1
|
Dereli AS, Apaire A, El Tahry R. Sudden Unexpected Death in Epilepsy: Central Respiratory Chemoreception. Int J Mol Sci 2025; 26:1598. [PMID: 40004062 PMCID: PMC11855741 DOI: 10.3390/ijms26041598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a critical concern for individuals suffering from epilepsy, with respiratory dysfunction playing a significant role in its pathology. Fatal seizures are often characterized by central apnea and hypercapnia (elevated CO2 levels), indicating a failure in ventilatory control. Research has shown that both human epilepsy patients and animal models exhibit a reduced hypercapnic ventilatory response in the interictal (non-seizure) period, suggesting an impaired ability to regulate breathing in response to high CO2 levels. This review examines the role of central chemoreceptors-specifically the retrotrapezoid nucleus, raphe nuclei, nucleus tractus solitarius, locus coeruleus, and hypothalamus in this pathology. These structures are critical for sensing CO2 and maintaining respiratory homeostasis. Emerging evidence also implicates neuropeptidergic pathways within these chemoreceptive regions in SUDEP. Neuropeptides like galanin, pituitary adenylate cyclase-activating peptide (PACAP), orexin, somatostatin, and bombesin-like peptides may modulate chemosensitivity and respiratory function, potentially exacerbating respiratory failure during seizures. Understanding the mechanisms linking central chemoreception, respiratory control, and neuropeptidergic signaling is essential to developing targeted interventions to reduce the risk of SUDEP in epilepsy patients.
Collapse
Affiliation(s)
- Ayse S. Dereli
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
| | - Auriane Apaire
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
| | - Riem El Tahry
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Yackle K, Do J. The multifunctionality of the brainstem breathing control circuit. Curr Opin Neurobiol 2025; 90:102974. [PMID: 39879720 DOI: 10.1016/j.conb.2025.102974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
Subconscious breathing is generated by a network of brainstem nodes with varying purposes, like pacing breathing or patterning a certain breath phase. Decades of anatomy, pharmacology, and physiology studies have identified and characterized the system's fundamental properties that produce robust breathing, and we now have well-conceived computational models of breathing that are based on the detailed descriptions of neuronal connectivity, biophysical properties, and functions in breathing. In total, we have a considerable understanding of the brainstem breathing control circuit. But, in the last five years, the utilization of molecular and genetic approaches to study the neural subtypes within each node has led to a new era of breathing control circuit research that explains how breathing is integrated with more complex behaviors like speaking and running and how breathing is connected with other physiological systems and our state-of-mind. This review will describe the basic role of the key components of the brainstem breathing control circuit and then will highlight the new transformative discoveries that broaden our understanding of these breathing control brain areas. These new studies serve to illustrate the creativity and exciting future of breathing control research.
Collapse
Affiliation(s)
- Kevin Yackle
- Department of Physiology, University of California-San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| | - Jeehaeh Do
- Department of Physiology, University of California-San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Moreira TS, Burgraff NJ, Takakura AC, Oliveira LM, Araujo EV, Guan S, Ramirez JM. Functional Modulation of Retrotrapezoid Neurons Drives Fentanyl-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635295. [PMID: 39975139 PMCID: PMC11838384 DOI: 10.1101/2025.01.28.635295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation contains Phox2b + /Neuromedin-B ( Nmb ) propriobulbar neurons. These neurons, stimulated by CO 2 /H + , regulate breathing to prevent respiratory acidosis. Since the RTN shows limited expression of opioid-receptors, we expected that opioid-induced hypoventilation should activate these neurons to restore ventilation and stabilize arterial blood gases. However, the ability of the RTN to stimulate ventilation during OIRD has never been tested. We used optogenetic and pharmacogenetic approaches, to activate and inhibit RTN Phox2B + / Nmb + neurons before and after fentanyl administration. As expected, fentanyl (500 µg/kg, ip) suppressed respiratory rate and destabilized breathing. Before fentanyl, optogenetic stimulation of Phox2b + / Nmb + or chemogenetic inhibition of Nmb + cells increased and decreased breathing activity, respectively. Surprisingly, optogenetic stimulation after fentanyl administration caused a significantly greater increase in breathing activity compared to pre-fentanyl levels. By contrast chemogenetic ablation of RTN Nmb neurons caused profound hypoventilation and breathing instability after fentanyl. The results suggest that fentanyl does not inhibit the ability of Phox2b + / Nmb + cells within the RTN region to stimulate breathing. Thus, this study highlights the potential of stimulating RTN neurons as a therapeutic approach to restore respiratory function in cases of OIRD.
Collapse
|
4
|
Souza GMPR, Stornetta DS, Abbott SBG. Interactions between Arousal State and CO 2 Determine the Activity of Central Chemoreceptor Neurons That Drive Breathing. J Neurosci 2025; 45:e1587242024. [PMID: 39510833 DOI: 10.1523/jneurosci.1587-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The homeostatic regulation of pulmonary ventilation, and ultimately arterial PCO2, depends on interactions between respiratory chemoreflexes and arousal state. The ventilatory response to CO2 is triggered by neurons in the retrotrapezoid nucleus (RTN) that function as sensors of central pH, which can be identified in adulthood by the expression of Phox2b and neuromedin B. Here, we examine the dynamic response of genetically defined RTN neurons to hypercapnia and arousal state in freely behaving adult male and female mice using the calcium indicator jGCaMP7 and fiber photometry. We found that hypercapnia vigorously activates RTN neurons with a low CO2 recruitment threshold and with response kinetics that match respiratory activity whereas hypoxia had little effect. RTN activity increased transiently during wakefulness and respiratory-related arousals and rose persistently during rapid eye movement sleep, and their CO2 response persisted under anesthesia. Complementary studies using inhibitory optogenetics show that RTN activity supports eupneic breathing under anesthesia as well as during states of high arousal, but their activity is redundant for voluntary breathing patterns. Collectively, this study demonstrates that CO2-activated RTN neurons are exquisitely sensitive to the arousal state, which determines their contribution to alveolar ventilation in relation to arterial PCO2.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
5
|
Demir EA, Gonder O. Ticagrelor-related dyspnea beyond adenosine: Insights into retrotrapezoid hyperactivity. Respir Physiol Neurobiol 2025; 331:104349. [PMID: 39293566 DOI: 10.1016/j.resp.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Ticagrelor, a P2Y12 receptor antagonist, has been demonstrated to induce dyspnea, which is not associated with cardiac or pulmonary alterations, or metabolic disturbances. The attribution of ticagrelor-related dyspnea to excess adenosine has been widely proposed, yet is not supported by experimental data. In this paper, we put forth a novel hypothesis that the hyperactivity of the retrotrapezoid nucleus, a group of ventral medullary neurons involved in respiratory modulation, is the underlying cause of ticagrelor-related dyspnea. This hypothesis offers a theoretical resolution to the discrepancies and controversies present in previous theories.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Cardiology, Ankara Etlik City Hospital, Ankara, Republic of Turkey.
| | - Okan Gonder
- Department of Cardiology, Ankara Etlik City Hospital, Ankara, Republic of Turkey
| |
Collapse
|
6
|
Cui Y, Bondarenko E, Perez CT, Chiu DN, Feldman JL. Sigh generation in preBötzinger Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597565. [PMID: 38895247 PMCID: PMC11185670 DOI: 10.1101/2024.06.05.597565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
We explored neural mechanisms underlying sighing. Photostimulation of parafacial (pF) neuromedin B (NMB) or gastrin releasing peptide (GRP), or preBötzinger Complex (preBötC) NMBR or GRPR neurons elicited ectopic sighs with latency inversely related to time from preceding endogenous sigh. Of particular note, ectopic sighs could be produced without involvement of these peptides or their receptors in preBötC. Moreover, chemogenetic or optogenetic activation of preBötC SST neurons induced sighing, even in the presence of NMBR and/or GRPR antagonists. We propose that an increase in the excitability of preBötC NMBR or GRPR neurons not requiring activation of their peptide receptors activates partially overlapping pathways to generate sighs, and that preBötC SST neurons are a downstream element in the sigh generation circuit that converts normal breaths into sighs.
Collapse
Affiliation(s)
- Yan Cui
- Department of Physiology, Chengdu Medical College, China
- Department of Neurobiology, DGSOM, UCLA, Los Angeles, California 90095-1763, USA
| | - Evgeny Bondarenko
- Department of Neurobiology, DGSOM, UCLA, Los Angeles, California 90095-1763, USA
| | - Carolina Thörn Perez
- Department of Neurobiology, DGSOM, UCLA, Los Angeles, California 90095-1763, USA
- Gene Expression Laboratory, Salk Institute for Biological studies, La Jolla, CA 92037, USA
| | - Delia N. Chiu
- Department of Neurobiology, DGSOM, UCLA, Los Angeles, California 90095-1763, USA
- Synaptic Physiology and Plasticity Group, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Göttingen, Germany
| | - Jack L. Feldman
- Department of Neurobiology, DGSOM, UCLA, Los Angeles, California 90095-1763, USA
| |
Collapse
|
7
|
Moreira TS, Mulkey DK, Takakura AC. Update on vascular control of central chemoreceptors. Exp Physiol 2024; 109:1837-1843. [PMID: 38153366 PMCID: PMC11522829 DOI: 10.1113/ep091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Thiago S. Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSao PauloBrazil
| | - Daniel K. Mulkey
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Ana C. Takakura
- Department of Pharmacology, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSão PauloBrazil
| |
Collapse
|
8
|
Flor KC, Maia OAC, Takakura AC, Moreira TS. The pontine Kölliker-Fuse nucleus is important for reduced postinspiratory airflow elicited by stimulation of the ventral respiratory parafacial region. Am J Physiol Lung Cell Mol Physiol 2024; 327:L452-L463. [PMID: 39104318 DOI: 10.1152/ajplung.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.07 or [Formula: see text] = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in V̇e (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 mL/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 mL/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e., breathing frequency, inspiration, postinspiration, and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.NEW & NOTEWORTHY Our research reveals specific roles and interactions between the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) and the pontine Kölliker-Fuse (KF) region in controlling respiratory phases. RTN/pFRG neurons are key in regulating all aspects of breathing, including frequency, inspiration, postinspiration, and active expiration. This regulation depends on the functional integrity of glutamatergic neurons in the KF region, aligning with anatomical projections.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Octavio A C Maia
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Gonye EC, Shi Y, Li K, Clements RT, Xu W, Bayliss DA. Intrinsic Molecular Proton Sensitivity Underlies GPR4 Effects on Retrotrapezoid Nucleus Neuronal Activation and CO 2-Stimulated Breathing. J Neurosci 2024; 44:e0799242024. [PMID: 39107057 PMCID: PMC11376338 DOI: 10.1523/jneurosci.0799-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
An interoceptive homeostatic reflex monitors levels of CO2/H+ to maintain blood gas homeostasis and rapidly regulate tissue acid-base balance by driving lung ventilation and CO2 excretion-this CO2-evoked increase in respiration is the hypercapnic ventilatory reflex (HCVR). Retrotrapezoid nucleus (RTN) neurons provide crucial excitatory drive to downstream respiratory rhythm/pattern-generating circuits, and their activity is directly modulated by changes in CO2/H+ RTN neurons express GPR4 and TASK-2, global deletion of which abrogates CO2/H+ activation of RTN neurons and the HCVR. It has not been determined if the intrinsic pH sensitivity of these proton detectors is required for these effects. We used CRISPR/Cas9 genome editing to generate mice with mutations in either of two pH-sensing histidine residues in GPR4 to determine effects on RTN neuronal CO2/H+ sensitivity and the HCVR. In global GPR4(H81F) and GPR4(H167F) mice, CO2-stimulated breathing and CO2-induced RTN neuronal activation were strongly blunted, with no effect on hypoxia-stimulated breathing. In brainstem slices from GPR4(H81F) mice, peak firing of RTN neurons during bath acidification was significantly reduced compared with GPR4 wild-type mice, and a subpopulation of RTN neurons was rendered pH-insensitive, phenocopying previous results from GPR4-deleted mice. These effects were independent of changes in RTN number/distribution, neuronal excitability or transcript levels for GPR4 and TASK-2. CO2-stimulated breathing was reduced to a similar extent in GPR4(H81F) and TASK-2-deleted mice, with combined mutation yielding no additional deficit in the HCVR. Together, these data demonstrate that the intrinsic pH sensitivity of GPR4 is necessary for full elaboration of the HCVR.
Collapse
Affiliation(s)
- Elizabeth C Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Rachel T Clements
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| | - Wenhao Xu
- Genetically Engineered Mouse Model Core, University of Virginia, Charlottesville, Virginia 22903
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
10
|
Schwalbe DC, Stornetta DS, Abraham-Fan RJ, Souza GMPR, Jalil M, Crook ME, Campbell JN, Abbott SBG. Molecular Organization of Autonomic, Respiratory, and Spinally-Projecting Neurons in the Mouse Ventrolateral Medulla. J Neurosci 2024; 44:e2211232024. [PMID: 38918066 PMCID: PMC11293450 DOI: 10.1523/jneurosci.2211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.
Collapse
Affiliation(s)
- Dana C Schwalbe
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | | | | | | - Maira Jalil
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Maisie E Crook
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - John N Campbell
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | |
Collapse
|
11
|
Furdui A, da Silveira Scarpellini C, Montandon G. Anatomical distribution of µ-opioid receptors, neurokinin-1 receptors, and vesicular glutamate transporter 2 in the mouse brainstem respiratory network. J Neurophysiol 2024; 132:108-129. [PMID: 38748514 DOI: 10.1152/jn.00478.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 07/03/2024] Open
Abstract
µ-Opioid receptors (MORs) are responsible for mediating both the analgesic and respiratory effects of opioid drugs. By binding to MORs in brainstem regions involved in controlling breathing, opioids produce respiratory depressive effects characterized by slow and shallow breathing, with potential cardiorespiratory arrest and death during overdose. To better understand the mechanisms underlying opioid-induced respiratory depression, thorough knowledge of the regions and cellular subpopulations that may be vulnerable to modulation by opioid drugs is needed. Using in situ hybridization, we determined the distribution and coexpression of Oprm1 (gene encoding MORs) mRNA with glutamatergic (Vglut2) and neurokinin-1 receptor (Tacr1) mRNA in medullary and pontine regions involved in breathing control and modulation. We found that >50% of cells expressed Oprm1 mRNA in the preBötzinger complex (preBötC), nucleus tractus solitarius (NTS), nucleus ambiguus (NA), postinspiratory complex (PiCo), locus coeruleus (LC), Kölliker-Fuse nucleus (KF), and the lateral and medial parabrachial nuclei (LBPN and MPBN, respectively). Among Tacr1 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, Bötzinger complex (BötC), PiCo, LC, raphe magnus nucleus, KF, LPBN, and MPBN, whereas among Vglut2 mRNA-expressing cells, >50% coexpressed Oprm1 mRNA in the preBötC, NTS, NA, BötC, PiCo, LC, KF, LPBN, and MPBN. Taken together, our study provides a comprehensive map of the distribution and coexpression of Oprm1, Tacr1, and Vglut2 mRNA in brainstem regions that control and modulate breathing and identifies Tacr1 and Vglut2 mRNA-expressing cells as subpopulations with potential vulnerability to modulation by opioid drugs.NEW & NOTEWORTHY Opioid drugs can cause serious respiratory side-effects by binding to µ-opioid receptors (MORs) in brainstem regions that control breathing. To better understand the regions and their cellular subpopulations that may be vulnerable to modulation by opioids, we provide a comprehensive map of Oprm1 (gene encoding MORs) mRNA expression throughout brainstem regions that control and modulate breathing. Notably, we identify glutamatergic and neurokinin-1 receptor-expressing cells as potentially vulnerable to modulation by opioid drugs and worthy of further investigation using targeted approaches.
Collapse
Affiliation(s)
- Andreea Furdui
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Gaspard Montandon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cardani S, Janes TA, Betzner W, Pagliardini S. Knockdown of PHOX2B in the retrotrapezoid nucleus reduces the central CO 2 chemoreflex in rats. eLife 2024; 13:RP94653. [PMID: 38727716 PMCID: PMC11087052 DOI: 10.7554/elife.94653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.
Collapse
Affiliation(s)
- Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - William Betzner
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| |
Collapse
|
13
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Souza GMPR, Abbott SBG. Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it? Respir Physiol Neurobiol 2024; 322:104217. [PMID: 38237884 PMCID: PMC10922619 DOI: 10.1016/j.resp.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.
Collapse
|
15
|
Cleary CM, Browning JL, Armbruster M, Sobrinho CR, Strain ML, Jahanbani S, Soto-Perez J, Hawkins VE, Dulla CG, Olsen ML, Mulkey DK. Kir4.1 channels contribute to astrocyte CO 2/H +-sensitivity and the drive to breathe. Commun Biol 2024; 7:373. [PMID: 38548965 PMCID: PMC10978993 DOI: 10.1038/s42003-024-06065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Astrocytes in the retrotrapezoid nucleus (RTN) stimulate breathing in response to CO2/H+, however, it is not clear how these cells detect changes in CO2/H+. Considering Kir4.1/5.1 channels are CO2/H+-sensitive and important for several astrocyte-dependent processes, we consider Kir4.1/5.1 a leading candidate CO2/H+ sensor in RTN astrocytes. To address this, we show that RTN astrocytes express Kir4.1 and Kir5.1 transcripts. We also characterized respiratory function in astrocyte-specific inducible Kir4.1 knockout mice (Kir4.1 cKO); these mice breathe normally under room air conditions but show a blunted ventilatory response to high levels of CO2, which could be partly rescued by viral mediated re-expression of Kir4.1 in RTN astrocytes. At the cellular level, astrocytes in slices from astrocyte-specific inducible Kir4.1 knockout mice are less responsive to CO2/H+ and show a diminished capacity for paracrine modulation of respiratory neurons. These results suggest Kir4.1/5.1 channels in RTN astrocytes contribute to respiratory behavior.
Collapse
Affiliation(s)
- Colin M Cleary
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jack L Browning
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Monica L Strain
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Sarvin Jahanbani
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Virginia E Hawkins
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Michelle L Olsen
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Gonye EC, Dagli AV, Kumar NN, Clements RT, Xu W, Bayliss DA. Expression of endogenous epitope-tagged GPR4 in the mouse brain. eNeuro 2024; 11:ENEURO.0002-24.2024. [PMID: 38408869 DOI: 10.1523/eneuro.0002-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor implicated in many peripheral and central physiological processes. GPR4 expression has previously been assessed only via detection of the cognate transcript or indirectly, by use of fluorescent reporters. In this work, CRISPR/Cas9 knock-in technology was used to encode a hemagglutinin (HA) epitope tag within the endogenous locus of Gpr4 and visualize GPR4-HA in the mouse central nervous system using a specific, well characterized HA antibody; GPR4 expression was further verified by complementary Gpr4 mRNA detection. HA immunoreactivity was found in a limited set of brain regions, including in the retrotrapezoid nucleus (RTN), serotonergic raphe nuclei, medial habenula, lateral septum, and several thalamic nuclei. GPR4 expression was not restricted to cells of a specific neurochemical identity as it was observed in excitatory, inhibitory, and aminergic neuronal cell groups. HA immunoreactivity was not detected in brain vascular endothelium, despite clear expression of Gpr4 mRNA in endothelial cells. In the RTN, GPR4 expression was detected at the soma and in proximal dendrites along blood vessels and the ventral surface of the brainstem; HA immunoreactivity was not detected in RTN projections to two known target regions. This localization of GPR4 protein in mouse brain neurons corroborates putative sites of expression where its function has been previously implicated (e.g., CO2-regulated breathing by RTN), and provides a guide for where GPR4 could contribute to other CO2/H+ modulated brain functions. Finally, GPR4-HA animals provide a useful reagent for further study of GPR4 in other physiological processes outside of the brain.Significance Statement GPR4 is a proton-sensing G-protein coupled receptor whose expression is necessary for a number of diverse physiological processes including acid-base sensing in the kidney, immune function, and cancer progression. In the brain, GPR4 has been implicated in the hypercapnic ventilatory response mediated by brainstem neurons. While knockout studies in animals have clearly demonstrated its necessity for normal physiology, descriptions of GPR4 expression have been limited due to a lack of specific antibodies for use in mouse models. In this paper, we implemented a CRISPR/Cas9 knock-in approach to incorporate the coding sequence for a small epitope tag into the locus of GPR4. Using these mice, we were able to describe GPR4 protein expression directly for the first time.
Collapse
Affiliation(s)
- Elizabeth C Gonye
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Alexandra V Dagli
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Natasha N Kumar
- University of New South Wales Sydney, School of Biomedical Sciences, New South Wales, Australia
| | - Rachel T Clements
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Wenhao Xu
- University of Virginia, Genetically Engineered Mouse Model Core, Charlottesville, VA, USA
| | - Douglas A Bayliss
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| |
Collapse
|
17
|
Díaz-Jara E, Pereyra K, Vicencio S, Olesen MA, Schwarz KG, Toledo C, Díaz HS, Quintanilla RA, Del Rio R. Superoxide dismutase 2 deficiency is associated with enhanced central chemoreception in mice: Implications for breathing regulation. Redox Biol 2024; 69:102992. [PMID: 38142585 PMCID: PMC10788617 DOI: 10.1016/j.redox.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
AIMS In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O2.-) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases. Despite, the contribution of SOD2 on O2.- regulation on central chemoreceptor function is unknown. Accordingly, we sought to determine the impact of partial deletion of SOD2 expression on i) O2.-accumulation in the RTN, ii) central ventilatory chemoreflex function, and iii) disordered-breathing. Finally, we study cellular localization of SOD2 in the RTN of healthy mice. METHODS Central chemoreflex drive and breathing function were assessed in freely moving heterozygous SOD2 knockout mice (SOD2+/- mice) and age-matched control wild type (WT) mice by whole-body plethysmography. O2.- levels were determined in RTN brainstem sections and brain isolated mitochondria, while SOD2 protein expression and tissue localization were determined by immunoblot, RNAseq and immunofluorescent staining, respectively. RESULTS Our results showed that SOD2+/- mice displayed reductions in SOD2 levels and high O2.- formation and mitochondrial dysfunction within the RTN compared to WT. Additionally, SOD2+/- mice displayed a heightened ventilatory response to hypercapnia and exhibited overt signs of altered breathing patterns. Both, RNAseq analysis and immunofluorescence co-localization studies showed that SOD2 expression was confined to RTN astrocytes but not to RTN chemoreceptor neurons. Finally, we found that SOD2+/- mice displayed alterations in RTN astrocyte morphology compared to RTN astrocytes from WT mice. INNOVATION & CONCLUSION These findings provide first evidence of the role of SOD2 in the regulation of O2.- levels in the RTN and its potential contribution on the regulation of central chemoreflex function. Our results suggest that reductions in the expression of SOD2 in the brain may contribute to increase O2.- levels in the RTN being the outcome a chronic surge in central chemoreflex drive and the development/maintenance of altered breathing patterns. Overall, dysregulation of SOD2 and the resulting increase in O2.- levels in brainstem respiratory areas can disrupt normal respiratory control mechanisms and contribute to breathing dysfunction seen in certain disease conditions characterized by high oxidative stress.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Katherine Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sinay Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Physiology, Universidad Austral de Chile, Valdivia, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile; Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
18
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
19
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
20
|
Li K, Gonye EC, Stornetta RL, Bayliss CB, Yi G, Stornetta DS, Baca SM, Abbott SB, Guyenet PG, Bayliss DA. The astrocytic Na + -HCO 3 - cotransporter, NBCe1, is dispensable for respiratory chemosensitivity. J Physiol 2023; 601:3667-3686. [PMID: 37384821 PMCID: PMC10528273 DOI: 10.1113/jp284960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO2 /H+ is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na+ -HCO3 - cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO2 -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4fl/fl mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO2 -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO2 -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4fl/fl mice. Again, there was no difference in effects of CO2 or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO2 /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO2 -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO2 or O2 were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | | | - Grace Yi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Serapio M. Baca
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Stephen B.G. Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| |
Collapse
|
21
|
Souza GMPR, Stornetta DS, Shi Y, Lim E, Berry FE, Bayliss DA, Abbott SBG. Neuromedin B-Expressing Neurons in the Retrotrapezoid Nucleus Regulate Respiratory Homeostasis and Promote Stable Breathing in Adult Mice. J Neurosci 2023; 43:5501-5520. [PMID: 37290937 PMCID: PMC10376939 DOI: 10.1523/jneurosci.0386-23.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Eunu Lim
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Faye E Berry
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
22
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
23
|
Abstract
The rhythmicity of breath is vital for normal physiology. Even so, breathing is enriched with multifunctionality. External signals constantly change breathing, stopping it when under water or deepening it during exertion. Internal cues utilize breath to express emotions such as sighs of frustration and yawns of boredom. Breathing harmonizes with other actions that use our mouth and throat, including speech, chewing, and swallowing. In addition, our perception of breathing intensity can dictate how we feel, such as during the slow breathing of calming meditation and anxiety-inducing hyperventilation. Heartbeat originates from a peripheral pacemaker in the heart, but the automation of breathing arises from neural clusters within the brainstem, enabling interaction with other brain areas and thus multifunctionality. Here, we document how the recent transformation of cellular and molecular tools has contributed to our appreciation of the diversity of neuronal types in the breathing control circuit and how they confer the multifunctionality of breathing.
Collapse
Affiliation(s)
- Kevin Yackle
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
24
|
Casciato A, Bianchi L, Reverdy M, Joubert F, Delucenay-Clarke R, Parrot S, Ramanantsoa N, Sizun E, Matrot B, Straus C, Similowski T, Cayetanot F, Bodineau L. Serotonin and the ventilatory effects of etonogestrel, a gonane progestin, in a murine model of congenital central hypoventilation syndrome. Front Endocrinol (Lausanne) 2023; 14:1077798. [PMID: 36896185 PMCID: PMC9989262 DOI: 10.3389/fendo.2023.1077798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION Congenital Central Hypoventilation Syndrome, a rare disease caused by PHOX2B mutation, is associated with absent or blunted CO2/H+ chemosensitivity due to the dysfunction of PHOX2B neurons of the retrotrapezoid nucleus. No pharmacological treatment is available. Clinical observations have reported non-systematic CO2/H+ chemosensitivity recovery under desogestrel. METHODS Here, we used a preclinical model of Congenital Central Hypoventilation Syndrome, the retrotrapezoid nucleus conditional Phox2b mutant mouse, to investigate whether etonogestrel, the active metabolite of desogestrel, led to a restoration of chemosensitivity by acting on serotonin neurons known to be sensitive to etonogestrel, or retrotrapezoid nucleus PHOX2B residual cells that persist despite the mutation. The influence of etonogestrel on respiratory variables under hypercapnia was investigated using whole-body plethysmographic recording. The effect of etonogestrel, alone or combined with serotonin drugs, on the respiratory rhythm of medullary-spinal cord preparations from Phox2b mutants and wildtype mice was analyzed under metabolic acidosis. c-FOS, serotonin and PHOX2B were immunodetected. Serotonin metabolic pathways were characterized in the medulla oblongata by ultra-high-performance liquid chromatography. RESULTS We observed etonogestrel restored chemosensitivity in Phox2b mutants in a non-systematic way. Histological differences between Phox2b mutants with restored chemosensitivity and Phox2b mutant without restored chemosensitivity indicated greater activation of serotonin neurons of the raphe obscurus nucleus but no effect on retrotrapezoid nucleus PHOX2B residual cells. Finally, the increase in serotonergic signaling by the fluoxetine application modulated the respiratory effect of etonogestrel differently between Phox2b mutant mice and their WT littermates or WT OF1 mice, a result which parallels with differences in the functional state of serotonergic metabolic pathways between these different mice. DISCUSSION Our work thus highlights that serotonin systems were critically important for the occurrence of an etonogestrel-restoration, an element to consider in potential therapeutic intervention in Congenital Central Hypoventilation Syndrome patients.
Collapse
Affiliation(s)
- Alexis Casciato
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Lola Bianchi
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Manon Reverdy
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Fanny Joubert
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Roman Delucenay-Clarke
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences, NeuroDialyTics, Bron, France
| | | | - Eléonore Sizun
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Boris Matrot
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Christian Straus
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Thomas Similowski
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florence Cayetanot
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Inserm, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- *Correspondence: Laurence Bodineau,
| |
Collapse
|
25
|
Bhandare A, van de Wiel J, Roberts R, Braren I, Huckstepp R, Dale N. Analyzing the brainstem circuits for respiratory chemosensitivity in freely moving mice. eLife 2022; 11:e70671. [PMID: 36300918 PMCID: PMC9643001 DOI: 10.7554/elife.70671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of systemic PCO2 is a life-preserving homeostatic mechanism. In the medulla oblongata, the retrotrapezoid nucleus (RTN) and rostral medullary Raphe are proposed as CO2 chemosensory nuclei mediating adaptive respiratory changes. Hypercapnia also induces active expiration, an adaptive change thought to be controlled by the lateral parafacial region (pFL). Here, we use GCaMP6 expression and head-mounted mini-microscopes to image Ca2+ activity in these nuclei in awake adult mice during hypercapnia. Activity in the pFL supports its role as a homogenous neuronal population that drives active expiration. Our data show that chemosensory responses in the RTN and Raphe differ in their temporal characteristics and sensitivity to CO2, raising the possibility these nuclei act in a coordinated way to generate adaptive ventilatory responses to hypercapnia. Our analysis revises the understanding of chemosensory control in awake adult mouse and paves the way to understanding how breathing is coordinated with complex non-ventilatory behaviours.
Collapse
Affiliation(s)
- Amol Bhandare
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | | | - Reno Roberts
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Ingke Braren
- University Medical Center Eppendorf, Vector Facility, Institute of Experimental Pharmacology and ToxicologyHamburgGermany
| | - Robert Huckstepp
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Nicholas Dale
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
26
|
Khoubza L, Gilbert N, Kim EJ, Chatelain FC, Feliciangeli S, Abelanet S, Kang D, Lesage F, Bichet D. Alkaline-sensitive two-pore domain potassium channels form functional heteromers in pancreatic β-cells. J Biol Chem 2022; 298:102447. [PMID: 36063992 PMCID: PMC9520024 DOI: 10.1016/j.jbc.2022.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Two-pore domain K+ channels (K2P channels), active as dimers, produce inhibitory currents regulated by a variety of stimuli. Among them, TWIK1-related alkalinization-activated K+ channel 1 (TALK1), TWIK1-related alkalinization-activated K+ channel 2 (TALK2), and TWIK1-related acid-sensitive K+ channel 2 (TASK2) form a subfamily of structurally related K2P channels stimulated by extracellular alkalosis. The human genes encoding these proteins are clustered at chromosomal region 6p21 and coexpressed in multiple tissues, including the pancreas. The question whether these channels form functional heteromers remained open. By analyzing single-cell transcriptomic data, we show that these channels are coexpressed in insulin-secreting pancreatic β-cells. Using in situ proximity ligation assay and electrophysiology, we show that they form functional heterodimers both upon heterologous expression and under native conditions in human pancreatic β-cells. We demonstrate that heteromerization of TALK2 with TALK1 or with TASK2 endows TALK2 with sensitivity to extracellular alkalosis in the physiological range. We further show that the association of TASK2 with TALK1 and TALK2 increases their unitary conductance. These results provide a new example of heteromerization in the K2P channel family expanding the range of the potential physiological and pathophysiological roles of TALK1/TALK2/TASK2 channels, not only in insulin-secreting cells but also in the many other tissues in which they are coexpressed.
Collapse
Affiliation(s)
- Lamyaa Khoubza
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Nicolas Gilbert
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Franck C Chatelain
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Sylvain Feliciangeli
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France; Inserm, Paris, France
| | - Sophie Abelanet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| | - Dawon Kang
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Florian Lesage
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France; Inserm, Paris, France.
| | - Delphine Bichet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, Valbonne, France
| |
Collapse
|
27
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
28
|
Collard R, Aziz MC, Rapp K, Cutshall C, Duyvesteyn E, Metcalf CS. Galanin analogs prevent mortality from seizure-induced respiratory arrest in mice. Front Neural Circuits 2022; 16:901334. [PMID: 36051473 PMCID: PMC9425456 DOI: 10.3389/fncir.2022.901334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveSudden Unexpected Death in Epilepsy (SUDEP) accounts for 20% of mortality in those with recurrent seizures. While risk factors, monitoring systems, and standard practices are in place, the pathophysiology of SUDEP is still not well understood. Better knowledge of SUDEP and its potential mechanisms of action is crucial to reducing risk in this patient population and developing potential treatment options. Clinical studies and animal models of SUDEP suggest that diminished post-ictal respiratory control may be the dominant mechanism contributing to mortality. Recently, it was demonstrated that the depletion of the neuropeptide galanin in the amygdala occurs in human SUDEP. The amygdala plays a key role in the central integration of respiratory signaling; the depletion of galanin may represent a critical change that predisposes individuals to SUDEP.Materials and methodsTo evaluate the impact of enhancing galaninergic signaling to potentially protect against SUDEP, we studied seizure-induced respiratory arrest (S-IRA) following central (intracerebroventricular, intra-amygdala) and systemic (intraperitoneal, subcutaneous) administration of galanin analogs. Seizure naïve and seizure experienced (fully kindled) mice were tested.ResultsCentral and systemically administered galanin analogs protect against S-IRA in naïve C57Bl/6J mice. Differential efficacy between receptor subtype-selective analogs varied based on the route of administration. Sub-chronic systemic administration at doses that reduced 6 Hz seizures also protected against S-IRA. Acute treatment benefits also extended to fully kindled mice experiencing tonic extension.SignificanceThese data demonstrate that galanin analogs may be protective against post-ictal respiratory collapse.
Collapse
Affiliation(s)
- Ryley Collard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Miriam C. Aziz
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Kevin Rapp
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Connor Cutshall
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Evalien Duyvesteyn
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Cameron S. Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Cameron S. Metcalf,
| |
Collapse
|
29
|
Toledo C, Díaz-Jara E, Diaz HS, Schwarz KG, Pereyra KV, Las Heras A, Rios-Gallardo A, Andrade DC, Moreira T, Takakura A, Marcus NJ, Del Rio R. Medullary astrocytes mediate irregular breathing patterns generation in chronic heart failure through purinergic P2X7 receptor signalling. EBioMedicine 2022; 80:104044. [PMID: 35533501 PMCID: PMC9097632 DOI: 10.1016/j.ebiom.2022.104044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/05/2022] Open
Abstract
Background Breathing disorders (BD) (apnoeas/hypopneas, periodic breathing) are highly prevalent in chronic heart failure (CHF) and are associated with altered central respiratory control. Ample evidence identifies the retrotrapezoid nucleus (RTN) as an important chemosensitivity region for ventilatory control and generation of BD in CHF, however little is known about the cellular mechanisms underlying the RTN/BD relationship. Within the RTN, astrocyte‐mediated purinergic signalling modulates respiration, but the potential contribution of RTN astrocytes to BD in CHF has not been explored. Methods Selective neuron and/or astrocyte-targeted interventions using either optogenetic and chemogenetic manipulations in the RTN of CHF rats were used to unveil the contribution of the RTN on the development/maintenance of BD, the role played by astrocytes in BD and the molecular mechanism underpinning these alterations. Findings We showed that episodic photo-stimulation of RTN neurons triggered BD in healthy rats, and that RTN neurons ablation in CHF animals eliminates BD. Also, we found a reduction in astrocytes activity and ATP bioavailability within the RTN of CHF rats, and that chemogenetic restoration of normal RTN astrocyte activity and ATP levels improved breathing regularity in CHF. Importantly, P"X/ P2X7 receptor (P2X7r) expression was reduced in RTN astrocytes from CHF rats and viral vector-mediated delivery of human P2X7 P2X7r into astrocytes increases ATP bioavailability and abolished BD. Interpretation Our results support that RTN astrocytes play a pivotal role on BD generation and maintenance in the setting CHF by a mechanism encompassing P2X7r signalling. Funding This study was funded by the National Research and Development Agency of Chile (ANID).
Collapse
|
30
|
Etonogestrel Administration Reduces the Expression of PHOX2B and Its Target Genes in the Solitary Tract Nucleus. Int J Mol Sci 2022; 23:ijms23094816. [PMID: 35563209 PMCID: PMC9101578 DOI: 10.3390/ijms23094816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heterozygous mutations of the transcription factor PHOX2B are responsible for Congenital Central Hypoventilation Syndrome, a neurological disorder characterized by inadequate respiratory response to hypercapnia and life-threatening hypoventilation during sleep. Although no cure is currently available, it was suggested that a potent progestin drug provides partial recovery of chemoreflex response. Previous in vitro data show a direct molecular link between progestins and PHOX2B expression. However, the mechanism through which these drugs ameliorate breathing in vivo remains unknown. Here, we investigated the effects of chronic administration of the potent progestin drug Etonogestrel (ETO) on respiratory function and transcriptional activity in adult female rats. We assessed respiratory function with whole-body plethysmography and measured genomic changes in brain regions important for respiratory control. Our results show that ETO reduced metabolic activity, leading to an enhanced chemoreflex response and concurrent increased breathing cycle variability at rest. Furthermore, ETO-treated brains showed reduced mRNA and protein expression of PHOX2B and its target genes selectively in the dorsal vagal complex, while other areas were unaffected. Histological analysis suggests that changes occurred in the solitary tract nucleus (NTS). Thus, we propose that the NTS, rich in both progesterone receptors and PHOX2B, is a good candidate for ETO-induced respiratory modulation.
Collapse
|
31
|
Toledo C, Ortolani D, Ortiz FC, Marcus NJ, Del Rio R. Potential Role of the Retrotrapezoid Nucleus in Mediating Cardio-Respiratory Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:863963. [PMID: 35492622 PMCID: PMC9039230 DOI: 10.3389/fphys.2022.863963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023] Open
Abstract
A strong association between chemoreflex hypersensitivity, disordered breathing, and elevated sympathetic activity has been shown in experimental and human heart failure (HF). The contribution of chemoreflex hypersensitivity in HF pathophysiology is incompletely understood. There is ample evidence that increased peripheral chemoreflex drive in HF with reduced ejection fraction (HFrEF; EF<40%) leads to pathophysiological changes in autonomic and cardio-respiratory control, but less is known about the neural mechanisms mediating cardio-respiratory disturbances in HF with preserved EF (HFpEF; EF>50%). Importantly, it has been shown that activation of the central chemoreflex worsens autonomic dysfunction in experimental HFpEF, an effect mediated in part by the activation of C1 catecholaminergic neurons neighboring the retrotrapezoid nucleus (RTN), an important region for central chemoreflex control of respiratory and autonomic function. Accordingly, the main purpose of this brief review is to discuss the possible role played by activation of central chemoreflex pathways on autonomic function and its potential role in precipitating disordered breathing in HFpEF. Improving understanding of the contribution of the central chemoreflex to the pathophysiology of HFpEF may help in development of novel interventions intended to improve cardio-respiratory outcomes in HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Facultad de Ciencias de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Rodrigo Del Rio,
| |
Collapse
|
32
|
Shi Y, Sobrinho CR, Soto-Perez J, Milla BM, Stornetta DS, Stornetta RL, Takakura AC, Mulkey DK, Moreira TS, Bayliss DA. 5-HT7 receptors expressed in the mouse parafacial region are not required for respiratory chemosensitivity. J Physiol 2022; 600:2789-2811. [PMID: 35385139 PMCID: PMC9167793 DOI: 10.1113/jp282279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract A brainstem homeostatic system senses CO2/H+ to regulate ventilation, blood gases and acid–base balance. Neurons of the retrotrapezoid nucleus (RTN) and medullary raphe are both implicated in this mechanism as respiratory chemosensors, but recent pharmacological work suggested that the CO2/H+ sensitivity of RTN neurons is mediated indirectly, by raphe‐derived serotonin acting on 5‐HT7 receptors. To investigate this further, we characterized Htr7 transcript expression in phenotypically identified RTN neurons using multiplex single cell qRT‐PCR and RNAscope. Although present in multiple neurons in the parafacial region of the ventrolateral medulla, Htr7 expression was undetectable in most RTN neurons (Nmb+/Phox2b+) concentrated in the densely packed cell group ventrolateral to the facial nucleus. Where detected, Htr7 expression was modest and often associated with RTN neurons that extend dorsolaterally to partially encircle the facial nucleus. These dorsolateral Nmb+/Htr7+ neurons tended to express Nmb at high levels and the intrinsic RTN proton detectors Gpr4 and Kcnk5 at low levels. In mouse brainstem slices, CO2‐stimulated firing in RTN neurons was mostly unaffected by a 5‐HT7 receptor antagonist, SB269970 (n = 11/13). At the whole animal level, microinjection of SB269970 into the RTN of conscious mice blocked respiratory stimulation by co‐injected LP‐44, a 5‐HT7 receptor agonist, but had no effect on CO2‐stimulated breathing in those same mice. We conclude that Htr7 is expressed by a minor subset of RTN neurons with a molecular profile distinct from the established chemoreceptors and that 5‐HT7 receptors have negligible effects on CO2‐evoked firing activity in RTN neurons or on CO2‐stimulated breathing in mice. Key points Neurons of the retrotrapezoid nucleus (RTN) are intrinsic CO2/H+ chemosensors and serve as an integrative excitatory hub for control of breathing. Serotonin can activate RTN neurons, in part via 5‐HT7 receptors, and those effects have been implicated in conferring an indirect CO2 sensitivity. Multiple single cell molecular approaches revealed low levels of 5‐HT7 receptor transcript expression restricted to a limited population of RTN neurons. Pharmacological experiments showed that 5‐HT7 receptors in RTN are not required for CO2/H+‐stimulation of RTN neuronal activity or CO2‐stimulated breathing. These data do not support a role for 5‐HT7 receptors in respiratory chemosensitivity mediated by RTN neurons.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
33
|
Zhu S, Hu X, Bennett S, Charlesworth O, Qin S, Mai Y, Dou H, Xu J. Galanin family peptides: Molecular structure, expression and roles in the neuroendocrine axis and in the spinal cord. Front Endocrinol (Lausanne) 2022; 13:1019943. [PMID: 36561569 PMCID: PMC9764007 DOI: 10.3389/fendo.2022.1019943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Galanin is a neurohormone as well as a neurotransmitter and plays versatile physiological roles for the neuroendocrine axis, such as regulating food intake, insulin level and somatostatin release. It is expressed in the central nervous system, including hypothalamus, pituitary, and the spinal cord, and colocalises with other neuronal peptides within neurons. Structural analyses reveal that the human galanin precursor is 104 amino acid (aa) residues in length, consisting of a mature galanin peptide (aa 33-62), and galanin message-associated peptide (GMAP; aa 63-104) at the C-terminus. GMAP appears to exhibit distinctive biological effects on anti-fungal activity and the spinal flexor reflex. Galanin-like peptide (GALP) has a similar structure to galanin and acts as a hypothalamic neuropeptide to mediate metabolism and reproduction, food intake, and body weight. Alarin, a differentially spliced variant of GALP, is specifically involved in vasoactive effect in the skin and ganglionic differentiation in neuroblastic tumors. Dysregulation of galanin, GALP and alarin has been implicated in various neuroendocrine conditions such as nociception, Alzheimer's disease, seizures, eating disorders, alcoholism, diabetes, and spinal cord conditions. Further delineation of the common and distinctive effects and mechanisms of various types of galanin family proteins could facilitate the design of therapeutic approaches for neuroendocrine diseases and spinal cord injury.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Samuel Bennett
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shengnan Qin
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
34
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
35
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
36
|
Disordered breathing in a Pitt-Hopkins syndrome model involves Phox2b-expressing parafacial neurons and aberrant Nav1.8 expression. Nat Commun 2021; 12:5962. [PMID: 34645823 PMCID: PMC8514575 DOI: 10.1038/s41467-021-26263-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is a rare autism spectrum-like disorder characterized by intellectual disability, developmental delays, and breathing problems involving episodes of hyperventilation followed by apnea. PTHS is caused by functional haploinsufficiency of the gene encoding transcription factor 4 (Tcf4). Despite the severity of this disease, mechanisms contributing to PTHS behavioral abnormalities are not well understood. Here, we show that a Tcf4 truncation (Tcf4tr/+) mouse model of PTHS exhibits breathing problems similar to PTHS patients. This behavioral deficit is associated with selective loss of putative expiratory parafacial neurons and compromised function of neurons in the retrotrapezoid nucleus that regulate breathing in response to tissue CO2/H+. We also show that central Nav1.8 channels can be targeted pharmacologically to improve respiratory function at the cellular and behavioral levels in Tcf4tr/+ mice, thus establishing Nav1.8 as a high priority target with therapeutic potential in PTHS. Disordered breathing is a hallmark of Pitt-Hopkins syndrome (PTHS), yet little is known regarding how loss of Tcf4 (gene associated with PTHS) affects development and function of respiratory neurons. Here, the authors show that parafacial respiratory neurons are selectively disrupted in a mouse model of PTHS, and central Nav1.8 channels can be targeted to improve PTHS-associated behavior abnormalities.
Collapse
|
37
|
Bass DI, Young CC, Park MS, Cruz MJ, Carroll KT, Vanent KN, Lee C, Sen RD, Angiolillo DJ, Cattaneo M, Kim LJ, Levitt MR. Severe, Intolerable Fatigue Associated with Hyperresponse to Clopidogrel. World Neurosurg 2021; 156:e374-e380. [PMID: 34563718 DOI: 10.1016/j.wneu.2021.09.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clopidogrel is a commonly used antiplatelet agent for the prevention of thromboembolic complications following neuroendovascular procedures, but anecdotal data have raised concern for the possibility that clopidogrel may induce severe, intolerable fatigue. The purpose of this study is to systematically investigate this phenomenon. METHODS We performed a dual-institution, 9-year, retrospective study of patients undergoing clopidogrel therapy for neuroendovascular procedures. Patients were included only if their response to clopidogrel was assessed by platelet function testing using the VerifyNow P2Y12 (VNP) assay. Hyperresponse to clopidogrel was defined as P2Y12 reaction units ≤60. Patients were considered to have had clopidogrel-induced severe fatigue if the onset of symptoms followed the initiation of clopidogrel therapy; symptoms improved following a reduction in the dose of clopidogrel; and symptoms could not be attributed to any other medical explanation. RESULTS Data were collected on 349 patients. Five patients (1.4%) met criteria for clopidogrel-induced severe fatigue. All 5 patients were female, ages 39-68. VNP assessments obtained while patients were symptomatic revealed hyperresponse to clopidogrel (0-22 P2Y12 reaction units). Symptoms improved in all 5 patients when the dose of clopidogrel was reduced by half. Notably, 30% of patients (n = 103) demonstrated a hyperresponse to clopidogrel on at least 1 VNP assessment, but 98 of these patients did not suffer from severe fatigue. CONCLUSIONS A syndrome of severe fatigue and other constitutional symptoms is a rare but clinically significant side effect of hyperresponse to clopidogrel in patients undergoing neuroendovasular intervention.
Collapse
Affiliation(s)
- David I Bass
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Christopher C Young
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Michael J Cruz
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Kate T Carroll
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Kevin N Vanent
- School of Medicine, University of Washington, Seattle, Washington, USA
| | - Chungeun Lee
- School of Medicine, Washington State University, Spokane, Washington, USA
| | - Rajeev D Sen
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Dominick J Angiolillo
- Division of Cardiology, Department of Medicine, University of Florida, Jacksonville, Florida, USA
| | - Marco Cattaneo
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Louis J Kim
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Stroke & Applied Neurosciences Center, University of Washington, Seattle, Washington, USA; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Michael R Levitt
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Stroke & Applied Neurosciences Center, University of Washington, Seattle, Washington, USA; Department of Radiology, University of Washington, Seattle, Washington, USA; Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
38
|
Magalhães KS, da Silva MP, Mecawi AS, Paton JFR, Machado BH, Moraes DJA. Intrinsic and synaptic mechanisms controlling the expiratory activity of excitatory lateral parafacial neurones of rats. J Physiol 2021; 599:4925-4948. [PMID: 34510468 DOI: 10.1113/jp281545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Active expiration is essential for increasing pulmonary ventilation during high chemical drive (hypercapnia). The lateral parafacial (pFL ) region, which contains expiratory neurones, drives abdominal muscles during active expiration in response to hypercapnia. However, the electrophysiological properties and synaptic mechanisms determining the activity of pFL expiratory neurones, as well as the specific conditions for their emergence, are not fully understood. Using whole cell electrophysiology and single cell quantitative RT-PCR techniques, we describe the intrinsic electrophysiological properties, the phenotype and the respiratory-related synaptic inputs to the pFL expiratory neurones, as well as the mechanisms for the expression of their expiratory activity under conditions of hypercapnia-induced active expiration, using in situ preparations of juvenile rats. We also evaluated whether these neurones possess intrinsic CO2 /[H+ ] sensitivity and burst generating properties. GABAergic and glycinergic inhibition during inspiration and expiration suppressed the activity of glutamatergic pFL expiratory neurones in normocapnia. In hypercapnia, these neurones escape glycinergic inhibition and generate burst discharges at the end of expiration. Evidence for the contribution of post-inhibitory rebound, CaV 3.2 isoform of T-type Ca2+ channels and intracellular [Ca2+ ] is presented. Neither intrinsic bursting properties, mediated by persistent Na+ current, nor CO2 /[H+ ] sensitivity or expression of CO2 /[H+ ] sensitive ion channels/receptors (TASK or GPR4) were observed. On the other hand, hyperpolarisation-activated cyclic nucleotide-gated and twik-related K+ leak channels were recorded. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats. KEY POINTS: Hypercapnia induces active expiration in rats and the recruitment of a specific population of expiratory neurones in the lateral parafacial (pFL ) region. Post-synaptic GABAergic and glycinergic inhibition both suppress the activity of glutamatergic pFL neurones during inspiratory and expiratory phases in normocapnia. Hypercapnia reduces glycinergic inhibition during expiration leading to burst generation by pFL neurones; evidence for a contribution of post-inhibitory rebound, voltage-gated Ca2+ channels and intracellular [Ca2+ ] is presented. pFL glutamatergic expiratory neurones are neither intrinsic burster neurones, nor CO2 /[H+ ] sensors, and do not express CO2 /[H+ ] sensitive ion channels or receptors. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones both play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats.
Collapse
Affiliation(s)
- Karolyne S Magalhães
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André S Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
39
|
Díaz-Jara E, Díaz HS, Rios-Gallardo A, Ortolani D, Andrade DC, Toledo C, Pereyra KV, Schwarz K, Ramirez G, Ortiz FC, Andía ME, Del Rio R. Exercise training reduces brainstem oxidative stress and restores normal breathing function in heart failure. Free Radic Biol Med 2021; 172:470-481. [PMID: 34216779 DOI: 10.1016/j.freeradbiomed.2021.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Enhanced central chemoreflex drive and irregular breathing are both hallmarks in heart failure (HF) and closely related to disease progression. Central chemoreceptor neurons located within the retrotrapezoid nucleus (RTN) are known to play a role in breathing alterations in HF. It has been shown that exercise (EX) effectively reduced reactive oxygen species (ROS) in HF rats. However, the link between EX and ROS, particularly at the RTN, with breathing alterations in HF has not been previously addressed. Accordingly, we aimed to determine: i) ROS levels in the RTN in HF and its association with chemoreflex drive, ii) whether EX improves chemoreflex/breathing function by reducing ROS levels, and iii) determine molecular alterations associated with ROS generation within the RTN of HF rats and study EX effects on these pathways. Adult male Sprague-Dawley rats were allocated into 3 experimental groups: Sham (n = 5), volume overloaded HF (n = 6) and HF (n = 8) rats that underwent EX training for 6 weeks (60 min/day, 25 m/min, 10% inclination). At 8 weeks post-HF induction, breathing patterns and chemoreflex function were analyzed by unrestrained plethysmography. ROS levels and anti/pro-oxidant enzymes gene expression were analyzed in the RTN. Our results showed that HF rats have high ROS levels in the RTN which were closely linked to the enhanced central chemoreflex and breathing disorders. Also, HF rats displayed decreased expression of antioxidant genes in the RTN compared with control rats. EX training increases antioxidant defense in the RTN, reduces ROS formation and restores normal central chemoreflex drive and breathing regularity in HF rats. This study provides evidence for a role of ROS in central chemoreception in the setting of HF and support the use of EX to reduce ROS in the brainstem of HF animals and reveal its potential as an effective mean to normalize chemoreflex and breathing function in HF.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, 1270300, Antofagasta, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Karla Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Gigliola Ramirez
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fernando C Ortiz
- Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo E Andía
- Radiology Department & ANID - Millennium Nucleus for Cardiovascular Magnetic Resonance, 8331150, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile; Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| |
Collapse
|
40
|
Cleary CM, Milla BM, Kuo FS, James S, Flynn WF, Robson P, Mulkey DK. Somatostatin-expressing parafacial neurons are CO 2/H + sensitive and regulate baseline breathing. eLife 2021; 10:e60317. [PMID: 34013884 PMCID: PMC8169115 DOI: 10.7554/elife.60317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/19/2021] [Indexed: 01/16/2023] Open
Abstract
Glutamatergic neurons in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors by regulating breathing in response to tissue CO2/H+. The RTN and greater parafacial region may also function as a chemosensing network composed of CO2/H+-sensitive excitatory and inhibitory synaptic interactions. In the context of disease, we showed that loss of inhibitory neural activity in a mouse model of Dravet syndrome disinhibited RTN chemoreceptors and destabilized breathing (Kuo et al., 2019). Despite this, contributions of parafacial inhibitory neurons to control of breathing are unknown, and synaptic properties of RTN neurons have not been characterized. Here, we show the parafacial region contains a limited diversity of inhibitory neurons including somatostatin (Sst)-, parvalbumin (Pvalb)-, and cholecystokinin (Cck)-expressing neurons. Of these, Sst-expressing interneurons appear uniquely inhibited by CO2/H+. We also show RTN chemoreceptors receive inhibitory input that is withdrawn in a CO2/H+-dependent manner, and chemogenetic suppression of Sst+ parafacial neurons, but not Pvalb+ or Cck+ neurons, increases baseline breathing. These results suggest Sst-expressing parafacial neurons contribute to RTN chemoreception and respiratory activity.
Collapse
Affiliation(s)
- Colin M Cleary
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - Shaun James
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| | - William F Flynn
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
| | - Paul Robson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Institute for Systems Genomics, University of ConnecticutFarmingtonUnited States
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of ConnecticutStorrsUnited States
| |
Collapse
|
41
|
Levy J, Droz-Bartholet F, Achour M, Facchinetti P, Parratte B, Giuliano F. Parafacial neurons in the human brainstem express specific markers for neurons of the retrotrapezoid nucleus. J Comp Neurol 2021; 529:3313-3320. [PMID: 34008871 DOI: 10.1002/cne.25191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 11/06/2022]
Abstract
The retrotrapezoid nucleus (RTN) is a hub for respiratory chemoregulation in the mammal brainstem that integrates chemosensory information from peripheral sites and central relays. Chemosensitive neurons of the RTN express specific genetic and molecular determinants, which have been used to identify RTN precise location within the brainstem of rodents and nonhuman primates. Based on a comparative approach, we hypothesized that among mammals, neurons exhibiting the same specific molecular and genetic signature would have the same function. The co-expression of preprogalanin (PPGAL) and SLC17A6 (VGluT2) mRNAs with duplex in situ hybridization has been studied in formalin fixed paraffin-embedded postmortem human brainstems. Two specimens were processed and analyzed in line with RTN descriptions in adult rats and macaques. Double-labeled PPGAL+/SLC17A6+ neurons were only identified in the parafacial region of the brainstem. These neurons were found surrounding the nucleus of the facial nerve, located ventrally to the nucleus VII on caudal sections, and slightly more dorsally on rostral sections. The expression of neuromedin B (NMB) mRNA as a single marker of chemosensitive RTN neurons has not been confirmed in humans. The location of the RTN in human adults is provided. This should help to develop investigation tools combining anatomic high-resolution imaging and respiratory functional investigations to explore the pathogenic role of the RTN in congenital or acquired neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Levy
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France.,Service de Médecine Physique et de Réadaptation - APHP, Hôpital Raymond Poincaré, Garches, France.,Fondation Garches - Hôpital Raymond Poincaré, Garches, France
| | - François Droz-Bartholet
- Laboratoire d'Anatomie - Faculté de Médecine de Besançon, Université de Franche-Comté, Besançon, France.,Service de Médecine Physique et de Réadaptation - CHRU Jean Minjoz, Besançon, France
| | - Melyna Achour
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France
| | - Patricia Facchinetti
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France
| | - Bernard Parratte
- Laboratoire d'Anatomie - Faculté de Médecine de Besançon, Université de Franche-Comté, Besançon, France.,Service de Médecine Physique et de Réadaptation - CHRU Jean Minjoz, Besançon, France
| | - François Giuliano
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France.,Service de Médecine Physique et de Réadaptation - APHP, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
42
|
Takakura AC, Malheiros-Lima MR, Moreira TS. Excitatory and inhibitory modulation of parafacial respiratory neurons in the control of active expiration. Respir Physiol Neurobiol 2021; 289:103657. [PMID: 33781931 DOI: 10.1016/j.resp.2021.103657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 01/21/2023]
Abstract
In order to increase ventilation, the respiratory system engages active expiration through recruitment of abdominal muscles. Here, we reviewed the new advances in the modulation of parafacial respiratory (pF) region to trigger active expiration. In addition, we also made a comprehensive discussion of experiments indicating that the lateral aspect of the pF (pFL) is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the ventral aspect of the pF (pFV) also named the retrotrapezoid nucleus. Recent evidence suggest a complex network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFL is tonically inhibited by inhibitory inputs and also receives excitatory inputs from chemoreceptors (central x peripheral) as well as from catecholaminergic C1 neurons. Therefore, the modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation.
Collapse
Affiliation(s)
- Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
43
|
Abbott SBG, Souza GMPR. Chemoreceptor mechanisms regulating CO 2 -induced arousal from sleep. J Physiol 2021; 599:2559-2571. [PMID: 33759184 DOI: 10.1113/jp281305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Arousal from sleep in response to CO2 is a life-preserving reflex that enhances ventilatory drive and facilitates behavioural adaptations to restore eupnoeic breathing. Recurrent activation of the CO2 -arousal reflex is associated with sleep disruption in obstructive sleep apnoea. In this review we examine the role of chemoreceptors in the carotid bodies, the retrotrapezoid nucleus and serotonergic neurons in the dorsal raphe in the CO2 -arousal reflex. We also provide an overview of the supra-medullary structures that mediate CO2 -induced arousal. We propose a framework for the CO2 -arousal reflex in which the activity of the chemoreceptors converges in the parabrachial nucleus to trigger cortical arousal.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 29903, USA
| |
Collapse
|
44
|
Li K, Abbott SBG, Shi Y, Eggan P, Gonye EC, Bayliss DA. TRPM4 mediates a subthreshold membrane potential oscillation in respiratory chemoreceptor neurons that drives pacemaker firing and breathing. Cell Rep 2021; 34:108714. [PMID: 33535052 PMCID: PMC7888550 DOI: 10.1016/j.celrep.2021.108714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/01/2022] Open
Abstract
Brainstem networks that control regular tidal breathing depend on excitatory drive, including from tonically active, CO2/H+-sensitive neurons of the retrotrapezoid nucleus (RTN). Here, we examine intrinsic ionic mechanisms underlying the metronomic firing activity characteristic of RTN neurons. In mouse brainstem slices, large-amplitude membrane potential oscillations are evident in synaptically isolated RTN neurons after blocking action potentials. The voltage-dependent oscillations are abolished by sodium replacement; blocking calcium channels (primarily L-type); chelating intracellular Ca2+; and inhibiting TRPM4, a Ca2+-dependent cationic channel. Likewise, oscillation voltage waveform currents are sensitive to calcium and TRPM4 channel blockers. Extracellular acidification and serotonin (5-HT) evoke membrane depolarization that augments TRPM4-dependent oscillatory activity and action potential discharge. Finally, inhibition of TRPM4 channels in the RTN of anesthetized mice reduces central respiratory output. These data implicate TRPM4 in a subthreshold oscillation that supports the pacemaker-like firing of RTN neurons required for basal, CO2-stimulated, and state-dependent breathing.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Pierce Eggan
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth C Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
45
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS). Front Neurosci 2021; 14:615666. [PMID: 33510615 PMCID: PMC7835644 DOI: 10.3389/fnins.2020.615666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a genetic disorder of neurodevelopment, with an autosomal dominant transmission, caused by heterozygous mutations in the PHOX2B gene. CCHS is a rare disorder characterized by hypoventilation due to the failure of autonomic control of breathing. Until now no curative treatment has been found. PHOX2B is a transcription factor that plays a crucial role in the development (and maintenance) of the autonomic nervous system, and in particular the neuronal structures involved in respiratory reflexes. The underlying pathogenetic mechanism is still unclear, although studies in vivo and in CCHS patients indicate that some neuronal structures may be damaged. Moreover, in vitro experimental data suggest that transcriptional dysregulation and protein misfolding may be key pathogenic mechanisms. This review summarizes latest researches that improved the comprehension of the molecular pathogenetic mechanisms responsible for CCHS and discusses the search for therapeutic intervention in light of the current knowledge about PHOX2B function.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy
| |
Collapse
|
46
|
Shi Y, Stornetta DS, Reklow RJ, Sahu A, Wabara Y, Nguyen A, Li K, Zhang Y, Perez-Reyes E, Ross RA, Lowell BB, Stornetta RL, Funk GD, Guyenet PG, Bayliss DA. A brainstem peptide system activated at birth protects postnatal breathing. Nature 2021; 589:426-430. [PMID: 33268898 PMCID: PMC7855323 DOI: 10.1038/s41586-020-2991-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 09/29/2020] [Indexed: 01/29/2023]
Abstract
Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Robert J. Reklow
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alisha Sahu
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yvonne Wabara
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ashley Nguyen
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Yong Zhang
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Rachel A. Ross
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA,McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Bradford B. Lowell
- Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Gregory D. Funk
- Department of Physiology, Women & Children’s Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
47
|
Tian Y, Geng D, Wang Y, Shi L, Yu H, He W, Zhu Y, Jun S, Fu C, Wang X, Zhang X, Yuan F, Wang S. Contribution of retrotrapezoid nucleus neurons to CO 2 -amplified cardiorespiratory activity in spontaneously hypertensive rats. J Physiol 2020; 599:1115-1130. [PMID: 33347681 DOI: 10.1113/jp280246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This study demonstrates that both CO2 -induced respiratory and cardiovascular responses are augmented in spontaneously hypertensive rats (SHRs). Genetic ablation of the retrotrapezoid nucleus (RTN) neurons depresses enhanced hypercapnic ventilatory response and eliminates CO2 -stimulated increase in arterial pressure and heart rate in SHRs. SHRs have a high protein level of pH-sensitive channels in the RTN, including the TASK-2 channel, Kv12.1 channel and acid-sensing ion channel 3. The inhibition of putative TASK-2 channel activity by clofilium diminishes amplified hypercapnic ventilatory and cardiovascular responses, and reduces the number of CO2 -activated RTN neurons in SHRs. These results indicate that RTN neurons contribute to enhanced CO2 -stimulated respiratory and cardiovascular responses in SHRs. ABSTRACT The respiratory regulation of cardiovascular activity is essential for maintaining an efficient ventilation and perfusion ratio. Activation of central respiratory chemoreceptors not only elicits a ventilatory response but also regulates sympathetic nerve activity and arterial blood pressure (ABP). The retrotrapezoid nucleus (RTN) is the most completely characterized cluster of central respiratory chemoreceptors. We hypothesize that RTN neurons contribute to augmented CO2 -stimulated respiratory and cardiovascular responses in adult spontaneously hypertensive rats (SHRs). Our findings indicate that SHRs exhibit more enhanced hypercapnic cardiorespiratory responses than age-matched normotensive Wistar-Kyoto rats. Genetic ablation of RTN neurons notably depresses an enhanced hypercapnic ventilatory response (HCVR) and eliminates a CO2 -stimulated greater increase in ABP and heart rate in SHRs. In addition, SHRs have a higher protein level of pH-sensitive channels in the RTN, including TASK-2 channels, Kv12.1 channels and acid-sensing ion channel 3. Administration of clofilium (i.p.), an unselective inhibitor of TASK-2 channels, not only significantly reduces the enhanced HCVR but also inhibits CO2 -amplified increases in ABP and heart rate in SHRs. Moreover, clofilium significantly decreases the number of CO2 -activated RTN neurons in SHRs. Taken together, we suggest that RTN neurons play an important role in enhanced hypercapnic ventilatory and cardiovascular responses in SHRs and the putative mechanism involved is associated with TASK-2 channel activity in the RTN.
Collapse
Affiliation(s)
- Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Danyang Geng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yakun Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Hongxiao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wei He
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yufang Zhu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shirui Jun
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Congrui Fu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xin Wang
- Physiology Laboratory of Teaching Experiment Center, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, 050000, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
48
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
49
|
Volatile Anesthetics Activate a Leak Sodium Conductance in Retrotrapezoid Nucleus Neurons to Maintain Breathing during Anesthesia in Mice. Anesthesiology 2020; 133:824-838. [PMID: 32773689 DOI: 10.1097/aln.0000000000003493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics moderately depress respiratory function at clinically relevant concentrations. Phox2b-expressing chemosensitive neurons in the retrotrapezoid nucleus, a respiratory control center, are activated by isoflurane, but the underlying mechanisms remain unclear. The hypothesis of this study was that the sodium leak channel contributes to the volatile anesthetics-induced modulation of retrotrapezoid nucleus neurons and to respiratory output. METHODS The contribution of sodium leak channels to isoflurane-, sevoflurane-, and propofol-evoked activity of Phox2b-expressing retrotrapezoid nucleus neurons and respiratory output were evaluated in wild-type and genetically modified mice lacking sodium leak channels (both sexes). Patch-clamp recordings were performed in acute brain slices. Whole-body plethysmography was used to measure the respiratory activity. RESULTS Isoflurane at 0.42 to 0.50 mM (~1.5 minimum alveolar concentration) increased the sodium leak channel-mediated holding currents and conductance from -75.0 ± 12.9 to -130.1 ± 34.9 pA (mean ± SD, P = 0.002, n = 6) and 1.8 ± 0.5 to 3.6 ± 1.0 nS (P = 0.001, n = 6), respectively. At these concentrations, isoflurane increased activity of Phox2b-expressing retrotrapezoid nucleus neurons from 1.1 ± 0.2 to 2.8 ± 0.2 Hz (P < 0.001, n = 5), which was eliminated by bath application of gadolinium or genetic silencing of sodium leak channel. Genetic silencing of sodium leak channel in the retrotrapezoid nucleus resulted in a diminished ventilatory response to carbon dioxide in mice under control conditions and during isoflurane anesthesia. Sevoflurane produced an effect comparable to that of isoflurane, whereas propofol did not activate sodium leak channel-mediated holding conductance. CONCLUSIONS Isoflurane and sevoflurane increase neuronal excitability of chemosensitive retrotrapezoid nucleus neurons partly by enhancing sodium leak channel conductance. Sodium leak channel expression in the retrotrapezoid nucleus is required for the ventilatory response to carbon dioxide during anesthesia by isoflurane and sevoflurane, thus identifying sodium leak channel as a requisite determinant of respiratory output during anesthesia of volatile anesthetics. EDITOR’S PERSPECTIVE
Collapse
|
50
|
Leirão IP, Colombari DSA, da Silva GSF, Zoccal DB. Lesion of Serotonergic Afferents to the Retrotrapezoid Nucleus Impairs the Tachypneic Response to Hypercapnia in Unanesthetized Animals. Neuroscience 2020; 452:63-77. [PMID: 33212216 DOI: 10.1016/j.neuroscience.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Hypercapnia promotes an increase in pulmonary ventilation due to the stimulation of brainstem chemosensory cells that are connected to the respiratory network. Among these cells are the raphe serotonergic neurons which widely send projections to distinct central respiratory compartments. Nevertheless, the physiological role of specific raphe serotonergic projections to other chemosensitive sites on the emergence of hypercapnia ventilatory response in vivo still remains to be elucidated. Here we investigated whether the ventilatory response to hypercapnia requires serotonergic inputs to the chemosensitive cells of the retrotrapezoid nucleus (RTN) in the ventrolateral medulla. To test this, pulmonary ventilation was evaluated under baseline conditions and during hypercapnia (7% CO2) in unanesthetized juvenile Holtzman rats (60-90 g) that received bilateral microinjections of either vehicle (control) or anti-SERT-SAP (0.1 mM, 10 pmol/100 nl) toxin in the RTN to retrogradely destroy serotonergic afferents to this region. Fifteen days after microinjections, baseline ventilation was not different between anti-SERT-SAP (n = 8) and control animals (n = 9). In contrast, the ablation of RTN-projecting serotonergic neurons markedly attenuated the hypercapnia-induced increase in respiratory frequency which was correlated with reduced numbers of serotonergic neurons in the raphe obscurus and magnus, but not in the raphe pallidus. The increase in tidal volume during hypercapnia was not significantly affected by anti-SERT-SAP microinjections in the RTN. Our data indicate that serotoninergic neurons that send projections to the RTN region are required for the processing of ventilatory reflex response during exposure to high CO2 in unanesthetized conditions.
Collapse
Affiliation(s)
- Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics. Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, MG, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|