1
|
Goetz JN, Neider MB. How robust is categorial distractor suppression? Assessing the impact of additional categories and increased set size. Atten Percept Psychophys 2025; 87:1162-1178. [PMID: 40195268 DOI: 10.3758/s13414-025-03056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Distractor suppression is the process of utilizing top-down information about distractors to improve search performance. Most studies have utilized simple stimuli and concluded that basic visual features are suppressed. However, recent studies have shown that categorical information can be suppressed, albeit with limited categories and display set sizes. In three experiments, we examined whether suppression for categorical distractors remained robust in more realistic search conditions by increasing the number of categories and display set sizes. Across our experiments, we modified previous experiments' paradigms where participants searched for specific t orientations that were embedded in categorical objects. In Experiment 1, we increased the number of categories. In Experiment 2, we only increased the display set size. In Experiment 3, we increased both the number of categories and the display set size. Response times were faster on trials where the cued distractor category appeared, indicating distractor suppression effects in Experiments 1 and 2 but not Experiment 3. Combined, the results suggest that categorical distractor suppression effects likely occur in more realistic contexts, but other more beneficial search strategies may also be employed with increased task complexity.
Collapse
Affiliation(s)
- Jessica N Goetz
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Psychology Bldg 99 Ste. 320, Orlando, FL, 32816-1390, USA.
| | - Mark B Neider
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Psychology Bldg 99 Ste. 320, Orlando, FL, 32816-1390, USA
| |
Collapse
|
2
|
Davis EE, Thomas HG, Price MS, Mahy CEV, Campbell KL. Differential attentional demands on implicit and explicit associative memory in children 8-12 years old. Memory 2025:1-15. [PMID: 40255126 DOI: 10.1080/09658211.2025.2493337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Associative memory improves during childhood, suggesting an age-related improvement in the binding mechanism responsible for linking information together. However, tasks designed to measure associative memory not only measure binding, but also place demands on attention. This makes it difficult to dissociate age-related improvements in memory from the development of attention. One way to reduce attentional demands is to test memory implicitly versus explicitly. In this study, children (8-, 10-, and 12-years-old) completed separate implicit and explicit associative memory tests. For the implicit task, children incidentally encoded pairs of objects by making an object categorization decision. At test, they completed the same task, but unbeknownst to the participants, the pairs were either intact, rearranged, or new. Next, children completed another incidental encoding phase, then an explicit test in which they indicated whether the pairs were intact, rearranged, or new. For the implicit test, all age groups had faster reaction times for intact than rearranged pairs (indicative of implicit associative memory). In the explicit test, memory performance (d') improved with age. A separate measure of attention related to performance in both the explicit and implicit tasks. Together, these results support that attentional mechanisms contribute to age-related improvements in associative memory.
Collapse
Affiliation(s)
- Emily E Davis
- Psychology Department, Brock University, St. Catharines, Canada
| | - Hannah G Thomas
- Psychology Department, Brock University, St. Catharines, Canada
| | - Matthew S Price
- Psychology Department, Brock University, St. Catharines, Canada
| | | | | |
Collapse
|
3
|
Lien MC, Ruthruff E, Tolomeo DA, Reitan KM. Don't look there: Assessing the suppression of cued-to-be-ignored locations. Atten Percept Psychophys 2025; 87:815-831. [PMID: 39979541 DOI: 10.3758/s13414-025-03033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Do people avoid visual distraction by suppressing locations expected to contain potent distractors? To address this issue, we combined a spatial cueing paradigm with a capture-probe paradigm. Each search display contained six shapes, two of which had the target shape. To know which target shape to respond to, participants had to use a spatial cue indicating the to-be-ignored locations for that trial. There were also two neutral locations that never contained distractors and so did not need to be suppressed, which served as a baseline. To assess spatial suppression below baseline, participants performed a probe letter recall task on 30% of trials. If people proactively suppress the threatening to-be-ignored locations below baseline, then probe recall for these cued-to-be-ignored distractor locations should be lower than that for the neutral locations (a probe suppression effect). However, we found no such probe suppression effect. It was absent both when the cued-to-be-ignored distractor locations changed randomly from trial-by-trial (Experiment 1) and when they were fixed (Experiments 2-4). It was absent even when the cued-to-be-ignored locations contained a salient color singleton to further incentivize suppression at those locations (Experiment 3) and when only a single distractor location was cued (Experiment 4). We propose that people accomplish selectivity either by blanketing suppression across all irrelevant locations (e.g., both threatening and non-threatening distractor locations), or by mainly boosting target locations.
Collapse
Affiliation(s)
- Mei-Ching Lien
- School of Psychological Science, Oregon State University, Corvallis, OR, USA.
| | - Eric Ruthruff
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
4
|
Bonnefond M, Jensen O. The role of alpha oscillations in resisting distraction. Trends Cogn Sci 2025; 29:368-379. [PMID: 39668059 DOI: 10.1016/j.tics.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in suppressing distractors is extensively debated. One debate concerns whether alpha oscillations suppress anticipated visual distractors through increased power. Whereas some studies suggest that alpha oscillations support distractor suppression, others do not. We identify methodological differences that may explain these discrepancies. A second debate concerns the mechanistic role of alpha oscillations. We and others previously proposed that alpha oscillations implement gain reduction in early visual regions when target load or distractor interference is high. Here, we suggest that parietal alpha oscillations support gating or stabilization of attentional focus and that alpha oscillations in ventral attention network (VAN) support resistance to attention capture. We outline future studies needed to uncover the precise mechanistic role of alpha oscillations.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France.
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK; Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
5
|
Feng X, Bao X, Huang H, Wang Z, Hu W, Xue C, Song Z, Cai Y, Huang Q, Li Y. Frontal gamma-alpha ratio reveals neural oscillatory mechanism of attention shifting in tinnitus. iScience 2025; 28:111929. [PMID: 40040811 PMCID: PMC11879603 DOI: 10.1016/j.isci.2025.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
In clinical practice, the symptoms of tinnitus patients can be temporarily alleviated by diverting their attention away from disturbing sounds. However, the precise mechanisms through which this alleviation occurs are still not well understood. Here, we aimed to directly evaluate the role of attention in tinnitus alleviation by conducting distraction tasks with multilevel loads and resting-state tests among 52 adults with tinnitus and 52 healthy controls. We demonstrated that the abnormal neural oscillations in tinnitus subjects, reflected in an altered gamma/alpha ratio index in the frontal lobe, could be regulated by attention shifting in a linear manner for which the regulatory effect increased with the load of distraction. Quantitative measures of the regulation significantly correlated with symptom severity. Altogether, our work provides proof-of-concept for the role of attention in tinnitus perception and lays a solid foundation to support evidence-based applications of attention shifting in clinical interventions for tinnitus.
Collapse
Affiliation(s)
- Xueji Feng
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou 510005, China
| | - Xiaoyu Bao
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou 510005, China
| | - Haiyun Huang
- School of Software, South China Normal University, Foshan 528225, China
- Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou 510005, China
| | - Zijian Wang
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou 510005, China
| | - Wen Hu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chenxi Xue
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiqing Song
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiyun Huang
- Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou 510005, China
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou 510005, China
| |
Collapse
|
6
|
Huang C, van Moorselaar D, Foster J, Donk M, Theeuwes J. Neural mechanisms of learned suppression uncovered by probing the hidden attentional priority map. eLife 2025; 13:RP98304. [PMID: 40008864 PMCID: PMC11864755 DOI: 10.7554/elife.98304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Attentional capture by an irrelevant salient distractor is attenuated when the distractor appears more frequently in one location, suggesting learned suppression of that location. However, it remains unclear whether suppression is proactive (before attention is directed) or reactive (after attention is allocated). Here, we investigated this using a 'pinging' technique to probe the attentional distribution before search onset. In an EEG experiment, participants searched for a shape singleton while ignoring a color singleton distractor at a high-probability location. To reveal the hidden attentional priority map, participants also performed a continuous recall spatial memory task, with a neutral placeholder display presented before search onset. Behaviorally, search was more efficient when the distractor appeared at the high-probability location. Inverted encoding analysis of EEG data showed tuning profiles that decayed during memory maintenance but were revived by the placeholder display. Notably, tuning was most pronounced at the to-be-suppressed location, suggesting initial spatial selection followed by suppression. These findings suggest that learned distractor suppression is a reactive process, providing new insights into learned spatial distractor suppression mechanisms.
Collapse
Affiliation(s)
- Changrun Huang
- Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institute Brain and BehaviorAmsterdamNetherlands
| | - Dirk van Moorselaar
- Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institute Brain and BehaviorAmsterdamNetherlands
| | - Joshua Foster
- Department of Psychological and Brain Sciences, Boston UniversityBostonUnited States
| | - Mieke Donk
- Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institute Brain and BehaviorAmsterdamNetherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institute Brain and BehaviorAmsterdamNetherlands
- William James Center for Research, ISPA – Instituto UniversitarioLisbonPortugal
| |
Collapse
|
7
|
Dehaghani NS, Zarei M. Pre-stimulus activities affect subsequent visual processing: Empirical evidence and potential neural mechanisms. Brain Behav 2025; 15:e3654. [PMID: 39907172 PMCID: PMC11795279 DOI: 10.1002/brb3.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 02/06/2025] Open
Abstract
PURPOSE Humans obtain most of their information from visual stimuli. The perception of these stimuli may be modulated by the ongoing pre-stimulus brain activities. Depending on the task design, the processing of different cognitive functions such as spatial attention, feature-based attention, temporal attention, arousal, and mental imagery may start prior to the stimulus onset. METHOD This process is typically accompanied by changes in pre-stimulus oscillatory activities including power, phase, or connectivity in different frequency bands. To explain the effect of these changes, several mechanisms have been proposed. In this article, we review these changes and the potential mechanisms in the context of the pre-stimulus enabled cognitive functions. We provide evidence both in favor of and against the most documented mechanisms and conclude that no single mechanism can solely delineate the effects of pre-stimulus brain activities on later processing. Instead, multiple mechanisms may work in tandem to guide pre-stimulus brain activities. FINDING Additionally, our findings indicate that in many studies a combination of these cognitive functions begins prior to stimulus onset. CONCLUSION Thus, dissociating these cognitive functions is challenging based on the current literature, and the need for precise task designs in later studies to differentiate between them is crucial.
Collapse
Affiliation(s)
| | - Mojtaba Zarei
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
8
|
Tu CA, Parviainen T, Hämäläinen JA, Hsu YF. Alpha oscillations protect auditory working memory against distractors in the encoding phase. Neuropsychologia 2025; 207:109058. [PMID: 39615830 DOI: 10.1016/j.neuropsychologia.2024.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Alpha oscillations are proposed to serve the function of inhibition to protect items in working memory from intruding information. In a modified Sternberg paradigm, alpha power was initially found to increase at the anticipation of strong compared to weak distractors, reflecting the active gating of distracting information from interfering with the memory trace. However, there was a lack of evidence supporting the inhibition account of alpha oscillations in later studies using similar experimental design with greater temporal disparity between the encoding phase and the presentation of the distractors. This temporal disparity might have dampened the demands for inhibition. To test the hypothesis that alpha inhibition takes place when distractors are temporally close to the encoding phase, here we designed a modified Sternberg paradigm where distractors were sandwiched between targets in the encoding phase to ensure that they compete for working memory resources. Using electroencephalography (EEG), we replicated the finding that alpha power increased for strong compared to weak distractors. The effect was present throughout the encoding phase, not only upon the presentation of distractors but also before and after the presentation of distractors, providing evidence for both proactive and reactive inhibition of distractors at the neuronal level. Meanwhile, the effect was restricted to the context of high but not low target-to-distractor ratio. The results suggest that the distractors being temporally close to the encoding phase of more targets might be a boundary condition of the generation of alpha oscillations for gating.
Collapse
Affiliation(s)
- Chia-An Tu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, 106308, Taiwan.
| | - Tiina Parviainen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, 40014, Finland.
| | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, 40014, Finland.
| | - Yi-Fang Hsu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, 106308, Taiwan; Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, 106308, Taiwan.
| |
Collapse
|
9
|
Bouwkamp FG, de Lange FP, Spaak E. Spatial Predictive Context Speeds Up Visual Search by Biasing Local Attentional Competition. J Cogn Neurosci 2025; 37:28-42. [PMID: 39348146 DOI: 10.1162/jocn_a_02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The human visual system is equipped to rapidly and implicitly learn and exploit the statistical regularities in our environment. Within visual search, contextual cueing demonstrates how implicit knowledge of scenes can improve search performance. This is commonly interpreted as spatial context in the scenes becoming predictive of the target location, which leads to a more efficient guidance of attention during search. However, what drives this enhanced guidance is unknown. First, it is under debate whether the entire scene (global context) or more local context drives this phenomenon. Second, it is unclear how exactly improved attentional guidance is enabled by target enhancement and distractor suppression. In the present magnetoencephalography experiment, we leveraged rapid invisible frequency tagging to answer these two outstanding questions. We found that the improved performance when searching implicitly familiar scenes was accompanied by a stronger neural representation of the target stimulus, at the cost specifically of those distractors directly surrounding the target. Crucially, this biasing of local attentional competition was behaviorally relevant when searching familiar scenes. Taken together, we conclude that implicitly learned spatial predictive context improves how we search our environment by sharpening the attentional field.
Collapse
|
10
|
Cruz G, Melcón M, Sutandi L, Matias Palva J, Palva S, Thut G. Oscillatory Brain Activity in the Canonical Alpha-Band Conceals Distinct Mechanisms in Attention. J Neurosci 2025; 45:e0918242024. [PMID: 39406514 PMCID: PMC11694399 DOI: 10.1523/jneurosci.0918-24.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 01/03/2025] Open
Abstract
Brain oscillations in the alpha-band (8-14 Hz) have been linked to specific processes in attention and perception. In particular, decreases in posterior alpha-amplitude are thought to reflect activation of perceptually relevant brain areas for target engagement, while alpha-amplitude increases have been associated with inhibition for distractor suppression. Traditionally, these alpha-changes have been viewed as two facets of the same process. However, recent evidence calls for revisiting this interpretation. Here, we recorded MEG/EEG in 32 participants (19 females) during covert visuospatial attention shifts (spatial cues) and two control conditions (neutral cue, no-attention cue), while tracking fixational eye movements. In disagreement with a single, perceptually relevant alpha-process, we found the typical alpha-modulations contra- and ipsilateral to the attention focus to be triple dissociated in their timing, topography, and spectral features: Ipsilateral alpha-increases occurred early, over occipital sensors, at a high alpha-frequency (10-14 Hz) and were expressed during spatial attention (alpha spatial cue > neutral cue). In contrast, contralateral alpha-decreases occurred later, over parietal sensors, at a lower alpha-frequency (7-10 Hz) and were associated with attention deployment in general (alpha spatial and neutral cue < no-attention cue). Additionally, the lateralized early alpha-increases but not alpha-decreases during spatial attention coincided in time with directionally biased microsaccades. Overall, this suggests that the attention-related early alpha-increases and late alpha-decreases reflect distinct, likely reflexive versus endogenously controlled attention mechanisms. We conclude that there is more than one perceptually relevant posterior alpha-oscillation, which need to be dissociated for a detailed account of their roles in perception and attention.
Collapse
Affiliation(s)
- Gabriela Cruz
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - María Melcón
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - Leonardo Sutandi
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - J Matias Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Department of Neuroscience and Biomedical engineering, Aalto University, Helsinki 02150, Finland
| | - Satu Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Centre de Recherche Cerveau et Cognition (Cerco), CNRS UMR5549 and Université de Toulouse, Toulouse 31059, France
| |
Collapse
|
11
|
Sattelberger J, Haque H, Juvonen JJ, Siebenhühner F, Palva JM, Palva S. Local and interareal alpha and low-beta band oscillation dynamics underlie the bilateral field advantage in visual working memory. Cereb Cortex 2024; 34:bhae448. [PMID: 39540759 PMCID: PMC11561930 DOI: 10.1093/cercor/bhae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Visual working memory has a limited maximum capacity, which can be larger if stimuli are presented bilaterally vs. unilaterally. However, the neuronal mechanisms underlying this bilateral field advantage are not known. Visual working memory capacity is predicted by oscillatory delay-period activity, specifically, by a decrease in alpha (8 to 12 Hz) band amplitudes in posterior brain regions reflecting attentional deployment and related shifts in excitation, as well as a concurrent increase of prefrontal oscillation amplitudes and interareal synchronization in multiple frequencies reflecting active maintenance of information. Here, we asked whether posterior alpha suppression or prefrontal oscillation enhancement explains the bilateral field advantage. We recorded brain activity with high-density electroencephalography, while subjects (n = 26, 14 males) performed a visual working memory task with uni- and bilateral visual stimuli. The bilateral field advantage was associated with early suppression of low-alpha (6 to 10 Hz) and alpha-beta (10 to 17 Hz) band amplitudes, and a subsequent alpha-beta amplitude increase, which, along with a concurrent load-dependent interareal synchronization in the high-alpha band (10 to 15 Hz), correlated with hit rates and reaction times and thus predicted higher maximum capacities in bilateral than unilateral visual working memory. These results demonstrate that the electrophysiological basis of the bilateral field advantage in visual working memory is both in the changes in attentional deployment and enhanced interareal integration.
Collapse
Affiliation(s)
- Judith Sattelberger
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Hamed Haque
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Joonas J Juvonen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Jaakko Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, University of Glasgow, G12 8QB Glasgow, United Kingdom
| |
Collapse
|
12
|
Chiossi F, Trautmannsheimer I, Ou C, Gruenefeld U, Mayer S. Searching Across Realities: Investigating ERPs and Eye-Tracking Correlates of Visual Search in Mixed Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:6997-7007. [PMID: 39264778 DOI: 10.1109/tvcg.2024.3456172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Mixed Reality allows us to integrate virtual and physical content into users' environments seamlessly. Yet, how this fusion affects perceptual and cognitive resources and our ability to find virtual or physical objects remains uncertain. Displaying virtual and physical information simultaneously might lead to divided attention and increased visual complexity, impacting users' visual processing, performance, and workload. In a visual search task, we asked participants to locate virtual and physical objects in Augmented Reality and Augmented Virtuality to understand the effects on performance. We evaluated search efficiency and attention allocation for virtual and physical objects using event-related potentials, fixation and saccade metrics, and behavioral measures. We found that users were more efficient in identifying objects in Augmented Virtuality, while virtual objects gained saliency in Augmented Virtuality. This suggests that visual fidelity might increase the perceptual load of the scene. Reduced amplitude in distractor positivity ERP, and fixation patterns supported improved distractor suppression and search efficiency in Augmented Virtuality. We discuss design implications for mixed reality adaptive systems based on physiological inputs for interaction.
Collapse
|
13
|
Liljefors J, Almeida R, Rane G, Lundström JN, Herman P, Lundqvist M. Distinct functions for beta and alpha bursts in gating of human working memory. Nat Commun 2024; 15:8950. [PMID: 39419974 PMCID: PMC11486900 DOI: 10.1038/s41467-024-53257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple neural mechanisms underlying gating to working memory have been proposed with divergent results obtained in human and animal studies. Previous findings from non-human primates suggest prefrontal beta frequency bursts as a correlate of transient inhibition during selective encoding. Human studies instead suggest a similar role for sensory alpha power fluctuations. To cast light on these discrepancies we employed a sequential working memory task with distractors for human participants. In particular, we examined their whole-brain electrophysiological activity in both alpha and beta bands with the same single-trial burst analysis earlier performed on non-human primates. Our results reconcile earlier findings by demonstrating that both alpha and beta bursts in humans correlate with the filtering and control of memory items, but with region and task-specific differences between the two rhythms. Occipital beta burst patterns were selectively modulated during the transition from sensory processing to memory retention whereas prefrontal and parietal beta bursts tracked sequence order and were proactively upregulated prior to upcoming target encoding. Occipital alpha bursts instead increased during the actual presentation of unwanted sensory stimuli. Source reconstruction additionally suggested the involvement of striatal and thalamic alpha and beta. Thus, specific whole-brain burst patterns correlate with different aspects of working memory control.
Collapse
Affiliation(s)
- Johan Liljefors
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rita Almeida
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden
| | - Gustaf Rane
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, and Digital Futures, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mikael Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Fujino M, Ooishi Y, Ueda Y, Kitagawa N, Nomura M. Prior brief meditation reduces distractor inhibition during cognitive interference. Front Psychol 2024; 15:1445327. [PMID: 39411554 PMCID: PMC11473444 DOI: 10.3389/fpsyg.2024.1445327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mindfulness meditation, comprising focused attention and open monitoring meditations, has been shown to enhance performance on cognitive interference tasks. While this enhancement has been considered not to result from distractor inhibition, no empirical evidence has been provided through behavioral data. In this study, we investigated whether 30-min interventions of focused attention and open monitoring meditations could reduce distractor inhibition in 72 meditation-naïve participants divided into focused attention meditation, open monitoring meditation, and control groups. Methods We employed a task set that combined a cognitive interference task with subsequent preference judgment and surprise recognition tasks, utilizing the mere exposure effect paradigm, along with state and trait questionnaires. The mere exposure effect shows that repeated exposure to face images increases one's preference for them. However, this effect is reduced if participants consciously or unconsciously try to inhibit the face images during stimulus processing. In the cognitive interference task, they judged the direction of the letter superimposed on a distractor face image. In the subsequent preference judgment task, they were asked to rate the preference of face images, half of which were presented in the interference task and the remaining half were not presented. We hypothesized that inhibiting face images presented as distractors would lead to a decrease in preference for them. Results and discussions We found that the mere exposure effect was observed in focused attention meditation and open monitoring meditation groups but not in the control group, indicating that compared to the control, focused attention and open monitoring meditations reduce inhibition processes for distractors during cognitive interference tasks. Furthermore, we found a positive correlation between the intensity of the mere exposure effect and state relaxation before the cognitive interference task as well as a negative correlation between the intensity of the mere exposure effect and state anxiety in the focused attention meditation group, but not in the open monitoring meditation group. This suggests that the processes of reducing inhibition in focused attention and open monitoring meditations differ. Our findings contribute to understanding the attentional mechanisms underlying mindfulness meditation during cognitive interference.
Collapse
Affiliation(s)
- Masahiro Fujino
- NTT Communication Science Laboratories, NTT Corporation, Kanagawa, Japan
- Graduate School of Education, Kyoto University, Kyoto, Japan
| | - Yuuki Ooishi
- NTT Communication Science Laboratories, NTT Corporation, Kanagawa, Japan
| | - Yoshiyuki Ueda
- Institute for the Future of Human Society, Kyoto University, Kyoto, Japan
| | - Norimichi Kitagawa
- BKC Research Organization of Social Sciences, Ritsumeikan University, Shiga, Japan
- Yoshika Institute of Psychology, Shimane, Japan
| | - Michio Nomura
- Graduate School of Education, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Xu L, Cai B, Yue C, Wang A. Multisensory working memory capture of attention. Atten Percept Psychophys 2024; 86:2363-2373. [PMID: 39294324 DOI: 10.3758/s13414-024-02960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
During visual search, representations in working memory (WM) can guide the deployment of attention toward memory-matching visual input. Although previous studies have demonstrated that multisensory interactions facilitate WM and visual search, it remains unclear whether multisensory interaction influences attentional capture by WM. To address this issue, the present study adopted a dual-task paradigm, pairing a visual search task with a WM task, in which the memory modality was manipulated to be either visual or audiovisual. The results revealed that memory-driven attentional capture was observed under the visual and the audiovisual condition. Additionally, the capture effects and response time (RT) costs under the audiovisual condition were weaker than those under the visual condition, even on the trials with the earliest RTs. Furthermore, RT benefits under the audiovisual condition were comparable with those under the visual condition. These findings suggest that multisensory interactions can enhance cognitive control, leading to robust strategic effects and improved search performance. In this process, cognitive control tends to suppress the attentional capture by WM-matching distractors rather than enhance the attentional capture by WM-matching targets. The present study offers new insights into the influence of multisensory interactions on attentional capture by WM.
Collapse
Affiliation(s)
- Lei Xu
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
| | - Biye Cai
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Chunlin Yue
- School of Physical Education and Sports Science, Soochow University, Suzhou, China.
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Mohite V, Prasad S, Mishra RK. Investigating the role of spatial filtering on distractor suppression. Atten Percept Psychophys 2024; 86:2552-2563. [PMID: 38148431 DOI: 10.3758/s13414-023-02831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
In recent years, evidence has accumulated towards a distractor suppression mechanism that enables efficient selection of targets in a visual search task. According to these findings, the search for a target is faster in the presence of a salient distractor in a display among homogenous distractors as opposed to its absence. Studies have also shown that distractor suppression not only operates on the feature level but can also be spatially guided. The motivation of the current study was to examine if spatially guided distractor suppression can be goal-driven. We tested this across four experiments. In Experiment 1A, the task was to search for a shape target (e.g., a circle) and discriminate the orientation of the line within it. In some trials, a salient color distractor was presented in the display while participants were told that it appeared in one of the two locations on the horizontal axis (or the vertical axis, counterbalanced across participants). We expected enhanced distractor suppression when the salient distractor appeared within this "spatial filter" but did not find it since the target was also presented at the filtered locations. Experiment 1B replicated Experiment 1A, except that the target was always presented outside the filter; filtering enhanced search performance. In Experiment 2 even when the filter contained the salient distractor in only 65% of the filtered trials, filtering benefited search performance. In Experiment 3, the filter changed on every trial and did not benefit suppression.
Collapse
Affiliation(s)
- Vaishnavi Mohite
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad, Telangana, 500 046, India.
| | - Seema Prasad
- Cognitive Neurophysiology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ramesh Kumar Mishra
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad, Telangana, 500 046, India
| |
Collapse
|
17
|
Chen X, Cao L, Haendel BF. Right visual field advantage in orientation discrimination is influenced by biased suppression. Sci Rep 2024; 14:22687. [PMID: 39349588 PMCID: PMC11442441 DOI: 10.1038/s41598-024-73967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Visual input is not equally processed over space. In recent years, a right visual field advantage during free walking and standing in orientation discrimination and contrast detection task was reported. The current study investigated the underlying mechanism of the previously reported right visual field advantage. It particularly tested if the advantage is driven by a stronger suppression of distracting input from the left visual field or improved processing of targets from the right visual field. Combing behavioural and electrophysiological measurements in a mobile EEG and augmented reality setup, human participants (n = 30) in a standing and a walking condition performed a line orientation discrimination task with stimulus eccentricity and distractor status being manipulated. The right visual field advantage, as demonstrated in accuracy and reaction time, was influenced by the distractor status. Specifically, the right visual field advantage was only observed when the target had an incongruent line orientation with the distractor. Neural data further showed that the right visual field advantage was paralleled by a strong modulation of neural activity in the right hemisphere (i.e. contralateral to the distractor). A significant positive correlation between this right hemispheric event related potential (ERP) and behavioural measures (accuracy and reaction time) was found exclusively for trials in which a target was presented on the right and an incongruent distractor was presented on the left. The right hemispheric ERP component further predicted the strength of the right visual field advantage. Notably, the lateralised brain activity and the right visual field advantage were both independent of stimulus eccentricity and the movement state of participants. Overall, our findings suggest an important role of spatially biased suppression of left distracting input in the right visual field advantage as found in orientation discrimination.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany.
| | - Liyu Cao
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Barbara F Haendel
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
- Neurology department, University Hospital Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
18
|
Davis EE, Tehrani EK, Campbell KL. Some young adults hyper-bind too: Attentional control relates to individual differences in hyper-binding. Psychon Bull Rev 2024; 31:1809-1820. [PMID: 38302792 DOI: 10.3758/s13423-024-02464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Hyper-binding - the erroneous encoding of target and distractor information into associative pairs in memory - has been described as a unique age effect caused by declines in attentional control. Previous work has found that, on average, young adults do not hyper-bind. However, if hyper-binding is caused by reduced attentional control, then young adults with poor attention regulation should also show evidence of hyper-binding. We tested this question with an individual differences approach, using a battery of attentional control tasks and relating this to individual differences in hyper-binding. Participants (N = 121) completed an implicit associative memory test measuring memory for both target-distractor (i.e., hyper-binding) and target-target pairs, followed by a series of tasks measuring attentional control. Our results show that on average, young adults do not hyper-bind, but as predicted, those with poor attentional control show a larger hyper-binding effect than those with good attentional control. Exploratory analyses also suggest that individual differences in attentional control relate to susceptibility to interference at retrieval. These results support the hypothesis that hyper-binding in older adults is due to age-related declines in attentional control, and demonstrate that hyper-binding may be an issue for any individual with poor attentional control, regardless of age.
Collapse
Affiliation(s)
- Emily E Davis
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Edyta K Tehrani
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
19
|
Liesefeld HR, Lamy D, Gaspelin N, Geng JJ, Kerzel D, Schall JD, Allen HA, Anderson BA, Boettcher S, Busch NA, Carlisle NB, Colonius H, Draschkow D, Egeth H, Leber AB, Müller HJ, Röer JP, Schubö A, Slagter HA, Theeuwes J, Wolfe J. Terms of debate: Consensus definitions to guide the scientific discourse on visual distraction. Atten Percept Psychophys 2024; 86:1445-1472. [PMID: 38177944 PMCID: PMC11552440 DOI: 10.3758/s13414-023-02820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
Hypothesis-driven research rests on clearly articulated scientific theories. The building blocks for communicating these theories are scientific terms. Obviously, communication - and thus, scientific progress - is hampered if the meaning of these terms varies idiosyncratically across (sub)fields and even across individual researchers within the same subfield. We have formed an international group of experts representing various theoretical stances with the goal to homogenize the use of the terms that are most relevant to fundamental research on visual distraction in visual search. Our discussions revealed striking heterogeneity and we had to invest much time and effort to increase our mutual understanding of each other's use of central terms, which turned out to be strongly related to our respective theoretical positions. We present the outcomes of these discussions in a glossary and provide some context in several essays. Specifically, we explicate how central terms are used in the distraction literature and consensually sharpen their definitions in order to enable communication across theoretical standpoints. Where applicable, we also explain how the respective constructs can be measured. We believe that this novel type of adversarial collaboration can serve as a model for other fields of psychological research that strive to build a solid groundwork for theorizing and communicating by establishing a common language. For the field of visual distraction, the present paper should facilitate communication across theoretical standpoints and may serve as an introduction and reference text for newcomers.
Collapse
Affiliation(s)
- Heinrich R Liesefeld
- Department of Psychology, University of Bremen, Hochschulring 18, D-28359, Bremen, Germany.
| | - Dominique Lamy
- The School of Psychology Sciences and The Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv 69978, POB 39040, Tel Aviv, Israel.
| | | | - Joy J Geng
- University of California Davis, Daivs, CA, USA
| | | | | | | | | | | | | | | | - Hans Colonius
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | - Anna Schubö
- Philipps University Marburg, Marburg, Germany
| | | | | | - Jeremy Wolfe
- Harvard Medical School, Boston, MA, USA
- Brigham & Women's Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Jeong J, Cho YS. Object-based suppression in target search but not in distractor inhibition. Atten Percept Psychophys 2024; 86:1-27. [PMID: 38839715 DOI: 10.3758/s13414-024-02905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The present study investigated the effect of object representation on attentional priority regarding distractor inhibition and target search processes while the statistical regularities of singleton distractor location were biased. A color singleton distractor appeared more frequently at one of six stimulus locations, called the 'high-probability location,' to induce location-based suppression. Critically, three objects were presented, each of which paired two adjacent stimuli in a target display by adding background contours (Experiment 1) or using perceptual grouping (Experiments 2 and 3). The results revealed that attention capture by singleton distractors was hardly modulated by objects. In contrast, target selection was impeded at the location in the object containing the high-probability location compared to an equidistant location in a different object. This object-based suppression in target selection was evident when object-related features were parts of task-relevant features. These findings suggest that task-irrelevant objects modulate attentional suppression. Moreover, different features are engaged in determining attentional priority for distractor inhibition and target search processes.
Collapse
Affiliation(s)
- Jiyoon Jeong
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Yang Seok Cho
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| |
Collapse
|
21
|
Redding ZV, Fiebelkorn IC. Separate Cue- and Alpha-Related Mechanisms for Distractor Suppression. J Neurosci 2024; 44:e1444232024. [PMID: 38729761 PMCID: PMC11209672 DOI: 10.1523/jneurosci.1444-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Research on selective attention has largely focused on the enhancement of behaviorally important information, with less focus on the suppression of distracting information. Enhancement and suppression can operate through a push-pull relationship attributable to competitive interactions among neural populations. There has been considerable debate, however, regarding (1) whether suppression can be voluntarily deployed, independent of enhancement, and (2) whether voluntary deployment of suppression is associated with neural processes occurring prior to the distractor onset. Here, we investigated the interplay between pre- and post-distractor neural processes, while male and female human subjects performed a visual search task with a cue that indicated the location of an upcoming distractor. We utilized two established EEG markers of suppression: the distractor positivity (PD) and alpha power (∼8-15 Hz). The PD-a component of event-related potentials-has been linked with successful distractor suppression, and increased alpha power has been linked with attenuated sensory processing. Cueing the location of an upcoming distractor speeded responses and led to an earlier PD, consistent with earlier suppression due to strategic use of a spatial cue. In comparison, higher predistractor alpha power contralateral to distractors led to a later PD, consistent with later suppression. Lower alpha power contralateral to distractors instead led to distractor-related attentional capture. Lateralization of alpha power was not linked to the spatial cue. This observation, combined with differences in the timing of suppression-as indexed by earlier and later PD components-demonstrates that cue-related, voluntary suppression can occur separate from alpha-related gating of sensory processing.
Collapse
Affiliation(s)
- Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| |
Collapse
|
22
|
Szaszkó B, Habeler M, Forstinger M, Pomper U, Scheftner M, Stolte M, Grüner M, Ansorge U. 10 Hz rhythmic stimulation modulates electrophysiological, but not behavioral markers of suppression. Front Psychol 2024; 15:1376664. [PMID: 38831943 PMCID: PMC11144928 DOI: 10.3389/fpsyg.2024.1376664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
We investigated the role of alpha in the suppression of attention capture by salient but to-be-suppressed (negative and nonpredictive) color cues, expecting a potential boosting effect of alpha-rhythmic entrainment on feature-specific cue suppression. We did so by presenting a rhythmically flickering visual bar of 10 Hz before the cue - either on the cue's side or opposite the cue -while an arrhythmically flickering visual bar was presented on the respective other side. We hypothesized that rhythmic entrainment at cue location could enhance the suppression of the cue. Testing 27 participants ranging from 18 to 39 years of age, we found both behavioral and electrophysiological evidence of suppression: Search times for a target at a negatively cued location were delayed relative to a target away from the cued location (inverse validity effects). In addition, an event-related potential indicative for suppression (the Distractor Positivity, Pd) was observed following rhythmic but not arrhythmic stimulation, indicating that suppression was boosted by the stimulation. This was also echoed in higher spectral power and intertrial phase coherence of EEG at rhythmically versus arrhythmically stimulated electrode sites, albeit only at the second harmonic (20 Hz), but not at the stimulation frequency. In addition, inverse validity effects were not modulated by rhythmic entrainment congruent with the cue side. Hence, we propose that rhythmic visual stimulation in the alpha range could support suppression, though behavioral evidence remains elusive, in contrast to electrophysiological findings.
Collapse
Affiliation(s)
- Bence Szaszkó
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Martin Habeler
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Marlene Forstinger
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Manuel Scheftner
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Moritz Stolte
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Markus Grüner
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Research Platform Mediatised Lifeworlds, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Tünçok E, Carrasco M, Winawer J. Spatial attention alters visual cortical representation during target anticipation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583127. [PMID: 38496524 PMCID: PMC10942396 DOI: 10.1101/2024.03.02.583127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Attention enables us to efficiently and flexibly interact with the environment by prioritizing some image features in preparation for responding to a stimulus. Using a concurrent psychophysics- fMRI experiment, we investigated how covert spatial attention affects responses in human visual cortex prior to target onset, and how it affects subsequent behavioral performance. Performance improved at cued locations and worsened at uncued locations, relative to distributed attention, demonstrating a selective tradeoff in processing. Pre-target BOLD responses in cortical visual field maps changed in two ways: First, there was a stimulus-independent baseline shift, positive in map locations near the cued location and negative elsewhere, paralleling the behavioral results. Second, population receptive field centers shifted toward the attended location. Both effects increased in higher visual areas. Together, the results show that spatial attention has large effects on visual cortex prior to target appearance, altering neural response properties throughout and across multiple visual field maps.
Collapse
|
24
|
Jensen O. Distractor inhibition by alpha oscillations is controlled by an indirect mechanism governed by goal-relevant information. COMMUNICATIONS PSYCHOLOGY 2024; 2:36. [PMID: 38665356 PMCID: PMC11041682 DOI: 10.1038/s44271-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in cognition is intensively investigated. While intracranial animal recordings demonstrate that alpha oscillations are associated with decreased neuronal excitability, it is been questioned whether alpha oscillations are under direct control from frontoparietal areas to suppress visual distractors. We here point to a revised mechanism in which alpha oscillations are controlled by an indirect mechanism governed by the load of goal-relevant information - a view compatible with perceptual load theory. We will outline how this framework can be further tested and discuss the consequences for network dynamics and resource allocation in the working brain.
Collapse
Affiliation(s)
- Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B152TT UK
| |
Collapse
|
25
|
Zhuo L, Jin Z, Xie K, Li S, Lin F, Zhang J, Li L. Identifying individual's distractor suppression using functional connectivity between anatomical large-scale brain regions. Neuroimage 2024; 289:120552. [PMID: 38387742 DOI: 10.1016/j.neuroimage.2024.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, occipital, and temporal regions are also implicated. The present study aimed to examine the contribution of communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of participants for the study. One cohort participated in a visual search experiment where a salient distractor triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Questionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive models of the DS measured in visual search task using resting-state functional connectivity between large anatomical regions. It turned out that the models could successfully predict individual's DS, indicated by a significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, the model could also predict individual's daily distractibility in the other independent cohort (r = -0.34, p < 0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing connections between large anatomical regions and highlighted the importance of the communications between attention-related and visual information processing regions in distractor suppression. Current findings may potentially provide neurobiological markers of visual distractor suppression.
Collapse
Affiliation(s)
- Lei Zhuo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Simeng Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Feng Lin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
26
|
Deng X, Chen X, Li Y, Zhang B, Xu W, Wang J, Zang Y, Dong Q, Chen C, Li J. Online and offline effects of parietal 10 Hz repetitive transcranial magnetic stimulation on working memory in healthy controls. Hum Brain Mapp 2024; 45:e26636. [PMID: 38488458 PMCID: PMC10941606 DOI: 10.1002/hbm.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
Parietal alpha activity shows a specific pattern of phasic changes during working memory. It decreases during the encoding and recall phases but increases during the maintenance phase. This study tested whether online rTMS delivered to the parietal cortex during the maintenance phase of a working memory task would increase alpha activity and hence improve working memory. Then, 46 healthy volunteers were randomly assigned to two groups to receive 3-day parietal 10 Hz online rTMS (either real or sham, 3600 pulses in total) that were time-locked to the maintenance phase of a spatial span task (180 trials in total). Behavioral performance on another spatial span task and EEG signals during a change detection task were recorded on the day before the first rTMS (pretest) and the day after the last rTMS (posttest). We found that rTMS improved performance on both online and offline spatial span tasks. For the offline change detection task, rTMS enhanced alpha activity within the maintenance phase and improved interference control of working memory at both behavioral (K score) and neural (contralateral delay activity) levels. These results suggested that rTMS with alpha frequency time-locked to the maintenance phase is a promising way to boost working memory.
Collapse
Affiliation(s)
- Xinping Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental HealthCapital Medical UniversityBeijingChina
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Bofan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Wending Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Jue Wang
- Institute of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Yu‐Feng Zang
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Center for Cognition and Brain DisordersHangzhou Normal University Affiliated HospitalHangzhouChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Chuansheng Chen
- Department of Psychological ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| |
Collapse
|
27
|
Ritz H, Shenhav A. Humans reconfigure target and distractor processing to address distinct task demands. Psychol Rev 2024; 131:349-372. [PMID: 37668574 PMCID: PMC11193598 DOI: 10.1037/rev0000442] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
When faced with distraction, we can focus more on goal-relevant information (targets) or focus less on goal-conflicting information (distractors). How people use cognitive control to distribute attention across targets and distractors remains unclear. We address this question by developing a novel Parametric Attentional Control Task that can "tag" participants' sensitivity to target and distractor information. We use these precise measures of attention to develop a novel process model that can explain how participants control attention toward targets and distractors. Across three experiments, we find that participants met the demands of this task by independently controlling their processing of target and distractor information, exhibiting distinct adaptations to manipulations of incentives and conflict. Whereas incentives preferentially led to target enhancement, conflict in the previous trial preferentially led to distractor suppression. These distinct drivers of control altered sensitivity to targets and distractors early in the trial, promptly followed by reactive reconfiguration toward task-appropriate feature sensitivity. To provide a process-level account of these empirical findings, we develop a novel neural network model of evidence accumulation with attractor dynamics over feature weights that reconfigure target and distractor processing. These results provide a computational account of control reconfiguration that provides new insights into how multivariate attentional signals are optimized to achieve task goals. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Harrison Ritz
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amitai Shenhav
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
28
|
Ivanov Y, Theeuwes J, Bogaerts L. Reliability of individual differences in distractor suppression driven by statistical learning. Behav Res Methods 2024; 56:2437-2451. [PMID: 37491558 PMCID: PMC10991004 DOI: 10.3758/s13428-023-02157-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 07/27/2023]
Abstract
A series of recent studies has demonstrated that attentional selection is modulated by statistical regularities, even when they concern task-irrelevant stimuli. Irrelevant distractors presented more frequently at one location interfere less with search than distractors presented elsewhere. To account for this finding, it has been proposed that through statistical learning, the frequent distractor location becomes suppressed relative to the other locations. Learned distractor suppression has mainly been studied at the group level, where individual differences are treated as unexplained error variance. Yet these individual differences may provide important mechanistic insights and could be predictive of cognitive and real-life outcomes. In the current study, we ask whether in an additional singleton task, the standard measures of attentional capture and learned suppression are reliable and stable at the level of the individual. In an online study, we assessed both the within- and between-session reliability of individual-level measures of attentional capture and learned suppression. We show that the measures of attentional capture, but not of distractor suppression, are moderately stable within the same session (i.e., split-half reliability). Test-retest reliability over a 2-month period was found to be moderate for attentional capture but weak or absent for suppression. RT-based measures proved to be superior to accuracy measures. While producing very robust findings at the group level, the predictive validity of these RT-based measures is still limited when it comes to individual-level performance. We discuss the implications for future research drawing on inter-individual variation in the attentional biases that result from statistical learning.
Collapse
Affiliation(s)
- Yavor Ivanov
- Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jan Theeuwes
- Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Louisa Bogaerts
- Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Balestrieri E, Michel R, Busch NA. Alpha-Band Lateralization and Microsaccades Elicited by Exogenous Cues Do Not Track Attentional Orienting. eNeuro 2024; 11:ENEURO.0076-23.2023. [PMID: 38164570 PMCID: PMC10866192 DOI: 10.1523/eneuro.0076-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 01/03/2024] Open
Abstract
We explore the world by constantly shifting our focus of attention toward salient stimuli and then disengaging from them in search of new ones. The alpha rhythm (8-13 Hz) has been suggested as a pivotal neural substrate of these attentional shifts, due to its local synchronization and desynchronization that suppress irrelevant cortical areas and facilitate relevant areas, a phenomenon called alpha lateralization. Whether alpha lateralization tracks the focus of attention from orienting toward a salient stimulus to disengaging from it is still an open question. We addressed it by leveraging the phenomenon of inhibition of return (IOR), consisting of an initial facilitation in response times (RTs) for stimuli appearing at an exogenously cued location, followed by a suppression of that location. Our behavioral data from human participants showed a typical IOR effect with both early facilitation and subsequent inhibition. In contrast, alpha lateralized in the cued direction after the behavioral facilitation effect and never re-lateralized compatibly with the behavioral inhibition. Furthermore, we analyzed the interaction between alpha lateralization and microsaccades: while alpha was lateralized toward the cued location, microsaccades were mostly oriented away from it. Crucially, the two phenomena showed a significant positive correlation. These results indicate that alpha lateralization reflects primarily the processing of salient stimuli, challenging the view that alpha lateralization is directly involved in exogenous attentional orienting per se. We discuss the relevance of the present findings for an oculomotor account of alpha lateralization as a modulator of cortical excitability in preparation of a saccade.
Collapse
Affiliation(s)
- Elio Balestrieri
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster 48149, Germany
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - René Michel
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
- Institute of Psychology, University of Münster, Münster 48149, Germany
| | - Niko A Busch
- Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
- Institute of Psychology, University of Münster, Münster 48149, Germany
| |
Collapse
|
30
|
Narhi-Martinez W, Dube B, Chen J, Leber AB, Golomb JD. Suppression of a salient distractor protects the processing of target features. Psychon Bull Rev 2024; 31:223-233. [PMID: 37528277 PMCID: PMC11163954 DOI: 10.3758/s13423-023-02339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
We are often bombarded with salient stimuli that capture our attention and distract us from our current goals. Decades of research have shown the robust detrimental impacts of salient distractors on search performance and, of late, in leading to altered feature perception. These feature errors can be quite extreme, and thus, undesirable. In search tasks, salient distractors can be suppressed if they appear more frequently in one location, and this learned spatial suppression can lead to reductions in the cost of distraction as measured by reaction time slowing. Can learned spatial suppression also protect against visual feature errors? To investigate this question, participants were cued to report one of four briefly presented colored squares on a color wheel. On two-thirds of trials, a salient distractor appeared around one of the nontarget squares, appearing more frequently in one location over the course of the experiment. Participants' responses were fit to a model estimating performance parameters and compared across conditions. Our results showed that general performance (guessing and precision) improved when the salient distractor appeared in a likely location relative to elsewhere. Critically, feature swap errors (probability of misreporting the color at the salient distractor's location) were also significantly reduced when the distractor appeared in a likely location, suggesting that learned spatial suppression of a salient distractor helps protect the processing of target features. This study provides evidence that, in addition to helping us avoid salient distractors, suppression likely plays a larger role in helping to prevent distracting information from being encoded.
Collapse
Affiliation(s)
- William Narhi-Martinez
- Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Blaire Dube
- Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA
| | - Jiageng Chen
- Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA
| | - Andrew B Leber
- Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA
| | - Julie D Golomb
- Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA
| |
Collapse
|
31
|
Gaspelin N, Lamy D, Egeth HE, Liesefeld HR, Kerzel D, Mandal A, Müller MM, Schall JD, Schubö A, Slagter HA, Stilwell BT, van Moorselaar D. The Distractor Positivity Component and the Inhibition of Distracting Stimuli. J Cogn Neurosci 2023; 35:1693-1715. [PMID: 37677060 DOI: 10.1162/jocn_a_02051] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
There has been a long-lasting debate about whether salient stimuli, such as uniquely colored objects, have the ability to automatically distract us. To resolve this debate, it has been suggested that salient stimuli do attract attention but that they can be suppressed to prevent distraction. Some research supporting this viewpoint has focused on a newly discovered ERP component called the distractor positivity (PD), which is thought to measure an inhibitory attentional process. This collaborative review summarizes previous research relying on this component with a specific emphasis on how the PD has been used to understand the ability to ignore distracting stimuli. In particular, we outline how the PD component has been used to gain theoretical insights about how search strategy and learning can influence distraction. We also review alternative accounts of the cognitive processes indexed by the PD component. Ultimately, we conclude that the PD component is a useful tool for understanding inhibitory processes related to distraction and may prove to be useful in other areas of study related to cognitive control.
Collapse
|
32
|
Berger JI, Gander PE, Kim S, Schwalje AT, Woo J, Na YM, Holmes A, Hong JM, Dunn CC, Hansen MR, Gantz BJ, McMurray B, Griffiths TD, Choi I. Neural Correlates of Individual Differences in Speech-in-Noise Performance in a Large Cohort of Cochlear Implant Users. Ear Hear 2023; 44:1107-1120. [PMID: 37144890 PMCID: PMC10426791 DOI: 10.1097/aud.0000000000001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/11/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Understanding speech-in-noise (SiN) is a complex task that recruits multiple cortical subsystems. Individuals vary in their ability to understand SiN. This cannot be explained by simple peripheral hearing profiles, but recent work by our group ( Kim et al. 2021 , Neuroimage ) highlighted central neural factors underlying the variance in SiN ability in normal hearing (NH) subjects. The present study examined neural predictors of SiN ability in a large cohort of cochlear-implant (CI) users. DESIGN We recorded electroencephalography in 114 postlingually deafened CI users while they completed the California consonant test: a word-in-noise task. In many subjects, data were also collected on two other commonly used clinical measures of speech perception: a word-in-quiet task (consonant-nucleus-consonant) word and a sentence-in-noise task (AzBio sentences). Neural activity was assessed at a vertex electrode (Cz), which could help maximize eventual generalizability to clinical situations. The N1-P2 complex of event-related potentials (ERPs) at this location were included in multiple linear regression analyses, along with several other demographic and hearing factors as predictors of SiN performance. RESULTS In general, there was a good agreement between the scores on the three speech perception tasks. ERP amplitudes did not predict AzBio performance, which was predicted by the duration of device use, low-frequency hearing thresholds, and age. However, ERP amplitudes were strong predictors for performance for both word recognition tasks: the California consonant test (which was conducted simultaneously with electroencephalography recording) and the consonant-nucleus-consonant (conducted offline). These correlations held even after accounting for known predictors of performance including residual low-frequency hearing thresholds. In CI-users, better performance was predicted by an increased cortical response to the target word, in contrast to previous reports in normal-hearing subjects in whom speech perception ability was accounted for by the ability to suppress noise. CONCLUSIONS These data indicate a neurophysiological correlate of SiN performance, thereby revealing a richer profile of an individual's hearing performance than shown by psychoacoustic measures alone. These results also highlight important differences between sentence and word recognition measures of performance and suggest that individual differences in these measures may be underwritten by different mechanisms. Finally, the contrast with prior reports of NH listeners in the same task suggests CI-users performance may be explained by a different weighting of neural processes than NH listeners.
Collapse
Affiliation(s)
- Joel I. Berger
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Phillip E. Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Subong Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Adam T. Schwalje
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jihwan Woo
- Department of Biomedical Engineering, University of Ulsan, Ulsan, South Korea
| | - Young-min Na
- Department of Biomedical Engineering, University of Ulsan, Ulsan, South Korea
| | - Ann Holmes
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jean M. Hong
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Camille C. Dunn
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Marlan R. Hansen
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Bruce J. Gantz
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Bob McMurray
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Timothy D. Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Inyong Choi
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
33
|
Zhou YJ, Ramchandran A, Haegens S. Alpha oscillations protect working memory against distracters in a modality-specific way. Neuroimage 2023; 278:120290. [PMID: 37482324 DOI: 10.1016/j.neuroimage.2023.120290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023] Open
Abstract
Alpha oscillations are thought to be involved in suppressing distracting input in working-memory tasks. Yet, the spatial-temporal dynamics of such suppression remain unclear. Key questions are whether such suppression reflects a domain-general inattentiveness mechanism, or occurs in a stimulus- or modality-specific manner within cortical areas most responsive to the distracters; and whether the suppression is proactive (i.e., preparatory) or reactive. Here, we addressed these questions using a working-memory task where participants had to memorize an array of visually presented digits and reproduce one of them upon being probed. We manipulated the presence of distracters and the sensory modality in which distracters were presented during memory maintenance. Our results show that sensory areas most responsive to visual and auditory distracters exhibited stronger alpha power increase after visual and auditory distracter presentation respectively. These results suggest that alpha oscillations underlie distracter suppression in a reactive, modality-specific manner.
Collapse
Affiliation(s)
- Ying Joey Zhou
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Aarti Ramchandran
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Columbia University, New York, NY, United States of America; Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, United States of America.
| |
Collapse
|
34
|
Zhong C, Ding Y, Qu Z. Distinct roles of theta and alpha oscillations in the process of contingent attentional capture. Front Hum Neurosci 2023; 17:1220562. [PMID: 37609570 PMCID: PMC10440541 DOI: 10.3389/fnhum.2023.1220562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Visual spatial attention can be captured by a salient color singleton that is contingent on the target feature. A previous study reported that theta (4-7 Hz) and alpha (8-14 Hz) oscillations were related to contingent attentional capture, but the corresponding attentional mechanisms of these oscillations remain unclear. Methods In this study, we analyzed the electroencephalogram data of our previous study to investigate the roles of capture-related theta and alpha oscillation activities. Different from the previous study that used color-changed placeholders as irrelevant cues, the present study adopted abrupt onsets of color singleton cues which tend to elicit phase-locked neural activities. In Experiment 1, participants completed a peripheral visual search task in which spatially uninformative color singleton cues were inside the spatial attentional window and a central rapid serial visual presentation (RSVP) task in which the same cues were outside the spatial attentional window. In Experiment 2, participants completed a color RSVP task and a size RSVP task in which the peripheral color singleton cues were contingent and not contingent on target feature, respectively. Results In Experiment 1, spatially uninformative color singleton cues elicited lateralized theta activities when they were contingent on target feature, irrespective of whether they were inside or outside the spatial attentional window. In contrast, the same color singleton cues elicited alpha lateralization only when they were inside the spatial attentional window. In Experiment 2, we further found that theta lateralization vanished if the color singleton cues were not contingent on target feature. Discussion These results suggest distinct roles of theta and alpha oscillations in the process of contingent attentional capture initiated by abrupt onsets of singleton cues. Theta activities may reflect global enhancement of target feature, while alpha activities may be related to attentional engagement to spatially relevant singleton cues. These lateralized neural oscillations, together with the distractor-elicited N2pc component, might consist of multiple stages of attentional processes during contingent attentional capture.
Collapse
Affiliation(s)
- Chupeng Zhong
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yulong Ding
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Zhe Qu
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Redding ZV, Fiebelkorn IC. Distractor suppression does and does not depend on pre-distractor alpha-band activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549512. [PMID: 37502869 PMCID: PMC10370075 DOI: 10.1101/2023.07.18.549512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Selective attention enhances behaviorally important information and suppresses distracting information. Research on the neural basis of selective attention has largely focused on sensory enhancement, with less focus on sensory suppression. Enhancement and suppression can operate through a push-pull relationship that arises from competitive interactions among neural populations. There has been considerable debate, however, regarding (i) whether suppression can also operate independent of enhancement and (ii) whether neural processes associated with the voluntary deployment of suppression can occur prior to distractor onset. We provide further behavioral and electrophysiological evidence of independent suppression at cued distractor locations while humans performed a visual search task. We specifically utilize two established EEG markers of suppression: alpha power (∼8-15 Hz) and the distractor positivity (P D ). Increased alpha power has been linked with attenuated sensory processing, while the P D -a component of event-related potentials-has been linked with successful distractor suppression. The present results demonstrate that cueing the location of an upcoming distractor speeded responding and led to an earlier onset P D , consistent with earlier suppression due to strategic use of a spatial cue. We further demonstrate that higher pre-distractor alpha power contralateral to distractors was generally associated with successful suppression on both cued and non-cued trials. However, there was no consistent change in alpha power associated with the spatial cue, meaning cueing effects on behavioral and neural measures occurred independent of alpha-related gating of sensory processing. These findings reveal the importance of pre-distractor neural processes for subsequent distractor suppression. Significance Statement Selective suppression of distracting information is important for survival, contributing to preferential processing of behaviorally important information. Does foreknowledge of an upcoming distractor's location help with suppression? Here, we recorded EEG while subjects performed a target detection task with cues that indicated the location of upcoming distractors. Behavioral and electrophysiological results revealed that foreknowledge of a distractor's location speeded suppression, thereby facilitating target detection. The results further revealed a significant relationship between pre-stimulus alpha-band activity and successful suppression; however, pre-stimulus alpha-band activity was not consistently lateralized relative to the spatially informative cues. The present findings therefore demonstrate that target detection can benefit from foreknowledge of distractor location in a process that is independent of alpha-related gating of sensory processing.
Collapse
|
36
|
Noonan MP, Störmer VS. Contextual and Temporal Constraints for Attentional Capture: Commentary on Theeuwes' 2023 Review "The Attentional Capture Debate: When Can We Avoid Salient Distractors and when Not?". J Cogn 2023; 6:37. [PMID: 37426062 PMCID: PMC10327855 DOI: 10.5334/joc.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 07/11/2023] Open
Abstract
Salient distractors demand our attention. Their salience, derived from intensity, relative contrast or learned relevance, captures our limited information capacity. This is typically an adaptive response as salient stimuli may require an immediate change in behaviour. However, sometimes apparent salient distractors do not capture attention. Theeuwes, in his recent commentary, has proposed certain boundary conditions of the visual scene that result in one of two search modes, serial or parallel, that determine whether we can avoid salient distractors or not. Here, we argue that a more complete theory should consider the temporal and contextual factors that influence the very salience of the distractor itself.
Collapse
Affiliation(s)
- MaryAnn P. Noonan
- Department of Psychology, University of York, Heslington, York, UK
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, UK
| | - Viola S. Störmer
- Department of Psychological and Brain Sciences, Dartmouth College, USA
| |
Collapse
|
37
|
Makwana M, Zhang F, Heinke D, Song JH. Continuous action with a neurobiologically inspired computational approach reveals the dynamics of selection history. PLoS Comput Biol 2023; 19:e1011283. [PMID: 37459378 PMCID: PMC10374010 DOI: 10.1371/journal.pcbi.1011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/27/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Everyday perception-action interaction often requires selection of a single goal from multiple possibilities. According to a recent framework of attentional control, object selection is guided not only by the well-established factors of perceptual salience and current goals but also by selection history. Yet, underlying mechanisms linking selection history and visually-guided actions are poorly understood. To examine such interplay and disentangle the impact of target and distractor history on action selection, we employed a priming-of-popout (PoP) paradigm combined with continuous tracking of reaching movements and computational modeling. Participants reached an odd-colored target among homogeneous distractors while we systematically manipulated the sequence of target and distractor colors from one trial to the next. We observed that current reach movements were significantly influenced by the interaction between attraction by the prior target feature and repulsion by the prior distractor feature. With principal component regression, we found that inhibition led by prior distractors influenced reach target selection earlier than facilitation led by the prior target. In parallel, our newly developed computational model validated that current reach target selection can be explained best by the mechanism postulating the preceded impact of previous distractors followed by a previous target. Such converging empirical and computational evidence suggests that the prior selection history triggers a dynamic interplay between target facilitation and distractor inhibition to guide goal-directed action successfully. This, in turn, highlights the necessity of an explicitly integrated approach to determine how visual attentional selection links with adaptive actions in a complex environment.
Collapse
Affiliation(s)
- Mukesh Makwana
- Brown University, Providence, Rhode Island, United Kingdom
| | - Fan Zhang
- University of Birmingham, Birmingham, United Kingdom
| | | | - Joo-Hyun Song
- Brown University, Providence, Rhode Island, United Kingdom
| |
Collapse
|
38
|
Wen W, Guo S, Huang H, Li S. Causal investigation of mid-frontal theta activity in memory guided visual search. Cogn Neurosci 2023. [PMID: 37329325 DOI: 10.1080/17588928.2023.2227787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Midfrontal theta activity is crucial for attentional and cognitive control. However, its causal role in facilitating visual search, particularly from the perspective of distractor inhibition, is yet to be discovered. We applied theta band transcranial alternate current stimulation (tACS) over frontocentral regions when participants searched for targets among heterogeneous distractors with foreknowledge of distractor features. The results demonstrated improved visual search performance in the theta stimulation group compared to the active sham group. Moreover, we observed the facilitation effect of the distractor cue only in participants who exhibited larger inhibition benefits, which further confirms the role of theta stimulation in precise attentional control. Taken together, our results provide compelling causal evidence for the involvement of midfrontal theta activity in memory-guided visual search.
Collapse
Affiliation(s)
- Wen Wen
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Simeng Guo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Hui Huang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Sheng Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
39
|
Lui TKY, Obleser J, Wöstmann M. Slow neural oscillations explain temporal fluctuations in distractibility. Prog Neurobiol 2023; 226:102458. [PMID: 37088261 DOI: 10.1016/j.pneurobio.2023.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Human environments comprise various sources of distraction, which often occur unexpectedly in time. The proneness to distraction (i.e., distractibility) is posited to be independent of attentional sampling of targets, but its temporal dynamics and neurobiological basis are largely unknown. Brain oscillations in the theta band (3 - 8Hz) have been associated with fluctuating neural excitability, which is hypothesised here to explain rhythmic modulation of distractibility. In a pitch discrimination task (N = 30) with unexpected auditory distractors, we show that distractor-evoked neural responses in the electroencephalogram and perceptual susceptibility to distraction were co-modulated and cycled approximately 3 - 5 times per second. Pre-distractor neural phase in left inferior frontal and insular cortex regions explained fluctuating distractibility. Thus, human distractibility is not constant but fluctuates on a subsecond timescale. Furthermore, slow neural oscillations subserve the behavioural consequences of a hitherto largely unexplained but ever-increasing phenomenon in modern environments - distraction by unexpected sound.
Collapse
Affiliation(s)
- Troby Ka-Yan Lui
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
40
|
Noonan MP, Von Lautz AH, Bauer Y, Summerfield C, Stokes MS. Differential modulation of visual responses by distractor or target expectations. Atten Percept Psychophys 2023; 85:845-862. [PMID: 36460926 PMCID: PMC10066164 DOI: 10.3758/s13414-022-02617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
Discriminating relevant from irrelevant information in a busy visual scene is supported by statistical regularities in the environment. However, it is unclear to what extent immediate stimulus repetitions and higher order expectations (whether a repetition is statistically probable or not) are supported by the same neural mechanisms. Moreover, it is also unclear whether target and distractor-related processing are mediated by the same or different underlying neural mechanisms. Using a speeded target discrimination task, the present study implicitly cued subjects to the location of the target or the distractor via manipulations in the underlying stimulus predictability. In separate studies, we collected EEG and MEG alongside behavioural data. Results showed that reaction times were reduced with increased expectations for both types of stimuli and that these effects were driven by expected repetitions in both cases. Despite the similar behavioural pattern across target and distractors, neurophysiological measures distinguished the two stimuli. Specifically, the amplitude of the P1 was modulated by stimulus relevance, being reduced for repeated distractors and increased for repeated targets. The P1 was not, however, modulated by higher order stimulus expectations. These expectations were instead reflected in modulations in ERP amplitude and theta power in frontocentral electrodes. Finally, we observed that a single repetition of a distractor was sufficient to reduce decodability of stimulus spatial location and was also accompanied by diminished representation of stimulus features. Our results highlight the unique mechanisms involved in distractor expectation and suppression and underline the importance of studying these processes distinctly from target-related attentional control.
Collapse
Affiliation(s)
- M P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - A H Von Lautz
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Y Bauer
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152, Munich, Germany
| | - C Summerfield
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - M S Stokes
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Li D, Hu Y, Qi M, Zhao C, Jensen O, Huang J, Song Y. Prioritizing flexible working memory representations through retrospective attentional strengthening. Neuroimage 2023; 269:119902. [PMID: 36708973 DOI: 10.1016/j.neuroimage.2023.119902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Previous work has proposed two potential benefits of retrospective attention on working memory (WM): target strengthening and non-target inhibition. It remains unknown which hypothesis contributes to the improved WM performance, yet the neural mechanisms responsible for this attentional benefit are unclear. Here, we recorded electroencephalography (EEG) signals while 33 participants performed a retrospective-cue WM task. Multivariate pattern classification analysis revealed that only representations of target features were enhanced by valid retrospective attention during retention, supporting the target strengthening hypothesis. Further univariate analysis found that mid-frontal theta inter-trial phase coherence (ITPC) and ERP components were modulated by valid retrospective attention and correlated with individual differences and moment-to-moment fluctuations on behavioral outcomes, suggesting that both trait- and state-level variability in attentional preparatory processes influence goal-directed behavior. Furthermore, task-irrelevant target spatial location could be decoded from EEG signals, indicating that enhanced spatial binding of target representation is vital to high WM precision. Importantly, frontoparietal theta-alpha phase-amplitude coupling was increased by valid retrospective attention and predicted the reduced random guessing rates. This long-range connection supported top-down information flow in the engagement of frontoparietal networks, which might organize attentional states to integrate target features. Altogether, these results provide neurophysiological bases that retrospective attention improves WM precision by enhancing flexible target representation and emphasize the critical role of the frontoparietal attentional network in the control of WM representations.
Collapse
Affiliation(s)
- Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mengdi Qi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jing Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China.
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
42
|
Ferrante O, Zhigalov A, Hickey C, Jensen O. Statistical Learning of Distractor Suppression Downregulates Prestimulus Neural Excitability in Early Visual Cortex. J Neurosci 2023; 43:2190-2198. [PMID: 36801825 PMCID: PMC10039740 DOI: 10.1523/jneurosci.1703-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 02/19/2023] Open
Abstract
Visual attention is highly influenced by past experiences. Recent behavioral research has shown that expectations about the spatial location of distractors within a search array are implicitly learned, with expected distractors becoming less interfering. Little is known about the neural mechanism supporting this form of statistical learning. Here, we used magnetoencephalography (MEG) to measure human brain activity to test whether proactive mechanisms are involved in the statistical learning of distractor locations. Specifically, we used a new technique called rapid invisible frequency tagging (RIFT) to assess neural excitability in early visual cortex during statistical learning of distractor suppression while concurrently investigating the modulation of posterior alpha band activity (8-12 Hz). Male and female human participants performed a visual search task in which a target was occasionally presented alongside a color-singleton distractor. Unbeknown to the participants, the distracting stimuli were presented with different probabilities across the two hemifields. RIFT analysis showed that early visual cortex exhibited reduced neural excitability in the prestimulus interval at retinotopic locations associated with higher distractor probabilities. In contrast, we did not find any evidence of expectation-driven distractor suppression in alpha band activity. These findings indicate that proactive mechanisms of attention are involved in predictive distractor suppression and that these mechanisms are associated with altered neural excitability in early visual cortex. Moreover, our findings indicate that RIFT and alpha band activity might subtend different and possibly independent attentional mechanisms.SIGNIFICANCE STATEMENT What we experienced in the past affects how we perceive the external world in the future. For example, an annoying flashing light might be better ignored if we know in advance where it usually appears. This ability of extracting regularities from the environment is called statistical learning. In this study, we explore the neuronal mechanisms allowing the attentional system to overlook items that are unequivocally distracting based on their spatial distribution. By recording brain activity using MEG while probing neural excitability with a novel technique called RIFT, we show that the neuronal excitability in early visual cortex is reduced in advance of stimulus presentation for locations where distracting items are more likely to occur.
Collapse
Affiliation(s)
- Oscar Ferrante
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alexander Zhigalov
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Clayton Hickey
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
43
|
Contralateral delay activity, but not alpha lateralization, indexes prioritization of information for working memory storage. Atten Percept Psychophys 2023; 85:718-733. [PMID: 36917354 PMCID: PMC10066168 DOI: 10.3758/s13414-023-02681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Working memory is inherently limited, which makes it important to select and maintain only task-relevant information and to protect it from distraction. Previous research has suggested the contralateral delay activity (CDA) and lateralized alpha oscillations as neural candidates for such a prioritization process. While most of this work focused on distraction during encoding, we examined the effect of external distraction presented during memory maintenance. Participants memorized the orientations of three lateralized objects. After an initial distraction-free maintenance interval, distractors appeared in the same location as the targets or in the opposite hemifield. This distraction was followed by another distraction-free interval. Our results show that CDA amplitudes were stronger in the interval before compared with the interval after the distraction (i.e., CDA amplitudes were stronger in response to targets compared with distractors). This amplitude reduction in response to distractors was more pronounced in participants with higher memory accuracy, indicating prioritization and maintenance of relevant over irrelevant information. In contrast, alpha lateralization did not change from the interval before distraction compared with the interval after distraction, and we found no correlation between alpha lateralization and memory accuracy. These results suggest that alpha lateralization plays no direct role in either selective maintenance of task-relevant information or inhibition of distractors. Instead, alpha lateralization reflects the current allocation of spatial attention to the most salient information regardless of task-relevance. In contrast, CDA indicates flexible allocation of working memory resources depending on task-relevance.
Collapse
|
44
|
Zhao C, Kong Y, Li D, Huang J, Kong L, Li X, Jensen O, Song Y. Suppression of distracting inputs by visual-spatial cues is driven by anticipatory alpha activity. PLoS Biol 2023; 21:e3002014. [PMID: 36888690 PMCID: PMC10027229 DOI: 10.1371/journal.pbio.3002014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/20/2023] [Accepted: 01/27/2023] [Indexed: 03/09/2023] Open
Abstract
A growing body of research demonstrates that distracting inputs can be proactively suppressed via spatial cues, nonspatial cues, or experience, which are governed by more than one top-down mechanism of attention. However, how the neural mechanisms underlying spatial distractor cues guide proactive suppression of distracting inputs remains unresolved. Here, we recorded electroencephalography signals from 110 participants in 3 experiments to identify the role of alpha activity in proactive distractor suppression induced by spatial cues and its influence on subsequent distractor inhibition. Behaviorally, we found novel changes in the spatial proximity of the distractor: Cueing distractors far away from the target improves search performance for the target, while cueing distractors close to the target hampers performance. Crucially, we found dynamic characteristics of spatial representation for distractor suppression during anticipation. This result was further verified by alpha power increased relatively contralateral to the cued distractor. At both the between- and within-subjects levels, we found that these activities further predicted the decrement of the subsequent PD component, which was indicative of reduced distractor interference. Moreover, anticipatory alpha activity and its link with the subsequent PD component were specific to the high predictive validity of distractor cue. Together, our results reveal the underlying neural mechanisms by which cueing the spatial distractor may contribute to reduced distractor interference. These results also provide evidence supporting the role of alpha activity as gating by proactive suppression.
Collapse
Affiliation(s)
- Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jing Huang
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Lujiao Kong
- School of Journalism and Communication, Beijing Normal University, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
45
|
Statistical learning of target location and distractor location rely on different mechanisms during visual search. Atten Percept Psychophys 2023; 85:342-365. [PMID: 36513850 DOI: 10.3758/s13414-022-02626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/15/2022]
Abstract
More studies have demonstrated that people have the capacity to learn and make use of environmental regularities. This capacity is known as statistical learning (SL). Despite rich empirical findings, it is not clear how the two forms of SL (SL of target location and SL of distractor location) influence visual search and whether they rely on the shared cognitive mechanism. In Experiment 1 and Experiment 2, we manipulated the probability of target location and the probability of distractor location, respectively. The results suggest that attentional guidance (they referred to overt attention) may mainly contribute to the SL effect of the target location and the distractor location, which is in line with the notion of priority mapping. To a small extent, facilitation of response selection may also contribute to the SL effect of the target location but does not contribute to the SL effect of the distractor location. However, the main difference between the two kinds of SL occurred in the early stage (it involved covert attention). Together, our findings indicate that the two forms of SL reflect partly shared and partly independent cognitive mechanisms.
Collapse
|
46
|
Extracting probability in the absence of visual awareness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-022-01057-1. [PMID: 36702992 PMCID: PMC10390606 DOI: 10.3758/s13415-022-01057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/27/2023]
Abstract
Extracting statistical regularities from the environment is crucial for survival. It allows us to learn cues for where and when future events will occur. Can we learn these associations even when the cues are not consciously perceived? Can these unconscious processes integrate information over long periods of time? We show that human visual system can track the probability of location contingency between an unconscious prime and a conscious target over a period of time of minutes. In a series of psychophysical experiments, we adopted an exogenous priming paradigm and manipulated the location contingency between a masked prime and a visible target (i.e., how likely the prime location predicted the target location). The prime's invisibility was verified both subjectively and objectively. Although the participants were unaware of both the existence of the prime and the prime-target contingency, our results showed that the probability of location contingency was tracked and manifested in the subsequent priming effect. When participants were first entrained into the fully predictive prime-target probability, they exhibited faster responses to the more predictive location. On the contrary, when no contingency existed between the prime and target initially, participants later showed faster responses to the less predictive location. These results were replicated in two more experiments with increased statistical power and a fine-grained delineation of prime awareness. Together, we report that the human visual system is capable of tracking unconscious probability over a period of time, demonstrating how implicit and uncertain regularity guides behavior.
Collapse
|
47
|
Attentional capture is modulated by stimulus saliency in visual search as evidenced by event-related potentials and alpha oscillations. Atten Percept Psychophys 2022; 85:685-704. [PMID: 36525202 PMCID: PMC10066093 DOI: 10.3758/s13414-022-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
AbstractThis study used a typical four-item search display to investigate top-down control over attentional capture in an additional singleton paradigm. By manipulating target and distractor color and shape, stimulus saliency relative to the remaining items was systematically varied. One group of participants discriminated the side of a dot within a salient orange target (ST group) presented with green circles (fillers) and a green diamond distractor. A second group discriminated the side of the dot within a green diamond target presented with green circle fillers and a salient orange square distractor (SD group). Results showed faster reaction times and a shorter latency of the N2pc component in the event-related potential (ERP) to the more salient targets in the ST group. Both salient and less salient distractors elicited Pd components of equal amplitude. Behaviorally, no task interference was observed with the less salient distractor, indicating the prevention of attentional capture. However, reaction times were slower in the presence of the salient distractor, which conflicts with the hypothesis that the Pd reflects proactive distractor suppression. Contrary to recent proposals that elicitation of the Pd requires competitive interactions with a target, we found a greater Pd amplitude when the distractor was presented alone. Alpha-band amplitudes decreased during target processing (event-related desynchronization), but no significant amplitude enhancement was observed at electrodes contralateral to distractors regardless of their saliency. The results demonstrate independent neural mechanisms for target and distractor processing and support the view that top-down guidance of attention can be offset (counteracted) by relative stimulus saliency.
Collapse
|
48
|
Forschack N, Gundlach C, Hillyard S, Müller MM. Dynamics of attentional allocation to targets and distractors during visual search. Neuroimage 2022; 264:119759. [PMID: 36417950 DOI: 10.1016/j.neuroimage.2022.119759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
There is much debate about the neural mechanisms that achieve suppression of salient distracting stimuli during visual search. The proactive suppression hypothesis asserts that if exposed to the same distractors repeatedly, these stimuli are actively inhibited before attention can be shifted to them. A contrasting proposal holds that attention is initially captured by salient distractors but is subsequently withdrawn. By concurrently measuring stimulus-driven and intrinsic brain potentials in 36 healthy human participants, we obtained converging evidence against early proactive suppression of distracting input. Salient distractors triggered negative event-related potentials (N1pc/N2pc), enhanced the steady-state visual evoked potential (SSVEP) relative to non-salient (filler) stimuli, and suppressed contralateral relative to ipsilateral alpha-band amplitudes-three electrophysiological measure associated with the allocation of attention-even though these distractors did not interfere with behavioral responses to the search targets. Furthermore, these measures indicated that both stimulus-driven and goal-driven allocations of attention occurred in conjunction with one another, with the goal-driven effect enhancing and prolonging the stimulus-driven effect. These results provide a new perspective on the traditional dichotomy between bottom-up and top-down attentional allocation. Control experiments revealed that continuous marking of the locations at which the search display items were presented resulted in a dramatic and unexpected conversion of the target-elicited N2pc into a shorter-latency N1pc in association with faster reaction times to the targets.
Collapse
Affiliation(s)
- Norman Forschack
- Wilhelm Wundt Department of Psychology, University of Leipzig, Germany.
| | | | - Steven Hillyard
- University of California, San Diego, USA; Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Matthias M Müller
- Wilhelm Wundt Department of Psychology, University of Leipzig, Germany
| |
Collapse
|
49
|
Zhao C, Li D, Guo J, Li B, Kong Y, Hu Y, Du B, Ding Y, Li X, Liu H, Song Y. The neurovascular couplings between electrophysiological and hemodynamic activities in anticipatory selective attention. Cereb Cortex 2022; 32:4953-4968. [PMID: 35076708 DOI: 10.1093/cercor/bhab525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
Selective attention is thought to involve target enhancement and distractor inhibition processes. Here, we recorded simultaneous electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) data from human adults when they were pre-cued by the visual field of coming target, distractor, or both of them. From the EEG data, we found alpha power relatively decreased contralaterally to the to-be-attended target, as reflected by the positive-going alpha modulation index. Late alpha power relatively increased contralaterally to the to-be-suppressed distractor, as reflected by the negative-going alpha modulation index. From the fNIRS data, we found enhancements of hemodynamic activity over the contralateral hemisphere in response to both the target and the distractor anticipation but within nonoverlapping posterior brain regions. More importantly, we described the specific neurovascular modulation between alpha power and oxygenated hemoglobin signal, which showed a positive coupling effect during target anticipation and a negative coupling effect during distractor anticipation. Such flexible neurovascular couplings between EEG oscillation and hemodynamic activity seem to play an essential role in the final behavioral outcomes. These results provide unique neurovascular evidence for the dissociation of the mechanisms of target enhancement and distractor inhibition. Individual behavioral differences can be related to individual differences in neurovascular coupling.
Collapse
Affiliation(s)
- Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai 519087, China.,School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jialiang Guo
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuanjun Kong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yulong Ding
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai 519087, China
| | - Hanli Liu
- Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai 519087, China
| |
Collapse
|
50
|
Negative and positive templates: Two forms of cued attentional control. Atten Percept Psychophys 2022; 85:585-595. [PMID: 36348265 DOI: 10.3758/s13414-022-02590-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Our ability to control our attention to focus on goal-relevant information is critical for functioning in daily life. In addition to the typical attentional control driven by target enhancement described in most theories of attention, recent research has focused on our ability to use information about distractions maintained in working memory to direct our attention away from known distractors. Using these negative templates can improve the efficiency of attention, much in the same way as enhancing information matching search targets. However, these effects only occur for specific tasks or in specific circumstances. In this review, I will focus on our emerging understanding of the relationship between distractor ignoring from negative templates and target enhancement from positive templates. I will also highlight key remaining questions for further study.
Collapse
|