1
|
Ren Z, Wang X, Angelov M, De Zeeuw CI, Gao Z. Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing. Nat Commun 2025; 16:612. [PMID: 39800729 PMCID: PMC11725584 DOI: 10.1038/s41467-025-55884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC). When mice were trained for either DEC or TEC and subsequently subjected to a new paradigm, their conditioned responses (CRs) adapted virtually instantaneously. Changes in the activity of the IpN neurons related to CR timing were prominent during DEC-to-TEC adaptation, but less so during TEC-to-DEC adaptation. In contrast, mPFC neurons could rapidly alter their modulation patterns during both adaptation paradigms. Accordingly, silencing the mPFC completely blocked the adaptation of CR timing. These results illustrate how cerebral and cerebellar mechanisms may play different roles during adaptive control of associative motor timing.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Milen Angelov
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
- Department of Neurosurgery, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Pickford J, Iosif CI, Bashir ZI, Apps R. Inhibiting cholinergic signalling in the cerebellar interpositus nucleus impairs motor behaviour. Eur J Neurosci 2024; 59:2208-2224. [PMID: 37455360 PMCID: PMC7616440 DOI: 10.1111/ejn.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
The role of neuromodulators in the cerebellum is not well understood. In particular, the behavioural significance of the cholinergic system in the cerebellum is unknown. To investigate the importance of cerebellar cholinergic signalling in behaviour, we infused acetylcholine receptor antagonists, scopolamine and mecamylamine, bilaterally into the rat cerebellum (centred on interpositus nucleus) and observed the motor effects through a battery of behavioural tests. These tests included unrewarded behaviour during open field exploration and a horizontal ladder walking task and reward-based beam walking and pellet reaching tasks. Infusion of a mix of the antagonists did not impair motor learning in the horizontal ladder walking or the reaching task but reduced spontaneous movement during open field exploration, impaired coordination during beam walking and ladder walking, led to fewer reaches in the pellet reaching task, slowed goal-directed reaching behaviour and reduced reward pellet consumption in a free access to food task. Infusion of the muscarinic antagonist scopolamine on its own resulted in deficits in motor performance and a reduction in the number of reward pellets consumed in the free access to food task. By contrast, infusion of the nicotinic antagonist mecamylamine on its own had no significant effect on any task, except beam walking traversal time, which was reduced. Together, these data suggest that acetylcholine in the cerebellar interpositus nucleus is important for the execution and coordination of voluntary movements mainly via muscarinic receptor signalling, especially in relation to reward-related behaviour.
Collapse
Affiliation(s)
- Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
4
|
Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice. Neurosci Bull 2022; 38:459-473. [PMID: 34989972 PMCID: PMC9106783 DOI: 10.1007/s12264-021-00810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022] Open
Abstract
The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.
Collapse
|
5
|
López-Ramos JC, Delgado-García JM. Role of the motor cortex in the generation of classically conditioned eyelid and vibrissae responses. Sci Rep 2021; 11:16701. [PMID: 34404871 PMCID: PMC8371024 DOI: 10.1038/s41598-021-96153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
The eyelid motor system has been used for years as an experimental model for studying the neuronal mechanisms underlying motor and cognitive learning, mainly with classical conditioning procedures. Nonetheless, it is not known yet which brain structures, or neuronal mechanisms, are responsible for the acquisition, storage, and expression of these motor responses. Here, we studied the temporal correlation between unitary activities of identified eyelid and vibrissae motor cortex neurons and the electromyographic activity of the orbicularis oculi and vibrissae muscles and magnetically recorded eyelid positions during classical conditioning of eyelid and vibrissae responses, using both delay and trace conditioning paradigms in behaving mice. We also studied the involvement of motor cortex neurons in reflexively evoked eyelid responses and the kinematics and oscillatory properties of eyelid movements evoked by motor cortex microstimulation. Results show the involvement of the motor cortex in the performance of conditioned responses elicited during the classical conditioning task. However, a timing correlation analysis showed that both electromyographic activities preceded the firing of motor cortex neurons, which must therefore be related more with the reinforcement and/or proper performance of the conditioned responses than with their acquisition and storage.
Collapse
Affiliation(s)
- Juan C López-Ramos
- Department of Physiology, Anatomy and Cellular Biology, Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain.
| | - José M Delgado-García
- Department of Physiology, Anatomy and Cellular Biology, Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
6
|
Long-term effects of cerebellar anodal transcranial direct current stimulation (tDCS) on the acquisition and extinction of conditioned eyeblink responses. Sci Rep 2020; 10:22434. [PMID: 33384434 PMCID: PMC7775427 DOI: 10.1038/s41598-020-80023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) has been reported to enhance the acquisition of conditioned eyeblink responses (CR), a form of associative motor learning. The aim of the present study was to determine possible long-term effects of cerebellar tDCS on the acquisition and extinction of CRs. Delay eyeblink conditioning was performed in 40 young and healthy human participants. On day 1, 100 paired CS (conditioned stimulus)–US (unconditioned stimulus) trials were applied. During the first 50 paired CS–US trials, 20 participants received anodal cerebellar tDCS, and 20 participants received sham stimulation. On days 2, 8 and 29, 50 paired CS–US trials were applied, followed by 30 CS-only extinction trials on day 29. CR acquisition was not significantly different between anodal and sham groups. During extinction, CR incidences were significantly reduced in the anodal group compared to sham, indicating reduced retention. In the anodal group, learning related increase of CR magnitude tended to be reduced, and timing of CRs tended to be delayed. The present data do not confirm previous findings of enhanced acquisition of CRs induced by anodal cerebellar tDCS. Rather, the present findings suggest a detrimental effect of anodal cerebellar tDCS on CR retention and possibly CR performance.
Collapse
|
7
|
Lindquist DH. Emotion in motion: A three-stage model of aversive classical conditioning. Neurosci Biobehav Rev 2020; 115:363-377. [DOI: 10.1016/j.neubiorev.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
|
8
|
An L, Tang Y, Wang Q, Pei Q, Wei R, Duan H, Liu JK. Coding Capacity of Purkinje Cells With Different Schemes of Morphological Reduction. Front Comput Neurosci 2019; 13:29. [PMID: 31156415 PMCID: PMC6530636 DOI: 10.3389/fncom.2019.00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
The brain as a neuronal system has very complex structures with a large diversity of neuronal types. The most basic complexity is seen from the structure of neuronal morphology, which usually has a complex tree-like structure with dendritic spines distributed in branches. To simulate a large-scale network with spiking neurons, the simple point neuron, such as the integrate-and-fire neuron, is often used. However, recent experimental evidence suggests that the computational ability of a single neuron is largely enhanced by its morphological structure, in particular, by various types of dendritic dynamics. As the morphology reduction of detailed biophysical models is a classic question in systems neuroscience, much effort has been taken to simulate a neuron with a few compartments to include the interaction between the soma and dendritic spines. Yet, novel reduction methods are still needed to deal with the complex dendritic tree. Here, using 10 individual Purkinje cells of the cerebellum from three species of guinea-pig, mouse and rat, we consider four types of reduction methods and study their effects on the coding capacity of Purkinje cells in terms of firing rate, timing coding, spiking pattern, and modulated firing under different stimulation protocols. We found that there is a variation of reduction performance depending on individual cells and species, however, all reduction methods can preserve, to some degree, firing activity of the full model of Purkinje cell. Therefore, when stimulating large-scale network of neurons, one has to choose a proper type of reduced neuronal model depending on the questions addressed. Among these reduction schemes, Branch method, that preserves the geometrical volume of neurons, can achieve the best balance among different performance measures of accuracy, simplification, and computational efficiency, and reproduce various phenomena shown in the full morphology model of Purkinje cells. Altogether, these results suggest that the Branch reduction scheme seems to provide a general guideline for reducing complex morphology into a few compartments without the loss of basic characteristics of the firing properties of neurons.
Collapse
Affiliation(s)
- Lingling An
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yuanhong Tang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Quan Wang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Qingqi Pei
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Ran Wei
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Huiyuan Duan
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Jian K. Liu
- Department of Neuroscience, Psychology and Behaviour, Centre for Systems Neuroscience, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
mGluR1 in cerebellar Purkinje cells is essential for the formation but not expression of associative eyeblink memory. Sci Rep 2019; 9:7353. [PMID: 31089195 PMCID: PMC6517439 DOI: 10.1038/s41598-019-43744-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022] Open
Abstract
Classical eyeblink conditioning is a representative associative motor learning that requires both the cerebellar cortex and the deep cerebellar nucleus (DCN). Metabotropic glutamate receptor subtype 1 (mGluR1) is richly expressed in Purkinje cells (PCs) of the cerebellar cortex. Global mGluR1 knock-out (KO) mice show a significantly lower percentage of conditioned response (CR%) than wild-type mice in eyeblink conditioning, and the impaired CR% is restored by the introduction of mGluR1 in PCs. However, the specific roles of mGluR1 in major memory processes, including formation, storage and expression have not yet been defined. We thus examined the role of mGluR1 in these processes of eyeblink conditioning, using mGluR1 conditional KO (cKO) mice harboring a selective and reversible expression of mGluR1 in PCs. We have found that eyeblink memory is not latently formed in the absence of mGluR1 in adult mouse PCs. However, once acquired, eyeblink memory is expressed even after the depletion of mGluR1 in PCs. We thus conclude that mGluR1 in PCs is indispensable for the formation of eyeblink memory, while it is not required for the expression of CR.
Collapse
|
10
|
Reevaluating the ability of cerebellum in associative motor learning. Sci Rep 2019; 9:6029. [PMID: 30988338 PMCID: PMC6465343 DOI: 10.1038/s41598-019-42413-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/29/2019] [Indexed: 11/08/2022] Open
Abstract
It has been well established that the cerebellum and its associated circuitry constitute the essential neuronal system for both delay and trace classical eyeblink conditioning (DEC and TEC). However, whether the cerebellum is sufficient to independently modulate the DEC, and TEC with a shorter trace interval remained controversial. Here, we used direct optogenetic stimulation of mossy fibers in the middle cerebellar peduncle (MCP) as a conditioned stimulus (CS) replacement for the peripheral CS (eg, a tone CS or a light CS) paired with a periorbital shock unconditioned stimulus (US) to examine the ability of the cerebellum to learn the DEC and the TEC with various trace intervals. Moreover, neural inputs to the pontine nucleus (PN) were pharmacological blocked to limit the associative motor learning inside the cerebellum. We show that all rats quickly acquired the DEC, indicating that direct optogenetic stimulation of mossy fibers in the left MCP is a very effective and sufficient CS to establish DEC and to limit the motor learning process inside the cerebellum. However, only five out of seven rats acquired the TEC with a 150-ms trace interval, three out of nine rats acquired the TEC with a 350-ms trace interval, and none of the rats acquired the TEC with a 500-ms trace interval. Moreover, pharmacological blocking glutamatergic and GABAergic inputs to the PN from the extra-cerebellar and cerebellar regions has no significant effect on the DEC and TEC learning with the optogenetic CS. These results indicate that the cerebellum has the ability to independently support both the simple DEC, and the TEC with a trace interval of 150 or 350 ms, but not the TEC with a trace interval of 500 ms. The present results are of great importance in our understanding of the mechanisms and ability of the cerebellum in associative motor learning and memory.
Collapse
|
11
|
Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor. THE CEREBELLUM 2019; 18:67-75. [PMID: 29916048 DOI: 10.1007/s12311-018-0956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response. Neurobiol Learn Mem 2018; 155:143-156. [PMID: 30053576 PMCID: PMC6731038 DOI: 10.1016/j.nlm.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Conditioning-specific reflex modification (CRM) of the rabbit eyeblink response is an associative phenomenon characterized by increases in the frequency, size, and peak latency of the reflexive unconditioned eyeblink response (UR) when the periorbital shock unconditioned stimulus (US) is presented alone following conditioning, particularly to lower intensity USs that produced minimal responding prior to conditioning. Previous work has shown that CRM shares many commonalities with the conditioned eyeblink response (CR) including a similar response topography, suggesting the two may share similar neural substrates. The following study examined the hypothesis that the interpositus nucleus (IP) of the cerebellum, an essential part of the neural circuitry of eyeblink conditioning, is also required for the acquisition of CRM. Tests for CRM occurred following delay conditioning under muscimol inactivation of the IP and also after additional conditioning without IP inactivation. Results showed that IP inactivation blocked acquisition of CRs and the timing aspect of CRM but did not prevent increases in UR amplitude and area. Following the cessation of inactivation, CRs and CRM latency changes developed similarly to controls with intact IP functioning, but with some indication that CRs may have been facilitated in muscimol rabbits. In conclusion, CRM timing and CRs both likely require the development of plasticity in the IP, but other associative UR changes may involve non-cerebellar structures interacting with the eyeblink conditioning circuitry, a strong candidate being the amygdala, which is also likely involved in the facilitation of conditioning. Other candidates worth consideration include the cerebellar cortex, prefrontal and motor cortices.
Collapse
Affiliation(s)
- Lauren B Burhans
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Bernard G Schreurs
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
13
|
Locke TM, Soden ME, Miller SM, Hunker A, Knakal C, Licholai JA, Dhillon KS, Keene CD, Zweifel LS, Carlson ES. Dopamine D 1 Receptor-Positive Neurons in the Lateral Nucleus of the Cerebellum Contribute to Cognitive Behavior. Biol Psychiatry 2018; 84:401-412. [PMID: 29478701 PMCID: PMC6072628 DOI: 10.1016/j.biopsych.2018.01.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Studies in humans and nonhuman primates have identified a region of the dentate nucleus of the cerebellum, or the lateral cerebellar nucleus (LCN) in rodents, activated during performance of cognitive tasks involving complex spatial and sequential planning. Whether such a subdivision exists in rodents is not known. Dopamine and its receptors, which are implicated in cognitive function, are present in the cerebellar nuclei, but their function is unknown. METHODS Using viral and genetic strategies in mice, we examined cellular phenotypes of dopamine D1 receptor-positive (D1R+) cells in the LCN with whole-cell patch clamp recordings, messenger RNA profiling, and immunohistochemistry to examine D1R expression in mouse LCN and human dentate nucleus of the cerebellum. We used chemogenetics to inhibit D1R+ neurons and examined behaviors including spatial navigation, social recognition memory, prepulse inhibition of the acoustic startle reflex, response inhibition, and working memory to test the necessity of these neurons in these behaviors. RESULTS We identified a population of D1R+ neurons that are localized to an anatomically distinct region of the LCN. We also observed D1R+ neurons in human dentate nucleus of the cerebellum, which suggests an evolutionarily conserved population of dopamine-receptive neurons in this region. The genetic, electrophysiological, and anatomical profile of mouse D1R neurons is consistent with a heterogeneous population of gamma-aminobutyric acidergic, and to a lesser extent glutamatergic, cell types. Selective inhibition of D1R+ LCN neurons impairs spatial navigation memory, response inhibition, working memory, and prepulse inhibition of the acoustic startle reflex. CONCLUSIONS Collectively, these data demonstrate a functional link between genetically distinct neurons in the LCN and cognitive behaviors.
Collapse
Affiliation(s)
- Timothy M. Locke
- University of Washington, Department of Psychiatry and Behavioral Sciences
| | | | | | - Avery Hunker
- University of Washington, Department of Pharmacology
| | - Cerise Knakal
- University of Washington, Department of Pharmacology
| | | | - Karn S. Dhillon
- University of Washington, Department of Biological Chemistry
| | | | - Larry S. Zweifel
- University of Washington, Department of Psychiatry and Behavioral Sciences,University of Washington, Department of Pharmacology
| | - Erik S. Carlson
- University of Washington, Department of Psychiatry and Behavioral Sciences,Correspondence: Erik Sean Carlson M.D., Ph.D. Department of Psychiatry and Behavioral Sciences University of Washington 1959 NE Pacific Street, Box 356560 Seattle, WA, 98195-6560 Telephone: 612-387-7304 Fax: 206-543-9520
| |
Collapse
|
14
|
López-Ramos JC, Houdek Z, Cendelín J, Vožeh F, Delgado-García JM. Timing correlations between cerebellar interpositus neuronal firing and classically conditioned eyelid responses in wild-type and Lurcher mice. Sci Rep 2018; 8:10697. [PMID: 30013234 PMCID: PMC6048028 DOI: 10.1038/s41598-018-29000-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022] Open
Abstract
Classical eyeblink conditioning is an experimental model widely used for the study of the neuronal mechanisms underlying the acquisition of new motor and cognitive skills. There are two principal interpretations of the role of the cerebellum in the learning of eyelid conditioned responses (CRs). One considers that the cerebellum is the place where this learning is acquired and stored, while the second suggests that the cerebellum is mostly involved in the proper performance of acquired CRs, implying that there must be other brain areas involved in the learning process. We checked the timing of cerebellar interpositus nucleus (IPN) neurons’ firing rate with eyelid CRs in both wild-type (WT) and Lurcher (a model of cerebellar cortex degeneration) mice. We used delay and trace conditioning paradigms. WT mice presented a better execution for delay vs. trace conditioning and also for these two paradigms than did Lurcher mice. IPN neurons were activated during CRs following the activation of the orbicularis oculi muscle. Firing patterns of IPN neurons were altered in Lurcher mice. In conclusion, the cerebellum seems to be mostly related with the performance of conditioned responses, rather than with their acquisition.
Collapse
Affiliation(s)
| | - Zbynek Houdek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelín
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Frantisek Vožeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | |
Collapse
|
15
|
Establishment and transfer of classical eyeblink conditioning using electrical microstimulation of the hippocampus as the conditioned stimulus. PLoS One 2017; 12:e0178502. [PMID: 28575003 PMCID: PMC5456086 DOI: 10.1371/journal.pone.0178502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/12/2017] [Indexed: 11/23/2022] Open
Abstract
The present experiment was designed to determine whether classical eyeblink conditioning (EBC) can be established by using electrical microstimulation of the hippocampus as a conditioned stimulus (CS) paired with an air-puff unconditioned stimulus (US). We intended to examine whether EBC transfer could occur when a CS was shifted between microstimulation of the hippocampus as a CS (Hip-CS) and tone as a CS (tone-CS) and to compare the difference in transfer effectiveness between delay EBC (dEBC) and trace EBC (tEBC). Eight groups of guinea pigs, including 4 experimental groups and 4 control groups, were included in the study. First, the experimental groups received either a Hip-CS or a tone-CS paired with a US; then, these groups were exposed to a shifted CS (tone-CS or Hip-CS) paired with the US. The control groups received the corresponding Hip-CS or tone-CS, which was, however, pseudo-paired with the US. The control groups were then shifted to the tone-CS (or Hip-CS) paired with the US. The results show that EBC can be successfully established when using microstimulation of the hippocampus as a CS paired with an air-puff US, and that the acquisition rates of EBC are higher in the experimental groups than in the control groups after switching from the Hip-CS to the tone-CS or vice versa, indicating the occurrence of learning transfer between EBC established with the Hip-CS and tone-CS. The present study also demonstrated that the EBC re-acquisition rates were remarkably higher in dEBC than in tEBC with both types of transfer, which suggests that the saving effect was more evident in dEBC than tEBC. These results significantly expand our knowledge of EBC transfer as well as the functional neural circuit underlying EBC transfer.
Collapse
|
16
|
Beyer L, Batsikadze G, Timmann D, Gerwig M. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols. Front Hum Neurosci 2017; 11:23. [PMID: 28203151 PMCID: PMC5285376 DOI: 10.3389/fnhum.2017.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based on individual anatomy may also play role. Likewise cerebellar tDCS during extinction did not modulate extinction or reacquisition. Further studies are needed in larger subject populations to determine parameters of stimulation and learning paradigms yielding robust cerebellar tDCS effects.
Collapse
Affiliation(s)
- Linda Beyer
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | | | - Dagmar Timmann
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
17
|
Kolinko Y, Cendelin J, Kralickova M, Tonar Z. Smaller Absolute Quantities but Greater Relative Densities of Microvessels Are Associated with Cerebellar Degeneration in Lurcher Mice. Front Neuroanat 2016; 10:35. [PMID: 27147979 PMCID: PMC4835681 DOI: 10.3389/fnana.2016.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/15/2016] [Indexed: 11/17/2022] Open
Abstract
Degenerative affections of nerve tissues are often accompanied by changes of vascularization. In this regard, not much is known about hereditary cerebellar degeneration. In this study, we compared the vascularity of the individual cerebellar components and the mesencephalon of 3-month-old wild type mice (n = 5) and Lurcher mutant mice, which represent a model of hereditary olivocerebellar degeneration (n = 5). Paraformaldehyde-fixed brains were processed into 18-μm thick serial sections with random orientation. Microvessels were visualized using polyclonal rabbit anti-laminin antibodies. Then, the stacks comprised of three 5-μm thick optical sections were recorded using systematic uniform random sampling. Stereological assessment was conducted based on photo-documentation. We found that each of the cerebellar components has its own features of vascularity. The greatest number and length of vessels were found in the granular layer; the number of vessels was lower in the molecular layer, and the lowest number of vessels was observed in the cerebellar nuclei corresponding with their low volume. Nevertheless, the nuclei had the greatest density of blood vessels. The reduction of cerebellum volume in the Lurcher mice was accompanied by a reduction in vascularization in the individual cerebellar components, mainly in the cortex. Moreover, despite the lower density of microvessels in the Lurcher mice compared with the wild type mice, the relative density of microvessels in the cerebellar cortex and nuclei was greater in Lurcher mice. The complete primary morphometric data, in the form of continuous variables, is included as a supplement. Mapping of the cerebellar and midbrain microvessels has explanatory potential for studies using mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Jan Cendelin
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Zbynek Tonar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| |
Collapse
|
18
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits. J Neurosci 2016; 35:14809-21. [PMID: 26538651 DOI: 10.1523/jneurosci.2285-15.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. SIGNIFICANCE STATEMENT The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories.
Collapse
|
20
|
Tuma J, Kolinko Y, Vozeh F, Cendelin J. Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front Behav Neurosci 2015; 9:116. [PMID: 26029065 PMCID: PMC4429248 DOI: 10.3389/fnbeh.2015.00116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/21/2015] [Indexed: 01/16/2023] Open
Abstract
The cerebellum is not only essential for motor coordination but is also involved in cognitive and affective processes. These functions of the cerebellum and mechanisms of their disorders in cerebellar injury are not completely understood. There is a wide spectrum of cerebellar mutant mice which are used as models of hereditary cerebellar degenerations. Nevertheless, they differ in pathogenesis of manifestation of the particular mutation and also in the strain background. The aim of this work was to compare spatial navigation, learning, and memory in pcd and Lurcher mice, two of the most frequently used cerebellar mutants. The mice were tested in the open field for exploration behavior, in the Morris water maze with visible as well as reversal hidden platform tasks and in the forced swimming test for motivation assessment. Lurcher mice showed different space exploration activity in the open field and a lower tendency to depressive-like behavior in the forced swimming test compared with pcd mice. Severe deficit of spatial navigation was shown in both cerebellar mutants. However, the overall performance of Lurcher mice was better than that of pcd mutants. Lurcher mice showed the ability of visual guidance despite difficulties with the direct swim toward a goal. In the probe trial test, Lurcher mice preferred the visible platform rather than the more recent localization of the hidden goal.
Collapse
Affiliation(s)
- Jan Tuma
- Laboratory of Neurodegenerative Disorders, Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague Pilsen, Czech Republic ; Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Yaroslav Kolinko
- Laboratory of Neurodegenerative Disorders, Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague Pilsen, Czech Republic ; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Frantisek Vozeh
- Laboratory of Neurodegenerative Disorders, Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague Pilsen, Czech Republic ; Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| | - Jan Cendelin
- Laboratory of Neurodegenerative Disorders, Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague Pilsen, Czech Republic ; Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen, Czech Republic
| |
Collapse
|
21
|
Hoogland TM, De Gruijl JR, Witter L, Canto CB, De Zeeuw CI. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control. Curr Biol 2015; 25:1157-65. [PMID: 25843032 PMCID: PMC4425462 DOI: 10.1016/j.cub.2015.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 03/06/2015] [Indexed: 11/22/2022]
Abstract
It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what extent motor coordination deficits can be correlated with abnormalities in coherent activity within these microzones and to what extent artificially evoked synchronous activity within PC ensembles can elicit multi-joint motor behavior. To study PC ensemble correlates of limb, trunk, and tail movements, we developed a transparent disk treadmill that allows quantitative readout of locomotion and posture parameters in head-fixed mice and simultaneous cellular-resolution imaging and/or optogenetic manipulation. We show that PC ensembles in the ataxic and dystonic mouse mutant tottering have a reduced level of complex spike co-activation, which is delayed relative to movement onset and co-occurs with prolonged swing duration and reduced phase coupling of limb movements as well as with enlarged deflections of body-axis and tail movements. Using optogenetics to increase simple spike rate in PC ensembles, we find that preferred locomotion and posture patterns can be elicited or perturbed depending on the behavioral state. At rest, preferred sequences of limb movements can be elicited, whereas during locomotion, preferred gait-inhibition patterns are evoked. Our findings indicate that synchronous activation of PC ensembles can facilitate initiation and coordination of limb and trunk movements, presumably by tuning downstream systems involved in the execution of behavioral patterns. tg/tg mice show affected swing duration and phase coupling of limb movements PCs in ataxic tg/tg mice show delayed and reduced complex spike (CS) co-activation At rest, simple spike (SS) co-activation can elicit preferred locomotion sequences During locomotion, SS co-activation can be correlated with gait-inhibition patterns
Collapse
Affiliation(s)
- Tycho M Hoogland
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jornt R De Gruijl
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Laurens Witter
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Cathrin B Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Dr. Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
22
|
Manto M, Honnorat J, Hampe CS, Guerra-Narbona R, López-Ramos JC, Delgado-García JM, Saitow F, Suzuki H, Yanagawa Y, Mizusawa H, Mitoma H. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions. Front Behav Neurosci 2015; 9:78. [PMID: 25870548 PMCID: PMC4375997 DOI: 10.3389/fnbeh.2015.00078] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Autoantibodies to the smaller isoform of glutamate decarboxylase (GAD) can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct GAD autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal GAD antibodies. We found that GAD autoantibodies present in patients with stiff person syndrome (n = 7) and cerebellar ataxia (n = 15) recognized an epitope distinct from that recognized by GAD autoantibodies present in patients with type 1 diabetes mellitus (n = 10) or limbic encephalitis (n = 4). We demonstrated that the administration of a monoclonal GAD antibody representing this epitope specificity; (1) disrupted in vitro the association of GAD with γ-Aminobutyric acid containing synaptic vesicles; (2) depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect; (3) significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task; (4) markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm; and (5) induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of GAD by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such GAD antibodies could be envisioned.
Collapse
Affiliation(s)
- Mario Manto
- Unité d'Etude du Mouvement, FNRS Neurologie, ULB Erasme Brussels, Belgium
| | | | | | | | | | | | - Fumihito Saitow
- Department of Pharmacology, Nippon Medical School Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School Tokyo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and JST, CREST, Maebashi City Gunma, Japan
| | | | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University Tokyo, Japan
| |
Collapse
|
23
|
Voogd J. What we do not know about cerebellar systems neuroscience. Front Syst Neurosci 2014; 8:227. [PMID: 25565986 PMCID: PMC4270173 DOI: 10.3389/fnsys.2014.00227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
Our knowledge of the modular organization of the cerebellum and the sphere of influence of these modules still presents large gaps. Here I will review these gaps against our present anatomical and physiological knowledge of these systems.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
24
|
Chen H, Yang L, Xu Y, Wu GY, Yao J, Zhang J, Zhu ZR, Hu ZA, Sui JF, Hu B. Prefrontal control of cerebellum-dependent associative motor learning. THE CEREBELLUM 2014; 13:64-78. [PMID: 24013852 DOI: 10.1007/s12311-013-0517-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Magal A, Mintz M. Inhibition of the amygdala central nucleus by stimulation of cerebellar output in rats: a putative mechanism for extinction of the conditioned fear response. Eur J Neurosci 2014; 40:3548-55. [PMID: 25185877 DOI: 10.1111/ejn.12714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
The amygdala and the cerebellum serve two distinctively different functions. The amygdala plays a role in the expression of emotional information, whereas the cerebellum is involved in the timing of discrete motor responses. Interaction between these two systems is the basis of the two-stage theory of learning, according to which an encounter with a challenging event triggers fast classical conditioning of fear-conditioned responses in the amygdala and slow conditioning of motor-conditioned responses in the cerebellum. A third stage was hypothesised when an apparent interaction between amygdala and cerebellar associative plasticity was observed: an adaptive rate of cerebellum-dependent motor-conditioned responses was associated with a decrease in amygdala-dependent fear-conditioned responses, and was interpreted as extinction of amygdala-related fear-conditioned responses by the cerebellar output. To explore this hypothesis, we mimicked some components of classical eyeblink conditioning in anesthetised rats by applying an aversive periorbital pulse as an unconditioned stimulus and a train of pulses to the cerebellar output nuclei as a cerebellar neuronal-conditioned response. The central amygdala multiple unit response to the periorbital pulse was measured with or without a preceding train to the cerebellar output nuclei. The results showed that activation of the cerebellar output nuclei prior to periorbital stimulation produced diverse patterns of inhibition of the amygdala response to the periorbital aversive stimulus, depending upon the nucleus stimulated, the laterality of the nucleus stimulated, and the stimulus interval used. These results provide a putative extinction mechanism of learned fear behavior, and could have implications for the treatment of pathologies involving abnormal fear responses by using motor training as therapy.
Collapse
Affiliation(s)
- Ari Magal
- Psychobiology Research Unit, School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
26
|
Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, Carrel AJ, Cerminara N, Coco M, Gruart A, Sánchez-Campusano R. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. THE CEREBELLUM 2014; 12:738-57. [PMID: 23564049 DOI: 10.1007/s12311-013-0464-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.
Collapse
Affiliation(s)
- Vincenzo Perciavalle
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul 2014; 7:525-31. [PMID: 24776785 DOI: 10.1016/j.brs.2014.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/02/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Classical conditioning of the eyeblink reflex is a simple form of motor learning which depends on the integrity of the cerebellum. Acquisition of conditioned eyeblink responses is markedly reduced in patients with cerebellar disorders. Noninvasive transcranial direct current stimulation (tDCS) has been reported to modify the excitability of the cerebellar cortex. OBJECTIVE The aim of the study was to assess whether acquisition of conditioned eyeblink responses (CR) is altered by cerebellar tDCS. METHODS A standard delay conditioning paradigm with a 540 ms tone as conditioned stimulus (CS) coterminating with a 100 ms air puff as unconditioned stimulus (US) was used in a total of 30 healthy subjects (18 female, 12 male, mean age 23.4 ± 1.9 years). One hundred paired CS-US trials and 30 extinction CS alone trials were given. tDCS (2 mA intensity, ramp like onset) was applied over the right cerebellar hemisphere ipsilaterally to the US during the acquisition phase. Subjects were randomly assigned to three groups (n = 10) using anodal, cathodal or sham stimulation. The investigator as well as the participants was blinded to the stimulation modality. RESULTS CR acquisition was significantly enhanced by anodal tDCS (mean total CR incidence 73.4 ± 25.2%) and significantly reduced by cathodal stimulation (12.6 ± 17.2%) compared to sham stimulation (43.8 ± 24.1%). During anodal tDCS CR onset occurred significantly earlier, that is mean onset of responses was shifted closer to CS onset. CONCLUSION Acquisition and timing of conditioned eyeblink responses is modified by cerebellar tDCS in a polarity dependent manner.
Collapse
Affiliation(s)
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Germany.
| |
Collapse
|
28
|
Cheron G, Dan B, Márquez-Ruiz J. Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast 2013; 2013:853654. [PMID: 24319600 PMCID: PMC3844268 DOI: 10.1155/2013/853654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022] Open
Abstract
The role of cerebellar plasticity has been increasingly recognized in learning. The privileged relationship between the cerebellum and the inferior olive offers an ideal circuit for attempting to integrate the numerous evidences of neuronal plasticity into a translational perspective. The high learning capacity of the Purkinje cells specifically controlled by the climbing fiber represents a major element within the feed-forward and feedback loops of the cerebellar cortex. Reciprocally connected with the basal ganglia and multimodal cerebral domains, this cerebellar network may realize fundamental functions in a wide range of behaviors. This review will outline the current understanding of three main experimental paradigms largely used for revealing cerebellar functions in behavioral learning: (1) the vestibuloocular reflex and smooth pursuit control, (2) the eyeblink conditioning, and (3) the sensory envelope plasticity. For each of these experimental conditions, we have critically revisited the chain of causalities linking together neural circuits, neural signals, and plasticity mechanisms, giving preference to behaving or alert animal physiology. Namely, recent experimental approaches mixing neural units and local field potentials recordings have demonstrated a spike timing dependent plasticity by which the cerebellum remains at a strategic crossroad for deciphering fundamental and translational mechanisms from cellular to network levels.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université de Mons, 7000 Mons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, CP640, ULB Neuroscience Institut, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Javier Márquez-Ruiz
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
29
|
Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-González M, Delgado-García JM, Gruart A, Maldonado R, Ozaita A. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest 2013; 123:2816-31. [PMID: 23934130 DOI: 10.1172/jci67569] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/28/2013] [Indexed: 11/17/2022] Open
Abstract
Chronic cannabis exposure can lead to cerebellar dysfunction in humans, but the neurobiological mechanisms involved remain incompletely understood. Here, we found that in mice, subchronic administration of the psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), activated cerebellar microglia and increased the expression of neuroinflammatory markers, including IL-1β. This neuroinflammatory phenotype correlated with deficits in cerebellar conditioned learning and fine motor coordination. The neuroinflammatory phenotype was readily detectable in the cerebellum of mice with global loss of the CB1 cannabinoid receptor (CB1R, Cb1(-/-) mice) and in mice lacking CB1R in the cerebellar parallel fibers, suggesting that CB1R downregulation in the cerebellar molecular layer plays a key role in THC-induced cerebellar deficits. Expression of CB2 cannabinoid receptor (CB2R) and Il1b mRNA was increased under neuroinflammatory conditions in activated CD11b-positive microglial cells. Furthermore, administration of the immunosuppressant minocycline or an inhibitor of IL-1β receptor signaling prevented the deficits in cerebellar function in Cb1(-/-) and THC-withdrawn mice. Our results suggest that cerebellar microglial activation plays a crucial role in the cerebellar deficits induced by repeated cannabis exposure.
Collapse
Affiliation(s)
- Laura Cutando
- Laboratori de Neurofarmacologia, Facultat de Ciències de Salut i de Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Blocking glutamate-mediated inferior olivary signals abolishes expression of conditioned eyeblinks but does not prevent their acquisition. J Neurosci 2013; 33:9097-103. [PMID: 23699520 DOI: 10.1523/jneurosci.3129-12.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inferior olive (IO) is considered a crucial component of the eyeblink conditioning network. The cerebellar learning hypothesis proposes that the IO provides the cerebellum with a teaching signal that is required for the acquisition and maintenance of conditioned eyeblinks. Supporting this concept, previous experiments showed that lesions or inactivation of the IO blocked CR acquisition. However, these studies were not conclusive. The drawback of the methods used by those studies is that they not only blocked task-related signals, but also completely shut down the spontaneous activity within the IO, which affects the rest of the eyeblink circuits in a nonspecific manner. We hypothesized that more selective blocking of task-related IO signals could be achieved by using injections of glutamate antagonists, which reduce, but do not eliminate, the spontaneous activity in the IO. We expected that if glutamate-mediated IO signals are required for learning, then blocking these signals during training sessions should prevent conditioned response (CR) acquisition. To test this prediction, rabbits were trained to acquire conditioned eyeblinks to a mild vibrissal airpuff as the conditioned stimulus while injections of the glutamate antagonist γ-d-glutamylglycine were administered to the IO. Remarkably, even though this treatment suppressed CRs during training sessions, the postacquisition retention test revealed that CR acquisition had not been abolished. The ability to acquire CRs with IO unconditioned stimulus signals that were blocked or severely suppressed suggests that mechanisms responsible for CR acquisition are extremely resilient and probably less dependent on IO-task-related signals than previously thought.
Collapse
|
31
|
The rostral medial prefrontal cortex regulates the expression of conditioned eyelid responses in behaving rabbits. J Neurosci 2013; 33:4378-86. [PMID: 23467354 DOI: 10.1523/jneurosci.5560-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied the contribution of the rostral mPFC (rmPFC) to the acquisition and performance of classical eyeblink conditioning in rabbits using a delay paradigm. The rmPFC was determined by its afferent projections from the medial half of the mediodorsal thalamic nucleus. The rmPFC neurons were identified by their antidromic activation from the mediodorsal nucleus and/or by their firing characteristics. The rmPFC neurons increased their firing during the first conditioning sessions, but decreased it when conditioned responses (CRs) reached asymptotic values. Therefore, no significant relationships could be established between neuronal firing rates and the percentage of CRs or the electromyographic (EMG) activity of the orbicularis oculi muscle during conditioning. Electrical train stimulation of the rmPFC produced a significant inhibition of air-puff-evoked blinks and reduced the generation of CRs compared with controls. Inhibition of the rmPFC by the local injection of lidocaine produced an increase in the amplitude of evoked reflex and conditioned eyeblinks and in the percentage of CRs. The rmPFC seems to be a potent inhibitor of reflex and conditioned eyeblinks, controlling the release of newly acquired eyelid responses until advanced stages of the acquisition process--i.e., until the need for the acquired response is fully confirmed. Therefore, the rmPFC seems to act as a "flip-flop" mechanism in controlling behavior.
Collapse
|
32
|
Parker KL, Andreasen NC, Liu D, Freeman JH, Ponto LLB, O'Leary DS. Eyeblink conditioning in healthy adults: a positron emission tomography study. THE CEREBELLUM 2013; 11:946-56. [PMID: 22430943 DOI: 10.1007/s12311-012-0377-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eyeblink conditioning is a paradigm commonly used to investigate the neural mechanisms underlying motor learning. It involves the paired presentation of a tone-conditioning stimulus which precedes and co-terminates with an airpuff unconditioned stimulus. Following repeated paired presentations a conditioned eyeblink develops which precedes the airpuff. This type of learning has been intensively studied and the cerebellum is known to be essential in both humans and animals. The study presented here was designed to investigate the role of the cerebellum during eyeblink conditioning in humans using positron emission tomography (PET). The sample includes 20 subjects (10 male and 10 female) with an average age of 29.2 years. PET imaging was used to measure regional cerebral blood flow (rCBF) changes occurring during the first, second, and third blocks of conditioning. In addition, stimuli-specific rCBF to unpaired tones and airpuffs ("pseudoconditioning") was used as a baseline level that was subtracted from each block. Conditioning was performed using three, 15-trial blocks of classical eyeblink conditioning with the last five trials in each block imaged. As expected, subjects quickly acquired conditioned responses. A comparison between the conditioning tasks and the baseline task revealed that during learning there was activation of the cerebellum and recruitment of several higher cortical regions. Specifically, large peaks were noted in cerebellar lobules IV/V, the frontal lobes, and cingulate gyri.
Collapse
Affiliation(s)
- Krystal L Parker
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Porras-García ME, Ruiz R, Pérez-Villegas EM, Armengol JÁ. Motor learning of mice lacking cerebellar Purkinje cells. Front Neuroanat 2013; 7:4. [PMID: 23630472 PMCID: PMC3632800 DOI: 10.3389/fnana.2013.00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 03/29/2013] [Indexed: 12/31/2022] Open
Abstract
The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input–output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum.
Collapse
Affiliation(s)
- M Elena Porras-García
- División de Neurociencias, Departamento de Fisiología, Anatomía y Biología Celular, Área de Anatomía y Embriología Humana y Fisiología, Universidad Pablo de Olavide Seville, Spain
| | | | | | | |
Collapse
|
34
|
Kishimoto Y, Hirono M, Atarashi R, Sakaguchi S, Yoshioka T, Katamine S, Kirino Y. Age-dependent impairment of eyeblink conditioning in prion protein-deficient mice. PLoS One 2013; 8:e60627. [PMID: 23593266 PMCID: PMC3622692 DOI: 10.1371/journal.pone.0060627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/28/2013] [Indexed: 02/02/2023] Open
Abstract
Mice lacking the prion protein (PrP(C)) gene (Prnp), Ngsk Prnp (0/0) mice, show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrP(C)-like protein (PrPLP/Dpl). Because PrP(C) is highly expressed in cerebellar neurons (including PCs and granule cells), it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrP(C) and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp (0/0) mice in adulthood (16, 40, and 60 weeks of age). The aims of the present study were two-fold: (1) to examine the role of PrP(C) and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2) to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp (0/0) mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp (0/0) mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs), although the CR timing was altered. The same result was observed in another line of PrP(c)-deficient mice, ZrchI PrnP (0/0) mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp (0/0) mice. Furthermore, Ngsk Prnp (0/0) mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp (0/0) mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning.
Collapse
Affiliation(s)
- Yasushi Kishimoto
- Laboratory of Neurobiophysics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Moritoshi Hirono
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute, Wako, Japan
| | - Ryuichiro Atarashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Tohru Yoshioka
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shigeru Katamine
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Center for International Collaborative Research, Nagasaki University, Nagasaki, Japan
| | - Yutaka Kirino
- Laboratory of Neurobiophysics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Red nucleus neurons actively contribute to the acquisition of classically conditioned eyelid responses in rabbits. J Neurosci 2012; 32:12129-43. [PMID: 22933796 DOI: 10.1523/jneurosci.1782-12.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The red nucleus (RN) is a midbrain premotor center that has been suggested as being involved in the acquisition and/or performance of classically conditioned nictitating membrane/eyelid responses. We recorded in rabbits the activity of RN and pararubral neurons during classical eyeblink conditioning using a delay paradigm. Neurons were identified by their antidromic activation from contralateral facial and accessory abducens nuclei and by their synaptic activation from the ipsilateral motor cortex (MC) and the contralateral cerebellar interpositus (IP) nucleus. For conditioning, we used a tone as a conditioned stimulus (CS) followed 250 ms later by a 100 ms air puff as an unconditioned stimulus (US) coterminating with it. Conditioned responses (CRs) were determined from the evoked changes in the electromyographic activity of the orbicularis oculi (OO) muscle. Recorded neurons were classified by their antidromic activation and by their changes in firing rate during the CS-US interval. Identified neurons increased their firing rates in relation to the successive conditioning sessions, but their discharge rates were related more to the EMG activity of the OO muscle than to the learning curves. Reversible inactivation of the IP nucleus with lidocaine during conditioning evoked a complete disappearance of both conditioned and unconditioned eyelid responses, and a progressive decrease in CR-related activity of RN neurons. In contrast, MC inactivation evoked a decrease in the acquisition process and an initial disfacilitation of neuronal firing (which was later recovered), together with the late appearance of CRs. Thus, RN neurons presented learning-dependent changes in activity following MC inactivation.
Collapse
|
36
|
Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. THE CEREBELLUM 2012; 10:702-10. [PMID: 21181461 DOI: 10.1007/s12311-010-0242-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Understanding the role played by the cerebellum in the genesis and control of learned motor responses requires a precise knowledge of interdependent relationships between kinetic neural commands and the performance (kinematics) of the acquired movements. The eyelid motor system is a useful model for studying how simple motor responses are generated and performed. Here, we recorded the activity of interpositus, red nucleus, and/or facial motor neurons during classical eyeblink conditioning, using a delay paradigm. Experiments were carried out in behaving cats, and in conscious wild-type and (Purkinje cell devoid) Lurcher mice. Kinetic variables were determined by recording the firing activities of identified neurons at the mentioned nuclei, whilst kinematic variables were selected from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded during the conditioned-stimulus/unconditioned-stimulus interval. Whereas motoneurons encoded eyelid kinematics for acquired eyelid responses, interpositus, and red nucleus neurons did not directly encode eyelid performance, and the dynamic association between their neuronal activities was barely significant (from moderate to weak correlation, nonlinear coupling with high asymmetry, and neural firing activities that always lagged the beginning of the conditioned response). Nevertheless, interpositus and red nucleus neurons seem to play a modulating role in the dynamic control of this type of learned motor response, and present interesting adaptive properties in Lurcher mice. The analytical procedures proposed here could be very helpful in defining the functional state corresponding to each stage across the acquisition of new motor and cognitive abilities.
Collapse
|
37
|
Classical eyeblink conditioning using electrical stimulation of caudal mPFC as conditioned stimulus is dependent on cerebellar interpositus nucleus in guinea pigs. Acta Pharmacol Sin 2012; 33:717-27. [PMID: 22562015 DOI: 10.1038/aps.2012.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To determine whether electrical stimulation of caudal medial prefrontal cortex (mPFC) as conditioned stimulus (CS) paired with airpuff unconditioned stimulus (US) was sufficient for establishing eyeblink conditioning in guinea pigs, and whether it was dependent on cerebellar interpositus nucleus. METHODS Thirty adult guinea pigs were divided into 3 conditioned groups, and trained on the delay eyeblink conditioning, short-trace eyeblink conditioning, and long-trace eyeblink conditioning paradigms, respectively, in which electrical stimulation of the right caudal mPFC was used as CS and paired with corneal airpuff US. A pseudo conditioned group of another 10 adult guinea pigs was given unpaired caudal mPFC electrical stimulation and the US. Muscimol (1 μg in 1 μL saline) and saline (1 μL) were infused into the cerebellar interpositus nucleus of the animals through the infusion cannula on d 11 and 12, respectively. RESULTS The 3 eyeblink conditioning paradigms have been successfully established in guinea pigs. The animals acquired the delay and short-trace conditioned responses more rapidly than long-trace conditioned responses. Muscimol infusion into the cerebellar interpositus nucleus markedly impaired the expression of the 3 eyeblink conditioned responses. CONCLUSION Electrical stimulation of caudal mPFC is effective CS for establishing eyeblink conditioning in guinea pigs, and it is dependent on the cerebellar interpositus nucleus.
Collapse
|
38
|
Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. CEREBELLUM (LONDON, ENGLAND) 2012; 11:457-87. [PMID: 22161499 PMCID: PMC4347949 DOI: 10.1007/s12311-011-0331-9] [Citation(s) in RCA: 621] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.
Collapse
Affiliation(s)
- Mario Manto
- Unité d'Etude du Mouvement, FNRS, ULB Erasme, 808 Route de Lennik, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sánchez-Campusano R, Gruart A, Fernández-Mas R, Delgado-García JM. An agonist-antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front Neuroanat 2012; 6:8. [PMID: 22435053 PMCID: PMC3303085 DOI: 10.3389/fnana.2012.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements—i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area—i.e., more or less directly onto levator palpebrae motoneurons—is highly appealing.
Collapse
|
40
|
Wu GY, Yao J, Zhang LQ, Li X, Fan ZL, Yang Y, Sui JF. Reevaluating the role of the medial prefrontal cortex in delay eyeblink conditioning. Neurobiol Learn Mem 2012; 97:277-88. [PMID: 22387661 DOI: 10.1016/j.nlm.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
It has been proposed that the medial prefrontal cortex (mPFC) is not necessary for delay eyeblink conditioning (DEC). Here, we investigated the involvement of the mPFC in DEC with a soft or loud tone as the conditioned stimulus (CS) by using electrolytic lesions or muscimol inactivation of guinea pig mPFC. Interestingly, when a soft tone was used as a CS, electrolytic lesions of the mPFC significantly retarded acquisition of the conditioned response (CR), and muscimol infusions into mPFC distinctly inhibited the acquisition and expression of CR, but had no significant effect on consolidation of well-learned CR. In contrast, both electrolytic lesions and muscimol inactivation of mPFC produced no significant deficits in the CR when a loud tone was used as the CS, or in the unconditioned response (UR) when a soft or loud tone was used as the CS. These results demonstrate that the mPFC is essential for the DEC with the soft tone CS but not for the DEC with the loud tone CS.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Chettih SN, McDougle SD, Ruffolo LI, Medina JF. Adaptive timing of motor output in the mouse: the role of movement oscillations in eyelid conditioning. Front Integr Neurosci 2011; 5:72. [PMID: 22144951 PMCID: PMC3226833 DOI: 10.3389/fnint.2011.00072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/11/2011] [Indexed: 11/25/2022] Open
Abstract
To survive, animals must learn to control their movements with millisecond-level precision, and adjust the kinematics if conditions, or task requirements, change. Here, we examine adaptive timing of motor output in mice, using a simple eyelid conditioning task. Mice were trained to blink in response to a light stimulus that was always followed by a corneal air-puff at a constant time interval. Different mice were trained with different intervals of time separating the onset of the light and the air-puff. As in previous work in other animal species, mice learned to control the speed of the blink, such that the time of maximum eyelid closure matched the interval used during training. However, we found that the time of maximum eyelid speed was always in the first 100 ms after movement onset and did not scale with the training interval, indicating that adaptive timing is not accomplished by slowing down (or speeding up) the eyelid movement uniformly throughout the duration of the blink. A new analysis, specifically designed to examine the kinematics of blinks in single trials, revealed that the underlying control signal responsible for the eyelid movement is made up of oscillatory bursts that are time-locked to the light stimulus at the beginning of the blink, becoming desynchronized later on. Furthermore, mice learn to blink at different speeds and time the movement appropriately by adjusting the amplitude, but not the frequency of the bursts in the eyelid oscillation.
Collapse
Affiliation(s)
- Selmaan N Chettih
- Department of Psychology, University of Pennsylvania Philadelphia, PA, USA
| | | | | | | |
Collapse
|
42
|
Changes of synaptic ultrastructure in the guinea pig interpositus nuclei associate with response magnitude and timing after trace eyeblink conditioning. Behav Brain Res 2011; 226:529-37. [PMID: 22019363 DOI: 10.1016/j.bbr.2011.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/07/2011] [Indexed: 01/05/2023]
Abstract
Learning-induced changes of synaptic ultrastructure have long been proposed as a mechanism that may contribute to support memory formation. Although recent studies have demonstrated that the interpositus nuclei (IN) play critical role in acquisition and retention of trace conditioned eyeblink responses (CRs), there is now limited evidence associating trace eyeblink conditioning with changes of synaptic ultrastructure in the IN. Here, we investigated this issue using a transmission electron microscope. Adult guinea pigs were randomly allocated to either a trace-paired, delay-paired, unpaired or exposure-only condition. The IN tissue was taken for morphological analysis 1h after the completion of the tenth training session. Serial section analysis of synaptic ultrastructure revealed that trace eyeblink conditioning induced increases in the thickness of excitatory PSD. Classification of the synapses into shape subtypes indicated that the increased thickness of excitatory PSD was mainly attributable to increase in the concave- and convex-shaped synapses. On the contrary, trace eyeblink conditioning resulted in decreases in the thickness of inhibitory PSD. Specifically, these significant changes of PSD thickness were limited to occur in the animals with good behavioral performance. Further analysis of correlations between the trace CR performance and synaptic ultrastructural modifications showed that the thickness of excitatory PSD within the IN correlated with the peak amplitude of trace CRs, whereas the thickness of inhibitory PSD correlated with the onset latency. The present findings suggest that trace eyeblink conditioning induces structural plasticity in the IN, which may play a crucial role in acquiring and executing adaptive eyeblink movements.
Collapse
|
43
|
Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem 2011; 18:666-77. [PMID: 21969489 DOI: 10.1101/lm.2023011] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology and Neuroscience Program, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
44
|
Abstract
A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control.
Collapse
Affiliation(s)
- Nadia L. Cerminara
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Richard Apps
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD UK
| |
Collapse
|
45
|
Sánchez-Campusano R, Gruart A, Delgado-García JM. Timing and causality in the generation of learned eyelid responses. Front Integr Neurosci 2011; 5:39. [PMID: 21941469 PMCID: PMC3171062 DOI: 10.3389/fnint.2011.00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/01/2011] [Indexed: 12/31/2022] Open
Abstract
The cerebellum-red nucleus-facial motoneuron (Mn) pathway has been reported as being involved in the proper timing of classically conditioned eyelid responses. This special type of associative learning serves as a model of event timing for studying the role of the cerebellum in dynamic motor control. Here, we have re-analyzed the firing activities of cerebellar posterior interpositus (IP) neurons and orbicularis oculi (OO) Mns in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. The aim was to revisit the hypothesis that the IP neurons (IPns) can be considered a neuronal phase-modulating device supporting OO Mns firing with an emergent timing mechanism and an explicit correlation code during learned eyelid movements. Optimized experimental and computational tools allowed us to determine the different causal relationships (temporal order and correlation code) during and between trials. These intra- and inter-trial timing strategies expanding from sub-second range (millisecond timing) to longer-lasting ranges (interval timing) expanded the functional domain of cerebellar timing beyond motor control. Interestingly, the results supported the above-mentioned hypothesis. The causal inferences were influenced by the precise motor and pre-motor spike timing in the cause-effect interval, and, in addition, the timing of the learned responses depended on cerebellar–Mn network causality. Furthermore, the timing of CRs depended upon the probability of simulated causal conditions in the cause-effect interval and not the mere duration of the inter-stimulus interval. In this work, the close relation between timing and causality was verified. It could thus be concluded that the firing activities of IPns may be related more to the proper performance of ongoing CRs (i.e., the proper timing as a consequence of the pertinent causality) than to their generation and/or initiation.
Collapse
|
46
|
Abstract
Learning a new goal-directed behavioral task often requires the improvement of at least two processes, including an enhanced stimulus-response association and an optimization of the execution of the motor response. The cerebellum has recently been shown to play a role in acquiring goal-directed behavior, but it is unclear to what extent it contributes to a change in the stimulus-response association and/or the optimization of the execution of the motor response. We therefore designed the stimulus-dependent water Y-maze conditioning task, which allows discrimination between both processes, and we subsequently subjected Purkinje cell-specific mutant mice to this new task. The mouse mutants L7-PKCi, which suffer from impaired PKC-dependent processes such as parallel fiber to Purkinje cell long-term depression (PF-PC LTD), were able to acquire the stimulus-response association, but exhibited a reduced optimization of their motor performance. These data show that PF-PC LTD is not required for learning a stimulus-response association, but they do suggest that a PKC-dependent process in cerebellar Purkinje cells is required for optimization of motor responses.
Collapse
|
47
|
Kaulich T, Föhre W, Kutz DF, Gerwig M, Timmann D, Kolb FP. Differences in unconditioned and conditioned responses of the human withdrawal reflex during stance: muscle responses and biomechanical data. Brain Res 2010; 1326:81-95. [PMID: 20188078 DOI: 10.1016/j.brainres.2010.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/24/2022]
Abstract
The aim of this study was to characterize differences between unconditioned and classically conditioned lower limb withdrawal reflexes in young subjects during standing. Electromyographic activity in the main muscle groups and biomechanical signals from a strain-gauge-equipped platform on which subjects stood were recorded from 17 healthy subjects during unconditioned stimulus (US)-alone trials and during auditory conditioning stimuli (CS) and US trials. In US-alone trials the leg muscle activation sequence was characteristic: ipsilateral, distal muscles were activated prior to proximal muscles; contralaterally the sequence was reversed. In CSUS trials latencies were shorter. Subjects unloaded the stimulated leg and shifted body weight to the supporting leg. In US-alone and in CSUS trials leg forces on each side were inversely related and asymmetric, due to preparation for unloading, whilst conditioned responses (CR), representing the unloading preparation, were symmetric. The trajectory of the center of vertical pressure during US-alone trials moved initially forward (a preparatory balance reaction) and to the stimulation side, followed by a large lateral shift to the side of the supporting limb. During CSUS trials the forwards shift was absent but the CR (early lateral shift) represented a preponed preparatory unloading. Electrophysiological and biomechanical responses of the classically conditioned lower limb withdrawal reflex in standing subjects changed significantly in CSUS trials compared to US-alone trials with higher sensitivity in the biomechanics. These findings will serve as a basis for a subsequent study on a group of patients with cerebellar diseases in whom the success of establishing procedural processes is known to be impaired.
Collapse
Affiliation(s)
- Thomas Kaulich
- Institute of Physiology, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Porras-García E, Sánchez-Campusano R, Martínez-Vargas D, Domínguez-del-Toro E, Cendelín J, Vozeh F, Delgado-García JM. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol 2010; 104:346-65. [PMID: 20410355 DOI: 10.1152/jn.00180.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Young adult heterozygous Lurcher mice constitute an excellent model for studying the role of the cerebellar cortex in motor performance-including the acquisition of new motor abilities-because of the early postnatal degeneration of almost all of their Purkinje and granular cells. Wild-type and Lurcher mice were classically conditioned for eyelid responses using a delay paradigm with or without an electrolytic lesion in the interpositus nucleus. Although the late component of electrically evoked blink reflexes was smaller in amplitude and had a longer latency in Lurcher mice than that in controls, the two groups of animals presented similar acquisition curves for eyeblink conditioning. The lesion of the interpositus nucleus affected both groups of animals equally for the generation of reflex and conditioned eyelid responses. Furthermore, we recorded the multiunitary activity at the red and interpositus nuclei during the same type of associative learning. In both nuclei, the neural firing activity lagged the beginning of the conditioned response (determined by orbicularis oculi muscle response). Although red nucleus neurons and muscle activities presented a clear functional coupling (strong correlation and low asymmetry) across conditioning, the coupling between interpositus neurons and either red nucleus neurons or muscle activities was slightly significant (weak correlation and high asymmetry). Lurcher mice presented a nonlinear coupling (high asymmetry) between red nucleus neurons and muscle activities, with an evident compensatory adjustment in the correlation of firing between interpositus and red nuclei neurons (a coupling with low asymmetry), aimed probably at compensating the absence of cerebellar cortical neurons.
Collapse
Affiliation(s)
- Elena Porras-García
- Division of Anatomy and Human Embryology, Pablo de Olavide University, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This experiment monitored eyelid responses bilaterally during delay eyeblink conditioning in rats. Rats were given paired or unpaired training with a tone or light conditioned stimulus (CS) and a unilateral periorbital shock unconditioned stimulus (US). Rats given paired training acquired high levels of conditioned responses (CRs), which occurred in both eyelids. However, acquisition was faster, and the overall percentage of CRs was greater in the eyelid that was ipsilateral to the US. CRs in the eyelid ipsilateral to the US also had shorter onset latencies and larger amplitudes than CRs in the contralateral eyelid. Both eyelids consistently showed high percentages of unconditioned responses (UR) to the US, and the UR amplitude decreased across training sessions in the paired group. The present study demonstrated that CRs occur robustly in both eyelids of rats given eyeblink conditioning, which is similar to previous findings in humans and monkeys. The results also showed that conditioning occurs more prominently in the eyelid that is ipsilateral to the US, which is similar to previous findings in humans, monkeys, dogs, and rabbits.
Collapse
|
50
|
Schade Powers A, Coburn-Litvak P, Evinger C. Conditioned eyelid movement is not a blink. J Neurophysiol 2009; 103:641-7. [PMID: 19939960 DOI: 10.1152/jn.00631.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Based on kinematic properties and distinct substrates, there are different classes of eyelid movement described as eyeblinks. We investigate whether the eyelid movements made in response to a conditioned stimulus (CS) are a category of eyelid movements distinct from blinks. Human subjects received 60 trials of classical eyelid conditioning with a tone as the CS and electrical stimulation of the supraorbital branch of the trigeminal nerve as the unconditioned stimulus (UCS). Before and after training, reflex blinks were elicited with the UCS. The kinematics of conditioned responses (CRs) differed significantly from those of reflex blinks. The slope of the amplitude-maximum velocity function was steeper for reflex blinks than for CRs, and reflex blink duration was significantly shorter than CR duration. Unlike reflex blinks, for which maximum velocity was independent of blink duration, the maximum velocity of CRs depended on CR duration. These quantitative and qualitative differences indicated that CRs were a unique class of eyelid movements distinct from blinks and eyelid movements with vertical saccadic gaze shifts.
Collapse
|