1
|
Goebel S, Cordova-Martinez D, Verselis VK, Francesconi A. Dampened α7 nAChR activity contributes to audiogenic seizures and hyperactivity in a mouse model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621616. [PMID: 39553953 PMCID: PMC11566027 DOI: 10.1101/2024.11.01.621616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and often accompanied with debilitating pathologies including seizures and hyperactivity. FXS arises from a trinucleotide repeat expansion in the 5' UTR of the FMR1 gene that silences expression of the RNA-binding protein FMRP. Despite progress in understanding FMRP functions, the identification of effective therapeutic targets has lagged and at present there are no viable treatment options. Here we identify the α7 nicotinic acetylcholine receptor (nAChR) as candidate target for intervention in FXS. In the early postnatal hippocampus of Fmr1 knockout (KO) mice, an established pre-clinical model of FXS, the α7 nAChR accessory protein Ly6H is abnormally enriched at the neuronal surface and mislocalized in dendrites. Ly6H, a GPI-anchored protein, binds α7 nAChRs with high affinity and can limit α7 nAChR surface expression and signaling. We find that α7 nAChR-evoked Ca2+ responses are dampened in immature glutamatergic and GABAergic Fmr1 KO neurons compared to wild type. Knockdown of endogenous Ly6H in Fmr1 KO neurons is sufficient to rescue dampened α7 nAChR Ca2+ responses in vitro, providing evidence of a cell-autonomous role for Ly6H aberrant expression in α7 nAChR hypofunction. In line with intrinsic deficits in α7 nAChR activity in Fmr1 KO neurons, in vivo administration of the α7 nAChR-selective positive allosteric modulator PNU-120596 reduced hyperactivity and seizure severity in adolescent Fmr1 KO mice. Our mechanistic studies together with evidence of the in vivo efficacy of α7 nAChR augmentation implicate α7 nAChR hypofunction in FXS pathology.
Collapse
Affiliation(s)
- Sarah Goebel
- Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A
| | | | - Vytas K. Verselis
- Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A
| | - Anna Francesconi
- Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A
| |
Collapse
|
2
|
Otsuka H, Sasaki-Hamada S, Ishibashi H, Oka JI. Hippocampal acetylcholine receptor activation-dependent long-term depression in streptozotocin-induced diabetic rats. Neurosci Lett 2024; 822:137650. [PMID: 38253285 DOI: 10.1016/j.neulet.2024.137650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Cholinergic innervation of the hippocampus correlates with memory formation. In a well-established animal model of type 1 diabetes mellitus, obtained by injecting young adult rats with streptozotocin (STZ), reductions have been reported in the expression of acetylcholine receptors and choline acetyltransferase. In this study, we showed that long-term synaptic depression (LTD) induced by carbachol (CCh), a nonselective cholinergic receptor agonist, at Schaffer collateral-CA1 synapses in hippocampal slices was significantly weaker in streptozotocin-induced diabetic rats (STZ rats) than in age-matched control rats. No significant change was observed in the paired-pulse ratio between before and 80 min after the application of CCh in control and STZ rats. Moreover, CCh-induced LTD in control and STZ rats was not affected by an NMDA receptor antagonist. Although the application of CCh down-regulated the surface expression of GluA2 in the hippocampus of control rats, but not STZ rats. Therefore, the present results suggest that acetylcholine receptor-mediated LTD in STZ rats requires the internalization of AMPA receptors on the postsynaptic surface and their intracellular effects in the hippocampus.
Collapse
Affiliation(s)
- Hayuma Otsuka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Kanagawa 252-0373, Japan.
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan.
| |
Collapse
|
3
|
Wu PY, Ji L, De Sanctis C, Francesconi A, Inglebert Y, McKinney RA. Loss of synaptopodin impairs mGluR5 and protein synthesis-dependent mGluR-LTD at CA3-CA1 synapses. PNAS NEXUS 2024; 3:pgae062. [PMID: 38384385 PMCID: PMC10879843 DOI: 10.1093/pnasnexus/pgae062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the central nervous system and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein is critical for mGluR-LTD and protects spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite its modulation of the structural plasticity. In this study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data indicate that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight into our understanding of spine/synapse-specific plasticity.
Collapse
Affiliation(s)
- Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Linjia Ji
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claudia De Sanctis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
4
|
Berndt M, Trusel M, Roberts TF, Pfeiffer BE, Volk LJ. Bidirectional synaptic changes in deep and superficial hippocampal neurons following in vivo activity. Neuron 2023; 111:2984-2994.e4. [PMID: 37689058 PMCID: PMC10958998 DOI: 10.1016/j.neuron.2023.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Neuronal activity during experience is thought to induce plastic changes within the hippocampal network that underlie memory formation, although the extent and details of such changes in vivo remain unclear. Here, we employed a temporally precise marker of neuronal activity, CaMPARI2, to label active CA1 hippocampal neurons in vivo, followed by immediate acute slice preparation and electrophysiological quantification of synaptic properties. Recently active neurons in the superficial sublayer of stratum pyramidale displayed larger post-synaptic responses at excitatory synapses from area CA3, with no change in pre-synaptic release probability. In contrast, in vivo activity correlated with weaker pre- and post-synaptic excitatory weights onto pyramidal cells in the deep sublayer. In vivo activity of deep and superficial neurons within sharp-wave/ripples was bidirectionally changed across experience, consistent with the observed changes in synaptic weights. These findings reveal novel, fundamental mechanisms through which the hippocampal network is modified by experience to store information.
Collapse
Affiliation(s)
- Marcus Berndt
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Massimo Trusel
- UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Todd F Roberts
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| | - Lenora J Volk
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Psychiatry, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
López-Merino E, Cuartero MI, Esteban JA, Briz V. Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders. Cell Biol Toxicol 2023; 39:2089-2111. [PMID: 35137321 PMCID: PMC10547633 DOI: 10.1007/s10565-022-09697-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Increasing evidence from animal and epidemiological studies indicates that perinatal exposure to pesticides cause developmental neurotoxicity and may increase the risk for psychiatric disorders such as autism and intellectual disability. However, the underlying pathogenic mechanisms remain largely elusive. This work was aimed at testing the hypothesis that developmental exposure to different classes of pesticides hijacks intracellular neuronal signaling contributing to synaptic and behavioral alterations associated with neurodevelopmental disorders (NDD). Low concentrations of organochlorine (dieldrin, endosulfan, and chlordane) and organophosphate (chlorpyrifos and its oxon metabolite) pesticides were chronically dosed ex vivo (organotypic rat hippocampal slices) or in vivo (perinatal exposure in rats), and then biochemical, electrophysiological, behavioral, and proteomic studies were performed. All the pesticides tested caused prolonged activation of MAPK/ERK pathway in a concentration-dependent manner. Additionally, some of them impaired metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). In the case of the pesticide chlordane, the effect was attributed to chronic modulation of MAPK/ERK signaling. These synaptic alterations were reproduced following developmental in vivo exposure to chlordane and chlorpyrifos-oxon, and were also associated with prototypical behavioral phenotypes of NDD, including impaired motor development, increased anxiety, and social and memory deficits. Lastly, proteomic analysis revealed that these pesticides differentially regulate the expression of proteins in the hippocampus with pivotal roles in brain development and synaptic signaling, some of which are associated with NDD. Based on these results, we propose a novel mechanism of synaptic dysfunction, involving chronic overactivation of MAPK and impaired mGluR-LTD, shared by different pesticides which may have important implications for NDD.
Collapse
Affiliation(s)
| | - María I Cuartero
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
6
|
Wu PY, Ji L, De Sanctis C, Francesconi A, Inglebert Y, McKinney RA. Loss of synaptopodin impairs mGluR5 and protein synthesis dependent mGluR-LTD at CA3-CA1 synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551676. [PMID: 37577654 PMCID: PMC10418280 DOI: 10.1101/2023.08.02.551676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the CNS and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein, are critical for mGluR-LTD and protect spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite of its modulation on the structural plasticity. In the present study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data show for the first time that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight to our understanding of spine/synapse-specific plasticity. Significance statement Hippocampal group I metabotropic glutamate receptor dependent long-term depression (mGluR-LTD), a form of learning and memory, is misregulated in many murine models of neurodevelopmental disorders. Despite extensive studies there is a paucity of information on the molecular mechanism underlying mGluR-LTD. Previously, we reported that loss of synaptopodin, an actin-associated protein found in a subset of mature dendritic spines, impairs mGluR-LTD. In the current study, we uncover the molecular and cellular deficits involved. We find that synaptopodin is required for the mGluR5-Homer interaction and uncover synaptopodin as a molecular switch for mGluR-LTD expression, as mGluR-LTD becomes protein synthesis-independent and relies on endocannabinoid signaling in synaptopodin knock-out. This work provides insight into synaptopodin as a gatekeeper to regulate mGluR-LTD at hippocampal synapses.
Collapse
|
7
|
Sumi T, Harada K. Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway. iScience 2023; 26:106133. [PMID: 36866246 PMCID: PMC9972575 DOI: 10.1016/j.isci.2023.106133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The forebrain cholinergic system promotes higher brain function in part by signaling through the M1 muscarinic acetylcholine receptor (mAChR). Long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission in the hippocampus are also induced by mAChR. An AMPA receptor (AMPAR) trafficking model for hippocampal neurons has been proposed to simulate N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the early phase. In this study, we demonstrated the validity of the hypothesis that the mAChR-dependent LTP/LTD shares a common AMPAR trafficking pathway associated with NMDAR-dependent LTP/LTD. However, unlike NMDAR, Ca2+ influx into the spine cytosol occurs owing to the Ca2+ stored inside the ER and is induced via the activation of inositol 1,4,5-trisphosphate (IP3) receptors during M1 mAChR activation. Moreover, the AMPAR trafficking model implies that alterations in LTP and LTD observed in Alzheimer's disease could be attributed to age-dependent reductions in AMPAR expression levels.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Corresponding author
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Japan
| |
Collapse
|
8
|
Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 2023; 48:121-144. [PMID: 36038780 PMCID: PMC9700774 DOI: 10.1038/s41386-022-01374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Daniel N Scott
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
Ojea Ramos S, Feld M, Fustiñana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci 2022; 15:988790. [PMID: 36277495 PMCID: PMC9580372 DOI: 10.3389/fnmol.2022.988790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
10
|
Kalinowska M, van der Lei MB, Kitiashvili M, Mamcarz M, Oliveira MM, Longo F, Klann E. Deletion of Fmr1 in parvalbumin-expressing neurons results in dysregulated translation and selective behavioral deficits associated with fragile X syndrome. Mol Autism 2022; 13:29. [PMID: 35768828 PMCID: PMC9245312 DOI: 10.1186/s13229-022-00509-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common genetic cause of autism spectrum disorder and intellectual disability, is caused by the lack of fragile X mental retardation protein (FMRP) expression. FMRP is an mRNA binding protein with functions in mRNA transport, localization, and translational control. In Fmr1 knockout mice, dysregulated translation has been linked to pathophysiology, including abnormal synaptic function and dendritic morphology, and autistic-like behavioral phenotypes. The role of FMRP in morphology and function of excitatory neurons has been well studied in mice lacking Fmr1, but the impact of Fmr1 deletion on inhibitory neurons remains less characterized. Moreover, the contribution of FMRP in different cell types to FXS pathophysiology is not well defined. We sought to characterize whether FMRP loss in parvalbumin or somatostatin-expressing neurons results in FXS-like deficits in mice. METHODS We used Cre-lox recombinase technology to generate two lines of conditional knockout mice lacking FMRP in either parvalbumin or somatostatin-expressing cells and carried out a battery of behavioral tests to assess motor function, anxiety, repetitive, stereotypic, social behaviors, and learning and memory. In addition, we used fluorescent non-canonical amino acid tagging along with immunostaining to determine whether de novo protein synthesis is dysregulated in parvalbumin or somatostatin-expressing neurons. RESULTS De novo protein synthesis was elevated in hippocampal parvalbumin and somatostatin-expressing inhibitory neurons in Fmr1 knockout mice. Cell type-specific deletion of Fmr1 in parvalbumin-expressing neurons resulted in anxiety-like behavior, impaired social behavior, and dysregulated de novo protein synthesis. In contrast, deletion of Fmr1 in somatostatin-expressing neurons did not result in behavioral abnormalities and did not significantly impact de novo protein synthesis. This is the first report of how loss of FMRP in two specific subtypes of inhibitory neurons is associated with distinct FXS-like abnormalities. LIMITATIONS The mouse models we generated are limited by whole body knockout of FMRP in parvalbumin or somatostatin-expressing cells and further studies are needed to establish a causal relationship between cellular deficits and FXS-like behaviors. CONCLUSIONS Our findings indicate a cell type-specific role for FMRP in parvalbumin-expressing neurons in regulating distinct behavioral features associated with FXS.
Collapse
Affiliation(s)
- Magdalena Kalinowska
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Mathijs B. van der Lei
- grid.5284.b0000 0001 0790 3681Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Michael Kitiashvili
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Maggie Mamcarz
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Mauricio M. Oliveira
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Francesco Longo
- grid.8761.80000 0000 9919 9582Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA. .,NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Metaplastic Reinforcement of Long-Term Potentiation in Hippocampal Area CA2 by Cholinergic Receptor Activation. J Neurosci 2021; 41:9082-9098. [PMID: 34561235 DOI: 10.1523/jneurosci.2885-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal CA2, an inconspicuously positioned area between the well-studied CA1 and CA3 subfields, has captured research interest in recent years because of its role in social memory formation. However, the role of cholinergic inputs to the CA2 area for the regulation of synaptic plasticity remains to be fully understood. We show that cholinergic receptor activation with the nonselective cholinergic agonist, carbachol (CCh), triggers a protein synthesis-dependent and NMDAR-independent long-term synaptic depression (CCh-LTD) at entorhinal cortical (EC)-CA2 and Schaffer collateral (SC)-CA2 synapses in the hippocampus of adult male Wistar rats. The activation of muscarinic acetylcholine receptors (mAChRs) is critical for the induction of CCh-LTD with the results suggesting an involvement of M3 and M1 mAChRs in the early facilitation of CCh-LTD, while nicotinic AChR activation plays a role in the late maintenance of CCh-LTD at CA2 synapses. Remarkably, we find that CCh priming lowers the threshold for the subsequent induction of persistent long-term potentiation (LTP) of synaptic transmission at EC-CA2 and the plasticity-resistant SC-CA2 pathways. The effects of such a cholinergic-dependent synaptic depression on subsequent LTP at EC-CA2 and SC-CA2 synapses have not been previously explored. Collectively, the results demonstrate that CA2 synaptic learning rules are regulated in a metaplastic manner, whereby modifications triggered by prior cholinergic stimulation can dictate the outcome of future plasticity events. Moreover, the reinforcement of LTP at EC inputs to CA2 following the priming stimulus coexists with concurrent sustained CCh-LTD at the SC-CA2 pathway and is dynamically scaled by modulation of SC-CA2 synaptic transmission.SIGNIFICANCE STATEMENT The release of the neuromodulator acetylcholine is critically involved in processes of hippocampus-dependent memory formation. Cholinergic afferents originating in the medial septum and diagonal bands of Broca terminating in the hippocampal area CA2 might play an important role in the modulation of area-specific synaptic plasticity. Our findings demonstrate that cholinergic receptor activation induces an LTD of synaptic transmission at entorhinal cortical- and Schaffer collateral-CA2 synapses. This cholinergic activation-mediated LTD displays a bidirectional metaplastic switch to LTP on a future timescale. This suggests that such bidirectional synaptic modifications triggered by the dynamic modulation of tonic cholinergic receptor activation may support the formation of CA2-dependent memories given the increased hippocampal cholinergic tone during active wakefulness observed in exploratory behavior.
Collapse
|
12
|
Nakauchi S, Su H, Trang I, Sumikawa K. Long-term effects of early postnatal nicotine exposure on cholinergic function in the mouse hippocampal CA1 region. Neurobiol Learn Mem 2021; 181:107445. [PMID: 33895349 PMCID: PMC9836228 DOI: 10.1016/j.nlm.2021.107445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023]
Abstract
In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired hippocampus-dependent memory, but the underlying mechanism remains elusive. Given that hippocampal cholinergic systems modulate memory and rapid development of hippocampal cholinergic systems occurs during nicotine exposure, here we investigated its impacts on cholinergic function. Both nicotinic and muscarinic activation produce transient or long-lasting depression of excitatory synaptic transmission in the hippocampal CA1 region. We found that postnatal nicotine exposure impairs both the induction and nicotinic modulation of NMDAR-dependent long-term depression (LTD). Activation of muscarinic receptors decreases excitatory synaptic transmission and CA1 network activity in both wild-type and α2 knockout mice. These muscarinic effects are still observed in nicotine-exposed mice. M1 muscarinic receptor activity is required for mGluR-dependent LTD. Early postnatal nicotine exposure has no effect on mGluR-dependent LTD induction, suggesting that it has no effect on the function of m1 muscarinic receptors involved in this form of LTD. Our results demonstrate that early postnatal nicotine exposure has more pronounced effects on nicotinic function than muscarinic function in the hippocampal CA1 region. Thus, impaired hippocampus-dependent memory may arise from the developmental disruption of nicotinic cholinergic systems in the hippocampal CA1 region.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/growth & development
- CA1 Region, Hippocampal/metabolism
- Cigarette Smoking
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Female
- Lactation
- Long-Term Synaptic Depression/drug effects
- Long-Term Synaptic Depression/physiology
- Male
- Maternal Exposure
- Memory/drug effects
- Memory/physiology
- Mice
- Mice, Knockout
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/metabolism
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Hailing Su
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Ivan Trang
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA.
| |
Collapse
|
13
|
Zehnder T, Petrelli F, Romanos J, De Oliveira Figueiredo EC, Lewis TL, Déglon N, Polleux F, Santello M, Bezzi P. Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Rep 2021; 35:108952. [PMID: 33852851 DOI: 10.1016/j.celrep.2021.108952] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
The mechanisms controlling the post-natal maturation of astrocytes play a crucial role in ensuring correct synaptogenesis. We show that mitochondrial biogenesis in developing astrocytes is necessary for coordinating post-natal astrocyte maturation and synaptogenesis. The astrocytic mitochondrial biogenesis depends on the transient upregulation of metabolic regulator peroxisome proliferator-activated receptor gamma (PPARγ) co-activator 1α (PGC-1α), which is controlled by metabotropic glutamate receptor 5 (mGluR5). At tissue level, the loss or downregulation of astrocytic PGC-1α sustains astrocyte proliferation, dampens astrocyte morphogenesis, and impairs the formation and function of neighboring synapses, whereas its genetic re-expression is sufficient to restore the mitochondria compartment and correct astroglial and synaptic defects. Our findings show that the developmental enhancement of mitochondrial biogenesis in astrocytes is a critical mechanism controlling astrocyte maturation and supporting synaptogenesis, thus suggesting that astrocytic mitochondria may be a therapeutic target in the case of neurodevelopmental and psychiatric disorders characterized by impaired synaptogenesis.
Collapse
Affiliation(s)
- Tamara Zehnder
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Francesco Petrelli
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Jennifer Romanos
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Eva C De Oliveira Figueiredo
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Tommy L Lewis
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland; Neurosciences Research Center (CRN), Laboratory of Neurotherapies and Neuromodulation (LNTM), Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland.
| | - Paola Bezzi
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
14
|
Berry-Kravis E, Filipink RA, Frye RE, Golla S, Morris SM, Andrews H, Choo TH, Kaufmann WE. Seizures in Fragile X Syndrome: Associations and Longitudinal Analysis of a Large Clinic-Based Cohort. Front Pediatr 2021; 9:736255. [PMID: 35036394 PMCID: PMC8756611 DOI: 10.3389/fped.2021.736255] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability, learning disability, and autism spectrum disorder, is associated with an increased prevalence of certain medical conditions including seizures. The goal of this study was to better understand seizures in individuals with FXS using the Fragile X Online Registry with Accessible Research Database, a multisite observational study initiated in 2012 involving FXS clinics in the Fragile X Clinic and Research Consortium. Seizure data were available for 1,607 participants, mostly male (77%) and white (74.5%). The overall prevalence of at least one seizure was 12%, with this rate being significantly higher in males than females (13.7 vs. 6.2%, p < 0.001). As compared to individuals with FXS without seizures, those with seizures were more likely to have autism spectrum disorder, current sleep apnea, later acquisition of expressive language, more severe intellectual disability, hyperactivity, irritability, and stereotyped movements. The mean age of seizure onset was 6.4 (SD 6.1) years of age with the great majority (>80%) having onset of seizures which was before 10. For those with epilepsy, about half (52%) had seizures for more than 3 years. This group was found to have greater cognitive and language impairment, but not behavioral disruptions, compared with those with seizures for <3 years. Antiepileptic drugs were more often used in males (60.6%) than females (34.8%), and females more often required more than one medication. The most commonly used anticonvulsants were oxcarbazepine, valproic acid, lamotrigine, and levetiracetam. The current study is the largest and first longitudinal study ever conducted to describe seizures in FXS. Overall, this study confirms previous reports of seizures in FXS and extends previous findings by further defining the cognitive and behavioral phenotype of those with epilepsy in FXS. Future studies should further investigate the natural history of seizures in FXS and the characteristics of seizures in FXS in adulthood.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Robyn A Filipink
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sailaja Golla
- Division of Neurodevelopmental Medicine, Department of Neurology, Thompson Autism Center, Children's Hospital of California, University of Irvine, Orange, CA, United States
| | - Stephanie M Morris
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
| | - Howard Andrews
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, United States
| | - Tse-Hwei Choo
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | | | | |
Collapse
|
15
|
Kainic acid-induced status epilepticus decreases mGlu 5 receptor and phase-specifically downregulates Homer1b/c expression. Brain Res 2019; 1730:146640. [PMID: 31891692 DOI: 10.1016/j.brainres.2019.146640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022]
Abstract
Globally, over 50 million people are affected by epilepsy, which is characterized by the occurrence of spontaneous recurrent seizures. Almost one-third of the patients show resistance to current anti-epileptic drugs, making the exploration of new molecular targets necessary. An interesting target may be Homer1, due to its diverse roles in epileptogenesis and synaptic plasticity. Indeed, Homer1 regulates group I metabotropic glutamate (mGlu) receptors (i.e. mGlu1 and mGlu5) scaffolding and signaling in neurons. In the present work, using the systemic kainic acid (KA)-induced status epilepticus (SE) model in adult rats, we investigated the mRNA and protein expression patterns of the mGlu5 receptor, Homer1a and Homer1b/c at 10, 80 and 120 days post-SE (i.e. T10, T80 and T120). Epileptogenesis was validated by electrophysiological recordings of seizures via electroencephalography (EEG) monitoring and through upregulation of glial fibrillary acidic protein. At the protein level, the mGlu5 receptor was downregulated in the late latent phase (T10) and the early- and late exponential growth phase (T80 and T120, respectively), which was best observed in the hippocampal CA1 region. At mRNA level, significant downregulation of the mGlu5 receptor was only detected in the late exponential growth phase. Homer1a expression did not change at any investigated time point. Interestingly, Homer1b/c was only downregulated in the late latent phase, a period where spontaneous seizures are extremely rare. Thus, this phase-specific downregulation may be indicative of an endogenous neuroprotective mechanism. In conclusion, these results suggest that Homer1b/c may be an interesting molecular target to prevent epileptogenesis and/or control seizures.
Collapse
|
16
|
Chemogenetic Activation of Excitatory Neurons Alters Hippocampal Neurotransmission in a Dose-Dependent Manner. eNeuro 2019; 6:ENEURO.0124-19.2019. [PMID: 31645362 PMCID: PMC6860986 DOI: 10.1523/eneuro.0124-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tools are extensively used to manipulate neuronal activity in a cell type-specific manner. Whole-cell patch-clamp recordings indicate membrane depolarization, coupled with increased neuronal firing rate, following administration of the DREADD ligand, clozapine-N-oxide (CNO) to activate the Gq-coupled DREADD, hM3Dq. Although hM3Dq has been used to enhance neuronal firing in order to manipulate diverse behaviors, often within 30 min to 1 h after CNO administration, the physiological effects on excitatory neurotransmission remain poorly understood. We investigated the influence of CNO-mediated hM3Dq DREADD activation on distinct aspects of hippocampal excitatory neurotransmission at the Schaffer collateral-CA1 synapse in hippocampal slices derived from mice expressing hM3Dq in Ca2+/calmodulin-dependent protein kinase α (CamKIIα)-positive excitatory neurons. Our results indicate a clear dose-dependent effect on field EPSP (fEPSP) slope, with no change noted at the lower dose of CNO (1 µM) and a significant, long-term decline in fEPSP slope observed at higher doses (5-20 µM). Further, we noted a robust θ burst stimulus (TBS) induced long-term potentiation (LTP) in the presence of the lower CNO (1 µM) dose, which was significantly attenuated at the higher CNO (20 µM) dose. Whole-cell patch-clamp recording revealed both complex dose-dependent regulation of excitability, and spontaneous and evoked activity of CA1 pyramidal neurons in response to hM3Dq activation across CNO concentrations. Our data indicate that CNO-mediated activation of the hM3Dq DREADD results in dose-dependent regulation of excitatory hippocampal neurotransmission and highlight the importance of careful interpretation of behavioral experiments involving chemogenetic manipulation.
Collapse
|
17
|
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that causes intellectual disability. It is a leading known genetic cause of autism. In addition to cognitive, social, and communication deficits, humans with FXS demonstrate abnormal sensory processing including sensory hypersensitivity. Sensory hypersensitivity commonly manifests as auditory, tactile, or visual defensiveness or avoidance. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity, impaired habituation to repeated sounds, and reduced auditory attention in humans with FXS. Children with FXS also exhibit significant visuospatial impairments. Studies in infants and toddlers with FXS have documented impairments in processing texture-defined motion stimuli, temporal flicker, perceiving ordinal numerical sequence, and the ability to maintain the identity of dynamic object information during occlusion. Consistent with the observations in humans with FXS, fragile X mental retardation 1 ( Fmr1) gene knockout (KO) rodent models of FXS also show seizures, abnormal visual-evoked responses, auditory hypersensitivity, and abnormal processing at multiple levels of the auditory system, including altered acoustic startle responses. Among other sensory symptoms, individuals with FXS exhibit tactile defensiveness. Fmr1 KO mice also show impaired encoding of tactile stimulation frequency and larger size of receptive fields in the somatosensory cortex. Since sensory deficits are relatively more tractable from circuit mechanisms and developmental perspectives than more complex social behaviors, the focus of this review is on clinical, functional, and structural studies that outline the auditory, visual, and somatosensory processing deficits in FXS. The similarities in sensory phenotypes between humans with FXS and animal models suggest a likely conservation of basic sensory processing circuits across species and may provide a translational platform to not just develop biomarkers but also to understand underlying mechanisms. We argue that preclinical studies in animal models of FXS can facilitate the ongoing search for new therapeutic approaches in FXS by understanding mechanisms of basic sensory processing circuits and behaviors that are conserved across species.
Collapse
Affiliation(s)
- Maham Rais
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA
| | - Devin K Binder
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| | - Khaleel A Razak
- 2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA.,4 Psychology Department, University of California Riverside, CA, USA
| | - Iryna M Ethell
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| |
Collapse
|
18
|
O'Riordan KJ, Hu NW, Rowan MJ. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus. Cell Rep 2019; 22:2053-2065. [PMID: 29466733 DOI: 10.1016/j.celrep.2018.01.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/16/2017] [Accepted: 01/26/2018] [Indexed: 01/03/2023] Open
Abstract
Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo. This relatively sparse synaptic LTD requires both the ion channel function and GluN2B subunit of the NMDA receptor but, in contrast to electrically induced LTD, is not facilitated by boosting endogenous muscarinic acetylcholine or metabotropic glutamate 5 receptor activation. Although in the absence of Aß, there is no evidence of hippocampal LTD asymmetry, in the presence of Aß, the induction of LTD is preferentially enhanced in the left hippocampus in an mGluR5-dependent manner. This circuit-selective disruption of synaptic plasticity by Aß provides a route to understanding the development of aberrant brain lateralization in AD.
Collapse
Affiliation(s)
- Kenneth J O'Riordan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland; Department of Gerontology, Yijishan Hospital, Wannan Medical College, Wuhu, China.
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
19
|
Xiong CH, Liu MG, Zhao LX, Chen MW, Tang L, Yan YH, Chen HZ, Qiu Y. M1 muscarinic receptors facilitate hippocampus-dependent cognitive flexibility via modulating GluA2 subunit of AMPA receptors. Neuropharmacology 2019; 146:242-251. [DOI: 10.1016/j.neuropharm.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022]
|
20
|
Zhao LX, Ge YH, Li JB, Xiong CH, Law PY, Xu JR, Qiu Y, Chen HZ. M1 muscarinic receptors regulate the phosphorylation of AMPA receptor subunit GluA1 via a signaling pathway linking cAMP-PKA and PI3K-Akt. FASEB J 2019; 33:6622-6631. [PMID: 30794430 DOI: 10.1096/fj.201802351r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
M1 muscarinic acetylcholine receptors are highly expressed in key areas that control cognition, such as the cortex and hippocampus, representing one potential therapeutic target for cognitive dysfunctions of Alzheimer's disease and schizophrenia. We have reported that M1 receptors facilitate cognition by promoting membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor AMPA receptor subunit 1 (GluA1) through phosphorylation at Ser845. However, the signaling pathway is still unclear. Here we showed that adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and PKA inhibitor KT5720 inhibited enhancement of phosphorylation of Ser845 and membrane insertion of GluA1 induced by M1 receptor activation. Furthermore, PI3K inhibitor LY294002 and protein kinase B (Akt) inhibitor IV blocked the effects of M1 receptors as well. Remarkably, the increase of the activity of PI3K-Akt signaling induced by M1 receptor activation could be abolished by cAMP-PKA inhibitors. Moreover, inhibiting the mammalian target of rapamycin (mTOR) complex 1, an important downstream effector of PI3K-Akt, by short-term application of rapamycin attenuated the effects of M1 receptors on GluA1. Furthermore, such effect was unrelated to possible protein synthesis promoted by mTOR. Taken together, these data demonstrate that M1 receptor activation induces membrane insertion of GluA1 via a signaling linking cAMP-PKA and PI3K-Akt-mTOR pathways but is irrelevant to protein synthesis.-Zhao, L.-X., Ge, Y.-H., Li, J.-B., Xiong, C.-H., Law, P.-Y., Xu, J.-R., Qiu, Y., Chen, H.-Z. M1 muscarinic receptors regulate the phosphorylation of AMPA receptor subunit GluA1 via a signaling pathway linking cAMP-PKA and PI3K-Akt.
Collapse
Affiliation(s)
- Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Hui Ge
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bing Li
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Hong Xiong
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA; and
| | - Jian-Rong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Neuhofer D, Lassalle O, Manzoni OJ. Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice. ACS Chem Neurosci 2018; 9:2233-2240. [PMID: 29486555 DOI: 10.1021/acschemneuro.7b00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated how metabotropic acetylcholine receptors control excitatory synaptic plasticity in the mouse nucleus accumbens core. Pharmacological and genetic approaches revealed that M1 mAChRs (muscarinic acetylcholine receptors) trigger multiple and interacting forms of synaptic plasticity. As previously described in the dorsal striatum, moderate pharmacological activation of M1 mAChR potentiated postsynaptic NMDARs. The M1-potentiation of NMDAR masked a previously unknown coincident TRPV1-mediated long-term depression (LTD). In addition, strong pharmacological activation of M1 mAChR induced canonical retrograde LTD, mediated by presynaptic CB1R. In the fmr1-/y mouse model of Fragile X, we found that CB1R but not TRPV1 M1-LTD was impaired. Finally, pharmacological blockade of the degradation of anandamide and 2-arachidonylglycerol, the two principal endocannabinoids restored fmr1-/y LTD to wild-type levels. These findings shed new light on the complex influence of acetylcholine on excitatory synapses in the nucleus accumbens core and identify new substrates of the synaptic deficits of Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Olivier Lassalle
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| | - Olivier J. Manzoni
- INMED, INSERM
U901, 13273 Marseille, France
- Aix-Marseille University, 13007 Marseille, France
- Université
de Aix-Marseille, UMR S901, 13273 Marseille, France
| |
Collapse
|
22
|
Abstract
The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.
Collapse
Affiliation(s)
- Yuh-Jiin I. Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
23
|
Zannone S, Brzosko Z, Paulsen O, Clopath C. Acetylcholine-modulated plasticity in reward-driven navigation: a computational study. Sci Rep 2018; 8:9486. [PMID: 29930322 PMCID: PMC6013476 DOI: 10.1038/s41598-018-27393-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/29/2018] [Indexed: 11/08/2022] Open
Abstract
Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.
Collapse
Affiliation(s)
- Sara Zannone
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom
| | - Zuzanna Brzosko
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Ole Paulsen
- University of Cambridge, Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Claudia Clopath
- Imperial College London, Department of Bioengineering, South Kensington Campus, London, United Kingdom.
| |
Collapse
|
24
|
Jewett KA, Lee KY, Eagleman DE, Soriano S, Tsai NP. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Neuropharmacology 2018; 138:182-192. [PMID: 29890190 DOI: 10.1016/j.neuropharm.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023]
Abstract
Chronic activity perturbations in neurons induce homeostatic plasticity through modulation of synaptic strength or other intrinsic properties to maintain the correct physiological range of excitability. Although similar plasticity can also occur at the population level, what molecular mechanisms are involved remain unclear. In the current study, we utilized a multielectrode array (MEA) recording system to evaluate homeostatic neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic elevation of neuronal activity through the inhibition of GABA(A) receptors elicits synchronization of neural network activity and homeostatic reduction of the amplitude of spontaneous neural network spikes. We subsequently showed that this phenomenon is mediated by the ubiquitination of tumor suppressor p53, which is triggered by murine double minute-2 (Mdm2). Using a mouse model of fragile X syndrome, in which fragile X mental retardation protein (FMRP) is absent (Fmr1 knockout), we found that Mdm2-p53 signaling, network synchronization, and the reduction of network spike amplitude upon chronic activity stimulation were all impaired. Pharmacologically inhibiting p53 with Pifithrin-α or genetically employing p53 heterozygous mice to enforce the inactivation of p53 in Fmr1 knockout cultures restored the synchronization of neural network activity after chronic activity stimulation and partially corrects the homeostatic reduction of neural network spike amplitude. Together, our findings reveal the roles of both Fmr1 and Mdm2-p53 signaling in the homeostatic regulation of neural network activity and provide insight into the deficits of excitability homeostasis seen when Fmr1 is compromised, such as occurs with fragile X syndrome.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Soriano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Syringaresinol suppresses excitatory synaptic transmission and picrotoxin-induced epileptic activity in the hippocampus through presynaptic mechanisms. Neuropharmacology 2017; 131:68-82. [PMID: 29225041 DOI: 10.1016/j.neuropharm.2017.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023]
Abstract
Many neuromodulating drugs acting on the nervous system originate from botanical sources. These plant-derived substances modulate the activity of receptors, ion channels, or transporters in neurons. Their properties make the substances useful for medicine and research. Here, we show that the plant lignan (+)-syringaresinol (SYR) suppresses excitatory synaptic transmission via presynaptic modulation. Bath application of SYR rapidly reduced the slopes of the field excitatory postsynaptic potentials (fEPSPs) at the hippocampal Schaffer collateral (SC)-CA1 synapse in a dose-dependent manner. SYR preferentially affected excitatory synapses, while inhibitory synaptic transmission remained unchanged. SYR had no effect on the conductance or the desensitization of AMPARs but increased the paired-pulse ratios of synaptic responses at short (20-200 ms) inter-stimulus intervals. These presynaptic changes were accompanied by a reduction of the readily releasable pool size. Pretreatment of hippocampal slices with the Gi/o protein inhibitor N-ethylmaleimide (NEM) abolished the effect of SYR on excitatory synaptic transmission, while the application of SYR significantly decreased Ca2+ currents and hyperpolarized the resting membrane potentials of hippocampal neurons. In addition, SYR suppressed picrotoxin-induced epileptiform activity in hippocampal slices. Overall, our study identifies SYR as a new neuromodulating agent and suggests that SYR suppresses excitatory synaptic transmission by modulating presynaptic transmitter release.
Collapse
|
27
|
Sitzmann AF, Hagelstrom RT, Tassone F, Hagerman RJ, Butler MG. Rare FMR1 gene mutations causing fragile X syndrome: A review. Am J Med Genet A 2017; 176:11-18. [PMID: 29178241 DOI: 10.1002/ajmg.a.38504] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, typically due to CGG-repeat expansions in the FMR1 gene leading to lack of expression. We identified a rare FMR1 gene mutation (c.413G>A), previously reported in a single patient and reviewed the literature for other rare FMR1 mutations. Our patient at 10 years of age presented with the classical findings of FXS including intellectual disability, autism, craniofacial findings, hyperextensibility, fleshy hands, flat feet, unsteady gait, and seizures but without the typical CGG-repeat expansion. He had more features of FXS than the previously reported patient with the same mutation. Twenty individuals reported previously with rare missense or nonsense mutations or other coding disturbances of the FMR1 gene ranged in age from infancy to 50 years; most were verbal with limited speech, had autism and hyperactivity, and all had intellectual disability. Four of the 20 individuals had a mutation within exon 15, three within exon 5, and two within exon 2. The FMR1 missense mutation (c.413G>A) is the same as in a previously reported male where it was shown that there was preservation of the post-synaptic function of the fragile X mental retardation protein (FMRP), the encoded protein of the FMR1 gene was preserved. Both patients with this missense mutation had physical, cognitive, and behavioral features similarly seen in FXS.
Collapse
Affiliation(s)
- Adam F Sitzmann
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert T Hagelstrom
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California-Davis Medical Center, Sacramento, California.,MIND Institute, University of California-Davis Medical Center, Sacramento, California
| | - Randi J Hagerman
- MIND Institute, University of California-Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California-Davis Medical Center, Sacramento, California
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
28
|
Thomson SR, Seo SS, Barnes SA, Louros SR, Muscas M, Dando O, Kirby C, Wyllie DJA, Hardingham GE, Kind PC, Osterweil EK. Cell-Type-Specific Translation Profiling Reveals a Novel Strategy for Treating Fragile X Syndrome. Neuron 2017; 95:550-563.e5. [PMID: 28772121 PMCID: PMC5548955 DOI: 10.1016/j.neuron.2017.07.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/22/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
Excessive mRNA translation downstream of group I metabotropic glutamate receptors (mGlu1/5) is a core pathophysiology of fragile X syndrome (FX); however, the differentially translating mRNAs that contribute to altered neural function are not known. We used translating ribosome affinity purification (TRAP) and RNA-seq to identify mistranslating mRNAs in CA1 pyramidal neurons of the FX mouse model (Fmr1−/y) hippocampus, which exhibit exaggerated mGlu1/5-induced long-term synaptic depression (LTD). In these neurons, we find that the Chrm4 transcript encoding muscarinic acetylcholine receptor 4 (M4) is excessively translated, and synthesis of M4 downstream of mGlu5 activation is mimicked and occluded. Surprisingly, enhancement rather than inhibition of M4 activity normalizes core phenotypes in the Fmr1−/y, including excessive protein synthesis, exaggerated mGluR-LTD, and audiogenic seizures. These results suggest that not all excessively translated mRNAs in the Fmr1−/y brain are detrimental, and some may be candidates for enhancement to correct pathological changes in the FX brain. TRAP-seq reveals altered translation of >120 mRNAs in Fmr1−/y CA1 pyramidal neurons Muscarinic receptor M4 is excessively translated in Fmr1−/y hippocampus Enhancement, not inhibition, of M4 corrects core phenotypes in the Fmr1−/y mouse Not all excessively translating mRNAs are detrimental to Fmr1−/y brain function
Collapse
Affiliation(s)
- Sophie R Thomson
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Sang S Seo
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephanie A Barnes
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Susana R Louros
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Melania Muscas
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Owen Dando
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Caoimhe Kirby
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J A Wyllie
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; UK Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Peter C Kind
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
29
|
Xu EG, Khursigara AJ, Magnuson J, Hazard ES, Hardiman G, Esbaugh AJ, Roberts AP, Schlenk D. Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10162-10172. [PMID: 28768411 DOI: 10.1021/acs.est.7b02037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH50) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Alex J Khursigara
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Jason Magnuson
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Gary Hardiman
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
30
|
Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. eLife 2017; 6. [PMID: 28691903 PMCID: PMC5546805 DOI: 10.7554/elife.27756] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/07/2017] [Indexed: 11/14/2022] Open
Abstract
Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning. DOI:http://dx.doi.org/10.7554/eLife.27756.001
Collapse
Affiliation(s)
- Zuzanna Brzosko
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Sara Zannone
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, Cambridge, United Kingdom
| |
Collapse
|
31
|
Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord 2017; 9:20. [PMID: 28690686 PMCID: PMC5496407 DOI: 10.1186/s11689-017-9203-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background Many children with autism and other neurodevelopmental disorders undergo expensive, time-consuming behavioral interventions that often yield only modest improvements. The development of adjunctive interventions that can increase the benefit of rehabilitation therapies is essential in order to improve the lives of individuals with neurodevelopmental disorders. Main text Vagus nerve stimulation (VNS) is an FDA approved therapy that is safe and effective in reducing seizure frequency and duration in individuals with epilepsy. Individuals with neurodevelopmental disorders often exhibit decreased vagal tone, and studies indicate that VNS can be used to overcome an insufficient vagal response. Multiple studies have also documented significant improvements in quality of life after VNS therapy in individuals with neurodevelopmental disorders. Moreover, recent findings indicate that VNS significantly enhances the benefits of rehabilitative training in animal models and patients, leading to greater recovery in a variety of neurological diseases. Here, we review these findings and provide a discussion of how VNS paired with rehabilitation may yield benefits in the context of neurodevelopmental disorders. Conclusions VNS paired with behavioral therapy may represent a potential new approach to enhance rehabilitation that could significantly improve the outcomes of individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Crystal T Engineer
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080 USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080 USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080 USA.,Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080 USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080 USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road BSB11, Richardson, TX 75080 USA
| |
Collapse
|
32
|
Sethna F, Feng W, Ding Q, Robison AJ, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun 2017; 8:14359. [PMID: 28218269 PMCID: PMC5321753 DOI: 10.1038/ncomms14359] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
Fragile X syndrome (FXS), caused by the loss of functional FMRP, is a leading cause of autism. Neurons lacking FMRP show aberrant mRNA translation and intracellular signalling. Here, we identify that, in Fmr1 knockout neurons, type 1 adenylyl cyclase (Adcy1) mRNA translation is enhanced, leading to excessive production of ADCY1 protein and insensitivity to neuronal stimulation. Genetic reduction of Adcy1 normalizes the aberrant ERK1/2- and PI3K-mediated signalling, attenuates excessive protein synthesis and corrects dendritic spine abnormality in Fmr1 knockout mice. Genetic reduction of Adcy1 also ameliorates autism-related symptoms including repetitive behaviour, defective social interaction and audiogenic seizures. Moreover, peripheral administration of NB001, an experimental compound that preferentially suppresses ADCY1 activity over other ADCY subtypes, attenuates the behavioural abnormalities in Fmr1 knockout mice. These results demonstrate a connection between the elevated Adcy1 translation and abnormal ERK1/2 signalling and behavioural symptoms in FXS. Fragile X syndrome (FXS) is a leading cause of autism and neurons lacking FMRP show aberrant mRNA translation and intracellular signalling. Here, the authors show that neurons from Fmr1 knockout mice have increased levels of ADCY1 protein, producing abnormal ERK1/2 signalling, dysregulated protein synthesis and behavioural symptoms associated with FXS.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Wei Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Qi Ding
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
33
|
Scharkowski F, Frotscher M, Lutz D, Korte M, Michaelsen-Preusse K. Altered Connectivity and Synapse Maturation of the Hippocampal Mossy Fiber Pathway in a Mouse Model of the Fragile X Syndrome. Cereb Cortex 2017; 28:852-867. [DOI: 10.1093/cercor/bhw408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- F Scharkowski
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Michael Frotscher
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - David Lutz
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, 38124 Braunschweig, Germany
| | | |
Collapse
|
34
|
Tian M, Xu J, Lei G, Lombroso PJ, Jackson MF, MacDonald JF. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit. Sci Rep 2016; 6:36684. [PMID: 27857196 PMCID: PMC5114553 DOI: 10.1038/srep36684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation.
Collapse
Affiliation(s)
- Meng Tian
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Jian Xu
- Child Study Center, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT, 06520, USA
| | - Gang Lei
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT, 06520, USA.,Departments of Psychiatry, and Neuroscience, Yale University School of Medicine, 230 South Frontage Rd, New Haven, CT, 06520, USA
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada
| | - John F MacDonald
- Molecular Medicine, Robarts Research Institute, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
35
|
The atypical antipsychotic olanzapine disturbs depotentiation by modulating mAChRs and impairs reversal learning. Neuropharmacology 2016; 114:1-11. [PMID: 27866902 DOI: 10.1016/j.neuropharm.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022]
Abstract
Antipsychotic medication is an essential component for treating schizophrenia, which is a serious mental disorder that affects approximately 1% of the global population. Olanzapine (Olz), one of the most frequently prescribed atypical antipsychotics, is generally considered a first-line drug for treating schizophrenia. In contrast to psychotic symptoms, the effects of Olz on cognitive symptoms of schizophrenia are still unclear. In addition, the mechanisms by which Olz affects the neural circuits associated with cognitive function are unknown. Here we show that Olz interrupts depotentiation (reversal of long-term potentiation) without disturbing de novo LTP (long-term potentiation) and LTD (long-term depression). At hippocampal SC-CA1 synapses, inhibition of NMDARs (N-methyl-d-aspartate receptors), mGluRs (metabotropic glutamate receptors), or mAChRs (muscarinic acetylcholine receptors) disrupted depotentiation. In addition, co-activation of NMDARs, mGluRs, and mAChRs reversed stably expressed LTP. Olz inhibits the activation of mAChRs, which amplifies glutamate signaling through enhanced NMDAR opening and Gq (Gq class of G protein)-mediated signal transduction. Behaviorally, Olz impairs spatial reversal learning of mice in the Morris water maze test. Our results uncover a novel mechanism underpinning the cognitive modulation of Olz and show that the anticholinergic property of Olz affects glutamate signaling and synaptic plasticity.
Collapse
|
36
|
Kang SJ, Kaang BK. Metabotropic glutamate receptor dependent long-term depression in the cortex. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:557-564. [PMID: 27847432 PMCID: PMC5106389 DOI: 10.4196/kjpp.2016.20.6.557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), a type of synaptic plasticity, is characterized by a reduction in the synaptic response, mainly at the excitatory synapses of the neurons. The hippocampus and the cerebellum have been the most extensively studied regions in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent LTD in other brain regions may be involved in the specific behaviors or diseases. In this paper, we focus on five cortical regions and review the literature that implicates their contribution to the pathogenesis of several behaviors and specific conditions associated with mGluR-dependent LTD.
Collapse
Affiliation(s)
- Sukjae Joshua Kang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
37
|
Achuta VS, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, Roybon L, Castrén ML. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol 2016; 77:438-453. [PMID: 27411166 DOI: 10.1002/dneu.22419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/14/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023]
Abstract
Disrupted metabotropic glutamate receptor 5 (mGluR5) signaling is implicated in many neuropsychiatric disorders, including autism spectrum disorder, found in fragile X syndrome (FXS). Here we report that intracellular calcium responses to the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) are augmented, and calcium-dependent mGluR5-mediated mechanisms alter the differentiation of neural progenitors in neurospheres derived from human induced pluripotent FXS stem cells and the brains of mouse model of FXS. Treatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) prevents an abnormal clustering of DHPG-responsive cells that are responsive to activation of ionotropic receptors in mouse FXS neurospheres. MPEP also corrects morphological defects of differentiated cells and enhanced migration of neuron-like cells in mouse FXS neurospheres. Unlike in mouse neurospheres, MPEP increases the differentiation of DHPG-responsive radial glial cells as well as the subpopulation of cells responsive to both DHPG and activation of ionotropic receptors in human neurospheres. However, MPEP normalizes the FXS-specific increase in the differentiation of cells responsive only to N-methyl-d-aspartate (NMDA) present in human neurospheres. Exposure to MPEP prevents the accumulation of intermediate basal progenitors in embryonic FXS mouse brain suggesting that rescue effects of GluR5 antagonist are progenitor type-dependent and species-specific differences of basal progenitors may modify effects of MPEP on the cortical development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Venkat Swaroop Achuta
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Heli Grym
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Noora Putkonen
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Verna Louhivuori
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Virve Kärkkäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 19, Lund, SE-221 84, Sweden
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland.,Autism Foundation, Kuortaneenkatu 7B, Helsinki, FI-00520, Finland
| |
Collapse
|
38
|
Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17:174-86. [PMID: 26469219 DOI: 10.3109/15622975.2015.1085597] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Imbalance between excitation and inhibition and increased excitatory-inhibitory (E-I) ratio is a common mechanism in autism spectrum disorders (ASD) that is responsible for the learning and memory, cognitive, sensory, motor deficits, and seizures occurring in these disorders. ASD are very heterogeneous and better understanding of E-I imbalance in brain will lead to better diagnosis and treatments. METHODS We perform a critical literature review of the causes and presentations of E-I imbalance in ASD. RESULTS E-I imbalance in ASD is due primarily to abnormal glutamatergic and GABAergic neurotransmission in key brain regions such as neocortex, hippocampus, amygdala, and cerebellum. Other causes are due to dysfunction of neuropeptides (oxytocin), synaptic proteins (neuroligins), and immune system molecules (cytokines). At the neuropathological level E-I imbalance in ASD is presented as a "minicolumnopathy". E-I imbalance alters the manner by which the brain processes information and regulates behaviour. New developments for investigating E-I imbalance such as optogenetics and transcranial magnetic stimulation (TMS) are presented. Non-invasive brain stimulation methods such as TMS for treatment of the core symptoms of ASD are discussed. CONCLUSIONS Understanding E-I imbalance has important implications for developing better pharmacological and behavioural treatments for ASD, including TMS, new drugs, biomarkers and patient stratification.
Collapse
Affiliation(s)
- Genoveva Uzunova
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| | - Stefano Pallanti
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA.,b Psychiatry and Behavioural Sciences, UC Davis Health System , CA , USA.,c Department Psychiatry , University of Florence , Florence , Italy.,d Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Eric Hollander
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| |
Collapse
|
39
|
Abstract
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngap1 mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Collapse
Affiliation(s)
- Nallathambi Jeyabalan
- Narayana Nethralaya Post-Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City Bangalore, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India
| |
Collapse
|
40
|
Sethna F, Zhang M, Kaphzan H, Klann E, Autio D, Cox CL, Wang H. Calmodulin activity regulates group I metabotropic glutamate receptor-mediated signal transduction and synaptic depression. J Neurosci Res 2016; 94:401-8. [PMID: 26864654 DOI: 10.1002/jnr.23719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/06/2023]
Abstract
Group I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca(2+) and the Gq-regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca(2+) regulates Gq signaling and upregulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of the Ca(2+) sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor N-[4-aminobutyl]-5-chloro-2-naphthalenesulfonamide hydrochloride (W13) suppressed the mGluR1/5-stimulated activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p70-S6 kinase 1 (S6K1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist-induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca(2+) /CaM-dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Furthermore, disruption of the CaM-CaMK-ERK1/2 signaling cascade suppressed the mGluR1/5-stimulated upregulation of Arc expression. Altogether, our data suggest CaM as a new Gq signaling component for coupling Ca(2+) and protein upregulation and regulating mGluR1/5-mediated synaptic modification.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, Michigan
| | - Ming Zhang
- Department of Physiology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan.,Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Hanoch Kaphzan
- Center for Neural Science, New York University, New York, New York.,Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York
| | - Dawn Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Charles L Cox
- Department of Physiology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
41
|
Abstract
The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs.
Collapse
|
42
|
Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors. J Neurosci 2016; 35:13542-54. [PMID: 26446209 DOI: 10.1523/jneurosci.0956-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca(2+) entry through Ca(2+)-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability.We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca(2+) entry through Ca(2+)-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression.
Collapse
|
43
|
Martin HGS, Bernabeu A, Lassalle O, Bouille C, Beurrier C, Pelissier-Alicot AL, Manzoni OJ. Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex. Front Cell Neurosci 2015; 9:457. [PMID: 26648844 PMCID: PMC4664641 DOI: 10.3389/fncel.2015.00457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light—electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling.
Collapse
Affiliation(s)
- Henry G S Martin
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Axel Bernabeu
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Conception, Service de Psychiatrie Marseille, France
| | - Olivier Lassalle
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Clément Bouille
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| | - Corinne Beurrier
- Aix-Marseille Université Marseille, France ; Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288 Marseille, France
| | - Anne-Laure Pelissier-Alicot
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France ; APHM, CHU Timone Adultes, Service de Médecine Légale Marseille, France
| | - Olivier J Manzoni
- Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée UMR_S 901 Marseille, France ; INMED UMR_S 901 Marseille, France
| |
Collapse
|
44
|
Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2. J Neurosci 2015; 35:11125-32. [PMID: 26245973 DOI: 10.1523/jneurosci.4615-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Exacerbated mRNA translation during brain development has been linked to autism spectrum disorders (ASDs). Deletion of the eukaryotic initiation factor 4E (eIF4E)-binding protein 2 gene (Eif4ebp2), encoding the suppressor of mRNA translation initiation 4E-BP2, leads to an imbalance in excitatory-to-inhibitory neurotransmission and ASD-like behaviors. Inhibition of group I metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5 reverses the autistic phenotypes in several ASD mouse models. Importantly, these receptors control synaptic physiology via activation of mRNA translation. We investigated the potential reversal of autistic-like phenotypes in Eif4ebp2(-/-) mice by using antagonists of mGluR1 (JNJ16259685) or mGluR5 (fenobam). Augmented hippocampal mGluR-induced long-term depression (LTD; or chemically induced mGluR-LTD) in Eif4ebp2(-/-) mice was rescued by mGluR1 or mGluR5 antagonists. While rescue by mGluR5 inhibition occurs through the blockade of a protein synthesis-dependent component of LTD, normalization by mGluR1 antagonists requires the activation of protein synthesis. Synaptically induced LTD was deficient in Eif4ebp2(-/-) mice, and this deficit was not rescued by group I mGluR antagonists. Furthermore, a single dose of mGluR1 (0.3 mg/kg) or mGluR5 (3 mg/kg) antagonists in vivo reversed the deficits in social interaction and repetitive behaviors (marble burying) in Eif4ebp2(-/-) mice. Our results demonstrate that Eif4ebp2(-/-) mice serve as a relevant model to test potential therapies for ASD symptoms. In addition, we provide substantive evidence that the inhibition of mGluR1/mGluR5 is an effective treatment for physiological and behavioral alterations caused by exacerbated mRNA translation initiation. SIGNIFICANCE STATEMENT Exacerbated mRNA translation during brain development is associated with several autism spectrum disorders (ASDs). We recently demonstrated that the deletion of a negative regulator of mRNA translation initiation, the eukaryotic initiation factor 4E-binding protein 2, leads to ASD-like behaviors and increased excitatory synaptic activity. Here we demonstrated that autistic behavioral and electrophysiological phenotypes can be treated in adult mice with antagonists of group I metabotropic glutamate receptors (mGluRs), which have been previously used in other ASD models (i.e., fragile X syndrome). These findings support the use of group I mGluR antagonists as a potential therapy that extends to autism models involving exacerbated mRNA translation initiation.
Collapse
|
45
|
Sastre A, Campillo NE, Gil C, Martinez A. Therapeutic approaches for the future treatment of Fragile X. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics 2015; 12:584-608. [PMID: 25986746 PMCID: PMC4489963 DOI: 10.1007/s13311-015-0355-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Christina Gross
- />Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anne Hoffmann
- />Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612 USA
| | - Gary J. Bassell
- />Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Elizabeth M. Berry-Kravis
- />Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
47
|
Scremin OU, Roch M, Norman KM, Djazayeri S, Liu YY. Brain acetylcholine and choline concentrations and dynamics in a murine model of the Fragile X syndrome: age, sex and region-specific changes. Neuroscience 2015; 301:520-8. [PMID: 26117713 DOI: 10.1016/j.neuroscience.2015.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/20/2015] [Accepted: 06/21/2015] [Indexed: 11/25/2022]
Abstract
Fragile X syndrome is a learning disability caused by excess of CGG repeats in the 5' untranslated region of the Fragile X gene (FMR1) silencing its transcription and translation. We used a murine model of this condition, Fmr1 knock-out mice (KO) to study acetylcholine (ACh) metabolism and compared it to that of wild-type control mice (WT). Brain endogenous ACh (D0ACh), free choline (D0Ch), their deuterated variants D4ACh and D4Ch and mole ratios (AChMR and ChMR) were measured by gas chromatography-mass spectrometry in the cerebral hemisphere, cerebral cortex, hippocampus and cerebellum, following D4Ch administration. Regression analysis indicated a significant decrease with age (negative slope) of D4ACh, AChMR, D4Ch and ChMR in WT mice. Age dependence was only present for D4ACh and AChMR in KO mice. Analysis of variance with age as covariate indicated a significant greater D4Ch in the cerebral cortex of KO females when compared to WT females. Contrasts between sexes within genotypes indicated lower D0Ch in cortex and cerebellum of female KO mice but not in WT and lower D4Ch in hippocampus of female KO and WT mice. In conclusion, after adjusting for age, D0ACh concentrations and synthesis from deuterium-labeled Ch were similar in KO and control WT mice in all brain regions. In contrast, significant changes in Ch dynamics were found in hippocampus and cerebral cortex of KO mice that might contribute to the pathogenesis of FXS.
Collapse
Affiliation(s)
- O U Scremin
- Greater Los Angeles VA Healthcare System, United States; David Geffen School of Medicine at UCLA, Department of Physiology, United States.
| | - M Roch
- Greater Los Angeles VA Healthcare System, United States
| | - K M Norman
- Greater Los Angeles VA Healthcare System, United States
| | - S Djazayeri
- Greater Los Angeles VA Healthcare System, United States
| | - Y-Y Liu
- Greater Los Angeles VA Healthcare System, United States; David Geffen School of Medicine at UCLA, Department of Medicine, United States
| |
Collapse
|
48
|
Wang H, Pati S, Pozzo-Miller L, Doering LC. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front Cell Neurosci 2015; 9:55. [PMID: 25767435 PMCID: PMC4341567 DOI: 10.3389/fncel.2015.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, 1 King's College Circle Toronto, ON, Canada
| | - Sandipan Pati
- Department of Neurology, Epilepsy Division, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Laurie C Doering
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
49
|
Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures. Proc Natl Acad Sci U S A 2015; 112:949-56. [PMID: 25561520 DOI: 10.1073/pnas.1423094112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP's canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP's interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes.
Collapse
|
50
|
Myrick LK, Hashimoto H, Cheng X, Warren ST. Human FMRP contains an integral tandem Agenet (Tudor) and KH motif in the amino terminal domain. Hum Mol Genet 2014; 24:1733-40. [PMID: 25416280 DOI: 10.1093/hmg/ddu586] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fragile X syndrome, a common cause of intellectual disability and autism, is due to mutational silencing of the FMR1 gene leading to the absence of its gene product, fragile X mental retardation protein (FMRP). FMRP is a selective RNA binding protein owing to two central K-homology domains and a C-terminal arginine-glycine-glycine (RGG) box. However, several properties of the FMRP amino terminus are unresolved. It has been documented for over a decade that the amino terminus has the ability to bind RNA despite having no recognizable functional motifs. Moreover, the amino terminus has recently been shown to bind chromatin and influence the DNA damage response as well as function in the presynaptic space, modulating action potential duration. We report here the amino terminal crystal structures of wild-type FMRP, and a mutant (R138Q) that disrupts the amino terminus function, containing an integral tandem Agenet and discover a novel KH motif.
Collapse
Affiliation(s)
| | | | | | - Stephen T Warren
- Department of Human Genetics, Department of Biochemistry Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|