOI: 10.1007/s00018-009-0135-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/28/2009] [Accepted: 08/13/2009] [Indexed: 01/21/2023]
Abstract
Alcohol use and abuse appear to be related to neuroadaptive changes at functional, neurochemical, and structural levels. Acute and chronic ethanol exposure have been shown to modulate function of the activity-dependent gene transcription factor, cAMP-responsive element binding (CREB) protein in the brain, which may be associated with the development of alcoholism. Study of the downstream effectors of CREB have identified several important CREB-related genes, such as neuropeptide Y, brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein, and corticotrophin-releasing factor, that may play a crucial role in the behavioral effects of ethanol and molecular changes in the specific neurocircuitry that underlie both alcohol addiction and a genetic predisposition to alcoholism. Brain chromatin remodeling due to histone covalent modifications may also be involved in mediating the behavioral effects and neuroadaptive changes that occur during ethanol exposure. This review outlines progressive neuroscience research into molecular and epigenetic mechanisms of alcoholism.
Collapse
Affiliation(s)
- Sachin Moonat
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Bela G. Starkman
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Amul Sakharkar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Subhash C. Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, 820 S. Damen Avenue (M/C 151), Chicago, IL 60612 USA
| |
Collapse
|
46
|
O'Leary T, van Rossum MCW, Wyllie DJA. Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization. J Physiol 2009; 588:157-70. [PMID: 19917565 DOI: 10.1113/jphysiol.2009.181024] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In order to maintain stable functionality in the face of continually changing input, neurones in the CNS must dynamically modulate their electrical characteristics. It has been hypothesized that in order to retain stable network function, neurones possess homeostatic mechanisms which integrate activity levels and alter network and cellular properties in such a way as to counter long-term perturbations. Here we describe a simple model system where we investigate the effects of sustained neuronal depolarization, lasting up to several days, by exposing cultures of primary hippocampal pyramidal neurones to elevated concentrations (10-30 mm) of KCl. Following exposure to KCl, neurones exhibit lower input resistances and resting potentials, and require more current to be injected to evoke action potentials. This results in a rightward shift in the frequency-input current (FI) curve which is explained by a simple linear model of the subthreshold I-V relationship. No changes are observed in action potential profiles, nor in the membrane potential at which action potentials are evoked. Furthermore, following depolarization, an increase in subthreshold potassium conductance is observed which is accounted for within a biophysical model of the subthreshold I-V characteristics of neuronal membranes. The FI curve shift was blocked by the presence of the L-type Ca(2+) channel blocker nifedipine, whilst antagonism of NMDA receptors did not interfere with the effect. Finally, changes in the intrinsic properties of neurones are reversible following removal of the depolarizing stimulus. We suggest that this experimental system provides a convenient model of homeostatic regulation of intrinsic excitability, and permits the study of temporal characteristics of homeostasis and its dependence on stimulus magnitude.
Collapse
Affiliation(s)
- Timothy O'Leary
- Doctoral Training Centre for Neuroinformatics and Computational Neuroscience, School of Informatics, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | |
Collapse
|
47
|
Ziburkus J, Dilger EK, Lo FS, Guido W. LTD and LTP at the developing retinogeniculate synapse. J Neurophysiol 2009; 102:3082-90. [PMID: 19776360 DOI: 10.1152/jn.90618.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to determine whether retinal activity can support long-term changes in synaptic strength in the developing dorsal lateral geniculate nucleus (LGN) of thalamus. To test for this we made use of a rodent in vitro explant preparation in which retinal afferents and the intrinsic circuitry of the LGN remain intact. We repetitively stimulated the optic tract with a tetanus protocol that approximated the temporal features of spontaneous retinal waves. We found the amplitude of extracellular field potentials evoked by retinal stimulation changed significantly after tetanus and that the polarity of these alterations was related to postnatal age. At a time when substantial pruning of retinal connections occurs (postnatal day 1 [P1] to P14), high-frequency stimulation led to an immediate and long-term depression (LTD). However, at times when pruning wanes and adult-like patterns of connectivity are stabilizing (P16 to P30), the identical form of stimulation produced a modest form of potentiation (long-term potentiation [LTP]). The LTD was unaffected by the bath application of gamma-aminobutyric acid type A and N-methyl-D-aspartate receptor antagonists. However, both LTD and LTP were blocked by L-type Ca(2+)-channel antagonists. Thus the Ca(2+) influx associated with L-type channel activation mediates the induction of synaptic plasticity and may signal the pruning and subsequent stabilization of developing retinogeniculate connections.
Collapse
Affiliation(s)
- Jokūbas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | | | |
Collapse
|
48
|
Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin 2009; 30:673-80. [PMID: 19448647 DOI: 10.1038/aps.2009.64] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both alpha and beta subunits) or homomeric (comprising only alpha subunits) receptors. The nAChRs are known to be differentially permeable to calcium ions, with the alpha7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the alpha-bungarotoxin-sensitive alpha7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP(3)Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understanding the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.
Collapse
|
49
|
Klassen MP, Shen K. The curious case of a wandering kinase: CaMKII spreads the wealth? Neuron 2009; 61:331-2. [PMID: 19217368 DOI: 10.1016/j.neuron.2009.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium/calmodulin-dependent kinase II has been suggested to produce input-specific long-term potentiation of synaptic strength. This idea has been complicated by results from Rose, Jin, and Craig demonstrating that spatiotemporally restricted NMDA receptor excitation at contiguous synapses can result in the translocation of activated CaMKII throughout the dendritic arbor.
Collapse
Affiliation(s)
- Matthew P Klassen
- Neurosciences Program, 385 Serra Mall, Herrin Labs, Room 144, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
50
|
Nuñez JL, McCarthy MM. Resting intracellular calcium concentration, depolarizing Gamma-Aminobutyric Acid and possible role of local estradiol synthesis in the developing male and female hippocampus. Neuroscience 2009; 158:623-34. [PMID: 19007865 PMCID: PMC2660432 DOI: 10.1016/j.neuroscience.2008.09.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/25/2008] [Accepted: 10/02/2008] [Indexed: 01/31/2023]
Abstract
The maturation of the hippocampus is impacted by a multitude of factors, including the regulation of intracellular calcium levels. Depolarizing actions of Gamma-Aminobutyric Acid (GABA) can profoundly alter intracellular calcium in immature hippocampal neurons via influx through voltage-gated calcium channels. We here report fundamental sex differences in properties of depolarizing GABA responses and in resting intracellular calcium in neonatal cultured hippocampal neurons. The effects of the estrogen receptor antagonist, ICI 182,780, and the estradiol-synthesis inhibitor, formestane, indicate the sex differences in depolarizing GABA responses are at least in part due to de novo estradiol synthesis by female neurons, whereas a sex difference in resting calcium is independent of steroids. We postulate that local estradiol synthesis in cultured female hippocampal neurons affects the kinetics of either the GABA(A) receptor or voltage sensitive calcium channels. These data highlight the fact that immature hippocampal neurons exhibit fundamentally different physiological properties in males versus females. Elucidating how and where immature male and female neurons differ is essential for a complete understanding of normal rodent brain development.
Collapse
Affiliation(s)
- J L Nuñez
- Department of Physiology, Program in Neuroscience, University of Maryland, 655 W Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|