1
|
Scott A, Paulson A, Prill C, Kermoade K, Newell B, Eckenwiler EA, Lemos JC, Richard JM. Ventral Pallidal GABAergic Neurons Drive Consumption in Male, But Not Female, Rats. eNeuro 2025; 12:ENEURO.0245-24.2025. [PMID: 39809537 PMCID: PMC11794971 DOI: 10.1523/eneuro.0245-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis and hedonic and motivational aspects of food and food cues that can drive nonhomeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and food cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP GABA neurons have been implicated in cue-elicited reward-seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used designer receptors exclusively activated by designer drugs to activate VP GABA neurons in nonrestricted male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Collin Prill
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Klaiten Kermoade
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Molecular Pharmacological and Therapeutics, University of Minnesota, Minneapolis, Minnesota
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth A Eckenwiler
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Julia C Lemos
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Jocelyn M Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
2
|
Tuna T, Banks T, Glickert G, Sevinc C, Nair SS, Unal G. Basal forebrain innervation of the amygdala: an anatomical and computational exploration. Brain Struct Funct 2025; 230:30. [PMID: 39805973 PMCID: PMC11729089 DOI: 10.1007/s00429-024-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity. We used retrograde tracing with fluorescent immunohistochemistry to identify cholinergic and non-cholinergic parvalbumin- or calbindin-immunoreactive BF neuronal subgroups targeting the input (lateral and basolateral nuclei) and output (central nucleus and the central bed nucleus of the stria terminalis) regions of the amygdaloid complex. We observed a dense non-cholinergic, putative GABAergic projection from the ventral pallidum (VP) and the substantia innominata (SI) to the basolateral amygdala (BLA). The VP/SI axonal projections to the BLA were confirmed using viral anterograde tracing and transsynaptic labeling. We tested the potential function of this VP/SI-BLA pathway in a 1000-cell biophysically realistic network model, which incorporated principal neurons and three major interneuron groups of the BLA, together with extrinsic glutamatergic, cholinergic, and VP/SI GABAergic inputs. We observed in silico that theta-modulation of VP/SI GABAergic projections enhanced theta oscillations in the BLA via their selective innervation of the parvalbumin-expressing local interneurons. Ablation of parvalbumin-, but not somatostatin- or calretinin-expressing, interneurons reduced theta power in the BLA model. These results suggest that long-range BF GABAergic projections may modulate network activity at their target regions through the formation of a common interneuron-type and oscillatory phase-specific disinhibitory motif.
Collapse
Affiliation(s)
- Tuğçe Tuna
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Tyler Banks
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gregory Glickert
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Satish S Nair
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
3
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Minnes GL, Wiener AJ, Pisahl AS, Duecker EA, Baskhairoun BA, Lowe SC, Simon NW. Effects of maternal separation on punishment-driven risky decision making in adolescence and adulthood. Neurobiol Learn Mem 2025; 217:108016. [PMID: 39709000 PMCID: PMC11769738 DOI: 10.1016/j.nlm.2024.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Early life adversity (ELA) is associated with a multitude of neural and behavioral aberrations. To develop treatments to mitigate the effects of ELA, it is critical to determine which aspects of cognition are affected and when these disturbances manifest across the lifespan. Here, we tested the effects of maternal separation, an established rodent model of ELA, on punishment-driven risky decision-making longitudinally in both adolescence (25-55 days old) and adulthood (80-100 days old). Risk-taking was assessed with the Risky Decision-making Task, wherein rats choose between a small, safe reward and a large reward accompanied by an escalating risk of punishment (foot shock). We observed that rats exposed to maternal separation were more prone to risk-taking than controls during adolescence, and demonstrated reduced latency to make both risky and safe decisions. Interestingly, this augmented risk-taking was no longer evident in adulthood. Males and females displayed comparable levels of risk-taking during adolescence then diverged in adulthood, with adult males displaying a sharp increase in risk-taking. Finally, we observed that risk-taking changed across the lifespan in rats exposed to maternal separation, but not in control rats. Collectively, these data reveal that ELA engenders risk-taking in adolescence but not adulthood, and that sex differences in risky decision-making are not evident until adulthood. This has important implications for the development of both behavioral and biological treatments to improve decision-making during the vulnerable adolescent period.
Collapse
Affiliation(s)
- Grace L Minnes
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Anna J Wiener
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Audrey S Pisahl
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Elizabeth A Duecker
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Boula A Baskhairoun
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Sharoderick C Lowe
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Nicholas W Simon
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA.
| |
Collapse
|
5
|
Yang L, Fang LZ, Lynch MR, Xu CS, Hahm HJ, Zhang Y, Heitmeier MR, Costa VD, Samineni VK, Creed MC. Transcriptomic landscape of mammalian ventral pallidum at single-cell resolution. SCIENCE ADVANCES 2024; 10:eadq6017. [PMID: 39661664 PMCID: PMC11633743 DOI: 10.1126/sciadv.adq6017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The ventral pallidum (VP) is critical for motivated behaviors. While contemporary work has begun to elucidate the functional diversity of VP neurons, the molecular heterogeneity underlying this functional diversity remains incompletely understood. We used single-nucleus RNA sequencing and in situ hybridization to define the transcriptional taxonomy of VP cell types in mice, macaques, and baboons. We found transcriptional conservation between all three species, within the broader neurochemical cell types. Unique dopaminoceptive and cholinergic subclusters were identified and conserved across both primate species but had no homolog in mice. This harmonized consensus VP cellular atlas will pave the way for understanding the structure and function of the VP and identified key neuropeptides, neurotransmitters, and neurotransmitter receptors that could be targeted within specific VP cell types for functional investigations.
Collapse
Affiliation(s)
- Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Z. Fang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle R. Lynch
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- NINDS Neuroscience Postbaccalaureate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Chang S. Xu
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah J. Hahm
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yufen Zhang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Monique R. Heitmeier
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent D. Costa
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
| | - Vijay K. Samineni
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Meaghan C. Creed
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Scott A, Paulson A, Prill C, Kermoade K, Newell B, Richard JM. Ventral pallidal GABAergic neurons drive consumption in male, but not female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591876. [PMID: 38746325 PMCID: PMC11092650 DOI: 10.1101/2024.04.30.591876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic "feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP gamma-Aminobutyric acidergic (GABA) neurons have been implicated in cue-elicited reward seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate or inhibit VP GABA neurons in sated male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. We also found that, while inhibition of VP GABA neurons tended to decrease sucrose consumption, this effect was not statistically significant. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Collin Prill
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Klaiten Kermoade
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Molecular and Pharmacological Therapeutics, University of Minnesota, Minneapolis, MN
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Jocelyn M. Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Richard JM, Newell B, Muruganandan P, Janak PH, Saunders BT. Pavlovian cue-evoked alcohol seeking is disrupted by ventral pallidal inhibition. ADDICTION NEUROSCIENCE 2024; 13:100186. [PMID: 39640360 PMCID: PMC11619284 DOI: 10.1016/j.addicn.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cues paired with alcohol can be potent drivers of craving, alcohol-seeking, consumption, and relapse. While the ventral pallidum is implicated in appetitive and consummatory responses across several reward classes and types of behaviors, its role in behavioral responses to Pavlovian alcohol cues has not previously been established. Here, we tested the impact of optogenetic inhibition of ventral pallidum on Pavlovian-conditioned alcohol-seeking in male Long Evans rats. Rats underwent Pavlovian conditioning with an auditory cue predicting alcohol delivery to a reward port and a control cue predicting no alcohol delivery, until they consistently entered the reward port more during the alcohol cue than the control cue. We then tested the within-session effects of optogenetic inhibition during 50% of cue presentations. We found that optogenetic inhibition of ventral pallidum during the alcohol cue reduced port entry likelihood and time spent in the port, and increased port entry latency. Overall, these results suggest that normal ventral pallidum activity is necessary for Pavlovian alcohol-seeking.
Collapse
Affiliation(s)
- Jocelyn M. Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| | - Bailey Newell
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| | - Preethi Muruganandan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| | - Patricia H. Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21218
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55415
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55415
| |
Collapse
|
8
|
Zhang Y, Zhang W, Wang L, Liu D, Xie T, Le Z, Li X, Gong H, Xu XH, Xu M, Yao H. Whole-brain Mapping of Inputs and Outputs of Specific Orbitofrontal Cortical Neurons in Mice. Neurosci Bull 2024; 40:1681-1698. [PMID: 38801564 PMCID: PMC11607251 DOI: 10.1007/s12264-024-01229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/16/2023] [Indexed: 05/29/2024] Open
Abstract
The orbitofrontal cortex (ORB), a region crucial for stimulus-reward association, decision-making, and flexible behaviors, extensively connects with other brain areas. However, brain-wide inputs to projection-defined ORB neurons and the distribution of inhibitory neurons postsynaptic to neurons in specific ORB subregions remain poorly characterized. Here we mapped the inputs of five types of projection-specific ORB neurons and ORB outputs to two types of inhibitory neurons. We found that different projection-defined ORB neurons received inputs from similar cortical and thalamic regions, albeit with quantitative variations, particularly in somatomotor areas and medial groups of the dorsal thalamus. By counting parvalbumin (PV) or somatostatin (SST) interneurons innervated by neurons in specific ORB subregions, we found a higher fraction of PV neurons in sensory cortices and a higher fraction of SST neurons in subcortical regions targeted by medial ORB neurons. These results provide insights into understanding and investigating the function of specific ORB neurons.
Collapse
Affiliation(s)
- Yijie Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lizhao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziwei Le
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangning Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shanghai, 200031, China.
| |
Collapse
|
9
|
Russell EL, McDannald MA. Ventral Pallidum Neurons Are Necessary to Generalize and Express Fear-Related Responding in a Minimal Threat Setting. eNeuro 2024; 11:ENEURO.0124-24.2024. [PMID: 39510838 PMCID: PMC11595600 DOI: 10.1523/eneuro.0124-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Fear generalization is a hallmark of anxiety disorders. Experimentally, fear generalization can be difficult to dissociate from its counterpart, fear discrimination. Here, we use minimal threat learning procedures to reveal such a dissociation. We show that in Long-Evans rats, an auditory threat cue predicting footshock on 10% of trials produces a discriminated fear response that does not generalize to a neutral auditory cue. In contrast, even slightly higher footshock probabilities (30 and 20%) produce fear generalization. AAV-mediated, caspase-3 deletion of ventral pallidum neurons abolishes fear generalization and reduces threat cue responding during extinction. The ventral pallidum's contribution to fear generalization and extinction threat responding does not depend on inputs from the nucleus accumbens. The results demonstrate a minimal threat learning approach to dissociate fear discrimination from fear generalization and a novel role for the ventral pallidum in generalizing and expressing fear.
Collapse
Affiliation(s)
- Emma L Russell
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
10
|
Kwak MJ, Choi SJ, Cai WT, Cho BR, Han J, Park JW, Riecken LB, Morrison H, Choi SY, Kim WY, Kim JH. Manipulation of radixin phosphorylation in the nucleus accumbens core modulates risky choice behavior. Prog Neurobiol 2024; 242:102681. [PMID: 39437882 DOI: 10.1016/j.pneurobio.2024.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Ezrin-Radixin-Moesin (ERM) proteins are actin-binding proteins that contribute to morphological changes in dendritic spines. Despite their significant role in regulating spine structure, the role of ERM proteins in the nucleus accumbnes (NAcc) is not well known, especially in in the context of risk-reward decision-making. Here, we measured the relationship between synaptic excitation and inhibition (E/I ratio) from medium spiny neurons in the NAcc core obtained in the rat after a rat gambling task (rGT). Then, after surgery of a phosphomimetic pseudo-active mutant form of radixin (Rdx-T564D) in the NAcc core, we examined its role in synaptic plasticity and the accompanying risk-choice behavior in rGT. We found that basal E/I ratio in the NAcc core was higher in risk-averse rats than risk-seeking rats. However, it was significantly reduced in risk-averse rats similar to that in risk-seeking rats in the presence of Rdx-T564D in the NAcc core. Furthermore, the head sizes of spines were shifted in risk-averse rats expressing Rdx-T564D in the NAcc core, similar to those observed in risk-seeking rats. The effects of Rdx-T564D in risk-averse rats were again manifested as behavioral changes, with reduced selection of optimal choices and increased selection of disadvantageous ones. In this study, we demonstrated that manipulation of radixin phosphorylation status in the NAcc core can alter glutamatergic synaptic transmission and spine structure at this site, as well as risk choice behaviors in the rGT. These novel findings illustrate that radixin in the NAcc core plays a significant role in determining risk preference during the rGT.
Collapse
Affiliation(s)
- Myung Ji Kwak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su Jeong Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Wen Ting Cai
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bo Ram Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joonyeup Han
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Woo Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipman Institute, Jena 07745, Germany
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea.
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jeong-Hoon Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Yang L, Fang LZ, Lynch MR, Xu CS, Hahm H, Zhang Y, Heitmeier MR, Costa V, Samineni VK, Creed MC. Transcriptomic landscape of mammalian ventral pallidum at single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595793. [PMID: 38826431 PMCID: PMC11142225 DOI: 10.1101/2024.05.24.595793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The ventral pallidum (VP) is critical for motivated behaviors. While contemporary work has begun to elucidate the functional diversity of VP neurons, the molecular heterogeneity underlying this functional diversity remains incompletely understood. We used snRNA-seq and in situ hybridization to define the transcriptional taxonomy of VP cell types in mice, macaques, and baboons. We found transcriptional conservation between all three species, within the broader neurochemical cell types. Unique dopaminoceptive and cholinergic subclusters were identified and conserved across both primate species but had no homolog in mice. This harmonized consensus VP cellular atlas will pave the way for understanding the structure and function of the VP and identified key neuropeptides, neurotransmitters, and neuro receptors that could be targeted within specific VP cell types for functional investigations. Teaser Genetic identity of ventral pallidum cell types is conserved across rodents and primates at the transcriptional level.
Collapse
|
12
|
Lee JDA, Reppucci CJ, Huez EDM, Bredewold R, Veenema AH. Sex differences in the structure and function of the vasopressin system in the ventral pallidum are associated with the sex-specific regulation of social play behavior in juvenile rats. Horm Behav 2024; 163:105563. [PMID: 38772158 PMCID: PMC11221216 DOI: 10.1016/j.yhbeh.2024.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Vasopressin (AVP) regulates various social behaviors, often in sex-specific ways, including social play behavior, a rewarding behavior displayed primarily by juveniles. Here, we examined whether and how AVP acting in the brain's reward system regulates social play behavior in juvenile rats. Specifically, we focused on AVP signaling in the ventral pallidum (VP), a brain region that is a part of the reward system. First, we examined the organization of the VP-AVP system in juvenile rats and found sex differences, with higher density of both AVP-immunoreactive fibers and AVP V1a receptor (V1aR) binding in males compared to females while females show a greater number of V1aR-expressing cells compared to males. We further found that, in both sexes, V1aR-expressing cells co-express a GABA marker to a much greater extent (approx. 10 times) than a marker for glutamate. Next, we examined the functional involvement of V1aR-expressing VP cells in social play behavior. We found that exposure to social play enhanced the proportion of activated V1aR-expressing VP cells in males only. Finally, we showed that infusion of a specific V1aR antagonist into the VP increased social play behaviors in juvenile male rats while decreasing these behaviors in juvenile female rats. Overall, these findings reveal structural and functional sex differences in the AVP-V1aR system in the VP that are associated with the sex-specific regulation of social play behavior.
Collapse
Affiliation(s)
- Jessica D A Lee
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christina J Reppucci
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Elie D M Huez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Hegedüs P, Király B, Schlingloff D, Lyakhova V, Velencei A, Szabó Í, Mayer MI, Zelenak Z, Nyiri G, Hangya B. Parvalbumin-expressing basal forebrain neurons mediate learning from negative experience. Nat Commun 2024; 15:4768. [PMID: 38849336 PMCID: PMC11161511 DOI: 10.1038/s41467-024-48755-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/11/2024] [Indexed: 06/09/2024] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Victoria Lyakhova
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Anna Velencei
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Írisz Szabó
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Zsofia Zelenak
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, H-1083, Budapest, Hungary.
| |
Collapse
|
14
|
Hernández-Jaramillo A, Illescas-Huerta E, Sotres-Bayon F. Ventral Pallidum and Amygdala Cooperate to Restrain Reward Approach under Threat. J Neurosci 2024; 44:e2327232024. [PMID: 38631914 PMCID: PMC11154850 DOI: 10.1523/jneurosci.2327-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
Foraging decisions involve assessing potential risks and prioritizing food sources, which can be challenging when confronted with changing and conflicting circumstances. A crucial aspect of this decision-making process is the ability to actively overcome defensive reactions to threats and focus on achieving specific goals. The ventral pallidum (VP) and basolateral amygdala (BLA) are two brain regions that play key roles in regulating behavior motivated by either rewards or threats. However, it is unclear whether these regions are necessary in decision-making processes involving competing motivational drives during conflict. Our aim was to investigate the requirements of the VP and BLA for foraging choices in conflicts involving overcoming defensive responses. Here, we used a novel foraging task and pharmacological techniques to inactivate either the VP or BLA or to disconnect these brain regions before conducting a conflict test in male rats. Our findings showed that BLA is necessary for making risky choices during conflicts, whereas VP is necessary for invigorating the drive to obtain food, regardless of the presence of conflict. Importantly, our research revealed that the connection between VP and BLA is critical in controlling risky food-seeking choices during conflict situations. This study provides a new perspective on the collaborative function of VP and BLA in driving behavior, aimed at achieving goals in the face of dangers.
Collapse
Affiliation(s)
| | - Elizabeth Illescas-Huerta
- Institute of Cell Physiology - Neuroscience, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Francisco Sotres-Bayon
- Institute of Cell Physiology - Neuroscience, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
15
|
Morais-Silva G, Lobo MK. Refining the circuits of drug addiction: The ventral pallidum. Curr Opin Neurobiol 2024; 86:102883. [PMID: 38815544 DOI: 10.1016/j.conb.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
The ventral pallidum is a prominent structure within the basal ganglia, regulating reward and motivational processes. Positioned at the interface between motor and limbic structures, its function is crucial to the development and maintenance of substance use disorders. Chronic drug use induces neuroplastic events in this structure, leading to long-term changes in VP neuronal activity and synaptic communication. Moreover, different neuronal populations within the VP drive drug-seeking behavior in opposite directions. This review explores the role of the VP as a hub for reward, motivation, and aversion, establishing it as an important contributor to the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil. https://twitter.com/gessynger
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Kim R, Ananth MR, Desai NS, Role LW, Talmage DA. Distinct subpopulations of ventral pallidal cholinergic projection neurons encode valence of olfactory stimuli. Cell Rep 2024; 43:114009. [PMID: 38536818 PMCID: PMC11080946 DOI: 10.1016/j.celrep.2024.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
To better understand the function of cholinergic projection neurons in the ventral pallidum (VP), we examined behavioral responses to appetitive (APP) and aversive (AV) odors that elicited approach or avoidance, respectively. Exposure to each odor increased cFos expression and calcium signaling in VP cholinergic neurons. Activity and Cre-dependent viral vectors selectively labeled VP cholinergic neurons that were activated and reactivated in response to either APP or AV odors, but not both, identifying two non-overlapping populations of VP cholinergic neurons differentially activated by the valence of olfactory stimuli. These two subpopulations showed differences in electrophysiological properties, morphology, and projections to the basolateral amygdala. Although VP neurons are engaged in both approach and avoidance behavioral responses, cholinergic signaling is only required for approach behavior. Thus, two distinct subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play distinct roles in approach and avoidance behaviors.
Collapse
Affiliation(s)
- Ronald Kim
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mala R Ananth
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niraj S Desai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lorna W Role
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Richard JM, Armstrong A, Newell B, Muruganandan P, Janak PH, Saunders BT. Pavlovian cue-evoked alcohol seeking is disrupted by ventral pallidal inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585064. [PMID: 38559136 PMCID: PMC10980019 DOI: 10.1101/2024.03.14.585064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cues paired with alcohol can be potent drivers of craving, alcohol-seeking, consumption, and relapse. While the ventral pallidum is implicated in appetitive and consummatory responses across several reward classes and types of behaviors, its role in behavioral responses to Pavlovian alcohol cues has not previously been established. Here, we tested the impact of optogenetic inhibition of ventral pallidum on Pavlovian-conditioned alcohol-seeking in male Long Evans rats. Rats underwent Pavlovian conditioning with an auditory cue predicting alcohol delivery to a reward port and a control cue predicting no alcohol delivery, until they consistently entered the reward port more during the alcohol cue than the control cue. We then tested the within-session effects of optogenetic inhibition during 50% of cue presentations. We found that optogenetic inhibition of ventral pallidum during the alcohol cue reduced port entry likelihood and time spent in the port, and increased port entry latency. Overall, these results suggest that normal ventral pallidum activity is necessary for Pavlovian alcohol-seeking.
Collapse
Affiliation(s)
- Jocelyn M. Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Anne Armstrong
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences Johns Hopkins University, Baltimore, MD
| | - Bailey Newell
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Preethi Muruganandan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Patricia H. Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences Johns Hopkins University, Baltimore, MD
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Costello H, Husain M, Roiser JP. Apathy and Motivation: Biological Basis and Drug Treatment. Annu Rev Pharmacol Toxicol 2024; 64:313-338. [PMID: 37585659 DOI: 10.1146/annurev-pharmtox-022423-014645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apathy is a disabling syndrome associated with poor functional outcomes that is common across a broad range of neurological and psychiatric conditions. Currently, there are no established therapies specifically for the condition, and safe and effective treatments are urgently needed. Advances in the understanding of motivation and goal-directed behavior in humans and animals have shed light on the cognitive and neurobiological mechanisms contributing to apathy, providing an important foundation for the development of new treatments. Here, we review the cognitive components, neural circuitry, and pharmacology of apathy and motivation, highlighting converging evidence of shared transdiagnostic mechanisms. Though no pharmacological treatments have yet been licensed, we summarize trials of existing and novel compounds to date, identifying several promising candidates for clinical use and avenues of future drug development.
Collapse
Affiliation(s)
- Harry Costello
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences and Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| |
Collapse
|
19
|
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
20
|
Wright KM, Cieslewski S, Chu A, McDannald MA. Optogenetic inhibition of the caudal substantia nigra inflates behavioral responding to uncertain threat and safety. Behav Neurosci 2023; 137:347-355. [PMID: 37796586 PMCID: PMC10966587 DOI: 10.1037/bne0000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Defensive responding is adaptive when it approximates the current threat but maladaptive when it exceeds the current threat. Here we asked if the substantia nigra, a region consistently implicated in reward, is necessary to show appropriate levels of defensive responding in Pavlovian fear discrimination. Rats received bilateral transduction of the caudal substantia nigra with halorhodopsin or a control fluorophore and bilateral ferrule implants. Rats then behaviorally discriminated cues predicting unique foot shock probabilities (danger, p = 1; uncertainty, p = .25; and safety, p = 0). Green-light illumination (532 nm) during cue presentation inflated defensive responding of halorhodopsin rats-measured by suppression of reward seeking-to uncertainty and safety beyond control levels. Green-light illumination outside of cue presentation had no impact on halorhodopsin or control rat responding. The results reveal caudal substantia nigra cue activity is necessary to inhibit defensive responding to nonthreatening and uncertain threat cues. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Amanda Chu
- Boston College, Department of Psychology & Neuroscience
| | | |
Collapse
|
21
|
Kim R, Ananth M, Desai NS, Role LW, Talmage DA. Distinct subpopulations of ventral pallidal cholinergic projection neurons encode valence of olfactory stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561261. [PMID: 37986753 PMCID: PMC10659428 DOI: 10.1101/2023.10.06.561261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The ventral pallidum (VP) mediates motivated behaviors largely via the action of VP GABA and glutamatergic neurons. In addition to these neuronal subtypes, there is a population of cholinergic projection neurons in the VP, whose functional significance remains unclear. To understand the functional role of VP cholinergic neurons, we first examined behavioral responses to an appetitive (APP) odor that elicited approach, and an aversive (AV) odor that led to avoidance. To examine how VP cholinergic neurons were engaged in APP vs. AV responses, we used an immediate early gene marker and in-vivo fiber photometry, examining the activation profile of VP cholinergic neurons in response to each odor. Exposure to each odor led to an increase in the number of cFos counts and increased calcium signaling of VP cholinergic neurons. Activity and cre-dependent viral vectors were designed to label engaged VP cholinergic neurons in two distinct contexts: (1) exposure to the APP odor, (2) followed by subsequent exposure to the AV odor, and vice versa. These studies revealed two distinct, non-overlapping subpopulations of VP cholinergic neurons: one activated in response to the APP odor, and a second distinct population activated in response to the AV odor. These two subpopulations of VP cholinergic neurons are spatially intermingled within the VP, but show differences in electrophysiological properties, neuronal morphology, and projections to the basolateral amygdala. Although VP cholinergic neurons are engaged in behavioral responses to each odor, VP cholinergic signaling is only required for approach behavior. Indeed, inhibition of VP cholinergic neurons not only blocks approach to the APP odor, but reverses the behavior, leading to active avoidance. Our results highlight the functional heterogeneity of cholinergic projection neurons within the VP. These two subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play unique roles in approach and avoidance behaviors.
Collapse
Affiliation(s)
- Ronald Kim
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mala Ananth
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Niraj S. Desai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lorna W. Role
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David A. Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. Psychopharmacology (Berl) 2023; 240:2101-2110. [PMID: 37530882 PMCID: PMC10794001 DOI: 10.1007/s00213-023-06429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| |
Collapse
|
23
|
Gabriel DB, Liley AE, Franks H, Minnes GL, Tutaj M, Dwinell MR, de Jong T, Williams RW, Mulligan MK, Chen H, Simon NW. Divergent risky decision-making and impulsivity behaviors in Lewis rat substrains with low genetic difference. Behav Neurosci 2023; 137:254-267. [PMID: 37104777 PMCID: PMC10524952 DOI: 10.1037/bne0000557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Substance use disorder (SUD) is associated with a cluster of cognitive disturbances that engender vulnerability to ongoing drug seeking and relapse. Two of these endophenotypes-risky decision-making and impulsivity-are amplified in individuals with SUD and are augmented by repeated exposure to illicit drugs. Identifying genetic factors underlying variability in these behavioral patterns is critical for early identification, prevention, and treatment of SUD-vulnerable individuals. Here, we compared risky decision-making and different facets of impulsivity between two fully inbred substrains of Lewis rats-LEW/NCrl and LEW/NHsd. We performed whole genome sequencing of both substrains to identify almost all relevant variants. We observed substantial differences in risky decision-making and impulsive behaviors. Relative to LEW/NHsd, the LEW/NCrl substrain accepts higher risk options in a decision-making task and higher rates of premature responses in the differential reinforcement of low rates of responding task. These phenotypic differences were more pronounced in females than males. We defined a total of ∼9,000 polymorphisms between these substrains at 40× whole genome short-read coverage. Roughly half of variants are located within a single 1.5 Mb region of Chromosome 8, but none impact protein-coding regions. In contrast, other variants are widely distributed, and of these, 38 are predicted to cause protein-coding variants. In conclusion, Lewis rat substrains differ significantly in risk-taking and impulsivity and only a small number of easily mapped variants are likely to be causal. Sequencing combined with a reduced complexity cross should enable identification of one or more variants underlying multiple complex addiction-relevant behaviors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Anna E. Liley
- Department of Psychology, University of Memphis, Memphis TN 38152
| | - Hunter Franks
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis TN 38105
| | - Grace L. Minnes
- Department of Psychology, University of Memphis, Memphis TN 38152
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI 53226
| | - Melinda R. Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI 53226
| | - Tristan de Jong
- Department of Pharmacology, Addiction and Toxicology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis TN 38163
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis TN 38163
| | - Hao Chen
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis TN 38163
| | | |
Collapse
|
24
|
Scott A, Palmer D, Newell B, Lin I, Cayton CA, Paulson A, Remde P, Richard JM. Ventral Pallidal GABAergic Neuron Calcium Activity Encodes Cue-Driven Reward Seeking and Persists in the Absence of Reward Delivery. J Neurosci 2023; 43:5191-5203. [PMID: 37339880 PMCID: PMC10342224 DOI: 10.1523/jneurosci.0013-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023] Open
Abstract
Reward-seeking behavior is often initiated by environmental cues that signal reward availability. This is a necessary behavioral response; however, cue reactivity and reward-seeking behavior can become maladaptive. To better understand how cue-elicited reward seeking becomes maladaptive, it is important to understand the neural circuits involved in assigning appetitive value to rewarding cues and actions. Ventral pallidum (VP) neurons are known to contribute to cue-elicited reward-seeking behavior and have heterogeneous responses in a discriminative stimulus (DS) task. The VP neuronal subtypes and output pathways that encode distinct aspects of the DS task remain unknown. Here, we used an intersectional viral approach with fiber photometry to record bulk calcium activity in VP GABAergic (VP GABA) neurons in male and female rats as they learned and performed the DS task. We found that VP GABA neurons are excited by reward-predictive cues but not neutral cues and that this response develops over time. We also found that this cue-evoked response predicts reward-seeking behavior and that inhibiting this VP GABA activity during cue presentation decreases reward-seeking behavior. Additionally, we found increased VP GABA calcium activity at the time of expected reward delivery, which occurred even on trials when reward was omitted. Together, these findings suggest that VP GABA neurons encode reward expectation, and calcium activity in these neurons encodes the vigor of cue-elicited reward seeking.SIGNIFICANCE STATEMENT VP circuitry is a major driver of cue-evoked behaviors. Previous work has found that VP neurons have heterogenous responses and contributions to reward-seeking behavior. This functional heterogeneity is because of differences of neurochemical subtypes and projections of VP neurons. Understanding the heterogenous responses among and within VP neuronal cell types is a necessary step in further understanding how cue-evoked behavior becomes maladaptive. Our work explores the canonical GABAergic VP neuron and how the calcium activity of these cells encodes components of cue-evoked reward seeking, including the vigor and persistence of reward seeking.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dakota Palmer
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Iris Lin
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christelle A Cayton
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paige Remde
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jocelyn M Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
25
|
Akmese C, Sevinc C, Halim S, Unal G. Differential role of GABAergic and cholinergic ventral pallidal neurons in behavioral despair, conditioned fear memory and active coping. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110760. [PMID: 37031946 DOI: 10.1016/j.pnpbp.2023.110760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The ventral pallidum (VP), a major component of the reward circuit, is well-associated with appetitive behaviors. Recent evidence suggests that this basal forebrain nucleus may have an overarching role in affective processing, including behavioral responses to aversive stimuli. We investigated this by utilizing selective immunotoxin lesions and a series of behavioral tests in adult male Wistar rats. We made bilateral GAT1-Saporin, 192-IgG-Saporin or PBS (vehicle) injections into the VP to respectively eliminate GABAergic and cholinergic neurons, and tested the animals in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), Morris water maze (MWM) and cued fear conditioning. Both GAT1-Saporin and 192-IgG-Saporin injections reduced behavioral despair without altering general locomotor activity. During the acquisition phase of cued fear conditioning, this antidepressant effect was accompanied by reduced freezing and increased darting in the 192-IgG-Saporin group, and increased jumping in the GAT1-Saporin group. In the extinction phase, cholinergic lesions impaired fear memory irrespective of the context, while GABAergic lesions reduced memory durability only during the early phases of extinction in a novel context. In line with this, selective cholinergic, but not GABAergic, lesions impaired spatial memory in the MWM. We observed no consistent effect in anxiety-like behavior assessed in the OFT and EPM. These findings indicate that both the GABAergic and cholinergic neuronal groups of the VP may contribute to emotion regulation through modulation of behavioral despair and acquired fear by suppressing active coping and promoting species-specific passive behaviors.
Collapse
Affiliation(s)
- Cemal Akmese
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Sahar Halim
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
26
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534429. [PMID: 37034819 PMCID: PMC10081263 DOI: 10.1101/2023.03.27.534429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rationale Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, most commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. Objectives Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. Methods Male and female TH:Cre+ rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons in TH:Cre+ rats. Rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in a counterbalanced order. Results All three CNO doses reduced operant food seeking in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest tested J60 dose significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre+ rats were correlated and were present in both sexes. Conclusions Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA USA
| |
Collapse
|
27
|
Olejniczak I, Begemann K, Wilhelm I, Oster H. The circadian neurobiology of reward. Acta Physiol (Oxf) 2023; 237:e13928. [PMID: 36625310 DOI: 10.1111/apha.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Circadian clocks are important regulators of physiology and behavior. In the brain, circadian clocks have been described in many centers of the central reward system. They affect neurotransmitter signaling, neuroendocrine circuits, and the sensitivity to external stimulation. Circadian disruption affects reward signaling, promoting the development of behavioral and substance use disorders. In this review, we summarize our current knowledge of circadian clock-reward crosstalk. We show how chronodisruption affects reward signaling in different animal models. We then translate these findings to circadian aspects of human reward (dys-) function and its clinical implications. Finally, we devise approaches to and challenges in implementing the concepts of circadian medicine in the therapy of substance use disorders.
Collapse
Affiliation(s)
- Iwona Olejniczak
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ines Wilhelm
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.,Translational Psychiatry Unit, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Wright KM, Cieslewski S, Chu A, McDannald MA. Optogenetic inhibition of the caudal substantia nigra inflates behavioral responding to uncertain threat and safety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529041. [PMID: 36824795 PMCID: PMC9949108 DOI: 10.1101/2023.02.18.529041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Defensive responding is adaptive when it approximates current threat, but maladaptive when it exceeds current threat. Here we asked if the substantia nigra, a region consistently implicated in reward, is necessary to show appropriate levels of defensive responding in Pavlovian fear discrimination. Rats received bilateral transduction of the caudal substantia nigra with halorhodopsin or a control fluorophore, and bilateral ferrule implants. Rats then behaviorally discriminated cues predicting unique foot shock probabilities (danger, p =1; uncertainty, p =0.25; and safety, p =0). Green-light illumination (532 nm) during cue presentation inflated defensive responding of halorhodopsin rats - measured by suppression of reward seeking - to uncertainty and safety beyond control levels. Green-light illumination outside of cue presentation had no impact on halorhodopsin or control rat responding. The results reveal caudal substantia nigra cue activity is necessary to inhibit defensive responding to non-threatening and uncertain threat cues.
Collapse
Affiliation(s)
| | | | - Amanda Chu
- Boston College, Department of Psychology & Neuroscience
| | | |
Collapse
|
29
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
30
|
Saga Y, Galineau L, Tremblay L. Impulsive and compulsive behaviors can be induced by opposite GABAergic dysfunctions inside the primate ventral pallidum. Front Syst Neurosci 2022; 16:1009626. [PMID: 36567755 PMCID: PMC9774472 DOI: 10.3389/fnsys.2022.1009626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: The ventral pallidum (VP) is central in the limbic Basal Ganglia circuit, controlling both appetitive (approach) and aversive (avoidance) motivated behaviors. Nevertheless, VP involvement in pathological aspects remains unclear, especially in the behavioral expression of different motivational dysfunctions. This study aimed to investigate how the VP contributes to the expression of abnormal behaviors via opposite GABAergic dysfunctions. Methods: Opposite GABAergic dysfunctions were induced by injecting muscimol (a GABAA agonist) and bicuculline (a GABAA antagonist) into monkeys. We determined the effects of both substances on self-initiated behaviors in lab-chair and in free-moving home-cage contexts in six monkeys, and in two animals performing an approach-avoidance task in appetitive and aversive contexts. Results: While the self-initiated behaviors induced by bicuculline injections in VP were characterized by compulsive behaviors such as repetitive grooming and self-biting, muscimol injections induced impulsive behaviors including limb movements in a lab-chair context and exploration behaviors in a free-moving context. More specific behavioral effects were observed in the approach-avoidance task. The muscimol injections induced premature responses and erroneous screen touches, which characterize impulsive and attention disorders, while the bicuculline injections into the VP increased passive avoidance (non-initiated action) and task-escape in an aversive context, suggesting an anxiety disorder. Conclusions: These results show that activating or blocking GABAergic transmission in the VP impairs motivated behaviors. Furthermore, the behavioral expressions produced by these opposite disturbances show that the VP could be involved in anxiety-driven compulsive disorders, such as OCD, as well as in impulsive disorders motivated by attention deficits or reward-seeking, as seen in ADHD or impulse control disorders.
Collapse
Affiliation(s)
- Yosuke Saga
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, Bron Cedex, France,*Correspondence: Yosuke Saga Léon Tremblay
| | - Laurent Galineau
- UMR INSERM U1253, Université François Rabelais de Tours, Tours, France
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR-5229 CNRS, Bron Cedex, France,Université Claude-Bernard Lyon1, Villeurbanne, France,*Correspondence: Yosuke Saga Léon Tremblay
| |
Collapse
|
31
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
32
|
Farrell MR, Ye Q, Xie Y, Esteban JSD, Mahler SV. Ventral pallidum GABA neurons bidirectionally control opioid relapse across rat behavioral models. ADDICTION NEUROSCIENCE 2022; 3:100026. [PMID: 36156918 PMCID: PMC9494709 DOI: 10.1016/j.addicn.2022.100026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Opioid addiction is a chronic, relapsing disorder. Whether addicted individuals are forced to abstain or they decide themselves to quit using drugs, relapse rates are high-especially upon encountering contexts and stimuli associated with prior opioid use. Rodents similarly show context- and cue-induced reinstatement of drug seeking following abstinence, and intriguingly, the neural circuits underlying these relapse-like behaviors differ when abstinence is involuntarily imposed, responding is extinguished, or animals decide themselves to cease taking drug. Here, we employ two complementary rat behavioral models of relapse-like behavior for the highly reinforcing opioid drug remifentanil, and asked whether GABAergic neurons in the ventral pallidum (VPGABA) control opioid seeking under these behavioral conditions. Specifically, we asked how chemogenetically stimulating VPGABA neurons with clozapine-N-oxide (CNO) influences the ability of contextual or discrete remifentanil-paired cues to reinstate drug seeking following either voluntary abstinence (punishment-induced; GroupPunish), or extinction training (GroupExt). In GroupPunish rats, we also chemogenetically inhibited VPGABA neurons, and examined spontaneous VP activity (Fos) during cued reinstatement. In both GroupPunish and GroupExt rats, stimulating Gq-signaling in VPGABA neurons augmented remifentanil reinstatement in a cue- and context-dependent manner. Conversely, engaging inhibitory Gi-signaling in VPGABA neurons in GroupPunish suppressed cue-induced reinstatement, and cue-triggered seeking was correlated with Fos expression in rostral, but not caudal VP. Neither stimulating nor inhibiting VPGABA neurons influenced unpunished remifentanil self-administration. We conclude that VPGABA neurons bidirectionally control opioid seeking regardless of the specific relapse model employed, highlighting their fundamental role in opioid relapse-like behavior across behavioral models, and potentially across species.
Collapse
Affiliation(s)
- Mitchell R. Farrell
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Qiying Ye
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Yiyan Xie
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Jeanine Sandra D. Esteban
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| | - Stephen V. Mahler
- University of California, Irvine Department of Neurobiology and Behavior, 1203 McGaugh Hall Irvine, CA, 92697, USA
| |
Collapse
|
33
|
Levis SC, Birnie MT, Bolton JL, Perrone CR, Montesinos JS, Baram TZ, Mahler SV. Enduring disruption of reward and stress circuit activities by early-life adversity in male rats. Transl Psychiatry 2022; 12:251. [PMID: 35705547 PMCID: PMC9200783 DOI: 10.1038/s41398-022-01988-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
In humans, early-life adversity (ELA) such as trauma, poverty, and chaotic environment is linked to increased risk of later-life emotional disorders including depression and substance abuse. These disorders involve underlying disruption of reward circuits and likely vary by sex. Accordingly, we previously found that ELA leads to anhedonia for natural rewards and cocaine in male rodents, whereas in females ELA instead increases vulnerability to addiction-like use of opioid drugs and palatable food. While these findings suggest that ELA-induced disruption of reward circuitry may differ between the sexes, the specific circuit nodes that are influenced by ELA in either sex remain poorly understood. Here, in adult male Sprague-Dawley rats, we ask how ELA impacts opioid addiction-relevant behaviors that we previously tested after ELA in females. We probe potential circuit mechanisms in males by assessing opioid-associated neuronal activation in stress and reward circuit nodes including nucleus accumbens (NAc), amygdala, medial prefrontal cortex (mPFC), and paraventricular thalamus. We find that ELA diminishes opioid-seeking behaviors in males, and alters heroin-induced activation of NAc, PFC, and amygdala, suggesting a potential circuit-based mechanism. These studies demonstrate that ELA leads to behavioral and neurobiological disruptions consistent with anhedonia in male rodents, unlike the increased opioid seeking we previously saw in females. Our findings, taken together with our prior work, suggest that men and women could face qualitatively different mental health consequences of ELA, which may be essential for individually tailoring future intervention strategies.
Collapse
Affiliation(s)
- Sophia C Levis
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA.
| | - Matthew T Birnie
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Jessica L Bolton
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Christina R Perrone
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Johanna S Montesinos
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Doucette WT, Smedley EB, Ruiz-Jaquez M, Khokhar JY, Smith KS. Chronic Chemogenetic Manipulation of Ventral Pallidum Targeted Neurons in Male Rats Fed an Obesogenic Diet. Brain Res 2022; 1784:147886. [DOI: 10.1016/j.brainres.2022.147886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
|
35
|
Suda K, Matsuda K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int J Mol Sci 2022; 23:ijms23031172. [PMID: 35163104 PMCID: PMC8835211 DOI: 10.3390/ijms23031172] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut-brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota-gut-brain axis.
Collapse
|
36
|
Lawson KA, Flores AY, Hokenson RE, Ruiz CM, Mahler SV. Nucleus Accumbens Chemogenetic Inhibition Suppresses Amphetamine-Induced Ultrasonic Vocalizations in Male and Female Rats. Brain Sci 2021; 11:1255. [PMID: 34679320 PMCID: PMC8534195 DOI: 10.3390/brainsci11101255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
Adult rats emit ultrasonic vocalizations (USVs) related to their affective states, potentially providing information about their subjective experiences during behavioral neuroscience experiments. If so, USVs might provide an important link between invasive animal preclinical studies and human studies in which subjective states can be readily queried. Here, we induced USVs in male and female Long Evans rats using acute amphetamine (2 mg/kg), and asked how reversibly inhibiting nucleus accumbens neurons using designer receptors exclusively activated by designer drugs (DREADDs) impacts USV production. We analyzed USV characteristics using "Deepsqueak" software, and manually categorized detected calls into four previously defined subtypes. We found that systemic administration of the DREADD agonist clozapine-n-oxide, relative to vehicle in the same rats, suppressed the number of frequency-modulated and trill-containing USVs without impacting high frequency, unmodulated (flat) USVs, nor the small number of low-frequency USVs observed. Using chemogenetics, these results thus confirm that nucleus accumbens neurons are essential for production of amphetamine-induced frequency-modulated USVs. They also support the premise of further investigating the characteristics and subcategories of these calls as a window into the subjective effects of neural manipulations, with potential future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Stephen V. Mahler
- Department of Neurobiology & Behavior, University of California, Irvine. 1203 McGaugh Hall, Irvine, CA 92697, USA; (K.A.L.); (A.Y.F.); (R.E.H.); (C.M.R.)
| |
Collapse
|