1
|
Zhu H, Uno H, Matsuba K, Hamachi I. Profiling Proteins Involved in Peroxynitrite Homeostasis Using ROS/RNS Conditional Proteomics. J Am Chem Soc 2025; 147:7305-7316. [PMID: 39988859 DOI: 10.1021/jacs.4c14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Peroxynitrite (ONOO-), the product of the diffusion-controlled reaction of superoxide (O2•-) with nitric oxide (NO•), plays a crucial role in oxidative and nitrative stress and modulates key physiological processes such as redox signaling. While biological ONOO- is conventionally analyzed using 3-nitrotyrosine antibodies and fluorescent sensors, such probes lack specificity and sensitivity, making high-throughput and comprehensive profiling of ONOO--associated proteins challenging. In this study, we used a conditional proteomics approach to investigate ONOO- homeostasis by identifying its protein neighbors in cells. We developed Peroxynitrite-responsive protein Labeling reagents (Porp-L) and, for the first time, discovered 2,6-dichlorophenol as an ideal moiety that can be selectively and rapidly activated by ONOO- for labeling of proximal proteins. The reaction of Porp-L with ONOO- generated several short-lived reactive intermediates that can modify Tyr, His, and Lys residues on the protein surface. We have demonstrated the Porp-L-based conditional proteomics in immune-stimulated macrophages, which indeed identified proteins known to be involved in the generation and modification of ONOO- and revealed the endoplasmic reticulum (ER) as a ONOO- hot spot. Moreover, we discovered a previously unknown role for Ero1a, an ER-resident protein, in the formation of ONOO-. Overall, Porp-L represent a promising research tool for advancing our understanding of the biological roles of ONOO-.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroaki Uno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoichi Matsuba
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
2
|
Li W, Chen Q, Peng C, Yang D, Liu S, Lv Y, Jiang L, Xu S, Huang L. Roles of the Receptor for Advanced Glycation End Products and Its Ligands in the Pathogenesis of Alzheimer's Disease. Int J Mol Sci 2025; 26:403. [PMID: 39796257 PMCID: PMC11721675 DOI: 10.3390/ijms26010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction. This further promotes inflammatory responses and oxidative stress, ultimately leading to a range of age-related diseases. Given RAGE's significant role in AD, inhibitors that target RAGE and its ligands hold promise as new strategies for treating AD, offering new possibilities for alleviating and treating this serious neurodegenerative disease. This article reviews the various pathogenic mechanisms of AD and summarizes the literature on the interaction between RAGE and its ligands in various AD-related pathological processes, with a particular focus on the evidence and mechanisms by which RAGE interactions with AGEs, HMGB1, Aβ, and S100 proteins induce cognitive impairment in AD. Furthermore, the article discusses the principles of action of RAGE inhibitors and inhibitors targeting RAGE-ligand interactions, along with relevant clinical trials.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Qiuping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Chengjie Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Si Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Yanwen Lv
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Langqi Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (W.L.); (Q.C.); (C.P.); (D.Y.); (S.L.); (Y.L.); (L.J.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
3
|
Thorwald MA, Godoy‐Lugo JA, Garcia G, Silva J, Kim M, Christensen A, Mack WJ, Head E, O'Day PA, Benayoun BA, Morgan TE, Pike CJ, Higuchi‐Sanabria R, Forman HJ, Finch CE. Iron-associated lipid peroxidation in Alzheimer's disease is increased in lipid rafts with decreased ferroptosis suppressors, tested by chelation in mice. Alzheimers Dement 2025; 21:e14541. [PMID: 39876821 PMCID: PMC11775463 DOI: 10.1002/alz.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death. METHODS To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice. RESULTS AD brains had decreased antioxidant enzymes, including those mediated by glutathione (GSH). Subcellular analyses of AD brains showed greater oxidative damage and lower antioxidant enzymes in lipid rafts, the site of amyloid processing, than in the non-raft membrane fraction. Apolipoprotein E ε4 carriers had lower lipid raft yield with greater membrane oxidation. The hypothesized role of iron in AD pathology was tested in ApoEFAD mice by iron chelation with deferoxamine, which decreased fibrillar amyloid and lipid peroxidation, together with increased GSH-mediated antioxidants. DISCUSSION These novel molecular pathways highlight iron-mediated damage to lipid rafts during AD. HIGHLGHTS Alzheimer's disease (AD) brains have numerous markers for ferroptosis, including increased lipid peroxidation, reduced antioxidant levels, and increased iron storage. Lipid rafts in AD cases have increased oxidative damage and reduced antioxidant enzyme levels and activity which are most severe in apolipoprotein E ε4 carriers. Neuronal markers are correlated with lipid peroxidation, antioxidant defense, and iron signaling proteins suggesting that neuronal loss is linked to these events. Chelation of iron in the early-onset familial AD model reduces iron-mediated lipid peroxidation and fibrillar amyloid.
Collapse
Affiliation(s)
- Max A. Thorwald
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jose A. Godoy‐Lugo
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gilberto Garcia
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Justine Silva
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Minhoo Kim
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy Christensen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Peggy A. O'Day
- Life and Environmental Sciences DepartmentUniversity of CaliforniaMercedCaliforniaUSA
| | - Bérénice A. Benayoun
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Todd E. Morgan
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian J. Pike
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ryo Higuchi‐Sanabria
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Henry Jay Forman
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- School of Natural SciencesUniversity of California MercedMercedCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Dornsife CollegeUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Thorwald M, Godoy-Lugo JA, Garcia G, Silva J, Kim M, Christensen A, Mack WJ, Head E, O'Day PA, Benayoun BA, Morgan TE, Pike CJ, Higuchi-Sanabria R, Forman HJ, Finch CE. Iron associated lipid peroxidation in Alzheimers disease is increased in lipid rafts with decreased ferroptosis suppressors, tested by chelation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534324. [PMID: 37034750 PMCID: PMC10081222 DOI: 10.1101/2023.03.28.534324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimers disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death. To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed postmortem human brain and ApoEFAD mice. AD brains had decreased antioxidant enzymes, including those mediated by glutathione (GSH). Subcellular analyses of AD brains showed greater oxidative damage and lower antioxidant enzymes in lipid rafts, the site of amyloid processing, than in the non-raft membrane fraction. ApoE4 carriers had lower lipid raft yield with greater membrane oxidation. The hypothesized role of iron to AD pathology was tested in ApoEFAD mice by iron chelation with deferoxamine, which decreased fibrillar amyloid and lipid peroxidation, together with increased GSH-mediated antioxidants. These novel molecular pathways in iron mediated damage during AD.
Collapse
|
5
|
Hernandez J, Schäffer J, Herden C, Pflieger FJ, Reiche S, Körber S, Kitagawa H, Welter J, Michels S, Culmsee C, Bier J, Sommer N, Kang JX, Mayer K, Hecker M, Rummel C. n-3 Polyunsaturated Fatty Acids Modulate LPS-Induced ARDS and the Lung-Brain Axis of Communication in Wild-Type versus Fat-1 Mice Genetically Modified for Leukotriene B4 Receptor 1 or Chemerin Receptor 23 Knockout. Int J Mol Sci 2023; 24:13524. [PMID: 37686333 PMCID: PMC10487657 DOI: 10.3390/ijms241713524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Collapse
Affiliation(s)
- Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Sylvia Reiche
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Svenja Körber
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Hiromu Kitagawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Omiya, Osaka 535-8585, Japan
| | - Joelle Welter
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| | - Jens Bier
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Boston, MA 02129, USA
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| |
Collapse
|
6
|
Sierra-Martín A, Navascués J, Neubrand VE, Sepúlveda MR, Martín-Oliva D, Cuadros MA, Marín-Teva JL. LPS-stimulated microglial cells promote ganglion cell death in organotypic cultures of quail embryo retina. Front Cell Neurosci 2023; 17:1120400. [PMID: 37006469 PMCID: PMC10050569 DOI: 10.3389/fncel.2023.1120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
During development microglia colonize the central nervous system (CNS) and play an important role in programmed cell death, not only because of their ability to remove dead cells by phagocytosis, but also because they can promote the death of neuronal and glial cells. To study this process, we used as experimental systems the developing in situ quail embryo retina and organotypic cultures of quail embryo retina explants (QEREs). In both systems, immature microglia show an upregulation of certain inflammatory markers, e.g., inducible NO synthase (iNOS), and nitric oxide (NO) under basal conditions, which can be further enhanced with LPS-treatment. Hence, we investigated in the present study the role of microglia in promoting ganglion cell death during retinal development in QEREs. Results showed that LPS-stimulation of microglia in QEREs increases (i) the percentage of retinal cells with externalized phosphatidylserine, (ii) the frequency of phagocytic contacts between microglial and caspase-3-positive ganglion cells, (iii) cell death in the ganglion cell layer, and (iv) microglial production of reactive oxygen/nitrogen species, such as NO. Furthermore, iNOS inhibition by L-NMMA decreases cell death of ganglion cells and increases the number of ganglion cells in LPS-treated QEREs. These data demonstrate that LPS-stimulated microglia induce ganglion cell death in cultured QEREs by a NO-dependent mechanism. The fact that phagocytic contacts between microglial and caspase-3-positive ganglion cells increase suggests that this cell death might be mediated by microglial engulfment, although a phagocytosis-independent mechanism cannot be excluded.
Collapse
|
7
|
Lv YN, Cui Y, Zhang B, Huang SM. Sleep deficiency promotes Alzheimer's disease development and progression. Front Neurol 2022; 13:1053942. [PMID: 36588906 PMCID: PMC9795181 DOI: 10.3389/fneur.2022.1053942] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are a common health problem in modern society. Long-term sleep deficiency increases the risk for Alzheimer's disease. However, the exact mechanisms by which sleep deficiency affects Alzheimer's disease remain unclear. Therefore, we reviewed the relevant studies and investigated the role of sleep deprivation in Alzheimer's disease pathogenesis. Sleep deficiency was found to be associated with oxidative stress, β-amyloid protein deposition, tau hyperphosphorylation, and neuroinflammation, which are known to increase the risk for Alzheimer's disease. In addition, insufficient sleep also increases glucocorticoid levels, decreases brain-derived neurotrophic factor levels, and reduces the number of synapses in the central nervous system. These factors also promote Alzheimer's disease development and progression. The present study showed that a growing body of evidence supports an association between sleep disturbances and Alzheimer's disease. It discusses the role of sleep insufficiency in Alzheimer's disease pathogenesis, which may provide a theoretical basis for effective treatment and prevention strategies.
Collapse
Affiliation(s)
- Ya-Nan Lv
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medicine, School of Animal Science and Technology, Hainan University, Haikou, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Bo Zhang
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
9
|
Shrestha AP, Saravanakumar A, Konadu B, Madireddy S, Gibert Y, Vaithianathan T. Embryonic Hyperglycemia Delays the Development of Retinal Synapses in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23179693. [PMID: 36077087 PMCID: PMC9456524 DOI: 10.3390/ijms23179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ambalavanan Saravanakumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Program in Biology, Rhodes College, Memphis, TN 38112, USA
| | - Bridget Konadu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Saivikram Madireddy
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-2786
| |
Collapse
|
10
|
Hsieh CJ, Hou C, Zhu Y, Lee JY, Kohli N, Gallagher E, Xu K, Lee H, Li S, McManus MJ, Mach RH. [ 18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer's disease pathology in APP/PS1 mice. EJNMMI Res 2022; 12:43. [PMID: 35895177 PMCID: PMC9329498 DOI: 10.1186/s13550-022-00914-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of the most common neurodegenerative diseases, such as Alzheimer's disease (AD). However, tracking oxidative stress in the brain has proven difficult and impeded its use as a biomarker. Herein, we investigate the utility of a novel positron emission tomography (PET) tracer, [18F]ROStrace, as a biomarker of oxidative stress throughout the course of AD in the well-established APP/PS1 double-mutant mouse model. PET imaging studies were conducted in wild-type (WT) and APP/PS1 mice at 3 different time points, representing early (5 mo.), middle (10 mo.), and advanced (16 mo.) life (n = 6-12, per sex). Semi-quantitation SUVRs of the plateau phase (40-60 min post-injection; SUVR40-60) of ten brain subregions were designated by the Mirrione atlas and analyzed by Pmod. Statistical parametric mapping (SPM) was used to distinguish brain regions with elevated ROS in APP/PS1 relative to WT in both sexes. The PET studies were validated by ex vivo autoradiography and immunofluorescence with the parent compound, dihydroethidium. RESULTS [18F]ROStrace retention was increased in the APP/PS1 brain compared to age-matched controls by 10 mo. of age (p < 0.0001) and preceded the accumulation of oxidative damage in APP/PS1 neurons at 16 mo. (p < 0.005). [18F]ROStrace retention and oxidative damages were higher and occurred earlier in female APP/PS1 mice as measured by PET (p < 0.001), autoradiography, and immunohistochemistry (p < 0.05). [18F]ROStrace differences emerged midlife, temporally and spatially correlating with increased Aβ burden (r2 = 0.36; p = 0.0003), which was also greatest in the female brain (p < 0.001). CONCLUSIONS [18F]ROStrace identifies increased oxidative stress and neuroinflammation in APP/PS1 female mice, concurrent with increased amyloid burden midlife. Differences in oxidative stress during this crucial time may partially explain the sexual dimorphism in AD. [18F]ROStrace may provide a long-awaited tool to stratify at-risk patients who may benefit from antioxidant therapy prior to irreparable neurodegeneration.
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Catherine Hou
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yi Zhu
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Ji Youn Lee
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Neha Kohli
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Evan Gallagher
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kuiying Xu
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hsiaoju Lee
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shihong Li
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Meagan J. McManus
- grid.239552.a0000 0001 0680 8770Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Robert H. Mach
- grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
11
|
Whitmore CA, Haynes JR, Behof WJ, Rosenberg AJ, Tantawy MN, Hachey BC, Wadzinski BE, Spiller BW, Peterson TE, Paffenroth KC, Harrison FE, Beelman RB, Wijesinghe P, Matsubara JA, Pham W. Longitudinal Consumption of Ergothioneine Reduces Oxidative Stress and Amyloid Plaques and Restores Glucose Metabolism in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:742. [PMID: 35745661 PMCID: PMC9228400 DOI: 10.3390/ph15060742] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Ergothioneine (ERGO) is a unique antioxidant and a rare amino acid available in fungi and various bacteria but not in higher plants or animals. Substantial research data indicate that ERGO is a physiological antioxidant cytoprotectant. Different from other antioxidants that need to breach the blood-brain barrier to enter the brain parenchyma, a specialized transporter called OCTN1 has been identified for transporting ERGO to the brain. Purpose: To assess whether consumption of ERGO can prevent the progress of Alzheimer's disease (AD) on young (4-month-old) 5XFAD mice. Methods and materials: Three cohorts of mice were tested in this study, including ERGO-treated 5XFAD, non-treated 5XFAD, and WT mice. After the therapy, the animals went through various behavioral experiments to assess cognition. Then, mice were scanned with PET imaging to evaluate the biomarkers associated with AD using [11C]PIB, [11C]ERGO, and [18F]FDG radioligands. At the end of imaging, the animals went through cardiac perfusion, and the brains were isolated for immunohistology. Results: Young (4-month-old) 5XFAD mice did not show a cognitive deficit, and thus, we observed modest improvement in the treated counterparts. In contrast, the response to therapy was clearly detected at the molecular level. Treating 5XFAD mice with ERGO resulted in reduced amyloid plaques, oxidative stress, and rescued glucose metabolism. Conclusions: Consumption of high amounts of ERGO benefits the brain. ERGO has the potential to prevent AD. This work also demonstrates the power of imaging technology to assess response during therapy.
Collapse
Affiliation(s)
- Clayton A. Whitmore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R. Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William J. Behof
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adam J. Rosenberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mohammed N. Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian C. Hachey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA;
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
| | - Benjamin W. Spiller
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
| | - Todd E. Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Krista C. Paffenroth
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37233, USA; (B.E.W.); (B.W.S.); (K.C.P.)
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
| | - Fiona E. Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Department of Medicine, Diabetes, Endocrinology & Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert B. Beelman
- Department of Food Science, Center for Plant and Mushroom Foods for Health, Penn State University, University Park, PA 16802, USA;
| | - Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (P.W.); (J.A.M.)
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada; (P.W.); (J.A.M.)
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (C.A.W.); (J.R.H.); (W.J.B.); (A.J.R.); (M.N.T.); (T.E.P.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA;
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, Oppong A, Ricevuti G, Esposito C, Chirumbolo S, Pascale A. The Potential Role of Gut Microbiota in Alzheimer’s Disease: from Diagnosis to Treatment. Nutrients 2022; 14:nu14030668. [PMID: 35277027 PMCID: PMC8840394 DOI: 10.3390/nu14030668] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Gut microbiota is emerging as a key regulator of many disease conditions and its dysregulation is implicated in the pathogenesis of several gastrointestinal and extraintestinal disorders. More recently, gut microbiome alterations have been linked to neurodegeneration through the increasingly defined gut microbiota brain axis, opening the possibility for new microbiota-based therapeutic options. Although several studies have been conducted to unravel the possible relationship between Alzheimer’s Disease (AD) pathogenesis and progression, the diagnostic and therapeutic potential of approaches aiming at restoring gut microbiota eubiosis remain to be fully addressed. In this narrative review, we briefly summarize the role of gut microbiota homeostasis in brain health and disease, and we present evidence for its dysregulation in AD patients. Based on these observations, we then discuss how dysbiosis might be exploited as a new diagnostic tool in early and advanced disease stages, and we examine the potential of prebiotics, probiotics, fecal microbiota transplantation, and diets as complementary therapeutic interventions on disease pathogenesis and progression, thus offering new insights into the diagnosis and treatment of this devastating and progressive disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | | | - Claudia Alfano
- Department of Emergency Medicine and Surgery, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway;
| | - Abigail Oppong
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy;
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
13
|
Zhang Q, Liu Y, Wu J, Zeng L, Wei J, Fu S, Ye H, Li H, Gao Z. Structure and mechanism behind the inhibitory effect of water soluble metalloporphyrins on Aβ1-42 aggregation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01434j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the exact molecular mechanism of the pathogenesis of Alzheimer’s disease (AD) is still unclear, compounds that can inhibit the aggregation of amyloid-β peptide (Aβ1-42) or scavenge the highly toxic...
Collapse
|
14
|
Yang JH, Choi HP, Niu W, Azadzoi KM. Cellular Stress and Molecular Responses in Bladder Ischemia. Int J Mol Sci 2021; 22:ijms222111862. [PMID: 34769293 PMCID: PMC8584445 DOI: 10.3390/ijms222111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
The concept of bladder ischemia as a contributing factor to detrusor overactivity and lower urinary tract symptoms (LUTS) is evolving. Bladder ischemia as a consequence of pelvic arterial atherosclerosis was first documented in experimental models and later in elderly patients with LUTS. It was shown that early-stage moderate ischemia produces detrusor overactivity, while prolonged severe ischemia provokes changes consistent with detrusor underactivity. Recent studies imply a central role of cellular energy sensors, cellular stress sensors, and stress response molecules in bladder responses to ischemia. The cellular energy sensor adenosine monophosphate-activated protein kinase was shown to play a role in detrusor overactivity and neurodegeneration in bladder ischemia. The cellular stress sensors apoptosis signal-regulating kinase 1 and caspase-3 along with heat shock proteins were characterized as important contributing factors to smooth muscle structural modifications and apoptotic responses in bladder ischemia. Downstream pathways seem to involve hypoxia-inducible factor, transforming growth factor beta, vascular endothelial growth factor, and nerve growth factor. Molecular responses to bladder ischemia were associated with differential protein expression, the accumulation of non-coded amino acids, and post-translational modifications of contractile proteins and stress response molecules. Further insight into cellular stress responses in bladder ischemia may provide novel diagnostic and therapeutic targets against LUTS.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA;
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Han-Pil Choi
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Wanting Niu
- Research Section, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Kazem M. Azadzoi
- Departments of Urology and Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA
- Correspondence: ; Tel.: +1-(857)-364-5602
| |
Collapse
|
15
|
Pandey SN, Rangra NK, Singh S, Arora S, Gupta V. Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2718-2728. [PMID: 34010562 DOI: 10.1021/acschemneuro.1c00206] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that causes dementia by impairing mental capacity growth and disrupting neurocognitive activity. Despite recent advancements in AD therapy, therapeutic effectiveness has been small, noncurative, and susceptible to drug resistance. The reality that AD's origin remains unknown and that the blood-brain barrier limits treatment effectiveness are two significant impediments to science. Plants are repositories for novel chemical entities, which provide an exciting avenue for Alzheimer's disease studies. Although several herbal remedies are unquestionably efficient, only a small number have been clinically tested for their active chemical constituents and biological activities. Using published data in the literature, we summarized commonly used medicinal plants and herbs and their phyto components for the care and diagnosis of Alzheimer's disease as an alternative therapy. In this, we summarize the main compounds found in 30 different herbal medicines that target neurodegenerative diseases. Using the experimental study of physicochemical properties, we put forward a hypothesis about potential medicinal plants and the management of Alzheimer's disease. The summary analysis demonstrates that conventional herbal medicines produce compounds with physicochemical properties with a high degree of similarities with existing approved medicines.
Collapse
Affiliation(s)
- Surya Nath Pandey
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Naresh Kumar Rangra
- Faculty of Medical Sciences & Health, Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Sima Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Saahil Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Varun Gupta
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
16
|
A high-performance genetically encoded fluorescent biosensor for imaging physiological peroxynitrite. Cell Chem Biol 2021; 28:1542-1553.e5. [PMID: 33581056 DOI: 10.1016/j.chembiol.2021.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Peroxynitrite is a reactive nitrogen species (RNS) that plays critical roles in signal transduction, stress response, and numerous human diseases. Advanced molecular tools that permit the selective, sensitive, and noninvasive detection of peroxynitrite are essential for understanding its pathophysiological functions. Here, we present pnGFP-Ultra, a high-performance, reaction-based, genetically encodable biosensor for imaging peroxynitrite in live cells. pnGFP-Ultra features a p-boronophenylalanine-modified chromophore as the sensing moiety and exhibits a remarkable ~110-fold fluorescence turn-on response toward peroxynitrite while displaying virtually no cross-reaction with other reactive oxygen/nitrogen species. To facilitate the expression of pnGFP-Ultra in mammalian cells, we engineered an efficient noncanonical amino acid (ncAA) expression system that is broadly applicable to the mammalian expression of ncAA-containing proteins. pnGFP-Ultra robustly detected peroxynitrite production in activated macrophages and primary glial cells. pnGFP-Ultra fills an important technical gap and represents a valuable addition to the molecular toolbox for probing RNS biology.
Collapse
|
17
|
Garcia G, Pais TF, Pinto P, Dobson G, McDougall GJ, Stewart D, Santos CN. Bioaccessible Raspberry Extracts Enriched in Ellagitannins and Ellagic Acid Derivatives Have Anti-Neuroinflammatory Properties. Antioxidants (Basel) 2020; 9:E970. [PMID: 33050384 PMCID: PMC7600793 DOI: 10.3390/antiox9100970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic neuroinflammation associated with neurodegenerative disorders has been reported to be prevented by dietary components. Particularly, dietary (poly)phenols have been identified as having anti-inflammatory and neuroprotective actions, and their ingestion is considered a major preventive factor for such disorders. To assess the relation between (poly)phenol classes and their bioactivity, we used five different raspberry genotypes, which were markedly different in their (poly)phenol profiles within a similar matrix. In addition, gastro-intestinal bio-accessible fractions were produced, which simulate the (poly)phenol metabolites that may be absorbed after digestion, and evaluated for anti-inflammatory potential using LPS-stimulated microglia. Interestingly, the fraction from genotype 2J19 enriched in ellagitannins, their degradation products and ellagic acid, attenuated pro-inflammatory markers and mediators CD40, NO, TNF-α, and intracellular superoxide via NF-κB, MAPK and NFAT pathways. Importantly, it also increased the release of the anti-inflammatory cytokine IL-10. These effects contrasted with fractions richer in anthocyanins, suggesting that ellagitannins and its derivatives are major anti-inflammatory (poly)phenols and promising compounds to alleviate neuroinflammation.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Instituto de Biologia Experimental e Tecnológica (iBET), apartado 12, 2781-901 Oeiras, Portugal; (G.G.); (T.F.P.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Teresa Faria Pais
- Instituto de Biologia Experimental e Tecnológica (iBET), apartado 12, 2781-901 Oeiras, Portugal; (G.G.); (T.F.P.)
- Instituto Gulbenkian de Ciência (IGC), Rua Quinta Grande, 2780-156 Oeiras, Portugal
| | - Paula Pinto
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Instituto Politécnico de Santarém, Escola Superior Agrária, Qta do Galinheiro, 2001-904 Santarém, Portugal
- Life Quality Research Centre (CIEQV), IPSantarém/IPLeiria, 2040-413 Rio Maior, Portugal
| | - Gary Dobson
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Science, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK; (G.D.); (G.J.M.); (D.S.)
| | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Science, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK; (G.D.); (G.J.M.); (D.S.)
| | - Derek Stewart
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Science, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK; (G.D.); (G.J.M.); (D.S.)
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburg EH14 4AS, Scotland, UK
| | - Cláudia Nunes Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), apartado 12, 2781-901 Oeiras, Portugal; (G.G.); (T.F.P.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School//Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| |
Collapse
|
18
|
|
19
|
Chen X, Huang P, Wang J, Tian R, Chen Y, Chen Y, Zhang L, Ma Z. Identification of H 2S/NO-donating artemisinin derivatives as potential antileukemic agents. RSC Adv 2019; 10:501-511. [PMID: 35492518 PMCID: PMC9047252 DOI: 10.1039/c9ra08239e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
Three H2S/NO-donating artemisinin derivatives were designed and synthesized. Their antiproliferative activities were evaluated against human acute myeloid leukemia (AML) cell lines of K562 and K562/ADR and human normal liver cells of LO2. Biological evaluation indicated that NO-donating compound 10c exhibited the most potent cytotoxicity against leukemia cells, similar to the bioactivity of clinical drug of homoharringtonine, but showed less toxicity than homoharringtonine against LO2 cells. Further mechanism studies revealed that 10c could enhance the levels of intracellular NO and ROS, induce apoptosis and S phase cell cycle arrest, and disturb the mitochondrial membrane potential in K562 and K562/ADR cells. Western blot results demonstrated that 10c noticeably promoted autophagy by up-regulating the levels of Beclin1 and L3-II expression, inhibited the AKT signaling, and stimulated the AMPK and JNK signaling in both leukemia cell lines. Overall, 10c exhibited the potential to be a promising candidate for the therapy of AML. Conjugate 10c exhibited potential antiproliferative activity against human acute myeloid leukemia cells.![]()
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University Chengdu 610041 PR China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Runmei Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 PR China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563003 PR China .,Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563003 PR China
| | - Zhigui Ma
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University Chengdu 610041 PR China
| |
Collapse
|
20
|
Kim CB, Park SJ, Jeong JC, Choi SM, Krause HJ, Song DY, Hong H. Construction of 3D-rendering imaging of an ischemic rat brain model using the planar FMMD technique. Sci Rep 2019; 9:19050. [PMID: 31836804 PMCID: PMC6910971 DOI: 10.1038/s41598-019-55585-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/22/2019] [Indexed: 11/18/2022] Open
Abstract
Occlusion of the major cerebral artery usually results in brain hypoxic-ischemic injury, which evokes neuroinflammation and microglial activation. Activated microglia are considered a source of multiple neurotoxic factors, such as reactive oxygen species (ROS), in the central nervous system (CNS). We herein present a 3D-rendering brain imaging technique in an experimental rodent model of cerebral ischemia based on 2D magnetic images of superparamagnetic iron oxide nanoparticles (SPIONs) using the planar frequency mixing magnetic detection (p-FMMD) technique. A rat model of cerebral ischemia was established by unilateral middle cerebral artery occlusion with reperfusion (MCAO/R) injury. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to demonstrate the irreversibly damaged ischemic brain tissues, and double immunofluorescent labeling of OX6 (activated microglial marker) and ethidium (ROS marker) was conducted to confirm ROS generation in the activated microglia in the infarcted brain region. The ischemic brain sections treated with OX6-conjugated SPIONs were scanned using our p-FMMD system, yielding 2D images on the basis of the nonlinear magnetic characteristics inherent in SPIONs. The p-FMMD signal images representing microglia activation show an infarct ratio of 44.6 ± 7.1% compared to the contralateral counterpart, which is smaller than observed by TTC (60.9 ± 4.9%) or magnetic resonance imaging (MRI, 65.7 ± 2.7%). Furthermore, we developed a 3D-rendering brain imaging process based on the 2D p-FMMD signal images. The 3D reconstructed model showed a decreased ratio of coincidence of the ischemic regions compared with MRI models. In this study, we successfully conducted a feasibility test on whether our p-FMMD technology, a technique for signaling and imaging based on the nonlinearity of SPIONs, can be used to visualize the ischemic brain region in real time by detecting activated microglia in an MCAO/R animal model. Therefore, our method might allow for a different approach to analyze the pathophysiology of ischemic stroke through molecular imaging. Furthermore, we propose that this magnetic particle imaging (MPI) technique that detects the nonlinear magnetization properties of SPIONs could be applied not only to a stroke model but also to various types of pathophysiological studies as a new bioimaging tool.
Collapse
Affiliation(s)
- Chang-Beom Kim
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea
| | - Sang-Jin Park
- Department of Anatomy and Neuroscience, School of Medicine, Eulji University, 77 Gyeryong-Ro, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Jae-Chan Jeong
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea
| | - Seung-Min Choi
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea
| | - Hans-Joachim Krause
- Institute of Complex Systems, Bioelectronics (ICS-8), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, School of Medicine, Eulji University, 77 Gyeryong-Ro, Jung-Gu, Daejeon, 34824, Republic of Korea.
| | - Hyobong Hong
- SW Contents Research Lab., Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
21
|
Acquarone E, Argyrousi EK, van den Berg M, Gulisano W, Fà M, Staniszewski A, Calcagno E, Zuccarello E, D’Adamio L, Deng SX, Puzzo D, Arancio O, Fiorito J. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener 2019; 14:26. [PMID: 31248451 PMCID: PMC6598340 DOI: 10.1186/s13024-019-0326-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown. METHODS This work used a combination of biochemical, electrophysiological and behavioral techniques. Biochemical methods included analysis of phosphorylation of the cAMP-responsive element binding (CREB) protein, a transcriptional factor involved in memory, histone acetylation, and expression immediate early genes c-Fos and Arc. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated both short-term spatial memory and associative memory. These phenomena were examined following oTau elevation. RESULTS Levels of phospho-CREB, histone 3 acetylation at lysine 27, and immediate early genes c-Fos and Arc, were found to be reduced after oTau elevation during memory formation. These findings led us to explore whether up-regulation of various components of the nitric oxide (NO) signaling pathway impinging onto CREB is capable of rescuing oTau-induced impairment of plasticity, memory, and CREB phosphorylation. The increase of NO levels protected against oTau-induced impairment of LTP through activation of soluble guanylyl cyclase. Similarly, the elevation of cGMP levels and stimulation of the cGMP-dependent protein kinases (PKG) re-established normal LTP after exposure to oTau. Pharmacological inhibition of cGMP degradation through inhibition of phosphodiesterase 5 (PDE5), rescued oTau-induced LTP reduction. These findings could be extrapolated to memory because PKG activation and PDE5 inhibition rescued oTau-induced memory impairment. Finally, PDE5 inhibition re-established normal elevation of CREB phosphorylation and cGMP levels after memory induction in the presence of oTau. CONCLUSIONS Up-regulation of CREB activation through agents acting on the NO cascade might be beneficial against tau-induced synaptic and memory dysfunctions.
Collapse
Affiliation(s)
- Erica Acquarone
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- DiMi Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Manon van den Berg
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Elisa Zuccarello
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ USA
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Medicine, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard P.O. Box 8000, Theobald Science Center, room 425, Old Westbury, NY 11568 USA
| |
Collapse
|
22
|
Volpe JJ. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr Neurol 2019; 95:42-66. [PMID: 30975474 DOI: 10.1016/j.pediatrneurol.2019.02.016] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Prematurity, especially preterm birth (less than 32 weeks' gestation), is common and associated with high rates of both survival and neurodevelopmental disability, especially apparent in cognitive spheres. The neuropathological substrate of this disability is now recognized to be related to a variety of dysmaturational disturbances of the brain. These disturbances follow initial brain injury, particularly cerebral white matter injury, and involve many of the extraordinary array of developmental events active in cerebral white and gray matter structures during the premature period. This review delineates these developmental events and the dysmaturational disturbances that occur in premature infants. The cellular mechanisms involved in the genesis of the dysmaturation are emphasized, with particular focus on the preoligodendrocyte. A central role for the diffusely distributed activated microglia and reactive astrocytes in the dysmaturation is now apparent. As these dysmaturational cellular mechanisms appear to occur over a relatively long time window, interventions to prevent or ameliorate the dysmaturation, that is, neurorestorative interventions, seem possible. Such interventions include pharmacologic agents, especially erythropoietin, and particular attention has also been paid to such nutritional factors as quality and source of milk, breastfeeding, polyunsaturated fatty acids, iron, and zinc. Recent studies also suggest a potent role for interventions directed at various experiential factors in the neonatal period and infancy, i.e., provision of optimal auditory and visual exposures, minimization of pain and stress, and a variety of other means of environmental behavioral enrichment, in enhancing brain development.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
23
|
AGE-RAGE stress: a changing landscape in pathology and treatment of Alzheimer's disease. Mol Cell Biochem 2019; 459:95-112. [PMID: 31079281 DOI: 10.1007/s11010-019-03553-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Numerous hypotheses including amyloid cascade, cholinergic, and oxidative have been proposed for pathogenesis of Alzheimer's disease (AD). The data suggest that advanced glycation end products (AGEs) and its receptor RAGE (receptor for AGE) are involved in the pathogenesis of AD. AGE-RAGE stress, defined as a balance between stressors (AGE, RAGE) and anti-stressors (sRAGE, AGE degraders) in favor of stressors, has been implicated in pathogenesis of diseases. AGE and its interaction with RAGE-mediated increase in the reactive oxygen species (ROS) damage brain because of its increased vulnerability to ROS. AGE and ROS increase the synthesis of amyloid β (Aβ) leading to deposition of Aβ and phosphorylation of tau, culminating in formation of plaques and neurofibrillary tangles. ROS increase the synthesis of Aβ, high-mobility group box 1(HMGB1), and S100 that interacts with RAGE to produce additional ROS resulting in enhancement of AD pathology. Elevation of ROS precedes the Aβ plaques formation. Because of involvement of AGE and RAGE in AD pathology, the treatment should be targeted at lowering AGE levels through reduction in consumption and formation of AGE, and lowering expression of RAGE, blocking of RAGE ligand binding, increasing levels of soluble RAGE (sRAGE), and use of antioxidants. The above treatment aspect of AD is lacking. In conclusion, AGE-RAGE stress initiates, and Aβ, HMGB1, and S100 enhance the progression of AD. Reduction of levels of AGE and RAGE, elevation of sRAGE, and antioxidants would be beneficial therapeutic modalities in the prevention, regression, and slowing of progression of AD.
Collapse
|
24
|
Singh A, Castillo HA, Brown J, Kaslin J, Dwyer KM, Gibert Y. High glucose levels affect retinal patterning during zebrafish embryogenesis. Sci Rep 2019; 9:4121. [PMID: 30858575 PMCID: PMC6411978 DOI: 10.1038/s41598-019-41009-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Maternal hyperglycaemia has a profound impact on the developing foetus and increases the risk of developing abnormalities like obesity, impaired glucose tolerance and insulin secretory defects in the post-natal life. Increased levels of glucose in the blood stream due to diabetes causes visual disorders like retinopathy. However, the impact of maternal hyperglycaemia due to pre-existing or gestational diabetes on the developing foetal retina is unknown. The aim of this work was to study the effect of hyperglycaemia on the developing retina using zebrafish as a vertebrate model. Wild-type and transgenic zebrafish embryos were exposed to 0, 4 and 5% D-Glucose in a pulsatile manner to mimic the fluctuations in glycaemia experienced by the developing foetus in pregnant women with diabetes. The zebrafish embryos displayed numerous ocular defects associated with altered retinal cell layer thickness, increased presence of macrophages, and decreased number of Müeller glial and retinal ganglion cells following high-glucose exposure. We have developed a model of gestational hyperglycaemia using the zebrafish embryo to study the effect of hyperglycaemia on the developing embryonic retina. The data suggests that glucose exposure is detrimental to the development of embryonic retina and the legacy of this exposure may extend into adulthood. These data suggest merit in retinal assessment in infants born to mothers with pre-existing and gestational diabetes both in early and adult life.
Collapse
Affiliation(s)
- Amitoj Singh
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Hozana Andrade Castillo
- Monash University, Australian Regenerative Medicine Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
- Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas, Brazil
| | - Julie Brown
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Jan Kaslin
- Monash University, Australian Regenerative Medicine Institute, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Karen M Dwyer
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Yann Gibert
- Deakin University, School of Medicine, Faculty of Health, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
25
|
Korkmaz OT, Ay H, Aytan N, Carreras I, Kowall NW, Dedeoglu A, Tuncel N. Vasoactive Intestinal Peptide Decreases β-Amyloid Accumulation and Prevents Brain Atrophy in the 5xFAD Mouse Model of Alzheimer's Disease. J Mol Neurosci 2018; 68:389-396. [PMID: 30498985 DOI: 10.1007/s12031-018-1226-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by extracellular deposits of fibrillary β-amyloid (Aβ) plaques in the brain that initiate an inflammatory process resulting in neurodegeneration. The neuronal loss associated with AD results in gross atrophy of affected regions causing a progressive loss of cognitive ability and memory function, ultimately leading to dementia. Growing evidence suggests that vasoactive intestinal peptide (VIP) could be beneficial for various neurodegenerative diseases, including AD. The study investigated the effects of VIP on 5xFAD, a transgenic mouse model of AD. Toward this aim, we used 20 5xFAD mice in two groups (n = 10 each), VIP-treated (25 ng/kg i.p. injection, three times per week) and saline-treated (the drug's vehicle) following the same administration regimen. Treatment started at 1 month of age and ended 2 months later. After 2 months of treatment, the mice were euthanized, their brains dissected out, and immunohistochemically stained for Aβ40 and Aβ42 on serial sections. Then, plaque analysis and stereological morphometric analysis were performed in different brain regions. Chronic VIP administration in 5xFAD mice significantly decreased the levels of Aβ40 and Aβ42 plaques in the subiculum compared to the saline treated 5xFAD mice. VIP treatment also significantly decreased Aβ40 and Aβ42 plaques in cortical areas and significantly increased the hippocampus/cerebrum and corpus callosum/cerebrum ratio but not the cerebral cortex/cerebrum ratio. In summary, we found that chronic administration of VIP significantly decreased Aβ plaques and preserved against atrophy for related brain regions in 5xFAD AD mice.
Collapse
Affiliation(s)
- Orhan Tansel Korkmaz
- Research and Development, VA Boston Healthcare System, Boston, MA, 02130, USA. .,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey. .,Faculty of Medicine, Department of Physiology, Eskisehir Osmangazi University, Odunpazari, 26040, Eskisehir, Turkey.
| | - Hakan Ay
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Nurgul Aytan
- Research and Development, VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Isabel Carreras
- Research and Development, VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Neil W Kowall
- Research and Development, VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alpaslan Dedeoglu
- Research and Development, VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Radiology, MGH and Harvard Medical School, Boston, MA, 02114, USA
| | - Nese Tuncel
- Department of Physiology, Faculty of Medicine, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
| |
Collapse
|
26
|
Akaishi T, Abe K. CNB-001, a synthetic pyrazole derivative of curcumin, suppresses lipopolysaccharide-induced nitric oxide production through the inhibition of NF-κB and p38 MAPK pathways in microglia. Eur J Pharmacol 2017; 819:190-197. [PMID: 29221948 DOI: 10.1016/j.ejphar.2017.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/26/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
CNB-001, a pyrazole derivative of curcumin, has been found to exert neuroprotective and memory-enhancing effects that may be effective for the treatment of Alzheimer's disease. Since aberrant activation of microglia is involved in the pathogenesis of Alzheimer's disease, the present study was undertaken to investigate the effect of CNB-001 on microglia-mediated inflammatory responses. In primary cultured rat microglia, CNB-001 (1-10µM) suppressed the lipopolysaccharide (LPS)-induced nitric oxide (NO) production and expression of inducible NO synthase (iNOS), and the potency of CNB-001 was stronger than curcumin. CNB-001 also suppressed the LPS-induced nuclear translocation of nuclear factor κB (NF-κB), which is essential for the expression of iNOS. LPS treatment promoted phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). CNB-001 significantly suppressed the LPS-induced phosphorylation of p38 MAPK, but not ERK and JNK. The suppressive effect of CNB-001 on NO production was mimicked by blockade of the p38 MAPK signaling pathway with SB203580. These results suggest that CNB-001 exerts anti-inflammatory effects through inhibition of NF-κB and p38 MAPK pathways in microglia.
Collapse
Affiliation(s)
- Tatsuhiro Akaishi
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Kazuho Abe
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan.
| |
Collapse
|
27
|
Bhowmick S, Drew KL. Arctic ground squirrel resist peroxynitrite-mediated cell death in response to oxygen glucose deprivation. Free Radic Biol Med 2017; 113:203-211. [PMID: 28962873 PMCID: PMC5699938 DOI: 10.1016/j.freeradbiomed.2017.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury initiates a cascade of events, generating nitric oxide (NO) and superoxide(O2•-) to form peroxynitrite (ONOO-), a potent oxidant. Arctic ground squirrels (AGS; Urocitellus parryii) show high tolerance to I/R injury. However, the underlying mechanism remains elusive. We hypothesize that tolerance to I/R modeled in an acute hippocampal slice preparation in AGS is modulated by reduced oxidative and nitrative stress. Hippocampal slices (400µm) from rat and AGS were subjected to oxygen glucose deprivation (OGD) using a novel microperfusion technique. Slices were exposed to NO, O2.- donors with and without OGD; pretreatment with inhibitors of NO, O2.- and ONOO- followed by OGD. Perfusates collected every 15min were analyzed for LDH release, a marker of cell death. 3-nitrotyrosine (3NT) and 4-hydroxynonenal (4HNE) were measured to assess oxidative and nitrative stress. Results show that NO/O2.- alone is not sufficient to cause ischemic-like cell death, but with OGD enhances cell death more in rat than in AGS. A NOS inhibitor, SOD mimetic and ONOO- inhibitor attenuates OGD injury in rat but has no effect in AGS. Rats also show a higher level of 3NT and 4HNE with OGD than AGS suggesting the greater level of injury in rat is via formation of ONOO-.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
28
|
Physiological and pathological processes of synaptic plasticity and memory in drug discovery: Do not forget the dose-response curve. Eur J Pharmacol 2017; 817:59-70. [DOI: 10.1016/j.ejphar.2017.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 01/24/2023]
|
29
|
Mukherjee S, Kumar G, Patnaik R. Identification of potential inhibitors of PARP-1, a regulator of caspase-independent cell death pathway, from Withania somniferaphytochemicals for combating neurotoxicity: A structure-based in-silicostudy. JOURNAL OF THEORETICAL AND COMPUTATIONAL CHEMISTRY 2017; 16:1750062. [DOI: 10.1142/s0219633617500626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) reverses DNA damage by repairing DNA nicks and breaks in the normal cellular environment. However, during abnormal conditions like stroke and other neurological disorders, overactivation of PARP-1 leads to neuronal cell death via a caspase-independent programmed cell death pathway. Strategies involving inhibition or knockout of PARP-1 have proved beneficial in combating neuro-cytotoxicity. In this study, we performed in-silico analysis of 27 phytochemicals of Withania somnifera (Ashwagandha), to investigate their inhibition efficiency against PARP-1. Out of 27 phytochemicals, we report 12 phytochemicals binding to the catalytic domain of PARP-1 with an affinity higher than FR257517, PJ34 and Talazoparib (highly potent inhibitors of the enzyme). Among these 12 compounds, five phytochemicals namely Stigmasterol, Withacnistin, Withaferin A, Withanolide G and Withanolide B show an exceptionally high binding affinity for the catalytic domain of PARP-1 and bind to the enzyme with similar hydrogen bond formation and hydrophobic interaction pattern as their inhibitors. All of these phytochemicals are BBB permeable so that they can be further developed into potential future neuro-therapeutic drugs against neurodegenerative disorders involving neuronal cell death.
Collapse
Affiliation(s)
- Sumedha Mukherjee
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Gaurav Kumar
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ranjana Patnaik
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
30
|
Jiang H, Wu M, Liu Y, Song L, Li S, Wang X, Zhang YF, Fang J, Wu S. Serine racemase deficiency attenuates choroidal neovascularization and reduces nitric oxide and VEGF levels by retinal pigment epithelial cells. J Neurochem 2017; 143:375-388. [PMID: 28892569 DOI: 10.1111/jnc.14214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
Abstract
Choroidal neovascularization (CNV) is a leading cause of blindness in age-related macular degeneration. Production of vascular endothelial growth factor (VEGF) and macrophage recruitment by retinal pigment epithelial cells (RPE) significantly contributes to the process of CNV in an experimental CNV model. Serine racemase (SR) is expressed in retinal neurons and glial cells, and its product, d-serine, is an endogenous co-agonist of N-methyl-d-aspartate receptor. Activation of the receptor results in production of nitric oxide (. NO), a molecule that promotes retinal and choroidal neovascularization. These observations suggest possible roles of SR in CNV. With laser-injured CNV mice, we found that inactivation of SR-coding gene (Srrnull ) significantly reduced CNV volume, neovascular density, and invading macrophages. We exploited the underlying mechanism in vivo and ex vivo. RPE from wild-type (WT) mice expressed SR. To explore the possible downstream target of SR inactivation, we showed that choroid/RPE homogenates extracted from laser-injured Srrnull mice contained less inducible nitric oxide synthase and decreased phospho-VEGFR2 compared to amounts in WT mice. In vitro, inflammation-primed WT RPEs expressed more inducible NOS, produced more. NO and VEGF than did inflammation-primed Srrnull RPEs. When co-cultured with inflammation-primed Srrnull RPE, significantly fewer RF/6A-a cell line of choroidal endothelial cell, migrated to the opposite side of the insert membrane than did cells co-cultured with pre-treated WT RPE. Altogether, SR deficiency reduces RPE response to laser-induced inflammatory stimuli, resulting in decreased production of a cascade of pro-angiogenic cytokines, including. NO and VEGF, and reduced macrophage recruitment, which contribute synergistically to attenuated angiogenesis.
Collapse
Affiliation(s)
- Haiyan Jiang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Mengjuan Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Yimei Liu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Liping Song
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Shifeng Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianwei Wang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Yun-Feng Zhang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Junxu Fang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
31
|
Sharma N, Nehru B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson's disease model. Inflammopharmacology 2017; 26:349-360. [PMID: 29027056 DOI: 10.1007/s10787-017-0402-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) pathology is characterized by the abnormal accumulation and aggregation of the pre-synaptic protein α-synuclein in the dopaminergic neurons as Lewy bodies (LBs). Curcumin, which plays a neuroprotective role in various animal models of PD, was found to directly modulate the aggregation of α-synuclein in in vitro as well as in in vivo studies. While curcumin has been shown to exhibit strong anti-oxidant and anti-inflammatory properties, there are a number of other possible mechanisms by which curcumin may alter α-synuclein aggregation which still remains obscure. Therefore, the present study was designed to understand such concealed mechanisms behind neuroprotective effects of curcumin. An animal model of PD was established by injecting lipopolysaccharide (LPS, 5 µg/5 µl PBS) into the substantia nigra (SN) of rats which was followed by curcumin administration (40 mg/kg b.wt (i.p.)) daily for a period of 21 days. Modulatory functions of curcumin were evident from the inhibition of astrocytic activation (GFAP) by immunofluorescence and NADPH oxidase complex activation by RT-PCR. Curcumin supplementation prevented the LPS-induced upregulation in the protein activity of transcription factor NFκB, proinflammatory cytokines (TNF-α, IL-1β, and IL-1α), inducible nitric oxide synthase (iNOS) as well as the regulating molecules of the intrinsic apoptotic pathway (Bax, Bcl-2, Caspase 3 and Caspase 9) by ELISA. Curcumin also resulted in significant improvement in the glutathione system (GSH, GSSG and redox ratio) and prevented iron deposition in the dopaminergic neurons as depicted from atomic absorption spectroscopy (AAS) and Prussian blue staining, respectively. Curcumin also prevented α-synuclein aggregates in the dopaminergic neurons as observed from gene as well as protein activity of α-synuclein using RT-PCR and IHC. Collectively, our results suggest that curcumin can be further pursued as a candidate drug in the molecules targeted therapy for PD and other related synucleopathies.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
32
|
Lei C, Lin R, Wang J, Tao L, Fu X, Qiu Y, Lei B. Amelioration of amyloid β-induced retinal inflammatory responses by a LXR agonist TO901317 is associated with inhibition of the NF-κB signaling and NLRP3 inflammasome. Neuroscience 2017; 360:48-60. [DOI: 10.1016/j.neuroscience.2017.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
|
33
|
Falcão AS, Carvalho LAR, Lidónio G, Vaz AR, Lucas SD, Moreira R, Brites D. Dipeptidyl Vinyl Sulfone as a Novel Chemical Tool to Inhibit HMGB1/NLRP3-Inflammasome and Inflamma-miRs in Aβ-Mediated Microglial Inflammation. ACS Chem Neurosci 2017; 8:89-99. [PMID: 27797173 DOI: 10.1021/acschemneuro.6b00250] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rapid microglial activation and associated inflammatory pathways contribute to immune-defense and tissue repair in the central nervous system (CNS). However, persistent activation of these cells will ultimately result in vast production of pro-inflammatory mediators and other neurotoxic factors, which may induce neuronal damage and contribute to chronic neurodegenerative diseases, as Alzheimer's disease (AD). Therefore, small molecules with immunomodulatory effects on microglia may be considered as potential tools to counteract their proinflammatory phenotype and neuroimmune dysregulation in such disorders. Indeed, reducing amyloid-β (Aβ)-induced microglia activation is believed to be effective in treating AD. In this study, we investigated whether dipeptidyl vinyl sulfone (VS) was able to attenuate Aβ-mediated inflammatory response using a mouse microglial (N9) cell line and a solution containing a mixture of Aβ aggregates. We show that low levels of VS are able to prevent cell death while reducing microglia phagocytosis upon Aβ treatment. VS also suppressed Aβ-induced expression of inflammatory mediators in microglia, such as matrix metalloproteinase (MMP)-2 and MMP-9, as well as high-mobility group box protein-1 (HMGB1), nod-like receptor protein 3 (NLRP3)-inflammasome, and interleukin (IL)-1β. Interestingly, increased expression of the two critical inflammation-related microRNAs (miR)-155 and miR-146a in microglia upon Aβ treatment was also prevented by VS coincubation. Taken together, VS emerges as a potential new therapeutic strategy worthy of further investigation in improved cellular and animal models of AD.
Collapse
Affiliation(s)
- Ana S. Falcão
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Luís A. R. Carvalho
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Gonçalo Lidónio
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana R. Vaz
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Susana D. Lucas
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Dora Brites
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
34
|
The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8590578. [PMID: 28116038 PMCID: PMC5223034 DOI: 10.1155/2016/8590578] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer's disease (AD), impairments in the movement, Parkinson's disease (PD), and the inability to walk, talk, and think, Huntington's disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.
Collapse
|
35
|
Yu F, Gong P, Hu Z, Qiu Y, Cui Y, Gao X, Chen H, Li J. Cu(II) enhances the effect of Alzheimer's amyloid-β peptide on microglial activation. J Neuroinflammation 2015; 12:122. [PMID: 26104799 PMCID: PMC4490619 DOI: 10.1186/s12974-015-0343-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/12/2015] [Indexed: 12/14/2022] Open
Abstract
Background Aggregated forms of amyloid-β (Aβ) peptides are important triggers for microglial activation, which is an important pathological component in the brains of Alzheimer’s patients. Cu(II) ions are reported to be coordinated to monomeric Aβ, drive Aβ aggregation, and potentiate Aβ neurotoxicity. Here we investigated whether Cu(II) binding modulates the effect of Aβ on microglial activation and the subsequent neurotoxicity. Methods Aβ peptides were incubated with Cu(II) at an equimolar ratio to obtain the Cu(II)-Aβ complex. Primary and BV-2 microglial cells were treated with Cu(II)-Aβ, Aβ, or Cu(II). The tumor necrosis factor-α (TNF-α) and nitric oxide levels in the media were determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was detected by MitoSOX oxidation. Results Incubation of Cu(II) with Aβ confers different chemical properties on the resulting complex. At the subneurotoxic concentrations, Cu(II)-Aβ (but not Aβ or Cu(II) alone) treatment induced an activating morphological phenotype of microglia and induced the microglial release of TNF-α and nitric oxide as well as microglia-mediated neuronal damage. Cu(II)-Aβ-triggered microglial activation was blocked by nuclear factor (NF)-κB inhibitors and was accompanied with NF-κB activation. Moreover, Cu(II)-Aβ induced hydrogen peroxide release, which was not affected by NADPH oxidase inhibitors. Mitochondrial superoxide production was increased after Cu(II)-Aβ stimulation. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), inhibited Cu(II)-Aβ-elicited microglial release of TNF-α and nitric oxide as well as the microglia-mediated neurotoxic effect. Conclusion Our observations suggest that Cu(II) enhances the effect of Aβ on microglial activation and the subsequent neurotoxicity. The Cu(II)-Aβ-triggered microglial activation involves NF-κB activation and mitochondrial ROS production. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0343-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengxiang Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ping Gong
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhuqin Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yu Qiu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yongyao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaoling Gao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Juan Li
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
36
|
Crisafulli C, Drago A, Calabrò M, Spina E, Serretti A. A molecular pathway analysis informs the genetic background at risk for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:21-30. [PMID: 25554435 DOI: 10.1016/j.pnpbp.2014.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder marked by severely impaired thinking, delusional thoughts, hallucinations and poor emotional responsiveness. The biological mechanisms that lead to schizophrenia may be related to the genetic background of patients. Thus, a genetic perspective may help to unravel the molecular pathways disrupted in schizophrenia. METHODS In the present work, we used a molecular pathway analysis to identify the molecular pathways associated with schizophrenia. We collected data of genetic loci previously associated with schizophrenia, identified the genes located in those positions and created the metabolic pathways that are related to those genes' products. These pathways were tested for enrichment (a number of SNPs associated with the phenotype significantly higher than expected by chance) in a sample of schizophrenic patients and controls (4486 and 4477, respectively). RESULTS The molecular pathway that resulted from the identification of all the genes located in the loci previously found to be associated with schizophrenia was found to be enriched, as expected (permutated p(10(6))=9.9999e-06).We found 60 SNPs amongst 30 different genes with a strong association with schizophrenia. The genes are related to the pathways related to neurodevelopment, apoptosis, vesicle traffic, immune response and MAPK cascade. CONCLUSIONS The pathway related to the toll-like receptor family seemed to play a central role in the modulation/connection of various pathways whose disruption leads to schizophrenia. This pathway is related to the innate immune system, further stressing the role of immunological-related events in increasing the risk to schizophrenia.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Antonio Drago
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy; I.R.C.C.S. "San Giovanni di Dio", Fatebenefratelli, Brescia, Italy.
| | - Marco Calabrò
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy; IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Kumar A, Leinisch F, Kadiiska MB, Corbett J, Mason RP. Formation and Implications of Alpha-Synuclein Radical in Maneb- and Paraquat-Induced Models of Parkinson's Disease. Mol Neurobiol 2015; 53:2983-2994. [PMID: 25952542 DOI: 10.1007/s12035-015-9179-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb- and paraquat-coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox(-/-) and iNOS(-/-)) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400 W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb- and paraquat-coexposed mice.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Free Radical Metabolism Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Fabian Leinisch
- Free Radical Metabolism Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Maria B Kadiiska
- Free Radical Metabolism Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jean Corbett
- Free Radical Metabolism Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Ronald P Mason
- Free Radical Metabolism Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
38
|
Slosky LM, Vanderah TW. Therapeutic potential of peroxynitrite decomposition catalysts: a patent review. Expert Opin Ther Pat 2015; 25:443-66. [PMID: 25576197 DOI: 10.1517/13543776.2014.1000862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Peroxynitrite is a cytotoxic oxidant species implicated in a host of pathologies, including inflammatory and neurodegenerative diseases, cancer, radiation injury and chronic pain. With the recognition of the role of peroxynitrite in disease, numerous experimental and therapeutic tools have arisen to probe peroxyntirite's pathophysiological contribution and attenuate its oxidative damage. Peroxynitrite decomposition catalysts (PNDCs) are redox-active compounds that detoxify peroxynitrite by catalyzing its isomerization or reduction to nitrate or nitrite. AREAS COVERED This review discusses recent research articles and patents published 1995 - 2014 on the development and therapeutic use of PNDCs. Iron and manganese metalloporphyrin PNDCs attenuate the toxic effects of peroxynitrite and are currently being developed for clinical applications. Additionally, some Mn porphyrin-based PNDCs have optimized pharmaceutical properties such that they exhibit greater peroxynitrite selectivity. Other classes of PNDC agents, including bis(hydroxyphenyl)dipyrromethenes and metallocorroles, have demonstrated preclinical efficacy, oral availability and reduced toxicity risk. EXPERT OPINION Interest in the drug-like properties of peroxynitrite-neutralizing agents has grown with the realization that PNDCs will be powerful tools in the treatment of disease. The design of compounds with enhanced oral availability and peroxynitrite selectivity is a critical step toward the availability of safe, effective and selective redox modulators for the treatment of peroxynitrite-associated pathologies.
Collapse
Affiliation(s)
- Lauren M Slosky
- University of Arizona, Department of Pharmacology , Life Science North Rm 621, 1501 North Campbell Ave., Tucson, AZ 85721 , USA
| | | |
Collapse
|
39
|
Klimaszewska-Łata J, Gul-Hinc S, Bielarczyk H, Ronowska A, Zyśk M, Grużewska K, Pawełczyk T, Szutowicz A. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells. J Neurochem 2015; 133:284-97. [PMID: 25345568 DOI: 10.1111/jnc.12979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022]
Abstract
There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that endogenously inhibited pyruvate dehydrogenase complex (PDHC), aconitase, and α-ketoglutarate dehydrogenase complex. However, it caused none or small suppressions of acetyl-CoA and microglial viability, respectively. Microglia-derived NO inhibited same enzymes in cholinergic neuronal cells causing marked viability loss because of acetyl-CoA deficits evoked by its competitive consumption by energy producing and acetylcholine/N-acetyl-l-aspartate (NAA) synthesizing pathways.
Collapse
|
40
|
Wu WY, Wu YY, Huang H, He C, Li WZ, Wang HL, Chen HQ, Yin YY. Biochanin A attenuates LPS-induced pro-inflammatory responses and inhibits the activation of the MAPK pathway in BV2 microglial cells. Int J Mol Med 2014; 35:391-8. [PMID: 25483920 DOI: 10.3892/ijmm.2014.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/11/2014] [Indexed: 11/06/2022] Open
Abstract
Inflammation in the brain, characterized by the activation of microglia, is believed to participate in the pathogenesis of Parkinson's disease. Biochanin A, an O-methylated isoflavone, is a natural organic compound and is classified as a phytoestrogen. In this study, using murine BV2 microglial cells, we investigated the anti-inflammatory effects of biochanin A and the possible mechanisms involved. BV2 microglial cells were treated with lipopolysaccharide (LPS) to induce pro-inflammatory responses and the cells were then treated with biochanin A. Cell viability was examined by MTT assay. The production of nitric oxide (NO) was examined using Griess reagent and intracellular reactive oxygen species (ROS production) was measured by DCFH-DA assay. The mRNA expression of interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α) was examined by RT-PCR. The expression of p-ERK, p-JNK, p-p38 and iNOS was measured by western blot analysis. In addition, the protein and mRNA and phosphorylation levels of pro-inflammatory cytokines were determined by western blot analysis and RT-PCR, respectively. The results revealed that biochanin A attenuated LPS-induced microglial activation and the production of TNF‑α, IL-1β, nitric oxide and reactive oxygen species in a dose-dependent manner. Biochanin A significantly decreased the LPS-induced mRNA expression of TNF-α and IL-1β, and inhibited iNOS mRNA and protein expression. Furthermore, biochanin A significantly inhibited the LPS-induced phosphorylation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38. These findings suggest that the inhibitory effects of biochanin A on LPS-induced proinflammatory responses may be associated with the inhibition of mitogen-activated protein kinase (MAPK) signaling pathways in BV2 microglial cells.
Collapse
Affiliation(s)
- Wang-Yang Wu
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yang-Yang Wu
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Huang
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Can He
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Zu Li
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hui-Li Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Han-Qing Chen
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Yan-Yan Yin
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
41
|
Sha S, Xing XN, Cao YP. Active immunotherapy facilitates Aβ plaque removal following through microglial activation without obvious T cells infiltrating the CNS. J Neuroimmunol 2014; 274:62-70. [DOI: 10.1016/j.jneuroim.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022]
|
42
|
Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research. Trends Neurosci 2014; 37:629-41. [PMID: 25151336 DOI: 10.1016/j.tins.2014.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 01/23/2023]
Abstract
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada; Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maxime J Parent
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada.
| |
Collapse
|
43
|
Kumar A, Chen SH, Kadiiska MB, Hong JS, Zielonka J, Kalyanaraman B, Mason RP. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells. Free Radic Biol Med 2014; 73:51-9. [PMID: 24746617 PMCID: PMC4111989 DOI: 10.1016/j.freeradbiomed.2014.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 11/24/2022]
Abstract
Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Shih-Heng Chen
- Neuropharmacology Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Maria B Kadiiska
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jau-Shyong Hong
- Neuropharmacology Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
44
|
Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, Li M, Pappa A, Martinez-Fong D, Del Razo LM, Quintanilla-Vega B, Franco R. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther 2014; 142:206-30. [PMID: 24333264 PMCID: PMC3959583 DOI: 10.1016/j.pharmthera.2013.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Fang Wang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Maciej Skotak
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Namas Chandra
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
45
|
Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 2014; 15:300-12. [PMID: 24713688 DOI: 10.1038/nrn3722] [Citation(s) in RCA: 1001] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mononuclear phagocytic cells in the CNS used to be defined according to their anatomical location and surface marker expression. Recently, this concept has been challenged by the results of developmental and gene expression profiling studies that have used novel molecular biological tools to unravel the origin of microglia and to define their role as specialized tissue macrophages with long lifespans. Here, we describe how these results have redefined microglia and helped us to understand how different myeloid cell populations operate in the CNS based on their cell-specific gene expression signatures, distinct ontogeny and differential functions. Moreover, we describe the vulnerability of microglia to dysfunction and propose that myelomonocytic cells might be used in the treatment of neurological and psychiatric disorders that are characterized by primary or secondary 'microgliopathy'.
Collapse
|
46
|
Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS. Toxicol Appl Pharmacol 2014; 276:95-103. [DOI: 10.1016/j.taap.2014.01.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 12/14/2022]
|
47
|
Trotta T, Porro C, Calvello R, Panaro MA. Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol 2014; 268:1-12. [PMID: 24529856 DOI: 10.1016/j.jneuroim.2014.01.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/12/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023]
Abstract
The Toll-like receptors (TLRs) are a family of microbe-sensing receptors that play a central role in the regulation of the host immune system. TLR4 has been described in the brain and seems to regulate some physiological processes, such as neurogenesis. TLR4 has also been reported to play a role during neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis and Parkinson's disease. This review is focused on reports concerning recent insights into the role and activation mechanisms of TLR4 in the brain, in pathological and physiological conditions, as well as the therapeutic benefit that could derive from TLR4 modulation.
Collapse
Affiliation(s)
- Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
48
|
Ribeiro R, Yu F, Wen J, Vana A, Zhang Y. Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis. Neuroscience 2013; 254:427-42. [DOI: 10.1016/j.neuroscience.2013.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 01/29/2023]
|
49
|
Davis DA, Akopian G, Walsh JP, Sioutas C, Morgan TE, Finch CE. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NȮ pathway in vitro. J Neurochem 2013; 127:509-19. [PMID: 23927064 DOI: 10.1111/jnc.12395] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/27/2013] [Accepted: 07/29/2013] [Indexed: 12/18/2022]
Abstract
Airborne particulate matter (PM) from urban vehicular aerosols altered glutamate receptor functions and induced glial inflammatory responses in rodent models after chronic exposure. Potential neurotoxic mechanisms were analyzed in vitro. In hippocampal slices, 2 h exposure to aqueous nanosized PM (nPM) selectively altered post-synaptic proteins in cornu ammonis area 1 (CA1) neurons: increased GluA1, GluN2A, and GluN2B, but not GluA2, GluN1, or mGlur5; increased post synaptic density 95 and spinophilin, but not synaptophysin, while dentate gyrus (DG) neurons were unresponsive. In hippocampal slices and neurons, MitoSOX red fluorescence was increased by nPM, implying free radical production. Specifically, NȮ production by slices was increased within 15 min of exposure to nPM with dose dependence, 1-10 μg/mL. Correspondingly, CA1 neurons exhibited increased nitrosylation of the GluN2A receptor and dephosphorylation of GluN2B (S1303) and of GluA1 (S831 & S845). Again, DG neurons were unresponsive to nPM. The induction of NȮ and nitrosylation were inhibited by AP5, an NMDA receptor antagonist, which also protects neurite outgrowth in vitro from inhibition by nPM. Membrane injury (EthidiumD-1 uptake) showed parallel specificity. Finally, nPM decreased evoked excitatory post-synaptic currents of CA1 neurons. These findings further document the selective impact of nPM on glutamatergic functions and identify novel responses of NMDA receptor-stimulated NȮ production and nitrosylation reactions during nPM-mediated neurotoxicity. We present three new findings of rapid hippocampal slice responses to nPM (nano-sized particulate matter from urban traffic): increased NȮ production within 15 min; nitrosylation of glutamatergic NMDA receptors; and, reduced excitatory postsynaptic currents in CA1 neurons. AP5 (NMDA receptor antagonist) blocked nPM-mediated NȮ and receptor nitrosylation. Ca(2+) influx is a likely mechanism.
Collapse
Affiliation(s)
- David A Davis
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
50
|
Elsherbiny NM, Ahmad S, Naime M, Elsherbini AM, Fulzele S, Al-Gayyar MM, Eissa LA, El-Shishtawy MM, Liou GI. ABT-702, an adenosine kinase inhibitor, attenuates inflammation in diabetic retinopathy. Life Sci 2013; 93:78-88. [PMID: 23770229 DOI: 10.1016/j.lfs.2013.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022]
Abstract
AIMS This study was undertaken to determine the effect of an adenosine kinase inhibitor (AKI) in diabetic retinopathy (DR). We have shown previously that adenosine signaling via A2A receptors (A2AAR) is involved in retinal protection from diabetes-induced inflammation. Here we demonstrate that AKI-enhanced adenosine signaling provides protection from DR in mice. MAIN METHODS We targeted AK, the key enzyme in adenosine metabolism, using a treatment regime with the selective AKI, ABT-702 (1.5mg/kg intraperitoneally twice a week) commencing at the beginning of streptozotocin-induced diabetes at the age of eight weeks. This treatment, previously demonstrated to increase free adenosine levels in vivo, was maintained until the age of 16 weeks. Retinal inflammation was evaluated using Western blot, Real-Time PCR and immuno-staining analyses. Role of A2AAR signaling in the anti-inflammation effect of ABT-702 was analyzed in Amadori-glycated-albumin (AGA)-treated microglial cells. KEY FINDINGS At 16 weeks, when diabetic mice exhibit significant signs of retinal inflammation including up-regulation of oxidative/nitrosative stress, A2AAR, ENT1, Iba1, TNF-α, ICAM1, retinal cell death, and down-regulation of AK, the ABT-702 treated group showed lower signs of inflammation compared to control animals receiving the vehicle. The involvement of adenosine signaling in the anti-inflammation effect of ABT-702 was supported by the TNF-α release blocking effect of A2AAR antagonist in AGA-treated microglial cells. SIGNIFICANCE These results suggest a role for AK in regulating adenosine receptor signaling in the retina. Inhibition of AK potentially amplifies the therapeutic effects of site- and event-specific accumulation of extracellular adenosine, which is of highly translational impact.
Collapse
|