1
|
Lal S, Snape TJ. Tubulin targeting agents and their implications in non-cancer disease management. Drug Discov Today 2025; 30:104338. [PMID: 40118444 DOI: 10.1016/j.drudis.2025.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Microtubules act as molecular 'tracks' for the intracellular transport of accessory proteins, enabling them to assemble into various larger structures, such as spindle fibres formed during the cell cycle. Microtubules provide an organisational framework for the healthy functioning of various cellular processes that work through the process of dynamic instability, driven by the hydrolysis of GTP. In this role, tubulin proteins undergo various modifications, and in doing so modulate various healthy or pathogenic physiological processes within cells. In this review, we provide a detailed update of small molecule chemical agents that interact with tubulin, along with their implications, specifically in non-cancer disease management.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurugram 122413 Haryana, India.
| | - Timothy J Snape
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
2
|
Javadova A, Felmy F. GABA B receptor-mediated modulation in the developing dorsal nucleus of the lateral lemniscus. Eur J Neurosci 2024; 59:966-981. [PMID: 38180306 DOI: 10.1111/ejn.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
The dorsal nucleus of the lateral lemniscus (DNLL) is a GABAergic, reciprocally connected auditory brainstem structure that continues to develop postnatally in rodents. One key feature of the DNLL is the generation of a strong, prolonged, ionotropic, GABAA receptor-mediated inhibition. Possible GABAB receptor-mediated signalling is unexplored in the DNLL. Here, we used Mongolian gerbils of either sex to describe GABAB receptor-mediated modulation of postsynaptic potassium currents and synaptic inputs in postnatal (P) animals of days 10/11 and 23-28. Throughout development, we observed the presence of a Baclofen-activated GABAB receptor-enhanced potassium outward conductance that is capable of suppressing action potential generation. In P10/11, old gerbils GABAB receptor activation enhances glutamatergic and suppresses ionotropic GABAergic synaptic transmission. During development, this differential modulation becomes less distinct, because in P22-28, old animals Baclofen-activated GABAB receptors rather enhance ionotropic GABAergic synaptic transmission, whereas glutamatergic transmission is both enhanced and suppressed. Blocking GABAB receptors causes an increase in ionotropic GABAergic transmission in P10/11 old gerbils that was independent on stimulation frequency but depended on the type of short-term plasticity. Together with the lack of Baclofen-induced changes in the synaptic paired-pulse ratio of either input type, we suggest that GABAB receptor-mediated modulation is predominantly postsynaptic and activates different signalling cascades. Thus, we argue that in DNLL neurons, the GABAB receptor is a post-synaptically located signalling hub that alters signalling cascades during development for distinct targets.
Collapse
Affiliation(s)
- Amina Javadova
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Hannover, Germany
- Infection Medicine and Veterinary Sciences (HGNI), Hannover Graduate School for Neurosciences, Hannover, Germany
| | - Felix Felmy
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Hannover, Germany
| |
Collapse
|
3
|
Guzikowski NJ, Kavalali ET. Nano-organization of spontaneous GABAergic transmission directs its autonomous function in neuronal signaling. Cell Rep 2022; 40:111172. [PMID: 35947950 PMCID: PMC9392417 DOI: 10.1016/j.celrep.2022.111172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Earlier studies delineated the precise arrangement of proteins that drive neurotransmitter release and postsynaptic signaling at excitatory synapses. However, spatial organization of neurotransmission at inhibitory synapses remains unclear. Here, we took advantage of the molecularly specific interaction of antimalarial artemisinins and the inhibitory synapse scaffold protein, gephyrin, to probe the functional organization of gamma-aminobutyric acid A receptor (GABAAR)-mediated neurotransmission in central synapses. Short-term application of artemisinins severely contracts the size and density of gephyrin and GABAaR γ2 subunit clusters. This size contraction elicits a neuronal activity-independent increase in Bdnf expression due to a specific reduction in GABAergic spontaneous, but not evoked, neurotransmission. The same functional effect could be mimicked by disruption of microtubules that link gephyrin to the neuronal cytoskeleton. These results suggest that the GABAergic postsynaptic apparatus possesses a concentric center-surround organization, where the periphery of gephyrin clusters selectively maintains spontaneous GABAergic neurotransmission facilitating its autonomous function regulating Bdnf expression.
Collapse
Affiliation(s)
- Natalie J. Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA,Lead contact,Correspondence:
| |
Collapse
|
4
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Ectopic GABA A receptor β3 subunit determines Cl - / HCO 3 - -ATPase and chloride transport in HEK 293FT cells. FEBS J 2020; 288:699-712. [PMID: 32383536 DOI: 10.1111/febs.15359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 01/20/2023]
Abstract
Neuronal intracellular chloride concentration ([Cl- ]i ) is a crucial determinant of transmission mediated by the γ-aminobutyric acid type A receptor (GABAA R), which subserves synaptic and extrasynaptic inhibition as well as excitation. The Cl- ion is the main carrier of charge through the GABAA R; however, bicarbonate ions ( HCO 3 - ) flowing in the opposite direction can also contribute to the net current. The direction of Cl- and HCO 3 - fluxes is determined by the underlying electrochemical gradient, which is controlled by Cl- transporters and channels. Accumulating evidence suggests that active mechanisms of chloride transport across the GABAA R pore can underlie the regulation of [Cl- ]i . Measurement of Cl- / HCO 3 - -ATPase activity and Cl- transport in HEK 293FT cells expressing homomeric or heteromeric GABAA R ensembles (α2, β3, or γ2) with fluorescent dye for chloride demonstrated that receptor subtypes containing the β3 subunit show enzymatic activity and participate in GABA-mediated or ATP-dependent Cl- transport. GABA-mediated flow of Cl- ions into and out of the cells occurred for a short time period but then rapidly declined. However, Cl- ion flux was stabilized for a long time period in the presence of HCO 3 - ions. The reconstituted β3 subunit isoform, purified as a fusion protein, confirmed that β3 is critical for ATPase; however, only the triplet variant showed the full receptor function. The high sensitivity of the enzyme to γ-phosphate inhibitors led us to postulate that the β3 subunit is catalytic. Our discovery of a GABAA R type that requires ATP consumption for chloride movement provides new insight into the molecular mechanisms of inhibitory signaling.
Collapse
Affiliation(s)
| | | | - Aleksey A Moskovtsev
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education, Moscow, Russia
| | - Sergey G Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan A Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Russian Medical Academy of Postdoctoral Education, Moscow, Russia
| |
Collapse
|
5
|
Paul BK, Reuveni I, Barkai E, Lamprecht R. Learning-induced enduring changes in inhibitory synaptic transmission in lateral amygdala are mediated by p21-activated kinase. J Neurophysiol 2020; 123:178-190. [DOI: 10.1152/jn.00559.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study we explored whether learning leads to enduring changes in inhibitory synaptic transmission in lateral amygdala (LA). We revealed that olfactory discrimination (OD) learning in rats led to a long-lasting increase in postsynaptic GABAA channel-mediated miniature inhibitory postsynaptic currents (mIPSCs) in LA. Olfactory fear conditioning, but not auditory fear conditioning, also led to enduring enhancement in GABAA-mediated mIPSCs. Auditory fear conditioning, but not olfactory fear conditioning or OD learning, induced an enduring reduction in the frequency but not the current of mIPSC events. We found that p21-activated kinase (PAK) activity is needed to maintain OD and olfactory fear conditioning learning-induced enduring enhancement of mIPSCs. Further analysis revealed that OD led to an increase in GABAA channel conductance whereas olfactory fear conditioning increased the number of GABAA channels. These alterations in GABAA channels conductance and level are controlled by PAK activity. Our study shows that the learning-induced increase in postsynaptic inhibitory transmission in LA is specific to the sensory modality. However, the mechanism that mediates the increase in inhibitory transmission, namely the increase in the conductance or in the level of GABAA channel, is learning specific. NEW & NOTEWORTHY Here we studied whether learning leads to long-lasting alterations in inhibitory synaptic transmission in lateral amygdala (LA). We revealed that learning led to enduring changes in inhibitory synaptic transmission in LA that are affected by the sensory modality (auditory or olfaction) used during learning. However, the mechanism that mediated the changes in inhibitory transmission (alterations in GABAA channel level or conductance) depended on the type of learning. These long-lasting alterations are maintained by p21-activated kinase.
Collapse
Affiliation(s)
- Blesson K. Paul
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Iris Reuveni
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Lu X, Yang M, Yang Y, Wang XF. Atlastin-1 modulates seizure activity and neuronal excitability. CNS Neurosci Ther 2019; 26:385-393. [PMID: 31729196 PMCID: PMC7052804 DOI: 10.1111/cns.13258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023] Open
Abstract
Epilepsy is a neurological disease, and the main clinical manifestation is recurrent seizures. The exact etiology of epilepsy and the pathogenesis of the disorder are not yet fully understood. Atlastin‐1, a dynamin‐like GTPase, interacts with microtubules and is responsible for vesicle formation, both of which are highly associated with the development of epilepsy. Here, we reported that the expression level of atlastin‐1 protein was reduced in the temporal neocortex of patients with temporal lobe epilepsy and in the hippocampus and adjacent cortex of a pentylenetetrazol‐kindled epileptic mouse model. Cells expressing atlastin‐1 coexpressed the inhibitory synaptic marker GAD67 in the temporal cortex and hippocampus of patients with epilepsy and an epileptic mouse model. The lentivirus‐mediated overexpression of atlastin‐1 protein in the hippocampus of mice suppressed seizure activity in behavioral experiments. Patch‐clamp recordings in the Mg2+‐free epilepsy cell model showed that atlastin‐1 overexpression inhibited neuronal excitability by suppressing the discharge frequency of spontaneous action potentials rather than by changing the passive and active properties of action potentials. Inhibitory synaptic transmission, but not excitatory synaptic currents, increased after atlastin‐1 overexpression. These findings suggest that atlastin‐1 likely contributes to the occurrence and development of epilepsy through inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Xi Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
7
|
α2-Chimaerin is essential for neural stem cell homeostasis in mouse adult neurogenesis. Proc Natl Acad Sci U S A 2019; 116:13651-13660. [PMID: 31209021 PMCID: PMC6613132 DOI: 10.1073/pnas.1903891116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adult hippocampal neurogenesis, the lifelong generation of neurons in the dentate gyrus, is important for brain functioning, including learning, memory, and mood regulation. Its dysregulation is associated with cognitive decline and mood disorders. We discovered that the Rho GTPase-activating protein, α2-chimaerin, is essential for adult hippocampal neurogenesis, as it precisely regulates the transition of neural stem cells (NSCs) into intermediate progenitor cells (IPCs). Conditional knockout of α2-chimaerin in adult NSCs in the mouse hippocampus resulted in a loss of the Klotho-expressing NSC population and the premature differentiation of NSCs into IPCs, which impaired neuron production. These mice also exhibited compromised hippocampal synaptic plasticity and anxiety/depression-like behaviors. Thus, our findings revealed that α2-chimaerin is important in adult hippocampal neurogenesis. Adult hippocampal neurogenesis involves the lifelong generation of neurons. The process depends on the homeostasis of the production of neurons and maintenance of the adult neural stem cell (NSC) pool. Here, we report that α2-chimaerin, a Rho GTPase-activating protein, is essential for NSC homeostasis in adult hippocampal neurogenesis. Conditional deletion of α2-chimaerin in adult NSCs resulted in the premature differentiation of NSCs into intermediate progenitor cells (IPCs), which ultimately depleted the NSC pool and impaired neuron generation. Single-cell RNA sequencing and pseudotime analyses revealed that α2-chimaerin–conditional knockout (α2-CKO) mice lacked a unique NSC subpopulation, termed Klotho-expressing NSCs, during the transition of NSCs to IPCs. Furthermore, α2-CKO led to defects in hippocampal synaptic plasticity and anxiety/depression-like behaviors in mice. Our findings collectively demonstrate that α2-chimaerin plays an essential role in adult hippocampal NSC homeostasis to maintain proper brain function.
Collapse
|
8
|
Morais TP, Coelho D, Vaz SH, Sebastião AM, Valente CA. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes. Front Mol Neurosci 2018; 10:444. [PMID: 29386993 PMCID: PMC5776331 DOI: 10.3389/fnmol.2017.00444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
In central nervous system, glycine receptor (GlyR) is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T) that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM), a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM), as well as by nocodazole (1 μM), known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication.
Collapse
Affiliation(s)
- Tatiana P. Morais
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - David Coelho
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H. Vaz
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia A. Valente
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Xu X, Shangguan Y, Lu S, Wang W, Du C, Xiao F, Hu Y, Luo J, Wang L, He C, Yang Y, Zhang Y, Lu X, Yang Q, Wang X. Tubulin β-III modulates seizure activity in epilepsy. J Pathol 2017; 242:297-308. [PMID: 28378416 DOI: 10.1002/path.4903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
Tubulin β-III (TUBB3) is the most dynamic β-tubulin isoform expressed in neurons, and is highly expressed in the central nervous system. However, the relationship between TUBB3 and epileptic seizures has not been thoroughly investigated. The aims of this study were to investigate the expression of TUBB3 in patients with temporal lobe epilepsy and two different rat models of chronic epilepsy, and to determine the specific roles of TUBB3 in epilepsy. TUBB3 expression was upregulated in human and rat epileptic tissue. Moreover, TUBB3 expression was associated with inhibitory GABAergic neurons and the inhibitory postsynaptic scaffold protein gephyrin. TUBB3 downregulation attenuated the behavioural phenotypes of epileptic seizures during the pilocarpine-induced chronic phase of epileptic seizures and the pentylenetetrazole kindling process, whereas TUBB3 overexpression had the opposite effect. Whole-cell clamp recordings and western blotting revealed that the amplitude of GABA-A receptor-mediated miniature inhibitory postsynaptic currents and the surface expression of the GABA-A receptor were increased in rats in which TUBB3 expression was downregulated. Importantly, TUBB3 interacted with GABA-A receptor-associated protein, which is known to be involved in GABA-A receptor trafficking. These results indicate that TUBB3 plays a critical role in the regulation of epileptic seizures via GABA-A receptor trafficking, suggesting a molecular mechanism for new therapeutic strategies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yafei Shangguan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Shanshan Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Wei Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Chao Du
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Fei Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yida Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Jing Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Liang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Changlong He
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yong Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yanke Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xi Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xuefeng Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China.,Centre of Epilepsy, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
10
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
11
|
Xu X, Hu Y, Xiong Y, Li Z, Wang W, Du C, Yang Y, Zhang Y, Xiao F, Wang X. Association of Microtubule Dynamics with Chronic Epilepsy. Mol Neurobiol 2015; 53:5013-24. [PMID: 26377107 DOI: 10.1007/s12035-015-9431-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Approximately 30 % of epilepsy cases are refractory to current pharmacological treatments through unknown mechanisms. Much work has been done on the role of synaptic components in the pathogenesis of epilepsy, but relatively little attention has been given to the potential role of the microtubules. We investigated the level of microtubule dynamic in 30 human epileptic tissues and two different chronic epilepsy rat models. The administration of microtubule-modulating agent attenuated the progression of chronic epilepsy. By contrast, microtubule-depolymerizing agent aggravated the progression of chronic epilepsy. The electrophysiological index by whole-cell clamp was used to investigate the neuronal excitation and inhibitory synaptic transmission in brain slices after administration of microtubule-modulating agent and microtubule-depolymerizing agent. Interestingly, we found that microtubule-modulating agent significantly increased the frequency of action potential firing in interneurons, and significantly promoted the amplitudes and frequencies of miniature inhibitory postsynaptic currents. Microtubule-depolymerizing agent had an opposite effect. These findings suggest that modulating hyperdynamic microtubules may take an anti-epileptic effect via postsynaptic mechanisms in interneurons. It could represent a potential pharmacologic target in epilepsy treatment.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yida Hu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yan Xiong
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonggui Li
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chao Du
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Yang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanke Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fei Xiao
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Craddock TJA, Priel A, Tuszynski JA. Keeping time: could quantum beating in microtubules be the basis for the neural synchrony related to consciousness? J Integr Neurosci 2015; 13:293-311. [PMID: 25012713 DOI: 10.1142/s0219635214400019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This paper discusses the possibility of quantum coherent oscillations playing a role in neuronal signaling. Consciousness correlates strongly with coherent neural oscillations, however the mechanisms by which neurons synchronize are not fully elucidated. Recent experimental evidence of quantum beats in light-harvesting complexes of plants (LHCII) and bacteria provided a stimulus for seeking similar effects in important structures found in animal cells, especially in neurons. We argue that microtubules (MTs), which play critical roles in all eukaryotic cells, possess structural and functional characteristics that are consistent with quantum coherent excitations in the aromatic groups of their tryptophan residues. Furthermore we outline the consequences of these findings on neuronal processes including the emergence of consciousness.
Collapse
Affiliation(s)
- Travis J A Craddock
- Center for Psychological Studies, Graduate School of Computer and Information Sciences, College of Osteophatic Medicine and the Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida 33314-7796, USA
| | | | | |
Collapse
|
13
|
Tian J, Tep C, Benedick A, Saidi N, Ryu JC, Kim ML, Sadasivan S, Oberdick J, Smeyne R, Zhu MX, Yoon SO. p75 regulates Purkinje cell firing by modulating SK channel activity through Rac1. J Biol Chem 2014; 289:31458-72. [PMID: 25253694 PMCID: PMC4223344 DOI: 10.1074/jbc.m114.589937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
p75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75(-/-) mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type. We attribute these effects to a reduction in small conductance Ca(2+)-activated potassium (SK) channel activity in Purkinje cells from p75(-/-) mice compared with the wild type littermates. The mechanism by which p75 regulates SK channel activity appears to involve its ability to activate Rac1. In organotypic cultures of cerebellar slices, brain-derived neurotrophic factor increased RacGTP levels by activating p75 but not TrkB. These results correlate with a reduction in RacGTP levels in synaptosome fractions from the p75(-/-) cerebellum, but not in that from the cortex of the same animals, compared with wild type littermates. More importantly, we demonstrate that Rac1 modulates SK channel activity and firing patterns of Purkinje cells. Along with the finding that spine density was reduced in p75(-/-) cerebellum, these data suggest that p75 plays a role in maintaining normalcy of Purkinje cell firing in the cerebellum in part by activating Rac1 in synaptic compartments and modulating SK channels.
Collapse
Affiliation(s)
- JinBin Tian
- the Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, the Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Chhavy Tep
- From the Department of Molecular and Cellular Biochemistry, the Biochemistry Program, and
| | - Alex Benedick
- From the Department of Molecular and Cellular Biochemistry
| | - Nabila Saidi
- From the Department of Molecular and Cellular Biochemistry
| | - Jae Cheon Ryu
- From the Department of Molecular and Cellular Biochemistry
| | - Mi Lyang Kim
- From the Department of Molecular and Cellular Biochemistry
| | - Shankar Sadasivan
- the Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | | | - Richard Smeyne
- the Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - Michael X Zhu
- the Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, the Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Sung Ok Yoon
- From the Department of Molecular and Cellular Biochemistry,
| |
Collapse
|
14
|
Kotak VC, Takesian AE, MacKenzie PC, Sanes DH. Rescue of inhibitory synapse strength following developmental hearing loss. PLoS One 2013; 8:e53438. [PMID: 23326429 PMCID: PMC3543446 DOI: 10.1371/journal.pone.0053438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022] Open
Abstract
Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs) in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the emergence of mature synaptic properties requires activity during development. Therefore, we tested the prediction that inhibitory strength can be restored following developmental hearing loss by boosting GABAergic transmission in vivo. Conductive or sensorineural hearing loss was induced surgically in gerbils prior to hearing onset and GABA agonists were then administered for one week. IPSCs were subsequently recorded from pyramidal neurons in a thalamocortical brain slice preparation. Administration of either a GABAA receptor a1 subunit specific agonist (zolpidem), or a selective GABA reuptake inhibitor (SGRI), rescued IPSC amplitude in hearing loss animals. Furthermore, this restoration persisted in adults, long after drug treatment ended. In contrast, a GABAB receptor agonist baclofen did not restore inhibitory strength. IPSCs could also be restored when SGRI administration began 3 weeks after sensory deprivation. Together, these results demonstrate long-lasting restoration of cortical inhibitory strength in the absence of normal experience. This suggests that in vivo GABAA receptor activation is sufficient to promote maturation, and this principle may extend to other developmental disorders associated with diminished inhibitory function.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, New York, United States of America.
| | | | | | | |
Collapse
|
15
|
Craddock TJA, St. George M, Freedman H, Barakat KH, Damaraju S, Hameroff S, Tuszynski JA. Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: implications for side effects of general anesthesia. PLoS One 2012; 7:e37251. [PMID: 22761654 PMCID: PMC3382613 DOI: 10.1371/journal.pone.0037251] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer's disease, Parkinson's disease and Huntington's disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper.
Collapse
Affiliation(s)
| | - Marc St. George
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Holly Freedman
- Center of Marine Sciences, Foundation for Science and Technology, University of Algarve, Campus Gambelas, Faro, Portugal
| | - Khaled H. Barakat
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart Hameroff
- Departments of Anesthesiology and Psychology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat Med 2011; 17:566-72. [PMID: 21499268 DOI: 10.1038/nm.2330] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/11/2011] [Indexed: 12/19/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder that affects ~5% of school-aged children; however, the mechanisms underlying ADHD remain largely unclear. Here we report a previously unidentified association between G protein-coupled receptor kinase-interacting protein-1 (GIT1) and ADHD in humans. An intronic single-nucleotide polymorphism in GIT1, the minor allele of which causes reduced GIT1 expression, shows a strong association with ADHD susceptibility in humans. Git1-deficient mice show ADHD-like phenotypes, with traits including hyperactivity, enhanced electroencephalogram theta rhythms and impaired learning and memory. Hyperactivity in Git1(-/-) mice is reversed by amphetamine and methylphenidate, psychostimulants commonly used to treat ADHD. In addition, amphetamine normalizes enhanced theta rhythms and impaired memory. GIT1 deficiency in mice leads to decreases in ras-related C3 botulinum toxin substrate-1 (RAC1) signaling and inhibitory presynaptic input; furthermore, it shifts the neuronal excitation-inhibition balance in postsynaptic neurons toward excitation. Our study identifies a previously unknown involvement of GIT1 in human ADHD and shows that GIT1 deficiency in mice causes psychostimulant-responsive ADHD-like phenotypes.
Collapse
|
17
|
Craddock TJA, Tuszynski JA, Priel A, Freedman H. Microtubule ionic conduction and its implications for higher cognitive functions. J Integr Neurosci 2011; 9:103-22. [PMID: 20589950 DOI: 10.1142/s0219635210002421] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
The neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.
Collapse
|
18
|
Freedman H, Rezania V, Priel A, Carpenter E, Noskov SY, Tuszynski JA. Model of ionic currents through microtubule nanopores and the lumen. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:051912. [PMID: 20866266 DOI: 10.1103/physreve.81.051912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 01/26/2010] [Indexed: 05/29/2023]
Abstract
It has been suggested that microtubules and other cytoskeletal filaments may act as electrical transmission lines. An electrical circuit model of the microtubule is constructed incorporating features of its cylindrical structure with nanopores in its walls. This model is used to study how ionic conductance along the lumen is affected by flux through the nanopores, both with and without an external potential applied across its two ends. Based on the results of Brownian dynamics simulations, the nanopores were found to have asymmetric inner and outer conductances, manifested as nonlinear IV curves. Our simulations indicate that a combination of this asymmetry and an internal voltage source arising from the motion of the C-terminal tails causes cations to be pumped across the microtubule wall and propagate in both directions down the microtubule through the lumen, returning to the bulk solution through its open ends. This effect is demonstrated to add directly to the longitudinal current through the lumen resulting from an external voltage source applied across the two ends of the microtubule. The predicted persistent currents directed through the microtubule wall and along the lumen could be significant in directing the dissipation of weak, endogenous potential gradients toward one end of the microtubule within the cellular environment.
Collapse
Affiliation(s)
- Holly Freedman
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
20
|
Graziane NM, Yuen EY, Yan Z. Dopamine D4 Receptors Regulate GABAA Receptor Trafficking via an Actin/Cofilin/Myosin-dependent Mechanism. J Biol Chem 2009; 284:8329-36. [PMID: 19179335 DOI: 10.1074/jbc.m807387200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GABA(A) receptor-mediated inhibitory transmission in prefrontal cortex (PFC) is implicated in cognitive processes such as working memory. Our previous study has found that GABA(A)R current is subject to the regulation of dopamine D(4) receptors, a PFC-enriched neuromodulator critically involved in various mental disorders associated with PFC dysfunction. In this study, we have investigated the cellular mechanism underlying D(4) modulation of GABA(A)Rs. We found that the density of surface clusters of GABA(A)R beta2/3 subunits was reduced by D(4), suggesting that the D(4) reduction of GABA(A)R current is associated with a decrease in functional GABA(A)Rs at the plasma membrane. Moreover, the D(4) reduction of GABA(A)R current was blocked by the actin stabilizer phalloidin and was occluded by the actin destabilizer latrunculin, suggesting that D(4) regulates GABA(A)R trafficking via an actin-dependent mechanism. Cofilin, a major actin depolymerizing factor whose activity is strongly increased by dephosphorylation at Ser(3), provides the possible link between D(4) signaling and the actin dynamics. Because myosin motor proteins are important for the transport of vesicles along actin filaments, we also tested the potential involvement of myosin in D(4) regulation of GABA(A)R trafficking. We found that dialysis with a myosin peptide, which competes with endogenous myosin proteins for actin-binding sites, prevented the D(4) reduction of GABA(A)R current. These results suggest that D(4) receptor activation increases cofilin activity presumably via its dephosphorylation, resulting in actin depolymerization, thus causing a decrease in the myosin-based transport of GABA(A)R clusters to the surface.
Collapse
Affiliation(s)
- Nicholas M Graziane
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | | | | |
Collapse
|
21
|
Bochdanovits Z, Sondervan D, Perillous S, van Beijsterveldt T, Boomsma D, Heutink P. Genome-wide prediction of functional gene-gene interactions inferred from patterns of genetic differentiation in mice and men. PLoS One 2008; 3:e1593. [PMID: 18270580 PMCID: PMC2217631 DOI: 10.1371/journal.pone.0001593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/13/2008] [Indexed: 12/13/2022] Open
Abstract
The human genome encodes a limited number of genes yet contributes to individual differences in a vast array of heritable traits. A possible explanation for the capacity our genome to generate this virtually unlimited range of phenotypic variation in complex traits is to assume functional interactions between genes. Therefore we searched two mammalian genomes to identify potential epistatic interactions by looking for co-adapted genes marked by excess two-locus genetic differentiation between populations/lineages using publicly available SNP genotype data. The practical motivation for this effort is to reduce the number of pair-wise tests that need to be performed in genome-wide association studies aimed at detecting G×G interactions, by focusing on pairs predicted to be more likely to jointly affect variation in complex traits. Hence, this approach generates a list of candidate interactions that can be empirically tested. In both the mouse and human data we observed two-locus genetic differentiation in excess of what can be expected from chance alone based on simulations. In an attempt to validate our hypothesis that pairs of genes showing excess genetic divergence represent potential functional interactions, we selected a small set of gene combinations postulated to be interacting based on our analyses and looked for a combined effect of the selected genes on variation in complex traits in both mice and man. In both cases the individual effect of the genes were not significant, instead we observed marginally significant interaction effects. These results show that genome wide searches for gene-gene interactions based on population genetic data are feasible and can generate interesting candidate gene pairs to be further tested for their contribution to phenotypic variation in complex traits.
Collapse
Affiliation(s)
- Zoltán Bochdanovits
- Section Medical Genomics, Department of Clinical Genetics, Vrije Universiteit Medisch Centrum (VUMC), Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Blumenthal B, Hoffmann C, Aktories K, Backert S, Schmidt G. The cytotoxic necrotizing factors from Yersinia pseudotuberculosis and from Escherichia coli bind to different cellular receptors but take the same route to the cytosol. Infect Immun 2007; 75:3344-53. [PMID: 17438028 PMCID: PMC1932955 DOI: 10.1128/iai.01937-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/31/2007] [Accepted: 04/05/2007] [Indexed: 11/20/2022] Open
Abstract
The cytotoxic necrotizing factors CNF1 and CNF2 produced by pathogenic Escherichia coli strains and CNF(Y) of Yersinia pseudotuberculosis constitutively activate small GTPases of the Rho family. They deamidate a glutamine (Gln63 in RhoA), which is crucial for GTP hydrolysis. CNF1 and CNF(Y) exhibit 61% identity on the amino acid level, with equal distribution over the whole molecule. Although the two toxins are homologous in the receptor binding domain, we show that they bind to different cellular receptors. CNF(Y) does not enter Caco-2 and CHO-K1 cells, which are responsive to CNF1. In contrast, HeLa, Hep-2, and HEK 293 cells do respond to both toxins. Competition studies with catalytically inactive mutants of the toxins revealed that binding of CNF1 has no influence on the uptake of CNF(Y) into HeLa cells. In contrast, uptake of CNF1 is retarded after preincubation of HeLa cells with the catalytically inactive mutant of CNF(Y), suggesting that the toxin receptors overlap. Moreover, we compared the pathways of the toxins from receptor binding into the cytosol and showed that both toxins are taken up independent of the presence of clathrin or lipid rafts and are released into the cytosol from acidified endosomes.
Collapse
Affiliation(s)
- Britta Blumenthal
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albert-Strasse 25, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Rothenfluh A, Threlkeld RJ, Bainton RJ, Tsai LTY, Lasek AW, Heberlein U. Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 2006; 127:199-211. [PMID: 17018286 DOI: 10.1016/j.cell.2006.09.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 05/19/2006] [Accepted: 09/04/2006] [Indexed: 01/19/2023]
Abstract
In most organisms, low ethanol doses induce increased activity, while high doses are sedating. To investigate the underlying mechanisms, we isolated Drosophila mutants with altered ethanol responsiveness. Mutations in white rabbit (whir), disrupting RhoGAP18B, are strongly resistant to the sedating effects of ethanol. This resistance can be suppressed by reducing the levels of Rho1 or Rac, implicating these GTPases in the behavioral response to ethanol. Indeed, expression of constitutively active forms of Rho1 or Rac1 in adult flies results in ethanol resistance similar to that observed in whir mutants. The whir locus produces several transcripts, RA-RD, which are predicted to encode three distinct RhoGAPs that share only the GAP domain. The RC transcript mediates the sedating effects of ethanol, while the RA transcript regulates its stimulant effects. Thus, distinct RhoGAPs, encoded by the same gene, regulate different manifestations of acute ethanol intoxication.
Collapse
Affiliation(s)
- Adrian Rothenfluh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Vogelsgesang M, Pautsch A, Aktories K. C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins. Naunyn Schmiedebergs Arch Pharmacol 2006; 374:347-60. [PMID: 17146673 DOI: 10.1007/s00210-006-0113-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/18/2006] [Indexed: 12/19/2022]
Abstract
The family of C3-like exoenzymes comprises seven bacterial ADP-ribosyltransferases of different origin. The common hallmark of these exoenzymes is the selective N-ADP-ribosylation of the low molecular mass GTP-binding proteins RhoA, B, and C and inhibition of signal pathways controlled by Rho GTPases. Therefore, C3-like exoenzymes were applied as pharmacological tools for analyses of cellular functions of Rho protein in numerous studies. Recent structural and functional analyses of C3-like exoenzymes provide detailed information on the molecular mechanisms and functional consequences of ADP-ribosylation catalyzed by these toxins. More recently additional non-enzymatic actions of C3-like ADP-ribosyltransferases have been identified showing that C3 transferases from Clostridium botulinum and Clostridium limosum form a GDI-like complex with the Ras-like low molecular mass GTPase Ral without ADP-ribosylation. These results add novel information on the molecular mode of action(s) of C3-like exoenzymes and are discussed in this review.
Collapse
Affiliation(s)
- Martin Vogelsgesang
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-University Freiburg, Otto-Krayer-Haus, Albertstrasse 25, Freiburg, Germany
| | | | | |
Collapse
|
25
|
Abstract
Rho proteins are master regulators of a large array of cellular functions, including control of cell morphology, cell migration and polarity, transcriptional activation, and cell cycle progression. They are the eukaryotic targets of various bacterial protein toxins and effectors, which activate or inactivate the GTPases. Here Rho-inactivating toxins and effectors are reviewed, including the families of large clostridial cytotoxins and C3-like transferases, which inactivate Rho GTPases by glucosylation and ADP-ribosylation, respectively.
Collapse
Affiliation(s)
- K Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albertstrasse 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
26
|
van Galen EJM, Ramakers GJA. Rho proteins, mental retardation and the neurobiological basis of intelligence. PROGRESS IN BRAIN RESEARCH 2005; 147:295-317. [PMID: 15581714 DOI: 10.1016/s0079-6123(04)47022-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For several decades it has been known that mental retardation is associated with abnormalities in dendrites and dendritic spines. The recent cloning of eight genes which cause nonspecific mental retardation when mutated, provides an important insight into the cellular mechanisms that result in the dendritic abnormalities underlying mental retardation. Three of the encoded proteins, oligophrenin1, PAK3 and alphaPix, interact directly with Rho GTPases. Rho GTPases are key signaling proteins which integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton, essential for directed neurite outgrowth and the generation/rearrangement of synaptic connectivity. Although many details of the cell biology of Rho signaling in the CNS are as yet unclear, a picture is unfolding showing how mutations that cause abnormal Rho signaling result in abnormal neuronal connectivity which gives rise to deficient cognitive functioning in humans.
Collapse
Affiliation(s)
- Elly J M van Galen
- Neurons and Networks Research Group, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| | | |
Collapse
|
27
|
Aktories K, Wilde C, Vogelsgesang M. Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 2004; 152:1-22. [PMID: 15372308 DOI: 10.1007/s10254-004-0034-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.
Collapse
Affiliation(s)
- K Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, Otto-Krayer-Haus, Albertstr. 25, Freiburg, Germany.
| | | | | |
Collapse
|
28
|
Gravante B, Barbuti A, Milanesi R, Zappi I, Viscomi C, DiFrancesco D. Interaction of the pacemaker channel HCN1 with filamin A. J Biol Chem 2004; 279:43847-53. [PMID: 15292205 DOI: 10.1074/jbc.m401598200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pacemaker channels are encoded by the HCN gene family and are responsible for a variety of cellular functions including control of spontaneous activity in cardiac myocytes and control of excitability in different types of neurons. Some of these functions require specific membrane localization. Although several voltage-gated channels are known to interact with intracellular proteins exerting auxiliary functions, no cytoplasmic proteins have been found so far to modulate HCN channels. Through the use of a yeast two-hybrid technique, here we showed that filamin A interacts with HCN1, an HCN isoform widely expressed in the brain, but not with HCN2 or HCN4. Filamin A is a cytoplasmic scaffold protein with actin-binding domains whose main function is to link transmembrane proteins to the actin cytoskeleton. Using several HCN1 C-terminal constructs, we identified a filamin A-interacting region of 22 amino acids located downstream from the cyclic nucleotide-binding domain; this region is not conserved in HCN2, HCN3, or HCN4. We also verified by immunoprecipitation from bovine brain that the filamin A-HCN1 interaction is functional in vivo. In filamin A-expressing cells (filamin+), HCN1 (but not HCN4) channels were expressed in hot spots, whereas they were evenly distributed on the membrane of cells lacking filamin A (filamin-) indicating that interaction with filamin A affects membrane localization. Also, in filamin- cells the gating kinetics of HCN1 were strongly accelerated relative to filamin+ cells. The interaction with filamin A may contribute to localizing HCN1 channels to specific neuronal areas and to modulating channel activity.
Collapse
Affiliation(s)
- Biagio Gravante
- Department of Biomolecular Sciences and Biotechnology, Laboratory of Molecular Physiology and Neurobiology, University of Milano, via Celoria 26, 20133, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Kawasaki S, Kimura S, Fujita R, Sasaki K. The small GTP-binding protein RhoA regulates serotonin-induced Na+-current response in the neurons of Aplysia. Neurosci Res 2004; 48:33-43. [PMID: 14687879 DOI: 10.1016/j.neures.2003.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Application of serotonin (5-HT) induces a slow inward current response in identified neurons of Aplysia ganglia under voltage clamp. The 5-HT-induced current response was depressed in Na+-free media, but augmented in Ca2+-free media, and unaffected by a change in external K+. The 5-HT-induced response was markedly blocked by intracellular injection of guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS). After the injection of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), the responses to 5-HT gradually and significantly increased at the initial period, reached its plateau, and finally decreased. Intracellular injection of Clostridium difficile toxin B, a blocker of small G-protein Rho family members such as Rho (RhoA, RhoB and RhoC), Rac and Cdc42, markedly depressed the 5-HT-induced response. Intracellular injection of Clostridium botulinum C3 exoenzyme, a specific blocker of RhoA, RhoB, RhoC, exhibited a similar depressing effect observed with toxin B. In contrast, intracellular injection of recombinant L63RhoA, a constitutively active form of RhoA, significantly augmented the 5-HT-induced response without affecting the resting membrane. These results suggested that the 5-HT-induced Na+-current response might be facilitated by the activation of Aplysia Rho which is closely homologous to RhoA, RhoB or RhoC in mammalian neuron.
Collapse
Affiliation(s)
- Satoshi Kawasaki
- Department of Physiology, School of Medicine, Iwate Medical University, Morioka 020-8505, Japan.
| | | | | | | |
Collapse
|
30
|
Luccardini C, Casagrande S, Cupello A, Pellistri F, Ramoino P, Robello M. The combined disruption of microfilaments and microtubules affects the distribution and function of GABAA receptors in rat cerebellum granule cells in culture. Neurosci Lett 2004; 359:25-8. [PMID: 15050703 DOI: 10.1016/j.neulet.2004.01.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 01/21/2004] [Accepted: 01/22/2004] [Indexed: 11/27/2022]
Abstract
The role of the microfilaments and microtubules cytoskeleton in the stability of the subcellular distribution and function of GABAA receptors has been studied in rat cerebellar granule cells in culture. The disruption of either the microfilaments or the microtubules structures did not result in detectable changes in the receptors distribution, as assessed by immunocytochemistry, or in their function, as assessed by the whole-cell patch-clamp approach. A distinct disruption of both the subcellular distribution and the function of the GABAA receptors was found only if both microfilaments and microtubules were destroyed. The results suggest that, in the short term, the plasma membrane localization/stabilization and function of these receptors in granule cells are largely independent from microfilaments and microtubules individually, although they obviously depend on the presence of an organized cellular framework.
Collapse
|
31
|
Petrini EM, Zacchi P, Barberis A, Mozrzymas JW, Cherubini E. Declusterization of GABAA receptors affects the kinetic properties of GABAergic currents in cultured hippocampal neurons. J Biol Chem 2003; 278:16271-9. [PMID: 12600990 DOI: 10.1074/jbc.m213081200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Speed and reliability of synaptic transmission are essential for information coding in neuronal networks and require the presence of clustered neurotransmitter receptors at the plasma membrane in precise apposition to presynaptic terminals. Receptor clusterization is the result of highly regulated processes involving functional and structural proteins. Among the structural elements, microtubules are known to play a crucial role in anchoring of gamma-aminobutyric acid, type A (GABA(A)) receptors. Here we show that microtubule depolymerization with nocodazole induces the declusterization of GABA(A) receptors and modifies the kinetic properties of GABAergic currents in cultured hippocampal neurons. In particular, this drug, applied either in the bath or via the patch pipette, induced the acceleration of the onset kinetics of miniature inhibitory postsynaptic currents (mIPSCs) without significantly affecting their frequency, thus suggesting a main postsynaptic site of action. After nocodazole treatment, current responses to ultrafast applications of GABA exhibited a faster rise time and an accelerated onset of desensitization. A quantitative analysis of GABA-evoked currents and model simulations suggest that declusterization affects the gating properties of GABA(A) receptors. In particular, a faster entry into the desensitized state of declustered GABA(A) receptors may account for the changes in the kinetic properties of mIPSCs after nocodazole treatment. Hence it appears that the clustered condition of GABA(A) receptors contributes in shaping GABAergic currents.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Neuroscience Programme and Istituto Nazionale Fisica della Materia Unit, International School for Advanced Studies, Via Beirut 2-4, Trieste 34014, Italy
| | | | | | | | | |
Collapse
|
32
|
Yu B, Wang C, Liu J, Johnson KM, Gallagher JP. Adaptation to chronic PCP results in hyperfunctional NMDA and hypofunctional GABA(A) synaptic receptors. Neuroscience 2002; 113:1-10. [PMID: 12123679 DOI: 10.1016/s0306-4522(02)00163-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Schizophrenia is currently thought to be associated with a hypoglutamatergic state that is mimicked by acute phencyclidine (PCP), an antagonist of the N-methyl-D-aspartate (NMDA) receptor subtype. In this study we tested the hypothesis that chronic treatment of rats with this antagonist may be a more appropriate animal model than acute exposure since it could result in adaptive synaptic responses that would model certain aspects of the schizophrenic state in humans. In vitro intracellular electrophysiological recordings employing brain slices from rats treated chronically in vivo with PCP demonstrated that chronic PCP caused a substantial increase in synaptic responses mediated by NMDA receptors without any significant changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-mediated synaptic responses. At the same time, GABA(A) receptor-mediated inhibitory responses were depressed significantly. Pharmacological and paired-pulse facilitation experiments demonstrated that these adaptive responses following chronic PCP administration were not the result of altered glutamate or GABA release. Immunoblot analyses suggest that the hyperfunctional NMDA response is at least partially mediated by an increased synthesis of NR1 and NR2A subunits as well as a change in the subunit stoichiometry of the NMDA receptor. This change in receptor composition was also supported by pharmacological experiments with a subunit selective NMDA antagonist. Our data support a reconsideration of NMDA and GABA(A) receptor responsiveness following a chronic, not acute, exposure to PCP and the adaptations that persist after such a regimen.
Collapse
Affiliation(s)
- B Yu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA
| | | | | | | | | |
Collapse
|
33
|
Humeau Y, Popoff MR, Kojima H, Doussau F, Poulain B. Rac GTPase plays an essential role in exocytosis by controlling the fusion competence of release sites. J Neurosci 2002; 22:7968-81. [PMID: 12223550 PMCID: PMC6758122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The role of small GTPases of the Rho family in synaptic functions has been addressed by analyzing the effects of lethal toxin (LT) from Clostridium sordellii strain IP82 (LT82) on neurotransmitter release at evoked identified synapses in the buccal ganglion of Aplysia. LT82 is a large monoglucosyltranferase that uses UDP-glucose as cofactor and glucosylates Rac (a small GTPase related to Rho), and Ras, Ral, and Rap (three GTPases of the Ras family). Intraneuronal application of LT (50 nm) rapidly inhibits evoked acetylcholine (ACh) release as monitored electrophysiologically. Injection of the catalytic domain of the toxin similarly blocked ACh release, but not when key amino acids needed for glucosylation were mutated. Intraneuronal application of competitive nucleotide sugars that differentially prevent glucosylation of Rac- and Ras-related GTPases, and the use of a toxin variant that affects a different spectrum of small GTPases, established that glucosylation of Rac is responsible for the reduction in ACh release. To determine the quantal release parameters affected by Rac glucosylation, we developed a nonstationary analysis of the fluctuations in postsynaptic response amplitudes that was performed before and after the toxin had acted or during toxin action. The results indicate that neither the quantal size nor the average probability for release were affected by lethal toxin action. ACh release blockage by LT82 was only caused by a reduction in the number of functional release sites. This reveals that after docking of synaptic vesicles, vesicular Rac stimulates a membrane effector (or effectors) essential for the fusion competence of the exocytotic sites.
Collapse
Affiliation(s)
- Yann Humeau
- Neurotransmission et Sécrétion Neuroendocrine, UPR2356 du Centre National de la Recherche Scientifique, IFR-37 des Neurosciences, F-67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
34
|
Abstract
For several decades, it has been known that mental retardation (MR) is associated with abnormalities in dendrites and dendritic spines. The recent cloning of seven genes that cause nonspecific MR when mutated provides important insights in the cellular mechanisms that result in the dendritic abnormalities associated with MR. Three of the encoded proteins, oligophrenin 1, PAK3 and alpha PIX, interact directly with Rho GTPases. Rho GTPases are key signaling proteins that integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton essential for directed neurite outgrowth and the regulation of synaptic connectivity. Although many details of the cell biology of Rho signaling in the CNS are still unclear, a picture is unfolding showing how mutations that alter Rho signaling result in abnormal neuronal connectivity and deficient cognitive functioning in humans. Conversely, these findings illuminate the cellular mechanisms underlying normal cognitive function.
Collapse
Affiliation(s)
- Ger J A Ramakers
- Neurons and Networks, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| |
Collapse
|
35
|
Lüscher B, Fritschy JM. Subcellular localization and regulation of GABAA receptors and associated proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:31-64. [PMID: 11526740 DOI: 10.1016/s0074-7742(01)48013-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- B Lüscher
- Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
36
|
Barnes EM. Assembly and intracellular trafficking of GABAA receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:1-29. [PMID: 11526736 DOI: 10.1016/s0074-7742(01)48012-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- E M Barnes
- Marrs McLean Department of Biochemistry and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Wilde C, Aktories K. The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon 2001; 39:1647-60. [PMID: 11595628 DOI: 10.1016/s0041-0101(01)00152-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Wilde
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | | |
Collapse
|
38
|
Ho WH, Wang SM, Yin HS. Regulation of the subcellular distribution and gene expression of GABA(A) receptor by microtubules and microfilaments in cultured brain neurons. J Cell Biochem 2001; 83:291-303. [PMID: 11573246 DOI: 10.1002/jcb.1232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanisms underlying the intracellular transport of gamma-aminobutyric acid(A) receptor (GABA(A)R) were examined in the cultured neurons derived from chicken embryo brains. In situ trypsinization of the cultures and (3)H-flunitrazepam (FNZ) binding assay were employed to determine the cell surface and intracellular distribution of the receptor. A 3-h treatment of the cells with 1 microM of colchicine, a microtubule depolymerizer, reversibly raised the proportion of intracellular GABA(A)R density by about 36% and decreased that of the cell surface receptors by 18% from respective control values, whereas the 3-h incubation with 2 microM of cytochalasin D, a microfilament disrupter, did not cause significant changes. These treatments failed to alter the total number of the (3)H-FNZ binding sites of the neurons and the affinity of the ligand. Moreover, the exposure to colchicine seemed to produce a stronger cytoplasmic immunostaining of the GABA(A)R alpha subunits in many neurons without affecting the total cellular level of the proteins, in accordance with the increased fraction of intracellular (3)H-FNZ binding. However, in the neurons exposed to cytochalasin D, there was an increase of around 28% in the total content of alpha(1)+51kDa proteins. In addition, the colchicine or cytochalasin D treatment inhibited approximately 21 or 18% of the rate of general protein synthesis in the culture. Notably, in situ hybridization assay showed that the GABA(A)R alpha(1) or alpha(2) mRNA was present in 92 +/- 2% or 94 +/- 2% of the cytochalasin D-treated neurons, both of which were higher than 71 +/- 2-74 +/- 3% of the control and colchicine-treated cells. The data suggest that by regulating the intracellular transport, the microtubular system participates in the maintenance of normal subcellular distribution of GABA(A)R in the neurons. By contrast, the organization of microfilaments may play a role in modulating the gene expression of GABA(A)R subunits.
Collapse
Affiliation(s)
- W H Ho
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
39
|
Abstract
Modulation of the strength of synapses is thought to be one of the mechanisms that underlies learning and memory and is also likely to be important in processes of neuropathology and drug tolerance. This review focuses on the emerging role of postsynaptic neurotransmitter receptor trafficking as an essential mechanism underlying the dynamic regulation of synaptic strength.
Collapse
Affiliation(s)
- J T Kittler
- Medical Research Council Laboratory of Molecular Cell Biology and UCL Department of Pharmacology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
40
|
Kotak VC, DiMattina C, Sanes DH. GABA(B) and Trk receptor signaling mediates long-lasting inhibitory synaptic depression. J Neurophysiol 2001; 86:536-40. [PMID: 11431532 DOI: 10.1152/jn.2001.86.1.536] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many areas of the nervous system, excitatory and inhibitory synapses are reconfigured during early development. We have previously described the anatomical refinement of an inhibitory projection from the medial nucleus of the trapezoid body to the lateral superior olive in the developing gerbil auditory brain stem. Furthermore, these inhibitory synapses display an age-dependent form of long-lasting depression when activated at a low rate, suggesting that this process could support inhibitory synaptic refinement. Since the inhibitory synapses release both glycine and GABA during maturation, we tested whether GABA(B) receptor signaling could initiate the decrease in synaptic strength. When whole cell recordings were made from lateral superior olive neurons in a brain slice preparation, the long-lasting depression of medial nucleus of the trapezoid body-evoked inhibitory potentials was eliminated by the GABA(B) receptor antagonist, SCH-50911. In addition, inhibitory potentials could be depressed by repeated exposure to the GABA(B) receptor agonist, baclofen. Since GABA(B) receptor signaling may not account entirely for inhibitory synaptic depression, we examined the influence of neurotrophin signaling pathways located in the developing superior olive. Bath application of brain-derived neurotrophic factor or neurotrophin-3 depressed evoked inhibitory potentials, and use-dependent depression was blocked by the tyrosine kinase antagonist, K-252a. We suggest that early expression of GABAergic and neurotrophin signaling mediates inhibitory synaptic plasticity, and this mechanism may support the anatomical refinement of inhibitory connections.
Collapse
Affiliation(s)
- V C Kotak
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
41
|
Brünig I, Penschuck S, Berninger B, Benson J, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABA(A) receptor surface expression. Eur J Neurosci 2001; 13:1320-8. [PMID: 11298792 DOI: 10.1046/j.0953-816x.2001.01506.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Changes in neurotransmitter receptor density at the synapse have been proposed as a mechanism underlying synaptic plasticity. Neurotrophic factors are known to influence synaptic strength rapidly. In the present study, we found that brain-derived neurotrophic factor (BDNF) acts postsynaptically to reduce gamma-aminobutyric acid (GABA)-ergic function. Using primary cultures of rat hippocampal neurons, we investigated the effects of BDNF on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and on the localization of GABAA receptors. Application of BDNF (100 ng/mL) led within minutes to a marked reduction (33.5%) of mIPSC amplitudes in 50% of neurons, recorded in the whole-cell patch-clamp mode, leaving frequency and decay kinetics unaffected. This effect was blocked by the protein kinase inhibitor K252a, which binds with high affinity to trkB receptors. Immunofluorescence staining with an antibody against trkB revealed that about 70% of cultured hippocampal pyramidal cells express trkB. In dual labelling experiments, use of neurobiotin injections to label the recorded cells revealed that all cells responsive to BDNF were immunopositive for trkB. Treatment of cultures with BDNF reduced the immunoreactivity for the GABAA receptor subunits-alpha2, -beta2,3 and -gamma2 in the majority of neurons. This effect was detectable after 15 min and lasted at least 12 h. Neurotrophin-4 (NT-4), but not neurotrophin-3 (NT-3), also reduced GABAA receptor immunoreactivity, supporting the proposal that this effect is mediated by trkB. Altogether the results suggest that exposure to BDNF induces a rapid reduction in postsynaptic GABAA receptor number that is responsible for the decline in GABAergic mIPSC amplitudes.
Collapse
Affiliation(s)
- I Brünig
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|