1
|
Lang B, Kahnau P, Hohlbaum K, Mieske P, Andresen NP, Boon MN, Thöne-Reineke C, Lewejohann L, Diederich K. Challenges and advanced concepts for the assessment of learning and memory function in mice. Front Behav Neurosci 2023; 17:1230082. [PMID: 37809039 PMCID: PMC10551171 DOI: 10.3389/fnbeh.2023.1230082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanisms underlying the formation and retrieval of memories are still an active area of research and discussion. Manifold models have been proposed and refined over the years, with most assuming a dichotomy between memory processes involving non-conscious and conscious mechanisms. Despite our incomplete understanding of the underlying mechanisms, tests of memory and learning count among the most performed behavioral experiments. Here, we will discuss available protocols for testing learning and memory using the example of the most prevalent animal species in research, the laboratory mouse. A wide range of protocols has been developed in mice to test, e.g., object recognition, spatial learning, procedural memory, sequential problem solving, operant- and fear conditioning, and social recognition. Those assays are carried out with individual subjects in apparatuses such as arenas and mazes, which allow for a high degree of standardization across laboratories and straightforward data interpretation but are not without caveats and limitations. In animal research, there is growing concern about the translatability of study results and animal welfare, leading to novel approaches beyond established protocols. Here, we present some of the more recent developments and more advanced concepts in learning and memory testing, such as multi-step sequential lockboxes, assays involving groups of animals, as well as home cage-based assays supported by automated tracking solutions; and weight their potential and limitations against those of established paradigms. Shifting the focus of learning tests from the classical experimental chamber to settings which are more natural for rodents comes with a new set of challenges for behavioral researchers, but also offers the opportunity to understand memory formation and retrieval in a more conclusive way than has been attainable with conventional test protocols. We predict and embrace an increase in studies relying on methods involving a higher degree of automatization, more naturalistic- and home cage-based experimental setting as well as more integrated learning tasks in the future. We are confident these trends are suited to alleviate the burden on animal subjects and improve study designs in memory research.
Collapse
Affiliation(s)
- Benjamin Lang
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Pia Kahnau
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Paul Mieske
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niek P. Andresen
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany
| | - Marcus N. Boon
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Modeling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Lars Lewejohann
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kai Diederich
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
2
|
Dos Santos MB, de Oliveira Guarnieri L, Lunardi P, Schenatto Pereira G. On the effect of social cue valence in contextual memory persistence. Behav Brain Res 2023; 447:114398. [PMID: 36966939 DOI: 10.1016/j.bbr.2023.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
Social cues are valuable sensorial stimuli to the acquisition and retrieval of contextual memories. Here, we asked whether the valence of social cues would impact the formation of contextual memories. Adult male C57/BL6 mice were exposed to either conditioned place preference (CPP) or avoidance (CPA). As positive stimuli we used social interaction with a female (IF), while interaction with a male CD1 mice (IM) was used as negative stimulus. Contextual memory was tested 24 h and 7 days after conditioning. Aggressive behavior of CD1, as well as interaction with the female were quantified along the conditioning sessions. IM, but not IF, was salient enough to induce contextual memory estimated by the difference between the time in the conditioned context during test and habituation. Next, we chose two odors with innate behavioral responses and opposite valence to narrow down the sociability to one of its sensorial sources of information - the olfaction. We used urine from females in proestrus (U) and 2,4,5-trimethyl thiazoline (TMT), a predator odor. TMT decreased and U increased the time in the conditioned context during the test performed 24 h and 7 days after conditioning. Taken together, our results suggest that contextual memories conditioned to social encounters are difficult to stablish in mice, specially the one with positive valence. On the other hand, using odors with ecological relevance is a promising strategy to study long-term contextual memories with opposite valences. Ultimately, the behavioral protocol proposed here offers the advantage of studying contextual memories with opposite valences using unconditioned stimulus from the same sensorial category such as olfaction.
Collapse
Affiliation(s)
- Matheus Barbosa Dos Santos
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo de Oliveira Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Tan S, Tong WH, Vyas A. Impaired episodic-like memory in a mouse model of Alzheimer's disease is associated with hyperactivity in prefrontal-hippocampal regions. Dis Model Mech 2023; 16:297102. [PMID: 36897115 PMCID: PMC10040242 DOI: 10.1242/dmm.049945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder with a long prodromal period. An APPNL-G-F knock-in mouse model is a preclinical model to study incipient pathologies during the early stages of AD. Despite behavioral tests revealing broad cognitive deficits in APPNL-G-F mice, detecting these impairments at the early disease phase has been challenging. In a cognitively demanding task that assessed episodic-like memory, 3-month-old wild-type mice could incidentally form and retrieve 'what-where-when' episodic associations of their past encounters. However, 3-month-old APPNL-G-F mice, corresponding to an early disease stage without prominent amyloid plaque pathology, displayed impairment in recalling 'what-where' information of past episodes. Episodic-like memory is also sensitive to the effect of age. Eight-month-old wild-type mice failed to retrieve conjunctive 'what-where-when' memories. This deficit was also observed in 8-month-old APPNL-G-F mice. c-Fos expression revealed that impaired memory retrieval in APPNL-G-F mice was accompanied by abnormal neuronal hyperactivity in the medial prefrontal cortex and CA1 dorsal hippocampus. These observations can be used for risk stratification during preclinical AD to detect and delay the progression into dementia.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
4
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
5
|
Ramos JMJ, Morón I. Ventral hippocampus lesions and allocentric spatial memory in the radial maze: Anterograde and retrograde deficits. Behav Brain Res 2022; 417:113620. [PMID: 34624425 DOI: 10.1016/j.bbr.2021.113620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Although the dorsal hippocampus (DHip) has been clearly implicated in spatial learning and memory, there is currently debate as to whether the ventral hippocampus (VHip) is also necessary in allocentric-based navigation tasks. To differentiate between these two subregions of the hippocampal dorsoventral axis, we examined the effect of neurotoxic lesions to the DHip and VHip in different learning situations, using a four-arm plus-shaped maze. In experiment 1 a spatial reference memory task was used, with results showing an acquisition deficit in DHip-lesioned rats but perfect learning in VHip-lesioned rats. However, in experiment 2 an acquisition deficit was found in VHip-lesioned rats using a doubly marked training protocol. In this case the position of the goal arm during training was marked simultaneously by the extramaze constellation of stimuli around the maze and an intramaze cue. The main results indicated that DHip and VHip groups presented significantly more allocentric errors in the probe test than the control rats. In experiments 3 and 4, animals with their brains still intact learned, respectively, a spatial reference memory task or a purely cue-guided navigation task, and DHip and VHip lesions were made 2-3 days after reaching learning criterion. Results indicated a profound retrograde deficit in both lesioned groups but only with regard to allocentric information. So, depending on the training protocol used, our results point to increased integration and cooperation throughout the hippocampal dorsoventral axis when allocentric learning and memory is involved. These data support the existence of a functional continuum from the dorsal to the ventral hippocampus.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain.
| | - Ignacio Morón
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain
| |
Collapse
|
6
|
Abstract
The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior. Crosstalk between commensal bacteria and the central and peripheral nervous systems is associated with alterations in signaling of neurotransmitters and neuropeptides such as dopamine, brain-derived neurotrophic factor (BDNF), and glucagon-like peptide-1 (GLP-1). We further consider areas for future research on mechanisms by which gut microbes may influence feeding behavior involving these neural pathways. Understanding roles for the gut microbiota in feeding regulation will be important for informing therapeutic strategies to treat metabolic and eating disorders.
Collapse
|
7
|
Sałaciak K, Pytka K. Biased agonism in drug discovery: Is there a future for biased 5-HT 1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther 2021; 227:107872. [PMID: 33905796 DOI: 10.1016/j.pharmthera.2021.107872] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is one of the fundamental neurotransmitters that contribute to the information essential for an organism's normal, physiological function. Serotonin acts centrally and systemically. The 5-HT1A receptor is the most widespread serotonin receptor, and participates in many brain-related disorders, including anxiety, depression, and cognitive impairments. The 5-HT1A receptor can activate several different biochemical pathways and signals through both G protein-dependent and G protein-independent pathways. Preclinical experiments indicate that distinct signaling pathways in specific brain regions may be crucial for antidepressant-like, anxiolytic-like, and procognitive responses. Therefore, the development of new ligands that selectively target a particular signaling pathway(s) could open new possibilities for more effective and safer pharmacotherapy. This review discusses the current state of preclinical studies focusing on the concept of functional selectivity (biased agonism) regarding the 5-HT1A receptor and its role in antidepressant-like, anxiolytic-like, and procognitive regulation. Such work highlights not only the differential effects of targeted autoreceptors, vs. heteroreceptors, but also the importance of targeting specific downstream intracellular signaling processes, thereby enhancing favorable over unfavorable signaling activation.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
8
|
Kähler B, Romswinkel EV, Jakovcevski M, Moses A, Schachner M, Morellini F. Hyperfunction of the stress response system and novelty-induced hyperactivity correlate with enhanced cocaine-induced conditioned place preference in NCAM-deficient mice. Addict Biol 2021; 26:e12887. [PMID: 32124535 DOI: 10.1111/adb.12887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
Several studies in humans and rodents suggest an association between impulsivity and activity of the stress response on the one hand and addiction vulnerability on the other. The neural cell adhesion molecule (NCAM) has been related to several neuropsychiatric disorders in humans. Constitutively NCAM-deficient (-/-) mice display enhanced novelty-induced behavior and hyperfunction of the hypothalamic-pituitary-adrenal axis. Here we hypothesize that NCAM deficiency causes an altered response to cocaine. Cocaine-induced behaviors of NCAM-/- mice and wild-type (+/+) littermates were analyzed in the conditioned place preference (CPP) test. c-fos mRNA levels were investigated by quantitative polymerase chain reaction (qPCR) to measure neural activation after exposure to the cocaine-associated context. NCAM-/- mice showed an elevated cocaine-induced sensitization, enhanced CPP, impaired extinction, and potentiated cocaine-induced hyperlocomotion and CPP after extinction. NCAM-/- showed no potentiated CPP as compared with NCAM+/+ littermates when a natural rewarding stimulus (ie, an unfamiliar female) was used, suggesting that the behavioral alterations of NCAM-/- mice observed in the CPP test are specific to the effects of cocaine. Activation of the prefrontal cortex and nucleus accumbens induced by the cocaine-associated context was enhanced in NCAM-/- compared with NCAM+/+ mice. Finally, cocaine-induced behavior correlated positively with novelty-induced behavior and plasma corticosterone levels in NCAM-/- mice and negatively with NCAM mRNA levels in the hippocampus and nucleus accumbens in wild-type mice. Our findings indicate that NCAM deficiency affects cocaine-induced CPP in mice and support the view that hyperfunction of the stress response system and reactivity to novelty predict the behavioral responses to cocaine.
Collapse
Affiliation(s)
- Birgit Kähler
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Viktoria Romswinkel
- Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mira Jakovcevski
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashley Moses
- Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Fabio Morellini
- Institute for Biosynthesis of Neural Structures, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Piette C, Touboul J, Venance L. Engrams of Fast Learning. Front Cell Neurosci 2020; 14:575915. [PMID: 33250712 PMCID: PMC7676431 DOI: 10.3389/fncel.2020.575915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/24/2020] [Indexed: 01/22/2023] Open
Abstract
Fast learning designates the behavioral and neuronal mechanisms underlying the acquisition of a long-term memory trace after a unique and brief experience. As such it is opposed to incremental, slower reinforcement or procedural learning requiring repetitive training. This learning process, found in most animal species, exists in a large spectrum of natural behaviors, such as one-shot associative, spatial, or perceptual learning, and is a core principle of human episodic memory. We review here the neuronal and synaptic long-term changes associated with fast learning in mammals and discuss some hypotheses related to their underlying mechanisms. We first describe the variety of behavioral paradigms used to test fast learning memories: those preferentially involve a single and brief (from few hundred milliseconds to few minutes) exposures to salient stimuli, sufficient to trigger a long-lasting memory trace and new adaptive responses. We then focus on neuronal activity patterns observed during fast learning and the emergence of long-term selective responses, before documenting the physiological correlates of fast learning. In the search for the engrams of fast learning, a growing body of evidence highlights long-term changes in gene expression, structural, intrinsic, and synaptic plasticities. Finally, we discuss the potential role of the sparse and bursting nature of neuronal activity observed during the fast learning, especially in the induction plasticity mechanisms leading to the rapid establishment of long-term synaptic modifications. We conclude with more theoretical perspectives on network dynamics that could enable fast learning, with an overview of some theoretical approaches in cognitive neuroscience and artificial intelligence.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Université PSL, Paris, France.,Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Université PSL, Paris, France
| |
Collapse
|
10
|
Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice. J Neurosci 2020; 40:7105-7118. [PMID: 32817247 DOI: 10.1523/jneurosci.2275-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
The hippocampus plays an essential role in learning. Each of the three major hippocampal subfields, dentate gyrus (DG), CA3, and CA1, has a unique function in memory formation and consolidation, and also exhibit distinct local field potential (LFP) signatures during memory consolidation processes in non-rapid eye movement (NREM) sleep. The classic LFP events of the CA1 region, sharp-wave ripples (SWRs), are induced by CA3 activity and considered to be an electrophysiological biomarker for episodic memory. In LFP recordings along the dorsal CA1-DG axis from sleeping male mice, we detected and classified two types of LFP events in the DG: high-amplitude dentate spikes (DSs), and a novel event type whose current source density (CSD) signature resembled that seen during CA1 SWR, but which, most often, occurred independently of them. Because we hypothesize that this event type is similarly induced by CA3 activity, we refer to it as dentate sharp wave (DSW). We show that both DSWs and DSs differentially modulate the electrophysiological properties of SWR and multiunit activity (MUA). Following two hippocampus-dependent memory tasks, DSW occurrence rates, ripple frequencies, and ripple and sharp wave (SW) amplitudes were increased in both, while SWR occurrence rates in dorsal CA1 increased only after the spatial task. Our results suggest that DSWs, like SWRs, are induced by CA3 activity and that DSWs complement SWRs as a hippocampal LFP biomarker of memory consolidation.SIGNIFICANCE STATEMENT Awake experience is consolidated into long-term memories during sleep. Memory consolidation crucially depends on sharp-wave ripples (SWRs), which are local field potential (LFP) patterns in hippocampal CA1 that increase after learning. The dentate gyrus (DG) plays a central role in the process of memory formation, prompting us to cluster sharp waves (SWs) in the DG [dentate SWs (DSWs)] during sleep. We show that both DSW coupling to CA1 SWRs, and their occurrence rates, robustly increase after learning trials. Our results suggest that the DG is directly affected by memory consolidation processes. DSWs may thus complement SWRs as a sensitive electrophysiological biomarker of memory consolidation in mice.
Collapse
|
11
|
Jin T, Chen R, Shao M, Yang X, Ma L, Wang F. Dorsal hippocampus- and ACC-projecting medial septum neurons differentially contribute to the recollection of episodic-like memory. FASEB J 2020; 34:11741-11753. [PMID: 32652689 DOI: 10.1096/fj.202000398r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 11/11/2022]
Abstract
Episodic memory refers to the recollection of previous experiences containing specific temporal, spatial, and emotional information. The ability to recollect episodic memory requires coordination of multiple brain regions, including the hippocampus (HPC) and the cingulate cortex. While the afferents into HPC and cingulate cortex that orchestrate the episodic memory remain unclear. The medial septum (MS), one of the anatomical location of cholinergic centers, innervates not only the dorsal HPC (dHPC), but also the cingulate and entorhinal cortices. By using "What-Where-When" episodic-like memory (ELM) behavioral model and viral tracing, we found that MS neurons projected to dHPC and anterior cingulate cortex (ACC), which exerted distinct impacts on ELM recollection. Chemogenetic inhibition of the dHPC-projecting MS neurons disrupted "What-Where-When" ELM recollection as well as object location, object-in-place, and recency recognition memories recollection, while chemogenetic inhibition of the ACC-projecting MS neurons only disrupted "What-Where-When" ELM recollection. Moreover, neither dHPC- nor ACC-projecting MS neurons were involved in novel object recognition memory recollection or locomotor activity. Immunostaining showed that ACC- and dHPC-projecting MS neurons are partially overlapped populations. These findings reveal an unsuspected division of ELM processing and provide the potential mechanism that the recollection of episodic memory need the coordination of MS neurons projecting to dHPC and ACC.
Collapse
Affiliation(s)
- Tao Jin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ruyan Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mingshuo Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
12
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
13
|
Richter M, Murtaza N, Scharrenberg R, White SH, Johanns O, Walker S, Yuen RKC, Schwanke B, Bedürftig B, Henis M, Scharf S, Kraus V, Dörk R, Hellmann J, Lindenmaier Z, Ellegood J, Hartung H, Kwan V, Sedlacik J, Fiehler J, Schweizer M, Lerch JP, Hanganu-Opatz IL, Morellini F, Scherer SW, Singh KK, Calderon de Anda F. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. Mol Psychiatry 2019; 24:1329-1350. [PMID: 29467497 PMCID: PMC6756231 DOI: 10.1038/s41380-018-0025-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022]
Abstract
Atypical brain connectivity is a major contributor to the pathophysiology of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASDs). TAOK2 is one of several genes in the 16p11.2 microdeletion region, but whether it contributes to NDDs is unknown. We performed behavioral analysis on Taok2 heterozygous (Het) and knockout (KO) mice and found gene dosage-dependent impairments in cognition, anxiety, and social interaction. Taok2 Het and KO mice also have dosage-dependent abnormalities in brain size and neural connectivity in multiple regions, deficits in cortical layering, dendrite and synapse formation, and reduced excitatory neurotransmission. Whole-genome and -exome sequencing of ASD families identified three de novo mutations in TAOK2 and functional analysis in mice and human cells revealed that all the mutations impair protein stability, but they differentially impact kinase activity, dendrite growth, and spine/synapse development. Mechanistically, loss of Taok2 activity causes a reduction in RhoA activation, and pharmacological enhancement of RhoA activity rescues synaptic phenotypes. Together, these data provide evidence that TAOK2 is a neurodevelopmental disorder risk gene and identify RhoA signaling as a mediator of TAOK2-dependent synaptic development.
Collapse
Affiliation(s)
- Melanie Richter
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadeem Murtaza
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Robin Scharrenberg
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sean H. White
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Ole Johanns
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Walker
- 0000 0004 0473 9646grid.42327.30The Centre for Applied Genomics and Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario Canada
| | - Ryan K. C. Yuen
- 0000 0004 0473 9646grid.42327.30The Centre for Applied Genomics and Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario Canada
| | - Birgit Schwanke
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca Bedürftig
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melad Henis
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,0000 0000 8632 679Xgrid.252487.eDepartment of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Sarah Scharf
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Kraus
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronja Dörk
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Hellmann
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zsuzsa Lindenmaier
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Jacob Ellegood
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Henrike Hartung
- 0000 0001 2180 3484grid.13648.38Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,0000 0004 0410 2071grid.7737.4Present Address: Laboratory of Neurobiology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Vickie Kwan
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Jan Sedlacik
- 0000 0001 2180 3484grid.13648.38Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- 0000 0001 2180 3484grid.13648.38Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Core Facility Morphology and Electronmicroscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jason P. Lerch
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Ileana L. Hanganu-Opatz
- 0000 0001 2180 3484grid.13648.38Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen W. Scherer
- 0000 0004 0473 9646grid.42327.30The Centre for Applied Genomics and Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario Canada
| | - Karun K. Singh
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Froylan Calderon de Anda
- Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
14
|
Delorme JE, Kodoth V, Aton SJ. Sleep loss disrupts Arc expression in dentate gyrus neurons. Neurobiol Learn Mem 2018; 160:73-82. [PMID: 29635031 DOI: 10.1016/j.nlm.2018.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/24/2023]
Abstract
Sleep loss affects many aspects of cognition, and memory consolidation processes occurring in the hippocampus seem particularly vulnerable to sleep loss. The immediate-early gene Arc plays an essential role in both synaptic plasticity and memory formation, and its expression is altered by sleep. Here, using a variety of techniques, we have characterized the effects of brief (3-h) periods of sleep vs. sleep deprivation (SD) on the expression of Arc mRNA and Arc protein in the mouse hippocampus and cortex. By comparing the relative abundance of mature Arc mRNA with unspliced pre-mRNA, we see evidence that during SD, increases in Arc across the cortex, but not hippocampus, reflect de novo transcription. Arc increases in the hippocampus during SD are not accompanied by changes in pre-mRNA levels, suggesting that increases in mRNA stability, not transcription, drives this change. Using in situ hybridization (together with behavioral observation to quantify sleep amounts), we find that in the dorsal hippocampus, SD minimally affects Arc mRNA expression, and decreases the number of dentate gyrus (DG) granule cells expressing Arc. This is in contrast to neighboring cortical areas, which show large increases in neuronal Arc expression after SD. Using immunohistochemistry, we find that Arc protein expression is also differentially affected in the cortex and DG with SD - while larger numbers of cortical neurons are Arc+, fewer DG granule cells are Arc+, relative to the same regions in sleeping mice. These data suggest that with regard to expression of plasticity-regulating genes, sleep (and SD) can have differential effects in hippocampal and cortical areas. This may provide a clue regarding the susceptibility of performance on hippocampus-dependent tasks to deficits following even brief periods of sleep loss.
Collapse
Affiliation(s)
- James E Delorme
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Varna Kodoth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
15
|
MacQueen DA, Young JW, Cope ZA. Cognitive Phenotypes for Biomarker Identification in Mental Illness: Forward and Reverse Translation. Curr Top Behav Neurosci 2018; 40:111-166. [PMID: 29858983 DOI: 10.1007/7854_2018_50] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Psychiatric illness has been acknowledged for as long as people were able to describe behavioral abnormalities in the general population. In modern times, these descriptions have been codified and continuously updated into manuals by which clinicians can diagnose patients. None of these diagnostic manuals have attempted to tie abnormalities to neural dysfunction however, nor do they necessitate the quantification of cognitive function despite common knowledge of its ties to functional outcome. In fact, in recent years the National Institute of Mental Health released a novel transdiagnostic classification, the Research Domain Criteria (RDoC), which utilizes quantifiable behavioral abnormalities linked to neurophysiological processes. This reclassification highlights the utility of RDoC constructs as potential cognitive biomarkers of disease state. In addition, with RDoC and cognitive biomarkers, the onus of researchers utilizing animal models no longer necessitates the recreation of an entire disease state, but distinct processes. Here, we describe the utilization of constructs from the RDoC initiative to forward animal research on these cognitive and behavioral processes, agnostic of disease. By linking neural processes to these constructs, identifying putative abnormalities in diseased patients, more targeted therapeutics can be developed.
Collapse
Affiliation(s)
- David A MacQueen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Zackary A Cope
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Sawangjit A, Kelemen E, Born J, Inostroza M. Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context. Front Behav Neurosci 2017; 11:28. [PMID: 28270755 PMCID: PMC5319304 DOI: 10.3389/fnbeh.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered.
Collapse
Affiliation(s)
- Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Eduard Kelemen
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; National Institute of Mental HealthKlecany, Czechia
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM)Tübingen, Germany; Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; Departamento de Psicología, Universidad de ChileSantiago, Chile
| |
Collapse
|
17
|
Perirhinal cortex involvement in allocentric spatial learning in the rat: Evidence from doubly marked tasks. Hippocampus 2017; 27:507-517. [DOI: 10.1002/hipo.22707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/17/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023]
|
18
|
Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks. Neurosci Lett 2016; 637:142-147. [PMID: 27871995 DOI: 10.1016/j.neulet.2016.11.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022]
Abstract
Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm.
Collapse
|
19
|
Memory of occasional events in rats: individual episodic memory profiles, flexibility, and neural substrate. J Neurosci 2015; 35:7575-86. [PMID: 25972182 DOI: 10.1523/jneurosci.3941-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In search for the mechanisms underlying complex forms of human memory, such as episodic recollection, a primary challenge is to develop adequate animal models amenable to neurobiological investigation. Here, we proposed a novel framework and paradigm that provides means to quantitatively evaluate the ability of rats to form and recollect a combined knowledge of what happened, where it happened, and when or in which context it happened (referred to as episodic-like memory) after a few specific episodes in situations as close as possible to a paradigm we recently developed to study episodic memory in humans. In this task, rats have to remember two odor-drink associations (what happened) encountered in distinct locations (where it happened) within two different multisensory enriched environments (in which context/occasion it happened), each characterized by a particular combination of odors and places. By analyzing licking behavior on each drinking port, we characterized quantitatively individual recollection profiles and showed that rats are able to incidentally form and recollect an accurate, long-term integrated episodic-like memory that can last ≥ 24 d after limited exposure to the episodes. Placing rats in a contextually challenging recollection situation at recall reveals the ability for flexible use of episodic memory as described in humans. We further report that reversible inactivation of the dorsal hippocampus during recall disrupts the animal's capacity to recollect the complete episodic memory. Cellular imaging of c-Fos and Zif268 brain activation reveals that episodic memory recollection recruits a specific, distributed network of hippocampal-prefrontal cortex structures that correlates with the accuracy of the integrated recollection performance.
Collapse
|
20
|
Zhang H, Gao Y, Qiao P, Zhao F, Yan Y. Fenofibrate reduces amyloidogenic processing of APP in APP/PS1 transgenic mice via PPAR‐α/PI3‐K pathway. Int J Dev Neurosci 2014; 38:223-31. [DOI: 10.1016/j.ijdevneu.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Hua Zhang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Gao
- Special WardsThe Affiliated Children's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Pei‐feng Qiao
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Feng‐li Zhao
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yong Yan
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
21
|
Morellini F. Spatial memory tasks in rodents: what do they model? Cell Tissue Res 2013; 354:273-86. [PMID: 23793547 DOI: 10.1007/s00441-013-1668-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 02/08/2023]
Abstract
The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.
Collapse
Affiliation(s)
- Fabio Morellini
- AG Experimentelle Neuropädiatrie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany,
| |
Collapse
|
22
|
Ramos JMJ. Differential contribution of hippocampus, perirhinal cortex and postrhinal cortex to allocentric spatial memory in the radial maze. Behav Brain Res 2013; 247:59-64. [PMID: 23511252 DOI: 10.1016/j.bbr.2013.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 11/18/2022]
Abstract
Rats with hippocampal, perirhinal cortex and postrhinal cortex lesions were trained in a reference spatial memory task to determine whether these structures contribute differentially to the acquisition and retention of spatial information. The results of Experiment 1 indicated that hippocampal lesions profoundly impaired the acquisition of the task. However, postrhinal lesions produced only a mild deficit and perirhinal lesions produced no deficit whatsoever in the learning of the task. During acquisition, hippocampus-damaged rats committed more perseverative errors than postrhinal rats, suggesting that the nature of the operations performed by each of these structures is different. The results of Experiment 2 showed a profound deficit in retention in hippocampal and postrhinal-lesioned animals tested 24 days after training. Perirhinal-lesioned animals, however, executed the task just as well as the control subjects did. These functional data, in consonance with existing connectivity data, suggest that each of these medial temporal lobe regions makes a different contribution to allocentric spatial learning and memory.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Campus Cartuja, Granada 18071, Spain.
| |
Collapse
|