1
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Holmes GL. Timing is everything: The effect of early-life seizures on developing neuronal circuits subserving spatial memory. Epilepsia Open 2025. [PMID: 40110908 DOI: 10.1002/epi4.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025] Open
Abstract
Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. For spatial memory to occur, the hippocampus forms highly associative networks integrating external inputs conveying multi-sensory, proprioceptive, contextual, and emotional information onto internally generated dynamics. Hippocampal cognitive maps are produced by sequences of transient ordered neuronal activations that represent not only spatial information but also the temporal order of events in a memory episode. This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. In the rodent hippocampus, there is a sequence of spontaneous activities that are precisely timed, starting with early sharp waves progressing to theta and gamma oscillations, place and grid cell firing, and sharp wave-ripples that must occur for spatial memory to develop. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in theta and gamma oscillations and spatial and temporal coding of place cells. Conversely, enhancement of oscillatory activity following early-life seizures can improve cognitive impairment. The plasticity of developing oscillatory activity in the immature brain provides exciting opportunities for therapeutic intervention in childhood epilepsy. PLAIN LANGUAGE SUMMARY: Children with epilepsy often struggle with memory and learning challenges. Research has shown that seizures can interfere with the brain's natural rhythms, which are crucial for these processes. Seizures in children are particularly harmful because they disrupt the development of brain connections, which are still growing and maturing during this critical time. Exciting new studies in both animals and humans suggest that using electrical or magnetic stimulation to adjust these brain rhythms can help restore memory and learning abilities. This breakthrough offers hope for improving the lives of children with epilepsy.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
3
|
Zhao Y, Peng Y, Pan Y, Lv Y, Zhou H, Wu J, Gong J, Wang X. The role of ventral hippocampal-medial prefrontal glutamatergic pathway on the non-affected side in post-stroke cognitive impairment. Brain Res 2024; 1845:149168. [PMID: 39153591 DOI: 10.1016/j.brainres.2024.149168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Elucidate the pathogenesis mechanism of post-stroke cognitive impairment (PSCI) can help to develop precision interventions. In this study, we established a mouse model of PSCI using the photochemical method, and behavioral tests including Y-maze and Novel object recognition task for accessing cognitive impairment were observed at week 2 post-stroke. Besides, synaptic plasticity, theta nerve oscillatory and the activity of glutamatergic neurons related to the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere (contralateral hemisphere to the lesion site) were observed. The result indicated the cognitive function declined at week 2 post-stroke. Synaptic plasticity, theta nerve oscillatory synchronization and the activity of glutamatergic neurons of the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere was down-regulated in the PSCI group compared to those of the SHAM group. Therefore, we concluded that the declined function of the ventral hippocampal-medial prefrontal glutamatergic pathway in the non-affected hemisphere is a biomarker in the occurrence of cognitive dysfunction after stroke.
Collapse
Affiliation(s)
- Yuehan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, Shandong, China; Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, Guangdong, China.
| | - Yao Pan
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, Shandong, China; Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Yichen Lv
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Hongyu Zhou
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Jiahao Wu
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Jianwei Gong
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Xin Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China; Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
4
|
Ruggiero RN, Marques DB, Rossignoli MT, De Ross JB, Prizon T, Beraldo IJS, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Lopes-Aguiar C, Leite JP. Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 2024; 12:RP90997. [PMID: 38593008 PMCID: PMC11003745 DOI: 10.7554/elife.90997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Jana Batista De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Ikaro Jesus Silva Beraldo
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | | | | | - Jose Eduardo Peixoto-Santos
- Neuroscience Discipline, Department of Neurology and Neurosurgery,Universidade Federal de São PauloSão PauloBrazil
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | - Joao Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| |
Collapse
|
5
|
Cashen NA, Kloc ML, Pressman D, Liebman SA, Holmes GL. CBD treatment following early life seizures alters orbitofrontal-striatal signaling during adulthood. Epilepsy Behav 2024; 152:109638. [PMID: 38325075 DOI: 10.1016/j.yebeh.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Obsessive compulsive disorder (OCD) is a comorbid condition of epilepsy and often adds to the burden of epilepsy. Both OCD and epilepsy are disorders of hyperexcitable circuits. Fronto-striatal circuit dysfunction is implicated in OCD. Prior work in our laboratory has shown that in rat pups following a series of flurothyl-induced early life seizures (ELS) exhibit frontal-lobe dysfunction along with alterations in electrographic temporal coordination between the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS), circuits implicated in OCD. Here, we studied the effects of ELS in male and female rat pups on OCD-like behaviors as adults using the marble burying test (MBT). Because cannabidiol (CBD) is an effective antiseizure medication and has shown efficacy in the treatment of individuals with OCD, we also randomized rats to CBD or vehicle treatment following ELS to determine if CBD had any effect on OCD-like behaviors. While the flurothyl model of ELS did not induce OCD-like behaviors, as measured in the MBT, ELS did alter neural signaling in structures implicated in OCD and CBD had sex-dependent effects of temporal coordination in a way which suggests it may have a beneficial effect on epilepsy-related OCD.
Collapse
Affiliation(s)
- Natalie A Cashen
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Michelle L Kloc
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Davi Pressman
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Samuel A Liebman
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
6
|
Zare M, Rezaei M, Nazari M, Kosarmadar N, Faraz M, Barkley V, Shojaei A, Raoufy MR, Mirnajafi‐Zadeh J. Effect of the closed-loop hippocampal low-frequency stimulation on seizure severity, learning, and memory in pilocarpine epilepsy rat model. CNS Neurosci Ther 2024; 30:e14656. [PMID: 38439573 PMCID: PMC10912795 DOI: 10.1111/cns.14656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
AIMS In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated. METHODS Epilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects' spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test. RESULTS Applying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre-ictal, ictal, and post-ictal periods. Meanwhile, DBS increased the post-ictal-to-pre-ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post-ictal-to-pre-ictal ratio of coherence. In addition, DBS increased the hippocampal-mPFC coupling in pre-ictal period and decreased the coupling in the ictal and post-ictal periods. CONCLUSION Applying closed-loop, low-frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low-frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non-seizure state in subjects that received DBS.
Collapse
Affiliation(s)
- Meysam Zare
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Milad Nazari
- Department of Technology, Electrical EngineeringSharif UniversityTehranIran
| | - Nastaran Kosarmadar
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Mona Faraz
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Victoria Barkley
- Department of Anesthesia and Pain Management, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
7
|
Kloc ML, Shultes MG, Davi Pressman R, Liebman SA, Schneur CA, Broomer MC, Barry JM, Bouton ME, Holmes GL. Early-life seizures alter habit behavior formation and fronto-striatal circuit dynamics. Epilepsy Behav 2023; 145:109320. [PMID: 37352815 PMCID: PMC10527711 DOI: 10.1016/j.yebeh.2023.109320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Obsessive compulsive disorder (OCD) can occur comorbidly with epilepsy; both are complex, disruptive disorders that lower quality of life. Both OCD and epilepsy are disorders of hyperexcitable circuits, but it is unclear whether common circuit pathology may underlie the co-occurrence of these two neuropsychiatric disorders. Here, we induced early-life seizures (ELS) in rats to examine habit formation as a model for compulsive behaviors. Compulsive, repetitive behaviors in OCD utilize the same circuitry as habit formation. We hypothesized that rats with ELS could be more susceptible to habit formation than littermate controls, and that altered behavior would correspond to altered signaling in fronto-striatal circuits that underlie decision-making and action initiation. Here, we show instead that rats with ELS were significantly less likely to form habit behaviors compared with control rats. This behavioral difference corresponded with significant alterations to temporal coordination within and between brain regions that underpin the action to habit transition: 1) phase coherence between the lateral orbitofrontal cortex and dorsomedial striatum (DMS) and 2) theta-gamma coupling within DMS. Finally, we used cortical electrical stimulation as a model of transcranial magnetic stimulation (TMS) to show that temporal coordination of fronto-striatal circuits in control and ELS rats are differentially susceptible to potentiating and suppressive stimulation, suggesting that altered underlying circuit physiology may lead to altered response to therapeutic interventions such as TMS.
Collapse
Affiliation(s)
- Michelle L Kloc
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| | - Madeline G Shultes
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - R Davi Pressman
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Samuel A Liebman
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Matthew C Broomer
- Department of Psychological Science, University of Vermont College of Arts and Sciences, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Mark E Bouton
- Department of Psychological Science, University of Vermont College of Arts and Sciences, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy, Cognition, and Development Group, Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
8
|
Velasquez F, Dickson C, Kloc ML, Schneur CA, Barry JM, Holmes GL. Optogenetic modulation of hippocampal oscillations ameliorates spatial cognition and hippocampal dysrhythmia following early-life seizures. Neurobiol Dis 2023; 178:106021. [PMID: 36720444 DOI: 10.1016/j.nbd.2023.106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
There is increasing human and animal evidence that brain oscillations play a critical role in the development of spatial cognition. In rat pups, disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Early-life seizures are associated with long-term deficits in spatial cognition and aberrant hippocampal oscillatory activity. Here we asked whether modulation of hippocampal rhythms following early-life seizures can reverse or improve hippocampal connectivity and spatial cognition. We used optogenetic stimulation of the medial septum to induce physiological 7 Hz theta oscillations in the hippocampus during the critical period of spatial cognition following early-life seizures. Optogenetic stimulation of the medial septum in control and rats subjected to early-life seizures resulted in precisely regulated frequency-matched hippocampal oscillations. Rat pups receiving active blue light stimulation performed better than the rats receiving inert yellow light in a test of spatial cognition. The improvement in spatial cognition in these rats was associated with a faster theta frequency and higher theta power, coherence and phase locking value in the hippocampus than rats with early-life seizures receiving inert yellow light. These findings indicate that following early life seizures, modification of hippocampal rhythms may be a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Conor Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
9
|
Burns TF, Haga 芳賀 達也 T, Fukai 深井朋樹 T. Multiscale and Extended Retrieval of Associative Memory Structures in a Cortical Model of Local-Global Inhibition Balance. eNeuro 2022; 9:ENEURO.0023-22.2022. [PMID: 35606151 PMCID: PMC9186110 DOI: 10.1523/eneuro.0023-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and nonsparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their subtypes uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory subpopulations, one connected to excitatory assemblies locally and the other connected globally, can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model, while still theoretical, therefore highlights a potentially biologically-plausible and behaviorally-useful function of inhibitory diversity in memory.
Collapse
Affiliation(s)
- Thomas F Burns
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Tatsuya Haga 芳賀 達也
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Tomoki Fukai 深井朋樹
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
10
|
Nair KP, Salaka RJ, Srikumar BN, Kutty BM, Rao BSS. Enriched environment rescues impaired sleep-wake architecture and abnormal neural dynamics in chronic epileptic rats. Neuroscience 2022; 495:97-114. [DOI: 10.1016/j.neuroscience.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
11
|
Dickson CR, Holmes GL, Barry JM. Dynamic θ Frequency Coordination within and between the Prefrontal Cortex-Hippocampus Circuit during Learning of a Spatial Avoidance Task. eNeuro 2022; 9:ENEURO.0414-21.2022. [PMID: 35396256 PMCID: PMC9034755 DOI: 10.1523/eneuro.0414-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
θ-Scale coordination of prelimbic medial prefrontal cortex (mPFC) local field potentials (LFPs) and its influence via direct or indirect projections to the ventral hippocampus (vHC) and dorsal hippocampus (dHC) during spatial learning remains poorly understood. We hypothesized that θ frequency coordination dynamics within and between the mPFC, dHC, and vHC would be predetermined by the level of connectivity rather than reflecting differing circuit throughput relationships depending on cognitive demands. Moreover, we hypothesized that coherence levels would not change during learning of a complex spatial avoidance task. Adult male rats were bilaterally implanted with EEG electrodes and LFPs recorded in each structure. Contrary to predictions, θ coherence averaged across "Early" or "Late" training sessions in the mPFC-HC, mPFC-mPFC, and HC-HC increased as a function of task learning. Coherence levels were also highest between the indirectly connected mPFC-dHC circuit, particularly during early training. Although mPFC postacquisition coherence remained higher with dHC than vHC, dynamic mPFC coherence patterns with both hippocampal poles across avoidance epochs were similar. In the 3 s before avoidance, a regional temporal sequence of transitory coherence peaks emerged between the mPFC-mPFC, the mPFC-HC, and then dHC-dHC. During this sequence, coherence within θ bandwidth fluctuated between epochs at distinct subfrequencies, suggesting frequency-specific roles for the propagation of task-relevant processing. On a second timescale, coherence frequency within and between the mPFC and hippocampal septotemporal axis change as a function of avoidance learning and cognitive demand. The results support a role for θ coherence subbandwidths, and specifically an 8- to 9-Hz mPFC θ signal, for generating and processing qualitatively different types of information in the organization of spatial avoidance behavior in the mPFC-HC circuit.
Collapse
Affiliation(s)
- Conor R Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington 05405, VT
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington 05405, VT
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington 05405, VT
| |
Collapse
|
12
|
Abstract
SUMMARY Although interictal spikes (IISs) are a well-established EEG biomarker for epilepsy, whether they are also a biomarker of cognitive deficits is unclear. Interictal spikes are dynamic events consisting of a synchronous discharge of neurons producing high frequency oscillations and a succession of action potentials which disrupt the ongoing neural activity. There are robust data showing that IISs result in transitory cognitive impairment with the type of deficit specific to the cognitive task and anatomic location of the IIS. Interictal spike, particularly if frequent and widespread, can impair cognitive abilities, through interference with waking learning and memory and memory consolidation during sleep. Interictal spikes seem to be particularly concerning in the developing brain where animal data suggest that IISs can lead to adverse cognitive effects even after the disappearance of the spikes. Whether a similar phenomenon occurs in human beings is unclear. Thus, although IISs are a clear biomarker of transitory cognitive impairment, currently, they lack sensitivity and specificity as a biomarker for enduring cognitive impairment.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences Larner College of Medicine at the University of Vermont, Burlington, Vermont, U.S.A
| |
Collapse
|
13
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
14
|
Niedecker RW, Kloc ML, Holmes GL, Barry JM. Effects of early life seizures on coordination of hippocampal-prefrontal networks: Influence of sex and dynamic brain states. Epilepsia 2021; 62:1701-1714. [PMID: 34002378 PMCID: PMC8260466 DOI: 10.1111/epi.16927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Early life seizures (ELSs) alter activity-dependent maturation of neuronal circuits underlying learning and memory. The pathophysiological mechanisms underpinning seizure-induced cognitive impairment are not fully understood, and critical variables such as sex and dynamic brain states with regard to cognitive outcomes have not been explored. We hypothesized that in comparison to control (CTL) rats, ELS rats would exhibit deficits in spatial cognition correlating with impaired dynamic neural signal coordination between the hippocampus and medial prefrontal cortex (mPFC). METHODS Male and female rat pups were given 50 flurothyl-induced seizures over 10 days starting at postnatal Day 15. As adults, spatial cognition was tested through active avoidance on a rotating arena. Microwire tetrodes were implanted in the mPFC and CA1 subfield. Single cells and local field potentials were recorded and analyzed in each region during active avoidance and sleep. RESULTS ELS males exhibited avoidance impairments, whereas female rats were unaffected. During avoidance, hippocampus-mPFC coherence was higher in CTL females than CTL males across bandwidths. In comparison to CTL males, ELS male learners exhibit increased coherence within theta bandwidth as well as altered burst-timing in mPFC cell activity. Hippocampus-mPFC coherence levels are predictive of cognitive outcome in the active avoidance spatial task. SIGNIFICANCE Spatial cognitive outcome post-ELS is sex-dependent, as females fare better than males. ELS males that learn the task exhibit increased mPFC coherence levels at low-theta frequency, which may compensate for ELS effects on mPFC cell timing. These results suggest that coherence may serve as a biomarker for spatial cognitive outcome post-ELS and emphasize the significance of analyzing sex and dynamic cognition as variables in understanding seizure effects on the developing brain.
Collapse
Affiliation(s)
- Rhys W Niedecker
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Michelle L Kloc
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jeremy M Barry
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
15
|
Lenck-Santini PP. Bad Timing for Epileptic Networks: Role of Temporal Dynamics in Seizures and Cognitive Deficits. Epilepsy Curr 2021; 21:15357597211001877. [PMID: 33724060 PMCID: PMC8609592 DOI: 10.1177/15357597211001877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The precise coordination of neuronal activity is critical for optimal brain function. When such coordination fails, this can lead to dire consequences. In this review, I will present evidence that in epilepsy, failed coordination leads not only to seizures but also to alterations of the rhythmical patterns observed in the electroencephalogram and cognitive deficits. Restoring the dynamic coordination of epileptic networks could therefore both improve seizures and cognitive outcomes.
Collapse
|
16
|
Lenck-Santini PP, Sakkaki S. Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy. Curr Top Behav Neurosci 2021; 55:65-106. [PMID: 33454922 DOI: 10.1007/7854_2020_193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients.
Collapse
Affiliation(s)
- Pierre-Pascal Lenck-Santini
- Aix-Marseille Université, INSERM, INMED, Marseille, France. .,Department of Neurological sciences, University of Vermont, Burlington, VT, USA.
| | - Sophie Sakkaki
- Department of Neurological sciences, University of Vermont, Burlington, VT, USA.,Université de. Montpellier, CNRS, INSERM, IGF, Montpellier, France
| |
Collapse
|
17
|
Arski ON, Young JM, Smith ML, Ibrahim GM. The Oscillatory Basis of Working Memory Function and Dysfunction in Epilepsy. Front Hum Neurosci 2021; 14:612024. [PMID: 33584224 PMCID: PMC7874181 DOI: 10.3389/fnhum.2020.612024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Working memory (WM) deficits are pervasive co-morbidities of epilepsy. Although the pathophysiological mechanisms underpinning these impairments remain elusive, it is thought that WM depends on oscillatory interactions within and between nodes of large-scale functional networks. These include the hippocampus and default mode network as well as the prefrontal cortex and frontoparietal central executive network. Here, we review the functional roles of neural oscillations in subserving WM and the putative mechanisms by which epilepsy disrupts normative activity, leading to aberrant oscillatory signatures. We highlight the particular role of interictal epileptic activity, including interictal epileptiform discharges and high frequency oscillations (HFOs) in WM deficits. We also discuss the translational opportunities presented by greater understanding of the oscillatory basis of WM function and dysfunction in epilepsy, including potential targets for neuromodulation.
Collapse
Affiliation(s)
- Olivia N. Arski
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Julia M. Young
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Mary-Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - George M. Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Hernan AE, Mahoney JM, Curry W, Mawe S, Scott RC. Fine Spike Timing in Hippocampal-Prefrontal Ensembles Predicts Poor Encoding and Underlies Behavioral Performance in Healthy and Malformed Brains. Cereb Cortex 2020; 31:147-158. [PMID: 32860415 DOI: 10.1093/cercor/bhaa216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/14/2022] Open
Abstract
Spatial working memory (SWM) is a central cognitive process during which the hippocampus and prefrontal cortex (PFC) encode and maintain spatial information for subsequent decision-making. This occurs in the context of ongoing computations relating to spatial position, recall of long-term memory, attention, among many others. To establish how intermittently presented information is integrated with ongoing computations we recorded single units, simultaneously in hippocampus and PFC, in control rats and those with a brain malformation during performance of an SWM task. Neurons that encode intermittent task parameters are also well modulated in time and incorporated into a functional network across regions. Neurons from animals with cortical malformation are poorly modulated in time, less likely to encode task parameters, and less likely to be integrated into a functional network. Our results implicate a model in which ongoing oscillatory coordination among neurons in the hippocampal-PFC network describes a functional network that is poised to receive sensory inputs that are then integrated and multiplexed as working memory. The background temporal modulation is systematically altered in disease, but the relationship between these dynamics and behaviorally relevant firing is maintained, thereby providing potential targets for stimulation-based therapies.
Collapse
Affiliation(s)
- Amanda E Hernan
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA.,Department of Computer Science, University of Vermont, Burlington VT 05401, USA
| | - Willie Curry
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA
| | - Seamus Mawe
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA
| | - Rod C Scott
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington VT 05401, USA.,Neurosciences Unit University College London, Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
19
|
Soltani Zangbar H, Ghadiri T, Seyedi Vafaee M, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Shahabi P. Theta Oscillations Through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances. Brain Connect 2020; 10:157-169. [PMID: 32264690 DOI: 10.1089/brain.2019.0733] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Among various hippocampal rhythms, including sharp-wave ripples, gamma, and theta, theta rhythm is crucial for cognitive processing, particularly learning and memory. Theta oscillations are observable in both humans and rodents during spatial navigations. However, the hippocampus (Hip) is well known as the generator of current rhythm, and other brain areas, such as prefrontal cortex (PFC), can be affected by theta rhythm, too. The PFC is a core structure for the execution of diverse higher cortical functions defined as cognition. This region is connected to the hippocampus through the hippocampal/prefrontal pathway; hereby, theta oscillations convey hippocampal inputs to the PFC and simultaneously synchronize the activity of these two regions during memory, learning and other cognitive tasks. Importantly, thalamic nucleus reunions (nRE) and basolateral amygdala are salient relay structures modulating the synchronization, firing rate, and phase-locking of the hippocampal/prefrontal oscillations. Herein, we summarized experimental studies, chiefly animal researches in which the theta rhythm of the Hip-PFC axis was investigated using either electrophysiological assessments in rodent or integrated diffusion-weighted imaging and electroencephalography in human cases under memory-based tasks. Moreover, we briefly reviewed alterations of theta rhythm in some CNS diseases with the main feature of cognitive disturbance. Interestingly, animal studies implied the interruption of theta synchronization in psychiatric disorders such as schizophrenia and depression. To disclose the precise role of theta rhythm fluctuations through the Hip-PFC axis in cognitive performances, further studies are needed.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Jiang Y, Liu DF, Zhang X, Liu HG, Zhang JG. Microstructure and functional connectivity-based evidence for memory-related regional impairments in the brains of pilocarpine-treated rats. Brain Res Bull 2019; 154:127-134. [PMID: 31756422 DOI: 10.1016/j.brainresbull.2019.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/09/2019] [Accepted: 11/17/2019] [Indexed: 12/21/2022]
Abstract
Patients with temporal lobe epilepsy (TLE) frequently suffer from memory disorders, and the pathological changes show widespread regional impairments in the brain. In lithium-pilocarpine (LIP)-treated rats with TLE, an abnormal hippocampal microstructure and functional connectivity have been observed. However, changes in other brain regions are still unclear. In the present study, diffusion tensor imaging and functional magnetic resonance imaging (MRI) signals were collected in LIP-TLE rats and controls using a 7.0 T MRI. Microstructural parameters and functional connectivity were calculated among regions of interest (ROIs), including the bilateral prefrontal cortex, amygdala, hippocampus and entorhinal cortex. A correlation analysis was further performed between the neuroimaging results and the behavioral performance in the novel object and novel location memory tests. In our results, TLE rats showed increased fractional anisotropy (FA) values in the hippocampus and decreased FA values in the amygdala and entorhinal cortex. In addition, decreased functional connectivity between the amygdala and the CA3, and increased connectivity between the prefrontal cortex and the CA1 were observed in the TLE rats compared to control rats. Moreover, FA values in the amygdala, the hippocampus and the entorhinal cortex, as well as the amygdala-CA3 and the prefrontal-CA1 connectivity correlated with the memory performance. Based on our results, both the microstructure and functional connections were impaired in memory-related brain regions of LIP-TLE rats. Furthermore, the abnormal changes in the microstructure and functional connectivity were related to behavioral deficits in object and location memory.
Collapse
Affiliation(s)
- Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - De-Feng Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Huan-Guang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China; Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Samuel P J, Menon RN, Chandran A, Thomas SV, Vilanilam G, Abraham M, Radhakrishnan A. Seizure outcome and its predictors after frontal lobe epilepsy surgery. Acta Neurol Scand 2019; 140:259-267. [PMID: 31188464 DOI: 10.1111/ane.13139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Frontal lobe epilepsy (FLE) surgery is the second most common focal resective surgery for drug-resistant epilepsy. Not many studies are available regarding the long-term surgical outcome of FLE. We studied the longitudinal outcome and predictors of seizure outcome following FLE surgery in a sizeable cohort of patients. MATERIALS & METHODS A total of 73 consecutive patients who underwent FLE surgery between January 1997 and May 2015 with a minimum follow-up of 1 year (range 1-16 years) were studied. Primary outcome was seizure freedom at last follow-up (Engel Class IA). "Seizure freedom" separately was defined as absence of seizures till last follow-up. Outcome predictors were subjected to multivariate analysis. Using Kaplan-Meier curve, we assessed the post-operative seizure freedom over time. RESULTS Twenty-five patients (34%) were seizure-free till last follow-up. The seizure freedom was 45%, 34%, 26%, 20% and 14% at the end of 1st, 2nd, 3rd, 4th and 5th post-operative year, respectively. Engel class I outcomes were 48%, 41%, 56%, 57% and 53% at end of 1st, 2nd, 3rd, 4th and 5th post-operative year, respectively. Predictors of seizure recurrence on multivariate analysis were older age at surgery (P = 0.032), longer duration of epilepsy (P = 0.031), presence of interictal epileptiform discharges in post-operative EEG on 7th day (P = 0.005), 3 months (P = 0.005) and 1 year (P = 0.0179). In subgroup analysis, duration of epilepsy of less than 2 years before surgery was a significant predictor for achieving seizure freedom (P = 0.029). CONCLUSIONS These results emphasize early surgery for better outcome in frontal lobe epilepsy. Post-operative EEG remained a good predictor for long-term outcome.
Collapse
Affiliation(s)
- Joseph Samuel P
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Ramshekhar N. Menon
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Anuvitha Chandran
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Sanjeev V. Thomas
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - George Vilanilam
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Mathew Abraham
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Ashalatha Radhakrishnan
- Department of Neurology, R.Madhavan Nayar Center for Comprehensive Epilepsy Care Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| |
Collapse
|
22
|
Abstract
Virtually all adults with Down syndrome (DS) show the neuropathological changes of Alzheimer disease (AD) by the age of 40 years. This association is partially due to overexpression of amyloid precursor protein, encoded by APP, as a result of the location of this gene on chromosome 21. Amyloid-β accumulates in the brain across the lifespan of people with DS, which provides a unique opportunity to understand the temporal progression of AD and the epigenetic factors that contribute to the age of dementia onset. This age dependency in the development of AD in DS can inform research into the presentation of AD in the general population, in whom a longitudinal perspective of the disease is not often available. Comparison of the risk profiles, biomarker profiles and genetic profiles of adults with DS with those of individuals with AD in the general population can help to determine common and distinct pathways as well as mechanisms underlying increased risk of dementia. This Review evaluates the similarities and differences between the pathological cascades and genetics underpinning DS and AD with the aim of providing a platform for common exploration of these disorders.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA.
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
23
|
Wu Q, Zhao CW, Long Z, Xiao B, Feng L. Anatomy Based Networks and Topology Alteration in Seizure-Related Cognitive Outcomes. Front Neuroanat 2018; 12:25. [PMID: 29681801 PMCID: PMC5898178 DOI: 10.3389/fnana.2018.00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
Epilepsy is a paroxysmal neurological disorder characterized by recurrent and unprovoked seizures affecting approximately 50 million people worldwide. Cognitive dysfunction induced by seizures is a severe comorbidity of epilepsy and epilepsy syndromes and reduces patients’ quality of life. Seizures, along with accompanying histopathological and pathophysiological changes, are associated with cognitive comorbidities. Advances in imaging technology and computing allow anatomical and topological changes in neural networks to be visualized. Anatomical components including the hippocampus, amygdala, cortex, corpus callosum (CC), cerebellum and white matter (WM) are the fundamental components of seizure- and cognition-related topological networks. Damage to these structures and their substructures results in worsening of epilepsy symptoms and cognitive dysfunction. In this review article, we survey structural, network changes and topological alteration in different regions of the brain and in different epilepsy and epileptic syndromes, and discuss what these changes may mean for cognitive outcomes related to these disease states.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Charlie W Zhao
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Zhe Long
- Sydney Medical School and the Brain & Mind Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Kanner AM, Scharfman H, Jette N, Anagnostou E, Bernard C, Camfield C, Camfield P, Legg K, Dinstein I, Giacobbe P, Friedman A, Pohlmann-Eden B. Epilepsy as a Network Disorder (1): What can we learn from other network disorders such as autistic spectrum disorder and mood disorders? Epilepsy Behav 2017; 77:106-113. [PMID: 29107450 PMCID: PMC9835466 DOI: 10.1016/j.yebeh.2017.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/16/2017] [Indexed: 01/16/2023]
Abstract
Epilepsy is a neurologic condition which often occurs with other neurologic and psychiatric disorders. The relation between epilepsy and these conditions is complex. Some population-based studies have identified a bidirectional relation, whereby not only patients with epilepsy are at increased risk of suffering from some of these neurologic and psychiatric disorders (migraine, stroke, dementia, autism, depression, anxiety disorders, Attention deficit hyperactivity disorder (ADHD), and psychosis), but also patients with these conditions are at increased risk of suffering from epilepsy. The existence of common pathogenic mechanisms has been postulated as a potential explanation of this phenomenon. To reassess the relationships between neurological and psychiatric conditions in general, and specifically autism, depression, Alzheimer's disease, schizophrenia, and epilepsy, a recent meeting brought together basic researchers and clinician scientists entitled "Epilepsy as a Network Disorder." This was the fourth in a series of conferences, the "Fourth International Halifax Conference and Retreat". This manuscript summarizes the proceedings on potential relations between Epilepsy on the one hand and autism and depression on the other. A companion manuscript provides a summary of the proceedings about the relation between epilepsy and Alzheimer's disease and schizophrenia, closed by the role of translational research in clarifying these relationships. The review of the topics in these two manuscripts will provide a better understanding of the mechanisms operant in some of the common neurologic and psychiatric comorbidities of epilepsy.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th Street, Room #1324, Miami, FL 33136, USA.
| | - Helen Scharfman
- New York University Langone Medical Center, New York, NY 10016, USA; The Nathan Kline Institute, Orangeburg, NY, USA
| | - Nathalie Jette
- Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON M4G 1R8, Canada
| | - Christophe Bernard
- NS - Institute de Neurosciences des Systemes, UMR INSERM 1106, Aix-Marseille Université, Equipe Physionet, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | - Carol Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Peter Camfield
- Department of Pediatrics, Dalhousie University Halifax, Nova Scotia, Canada
| | - Karen Legg
- Division of Neurology, Department of Medicine, Halifax Infirmary, Halifax B3H4R2, Nova Scotia, Canada
| | - Ilan Dinstein
- Departments of Psychology and Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Peter Giacobbe
- Centre for Mental Health, University of Toronto, University Health Network, Canada
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain & Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Departments of Medical Neuroscience and Pediatrics, Faculty of Medicine, Dalhousie University Halifax, NS, Canada
| | - Bernd Pohlmann-Eden
- Brain Repair Center, Life Science Research Institute, Dalhousie University, Room 229, PO Box 15000, Halifax, Nova Scotia B3H4R2, Canada
| |
Collapse
|
25
|
Bueno-Junior LS, Ruggiero RN, Rossignoli MT, Del Bel EA, Leite JP, Uchitel OD. Acetazolamide potentiates the afferent drive to prefrontal cortex in vivo. Physiol Rep 2017; 5:5/1/e13066. [PMID: 28087816 PMCID: PMC5256155 DOI: 10.14814/phy2.13066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022] Open
Abstract
The knowledge on real-time neurophysiological effects of acetazolamide is still far behind the wide clinical use of this drug. Acetazolamide - a carbonic anhydrase inhibitor - has been shown to affect the neuromuscular transmission, implying a pH-mediated influence on the central synaptic transmission. To start filling such a gap, we chose a central substrate: hippocampal-prefrontal cortical projections; and a synaptic phenomenon: paired-pulse facilitation (a form of synaptic plasticity) to probe this drug's effects on interareal brain communication in chronically implanted rats. We observed that systemic acetazolamide potentiates the hippocampal-prefrontal paired-pulse facilitation. In addition to this field electrophysiology data, we found that acetazolamide exerts a net inhibitory effect on prefrontal cortical single-unit firing. We propose that systemic acetazolamide reduces the basal neuronal activity of the prefrontal cortex, whereas increasing the afferent drive it receives from the hippocampus. In addition to being relevant to the clinical and side effects of acetazolamide, these results suggest that exogenous pH regulation can have diverse impacts on afferent signaling across the neocortex.
Collapse
Affiliation(s)
- Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Brazil
| | - Elaine A Del Bel
- Department of Morphology, Physiology and Stomatology, Dentistry School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Brazil
| | - Osvaldo D Uchitel
- Department of Physiology, Molecular and Cell Biology, Institute of Physiology Molecular Biology and Neuroscience University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
26
|
Barry JM, Holmes GL. Why Are Children With Epileptic Encephalopathies Encephalopathic? J Child Neurol 2016; 31:1495-1504. [PMID: 27515946 PMCID: PMC5410364 DOI: 10.1177/0883073816662140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
The epileptic encephalopathies are devastating conditions characterized by frequent seizures, severely abnormal electroencephalograms (EEGs), and cognitive slowing or regression. The cognitive impairment in the epileptic encephalopathies may be more concerning to the patient and parents than the epilepsy itself. There is increasing recognition that the cognitive comorbidity can be both chronic, primarily due to the underlying etiology of the epilepsy, and dynamic or evolving because of recurrent seizures, interictal spikes, and antiepileptic drugs. Much of scholars' understanding of the neurophysiological underpinnings of cognitive dysfunction in the epileptic encephalopathies comes from rodent studies. Frequent seizures and interictal EEG discharges in rats lead to considerable spatial and social-cognitive deficits. Paralleling these cognitive deficits are dyscoordination of dynamic neural activity within and between the neural networks that subserve normal cognitive processes.
Collapse
Affiliation(s)
- Jeremy M Barry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
27
|
Barry JM, Tian C, Spinella A, Page M, Holmes GL. Spatial cognition following early-life seizures in rats: Performance deficits are dependent on task demands. Epilepsy Behav 2016; 60:1-6. [PMID: 27152463 PMCID: PMC4912871 DOI: 10.1016/j.yebeh.2016.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/25/2016] [Indexed: 11/20/2022]
Abstract
Cognitive impairment is a common comorbidity in childhood epilepsy. Studies in rodents have demonstrated that frequent seizures during the first weeks of life result in impaired spatial cognition when the rats are tested as juvenile or adults. To determine if spatial cognitive deficits following early-life seizures are task-specific or similar across spatial tasks, we compared the effects of early-life seizures in two spatial assays: 1) the Morris water maze, a hippocampal-dependent task of spatial cognition and 2) the active avoidance task, a task that associates an aversive shock stimulus with a static spatial location that requires intact hippocampal-amygdala networks. Rats with early-life seizures tested as adults did not differ from control rats in the water maze. However, while animals with early-life seizures showed some evidence of learning the active avoidance task, they received significantly more shocks in later training trials, particularly during the second training day, than controls. One possibility for the performance differences between the tasks is that the active avoidance task requires multiple brain regions and that interregional communication could be affected by alterations in white matter integrity. However, there were no measurable group differences with regard to levels of myelination. The study suggests that elucidation of mild cognitive deficits seen following early-life seizures may be dependent on task features of active avoidance.
Collapse
Affiliation(s)
- Jeremy M Barry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | - Chengju Tian
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Anthony Spinella
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Matias Page
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
28
|
What is more harmful, seizures or epileptic EEG abnormalities? Is there any clinical data? Epileptic Disord 2016; 16 Spec No 1:S12-22. [PMID: 25323031 DOI: 10.1684/epd.2014.0686] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cognitive impairment is a common and often devastating co-morbidity of childhood epilepsy. While the aetiology of the epilepsy is a critical determinant of cognitive outcome, there is considerable evidence from both rodent and human studies that indicate that seizures and interictal epileptiform abnormalities can contribute to cognitive impairment. A critical feature of childhood epilepsy is that the seizures and epileptiform activity occur in a brain with developing, plastic neuronal circuits. The consequences of seizures and interictal epileptiform activity in the developing brain differ from similar paroxysmal events occurring in the relatively fixed circuitry of the mature brain. In animals, it is possible to study interictal spikes independently from seizures, and it has been demonstrated that interictal spikes are as detrimental as seizures during brain development. In the clinic, distinguishing the differences between interictal spikes and seizures is more difficult, since both typically occur together. However, both seizures and interictal spikes result in transient cognitive impairment. Recurrent seizures, particularly when frequent, can lead to cognitive regression. While the clinical data linking interictal spikes to persistent cognitive impairment is limited, interictal spikes occurring during the formation and stabilization of neuronal circuits likely contribute to aberrant connectivity. There is insufficient clinical literature to indicate whether interictal spikes are more detrimental than seizures during brain development.
Collapse
|
29
|
Barry JM, Sakkaki S, Barriere SJ, Patterson KP, Lenck-Santini PP, Scott RC, Baram TZ, Holmes GL. Temporal Coordination of Hippocampal Neurons Reflects Cognitive Outcome Post-febrile Status Epilepticus. EBioMedicine 2016; 7:175-90. [PMID: 27322471 PMCID: PMC4909381 DOI: 10.1016/j.ebiom.2016.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/02/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023] Open
Abstract
The coordination of dynamic neural activity within and between neural networks is believed to underlie normal cognitive processes. Conversely, cognitive deficits that occur following neurological insults may result from network discoordination. We hypothesized that cognitive outcome following febrile status epilepticus (FSE) depends on network efficacy within and between fields CA1 and CA3 to dynamically organize cell activity by theta phase. Control and FSE rats were trained to forage or perform an active avoidance spatial task. FSE rats were sorted by those that were able to reach task criterion (FSE-L) and those that could not (FSE-NL). FSE-NL CA1 place cells did not exhibit phase preference in either context and exhibited poor cross-theta interaction between CA1 and CA3. FSE-L and control CA1 place cells exhibited phase preference at peak theta that shifted during active avoidance to the same static phase preference observed in CA3. Temporal coordination of neuronal activity by theta phase may therefore explain variability in cognitive outcome following neurological insults in early development.
Collapse
Affiliation(s)
- Jeremy M Barry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States.
| | - Sophie Sakkaki
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Sylvain J Barriere
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Katelin P Patterson
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, California, United States
| | | | - Rod C Scott
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States; Department of Neurology, University College London, Institute of Child Health, United Kingdom
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, California, United States
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
30
|
Abstract
Epilepsy is a complex disorder, which involves much more than seizures, encompassing a range of associated comorbid health conditions that can have significant health and quality-of-life implications. Of these comorbidities, cognitive impairment is one of the most common and distressing aspects of epilepsy. Clinical studies have demonstrated that refractory seizures, resistant to antiepileptic drugs, and occurring early in life have significant adverse effects on cognitive function. Much of what has been learned about the neurobiological underpinnings of cognitive impairment following early-life seizures has come from animal models. Although early-life seizures in rodents do not result in cell loss, seizures cause in changes in neurogenesis and synaptogenesis and alteration of excitatory or inhibitory balance, network connectivity and temporal coding. These morphological and physiological changes are accompanied by parallel impairment in cognitive skills. This increased understanding of the pathophysiological basis of seizure-induced cognitive deficits should allow investigators to develop novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT.
| |
Collapse
|
31
|
Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med 2016; 22:641-8. [PMID: 27111281 PMCID: PMC4899094 DOI: 10.1038/nm.4084] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Thomas Thesen
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA.,Center for Neural Science, New York University, School of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Abstract
Epilepsy and autistic spectrum disorder frequently coexist in the same individual. Electroencephalogram (EEG) epileptiform activity is also present at a substantially higher rate in children with autism than normally developing children. As with epilepsy, there are a multitude of genetic and environmental factors that can result in autistic spectrum disorder. There is growing consensus from both animal and clinical studies that autism is a disorder of aberrant connectivity. As measured with functional magnetic resonance imaging (MRI) and EEG, the brain in autistic spectrum disorder may be under- or overconnected or have a mixture of over- and underconnectivity. In the case of comorbid epilepsy and autism, an imbalance of the excitatory/inhibitory (E/I) ratio in selected regions of the brain may drive overconnectivity. Understanding the mechanism by which altered connectivity in individuals with comorbid epilepsy and autistic spectrum disorder results in the behaviors specific to the autistic spectrum disorder remains a challenge.
Collapse
Affiliation(s)
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
33
|
Broggini ACS, Esteves IM, Romcy-Pereira RN, Leite JP, Leão RN. Pre-ictal increase in theta synchrony between the hippocampus and prefrontal cortex in a rat model of temporal lobe epilepsy. Exp Neurol 2016; 279:232-242. [PMID: 26953232 DOI: 10.1016/j.expneurol.2016.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022]
Abstract
The pathologically synchronized neuronal activity in temporal lobe epilepsy (TLE) can be triggered by network events that were once normal. Under normal conditions, hippocampus and medial prefrontal cortex (mPFC) work in synchrony during a variety of cognitive states. Abnormal changes in this circuit may aid to seizure onset and also help to explain the high association of TLE with mood disorders. We used a TLE rat model generated by perforant path (PP) stimulation to understand whether synchrony between dorsal hippocampal and mPFC networks is altered shortly before a seizure episode. We recorded hippocampal and mPFC local field potentials (LFPs) of animals with spontaneous recurrent seizures (SRSs) to verify the connectivity between these regions. We showed that SRSs decrease hippocampal theta oscillations whereas coherence in theta increases over time prior to seizure onset. This increase in synchrony is accompanied by a stronger coupling between hippocampal theta and mPFC gamma oscillation. Finally, using Granger causality we showed that hippocampus/mPFC synchrony increases in the pre-ictal phase and this increase is likely to be caused by hippocampal networks. The dorsal hippocampus is not directly connected to the mPFC; however, the functional coupling in theta between these two structures rises pre-ictally. Our data indicates that the increase in synchrony between dorsal hippocampus and mPFC may be predictive of seizures and may help to elucidate the network mechanisms that lead to seizure generation.
Collapse
Affiliation(s)
- Ana Clara Silveira Broggini
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900 Ribeirao Preto, SP, Brazil.
| | - Ingrid Miranda Esteves
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900 Ribeirao Preto, SP, Brazil
| | - Rodrigo Neves Romcy-Pereira
- Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil
| | - João Pereira Leite
- Department of Neurosciences and Behavior, Ribeirao Preto Medical School, University of Sao Paulo (USP), Av Bandeirantes 3900, CEP 14049-900 Ribeirao Preto, SP, Brazil
| | - Richardson Naves Leão
- Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, 59056-450 Natal, RN, Brazil; Unit of Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Abstract
The challenges to individuals with epilepsy extend far beyond the seizures. Co-morbidities in epilepsy are very common and are often more problematic to individuals than the seizures themselves. In this review, the pathophysiological mechanisms of cognitive impairment are discussed. While aetiology of the epilepsy has a significant influence on cognition, there is increasing evidence that prolonged or recurrent seizures can cause or exacerbate cognitive impairment. Alterations in signalling pathways and neuronal network function play a major role in both the pathophysiology of epilepsy and the epilepsy comorbidities. However, the biological underpinnings of cognitive impairment can be distinct from the pathophysiological processes that cause seizures.
Collapse
|
35
|
Lee DJ, Gurkoff GG, Izadi A, Seidl SE, Echeverri A, Melnik M, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Septohippocampal Neuromodulation Improves Cognition after Traumatic Brain Injury. J Neurotrauma 2015; 32:1822-32. [PMID: 26096267 DOI: 10.1089/neu.2014.3744] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) often results in persistent attention and memory deficits that are associated with hippocampal dysfunction. Although deep brain stimulation (DBS) is used to treat neurological disorders related to motor dysfunction, the effectiveness of stimulation to treat cognition remains largely unknown. In this study, adult male Harlan Sprague-Dawley rats underwent a lateral fluid percussion or sham injury followed by implantation of bipolar electrodes in the medial septal nucleus (MSN) and ipsilateral hippocampus. In the first week after injury, there was a significant decrease in hippocampal theta oscillations that correlated with decreased object exploration and impaired performance in the Barnes maze spatial learning task. Continuous 7.7 Hz theta stimulation of the medial septum significantly increased hippocampal theta oscillations, restored normal object exploration, and improved spatial learning in injured animals. There were no benefits with 100 Hz gamma stimulation, and stimulation of sham animals at either frequency did not enhance performance. We conclude, therefore, that there was a theta frequency-specific benefit of DBS that restored cognitive function in brain-injured rats. These data suggest that septal theta stimulation may be an effective and novel neuromodulatory therapy for treatment of persistent cognitive deficits following TBI.
Collapse
Affiliation(s)
- Darrin J Lee
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Gene G Gurkoff
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Ali Izadi
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | | | - Angela Echeverri
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Mikhail Melnik
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Robert F Berman
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California.,2 Center for Neuroscience, University of California , Davis, Sacramento, California
| | - Arne D Ekstrom
- 2 Center for Neuroscience, University of California , Davis, Sacramento, California
| | - J Paul Muizelaar
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California
| | - Bruce G Lyeth
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California.,2 Center for Neuroscience, University of California , Davis, Sacramento, California
| | - Kiarash Shahlaie
- 1 Department of Neurological Surgery, University of California , Davis, Sacramento, California.,2 Center for Neuroscience, University of California , Davis, Sacramento, California
| |
Collapse
|
36
|
Holmes GL, Tian C, Hernan AE, Flynn S, Camp D, Barry J. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide. Neurobiol Dis 2015; 77:204-19. [PMID: 25766676 PMCID: PMC4682568 DOI: 10.1016/j.nbd.2015.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 01/02/2023] Open
Abstract
There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P)days 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-P25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure threshold. Taken together these findings indicate that early-life seizures alter the development of oscillations and result in autistic-like behaviors. The altered communication between these brain regions could reflect the physiological underpinnings underlying social cognitive deficits seen in autism spectrum disorders.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA.
| | - Chengju Tian
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Amanda E Hernan
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Sean Flynn
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Devon Camp
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Jeremy Barry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| |
Collapse
|
37
|
Triplett RL, Velanova K, Luna B, Padmanabhan A, Gaillard WD, Asato MR. Investigating inhibitory control in children with epilepsy: an fMRI study. Epilepsia 2014; 55:1667-76. [PMID: 25223606 PMCID: PMC4206566 DOI: 10.1111/epi.12768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Deficits in executive function are noted increasingly in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional magnetic resonance imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. METHODS This cross-sectional study consisted of 34 children aged 8-17 years: 17 with well-controlled epilepsy and 17 age- and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood oxygen level-dependent (BOLD) activation. RESULTS Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (nonreward) and reward trials, but exhibited significant task improvement during reward trials. Post hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. SIGNIFICANCE Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation.
Collapse
Affiliation(s)
| | - Katerina Velanova
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh PA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh PA
- Department of Psychology, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Aarthi Padmanabhan
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto CA
| | - William D. Gaillard
- Center for Neuroscience, Children’s National Medical Center, George Washington University School of Medicine and Health Sciences, Washington DC
| | - Miya R. Asato
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh PA
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh PA
| |
Collapse
|
38
|
Titiz AS, Mahoney JM, Testorf ME, Holmes GL, Scott RC. Cognitive impairment in temporal lobe epilepsy: role of online and offline processing of single cell information. Hippocampus 2014; 24:1129-45. [PMID: 24799359 DOI: 10.1002/hipo.22297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
Abstract
Cognitive impairment is a common comorbidity in temporal lobe epilepsy (TLE) and is often considered more detrimental to quality of life than seizures. While it has been previously shown that the encoding of memory during behavior is impaired in the pilocarpine model of TLE in rats, how this information is consolidated during the subsequent sleep period remains unknown. In this study, we first report marked deficits in spatial memory performance and severe cell loss in the CA1 layer of the hippocampus lower spatial coherence of firing in TLE rats. We then present the first evidence that the reactivation of behavior-driven patterns of activity of CA1 place cells in the hippocampus is intact in TLE rats. Using a template-matching method, we discovered that real-time (3-5 s) reactivation structure was intact in TLE rats. Furthermore, we estimated the entropy rate of short time scale (∼250 ms) bursting activity using block entropies and found that significant, extended temporal correlations exist in both TLE and control rats. Fitting a first-order Markov Chain model to these bursting time series, we found that long sequences derived from behavior were significantly enriched in the Markov model over corresponding models fit on randomized data confirming the presence of replay in shorter time scales. We propose that the persistent consolidation of poor spatial information in both real time and during bursting activity may contribute to memory impairments in TLE rats.
Collapse
Affiliation(s)
- A S Titiz
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | | | | | | |
Collapse
|
39
|
Bonilha L, Tabesh A, Dabbs K, Hsu DA, Stafstrom CE, Hermann BP, Lin JJ. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy. Hum Brain Mapp 2014; 35:3661-72. [PMID: 24453089 DOI: 10.1002/hbm.22428] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/16/2013] [Accepted: 11/01/2013] [Indexed: 12/22/2022] Open
Abstract
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment.
Collapse
Affiliation(s)
- Leonardo Bonilha
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | | | | | | | | | | | | |
Collapse
|
40
|
Hernan AE, Alexander A, Jenks KR, Barry J, Lenck-Santini PP, Isaeva E, Holmes GL, Scott RC. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol Dis 2013; 63:25-34. [PMID: 24269731 DOI: 10.1016/j.nbd.2013.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/10/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022] Open
Abstract
There is a well-described association between childhood epilepsy and pervasive cognitive and behavioral deficits. Often these children not only have ictal EEG events, but also frequent interictal abnormalities. The precise role of these interictal discharges in cognition remains unclear. In order to understand the relationship between frequent epileptiform discharges during neurodevelopment and cognition later in life, we developed a model of frequent focal interictal spikes (IIS). Postnatal day (p) 21 rats received injections of bicuculline methiodine into the prefrontal cortex (PFC). Injections were repeated in order to achieve 5 consecutive days of transient inhibitory/excitatory imbalance resulting in IIS. Short-term plasticity (STP) and behavioral outcomes were studied in adulthood. IIS is associated with a significant increase in STP bilaterally in the PFC. IIS rats did not show working memory deficits, but rather showed marked inattentiveness without significant alterations in motivation, anxiety or hyperactivity. Rats also demonstrated significant deficits in social behavior. We conclude that GABAergic blockade during early-life and resultant focal IIS in the PFC disrupt neural networks and are associated with long-term consequences for behavior at a time when IIS are no longer present, and thus may have important implications for ADHD and autism spectrum disorder associated with childhood epilepsy.
Collapse
Affiliation(s)
- Amanda E Hernan
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405.
| | - Abigail Alexander
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kyle R Jenks
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jeremy Barry
- Department of Neurology, Program in Experimental and Molecular Medicine Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405
| | | | - Elena Isaeva
- State Key Laboratory for Molecular and Cellular Biology, Kiev 01601, Ukraine; Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405
| | - Rod C Scott
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA 05405; University College London, Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
41
|
Mlsna LM, Koh S. Maturation-dependent behavioral deficits and cell injury in developing animals during the subacute postictal period. Epilepsy Behav 2013; 29:190-7. [PMID: 23973645 PMCID: PMC3927371 DOI: 10.1016/j.yebeh.2013.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/17/2022]
Abstract
Prolonged early-life seizures are associated with disruptions of affective and cognitive function. Postictal disturbances, temporary functional deficits that persist for hours to days after seizures, have not yet been thoroughly characterized. Here, we used kainic acid (KA) to induce status epilepticus (SE) in immature rats at three developmental stages (postnatal day (P) 15, 21, or 30) and subsequently assessed spatial learning and memory in a Barnes maze, exploratory behavior in an open field, and the spatiotemporal distribution of cell injury during the first 7-10 days of the postictal period. At 1 day post-SE, P15-SE rats showed no deficit in the Barnes maze but were hyperexploratory in an open field compared with their littermate controls. In contrast, P21- and P30-SE rats exhibited markedly impaired performance in the Barnes maze and exhibited significantly reduced open field exploration suggestive of anxiety-like behavior. These behavioral changes were transient in P15 rats but more persistent in P21 and enduring in P30 rats after KA-SE. The time course of behavioral deficits in P21 and P30 rats was temporally correlated with the presence of neuronal injury in the lateral septal nuclei, amygdala, and ventral subiculum/CA1, regions involved in modulation of the hypothalamic-pituitary-adrenal stress response.
Collapse
Affiliation(s)
- Lauren M Mlsna
- Neurobiology Program, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60614, USA
| | | |
Collapse
|
42
|
Richard GR, Titiz A, Tyler A, Holmes GL, Scott RC, Lenck-Santini PP. Speed modulation of hippocampal theta frequency correlates with spatial memory performance. Hippocampus 2013; 23:1269-79. [PMID: 23832676 DOI: 10.1002/hipo.22164] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 11/11/2022]
Abstract
Hippocampal theta rhythm is believed to play a critical role in learning and memory. In animal models of temporal lobe epilepsy (TLE), there is evidence that alterations of hippocampal theta oscillations are involved in the cognitive impairments observed in this model. However, hippocampal theta frequency and amplitude at both the local field potential (LFP) and single unit level are strongly modulated by running speed, suggesting that the integration of locomotor information into memory processes may also be critical for hippocampal processing. Here, we investigate whether hippocampal speed-theta integration influences spatial memory and whether it could account for the memory deficits observed in TLE rats. LFPs were recorded in both Control (CTR) and TLE rats as they were trained in a spatial alternation task. TLE rats required more training sessions to perform the task at CTR levels. Both theta frequency and power were significantly lower in the TLE group. In addition, speed/theta frequency correlation coefficients and regression slopes varied from session to session and were worse in TLE. Importantly, there was a strong relationship between speed/theta frequency parameters and performance. Our analyses reveal that speed/theta frequency correlation with performance cannot merely be explained by the direct influence of speed on behavior. Therefore, variations in the coordination of theta frequency with speed may participate in learning and memory processes. Impairments of this function could explain at least partially memory deficits in epilepsy.
Collapse
Affiliation(s)
- Gregory R Richard
- Department of Neurology, Geisel School of Medicine, Hanover, New Hampshire
| | | | | | | | | | | |
Collapse
|
43
|
Brooks-Kayal AR, Bath KG, Berg AT, Galanopoulou AS, Holmes GL, Jensen FE, Kanner AM, O'Brien TJ, Whittemore VH, Winawer MR, Patel M, Scharfman HE. Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 2013; 54 Suppl 4:44-60. [PMID: 23909853 PMCID: PMC3924317 DOI: 10.1111/epi.12298] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many symptoms of neurologic or psychiatric illness--such as cognitive impairment, depression, anxiety, attention deficits, and migraine--occur more frequently in people with epilepsy than in the general population. These diverse comorbidities present an underappreciated problem for people with epilepsy and their caregivers because they decrease quality of life, complicate treatment, and increase mortality. In fact, it has been suggested that comorbidities can have a greater effect on quality of life in people with epilepsy than the seizures themselves. There is increasing recognition of the frequency and impact of cognitive and behavioral comorbidities of epilepsy, highlighted in the 2012 Institute of Medicine report on epilepsy. Comorbidities have also been acknowledged, as a National Institutes of Health (NIH) Benchmark area for research in epilepsy. However, relatively little progress has been made in developing new therapies directed specifically at comorbidities. On the other hand, there have been many advances in understanding underlying mechanisms. These advances have made it possible to identify novel targets for therapy and prevention. As part of the International League Against Epilepsy/American Epilepsy Society workshop on preclinical therapy development for epilepsy, our working group considered the current state of understanding related to terminology, models, and strategies for therapy development for the comorbidities of epilepsy. Herein we summarize our findings and suggest ways to accelerate development of new therapies. We also consider important issues to improve research including those related to methodology, nonpharmacologic therapies, biomarkers, and infrastructure.
Collapse
Affiliation(s)
- Amy R Brooks-Kayal
- Departments of Pediatrics, Neurology and Pharmaceutical Sciences, University of Colorado Schools of Medicine and Pharmacy, Children's Hospital Colorado, Aurora, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Castelhano ASS, Cassane GDST, Scorza FA, Cysneiros RM. Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures. Front Behav Neurosci 2013; 7:36. [PMID: 23675329 PMCID: PMC3648772 DOI: 10.3389/fnbeh.2013.00036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/17/2013] [Indexed: 02/06/2023] Open
Abstract
Neonatal seizures are the most common manifestation of neurological dysfunction in the neonate. The prognosis of neonatal seizures is highly variable, and the controversy remains whether the severity, duration, or frequency of seizures may contribute to brain damage independently of its etiology. Animal data indicates that seizures during development are associated with a high probability of long-term adverse effects such as learning and memory impairment, behavioral changes and even epilepsy, which is strongly age dependent, as well as the severity, duration, and frequency of seizures. In preliminary studies, we demonstrated that adolescent male rats exposed to one-single neonatal status epilepticus (SE) episode showed social behavior impairment, and we proposed the model as relevant for studies of developmental disorders. Based on these facts, the goal of this study was to verify the existence of a persistent deficit and if the anxiety-related behavior could be associated with that impairment. To do so, male Wistar rats at 9 days postnatal were submitted to a single episode of SE by pilocarpine injection (380 mg/kg, i.p.) and control animals received saline (0.9%, 0.1 mL/10 g). It was possible to demonstrate that in adulthood, animals exposed to neonatal SE displayed low preference for social novelty, anxiety-related behavior, and increased stereotyped behavior in anxiogenic environment with no locomotor activity changes. On the balance, these data suggests that neonatal SE in rodents leads to altered anxiety-related and abnormal social behaviors.
Collapse
|
45
|
Simasathien T, Vadera S, Najm I, Gupta A, Bingaman W, Jehi L. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. Ann Neurol 2013; 73:646-54. [DOI: 10.1002/ana.23862] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Thitiwan Simasathien
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Sumeet Vadera
- Neurosurgery; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Imad Najm
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Ajay Gupta
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - William Bingaman
- Neurosurgery; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| | - Lara Jehi
- Departments of Neurology; Cleveland Clinic Epilepsy Center; Cleveland Clinic; Cleveland; OH
| |
Collapse
|
46
|
Addis L, Lin JJ, Pal DK, Hermann B, Caplan R. Imaging and genetics of language and cognition in pediatric epilepsy. Epilepsy Behav 2013; 26:303-12. [PMID: 23116771 PMCID: PMC3732317 DOI: 10.1016/j.yebeh.2012.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/19/2022]
Abstract
This paper presents translational aspects of imaging and genetic studies of language and cognition in children with epilepsy of average intelligence. It also discusses current unanswered translational questions in each of these research areas. A brief review of multimodal imaging and language study findings shows that abnormal structure and function, as well as plasticity and reorganization in language-related cortical regions, are found both in children with epilepsy with normal language skills and in those with linguistic deficits. The review on cognition highlights that multiple domains of impaired cognition and abnormalities in brain structure and/or connectivity are evident early on in childhood epilepsy and might be specific for epilepsy syndrome. The description of state-of-the-art genetic analyses that can be used to explain the convergence of language impairment and Rolandic epilepsy includes a discussion of the methodological difficulties involved in these analyses. Two junior researchers describe how their current and planned studies address some of the unanswered translational questions regarding cognition and imaging and the genetic analysis of speech sound disorder, reading, and centrotemporal spikes in Rolandic epilepsy.
Collapse
Affiliation(s)
- Laura Addis
- Institute of Psychiatry, University of London, London, UK
| | | | | | | | | |
Collapse
|
47
|
Pharmacoresistance and Cognitive Delays in Children: A Bidirectional Relationship. Epilepsy Curr 2013; 13:73-5. [DOI: 10.5698/1535-7597-13.2.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Hernan AE, Holmes GL, Isaev D, Scott RC, Isaeva E. Altered short-term plasticity in the prefrontal cortex after early life seizures. Neurobiol Dis 2012; 50:120-6. [PMID: 23064435 DOI: 10.1016/j.nbd.2012.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/30/2012] [Accepted: 10/03/2012] [Indexed: 01/31/2023] Open
Abstract
Seizures during development are a relatively common occurrence and are often associated with poor cognitive outcomes. Recent studies show that early life seizures alter the function of various brain structures and have long-term consequences on seizure susceptibility and behavioral regulation. While many neocortical functions could be disrupted by epileptic seizures, we have concentrated on studying the prefrontal cortex (PFC) as disturbance of PFC functions is involved in numerous co-morbid disorders associated with epilepsy. In the present work we report an alteration of short-term plasticity in the PFC in rats that have experienced early life seizures. The most robust alteration occurs in the layer II/III to layer V network of neurons. However short-term plasticity of layer V to layer V network was also affected, indicating that the PFC function is broadly influenced by early life seizures. These data strongly suggest that repetitive seizures early in development cause substantial alteration in PFC function, which may be an important component underlying cognitive deficits in individuals with a history of seizures during development.
Collapse
Affiliation(s)
- A E Hernan
- Department of Neurology, Neuroscience Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Epilepsy is a common neurological disorder that is complicated by psychiatric, cognitive, and social comorbidities that have become a major target of concern and investigation in view of their adverse effect on the course and quality of life. In this report we define the specific psychiatric, cognitive, and social comorbidities of paediatric and adult epilepsy, their epidemiology, and real life effects; examine the relation between epilepsy syndromes and the risk of neurobehavioural comorbidities; address the lifespan effect of epilepsy on brain neurodevelopment and brain ageing and the risk of neurobehavioural comorbidities; consider the overarching effect of broader brain disorders on both epilepsy and neurobehavioural comorbidities; examine directions of causality and the contribution of selected epilepsy-related characteristics; and outline clinic-friendly screening approaches for these problems and recommended pharmacological, behavioural, and educational interventions.
Collapse
Affiliation(s)
- Jack J. Lin
- Department of Neurology, University of California at Irvine, Irvine, California, USA
| | - Marco Mula
- Amedeo Avogadro University, Novara, Italy
| | - Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
50
|
Canuet L, Tellado I, Couceiro V, Fraile C, Fernandez-Novoa L, Ishii R, Takeda M, Cacabelos R. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study. PLoS One 2012; 7:e46289. [PMID: 23050006 PMCID: PMC3457973 DOI: 10.1371/journal.pone.0046289] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/28/2012] [Indexed: 01/07/2023] Open
Abstract
Background The apolipoprotein E epsilon 4 (APOE-4) is associated with a genetic vulnerability to Alzheimer's disease (AD) and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called “lagged phase synchronization”. Methodology/Principal Findings Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. Conclusions/Significance In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially represent neurophysiological or phenotypic markers of AD, and aid in early detection of the disorder.
Collapse
Affiliation(s)
- Leonides Canuet
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, Corunna, Spain.
| | | | | | | | | | | | | | | |
Collapse
|