1
|
Alabdali A, Ben Bacha A, Alonazi M, Al-Ayadhi LY, Alanazi ASJ, El‐Ansary A. Comparative evaluation of certain biomarkers emphasizing abnormal GABA inhibitory effect and glutamate excitotoxicity in autism spectrum disorders. Front Psychiatry 2025; 16:1562631. [PMID: 40330649 PMCID: PMC12052539 DOI: 10.3389/fpsyt.2025.1562631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/12/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and repetitive behaviors. An imbalance between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) might play a crucial role in ASD. This study explores the biochemical markers associated with GABAergic and glutamatergic signaling in individuals with autism and healthy controls, aiming to identify potential diagnostic and therapeutic targets. Methods The study included 46 male individuals with autism and 26 age- and gender-matched healthy controls. The plasma levels of excitatory amino acid transporter 2 (EAAT2), potassium chloride co-transporter 2 (KCC2), Na-K-Cl co-transporter 1 (NKCC1), vitamin D3 (VD3), GABA, gamma aminobutyric acid type a receptor subunit alpha 5 (GABRA5), and glutamate were measured using ELISA. Statistical analyses, including correlation, multiple regression, and receiver operating characteristic (ROC) curve analysis, were performed to evaluate the diagnostic utility and interrelationships of these biomarkers. Results Significant biochemical differences were found between individuals with autism and healthy controls. Individuals with autism had notably lower levels of EAAT2, KCC2, NKCC1, VD3, GABA, and GABRA5, especially in the severe group. Altered KCC2/NKCC1 and GABA/glutamate ratios highlighted the imbalance in neurotransmission. The correlation and multiple regression analyses showed significant interconnections between biomarkers. The ROC analysis indicated that EAAT2, KCC2, GABA, and the ratios of KCC2/NKCC1 and GABA/glutamate have high diagnostic potential. Conclusion These findings support the hypothesis that GABA and glutamate imbalance is central to the pathophysiology of ASD. Significant disruptions in neurotransmitter signaling and chloride homeostasis, particularly in severe cases, provide insights into the neurobiological mechanisms of ASD. Restoring the GABA-glutamate balance could be an effective therapeutic strategy for ASD, warranting further research into these biochemical pathways for targeted treatments.
Collapse
Affiliation(s)
- Altaf Alabdali
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mona Alonazi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y. Al-Ayadhi
- Autism Research and Treatment Center, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Afaf El‐Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Hunt JE, Pratt KG, Molnár Z. Ocular Necessities: A Neuroethological Perspective on Vertebrate Visual Development. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:96-108. [PMID: 38447544 PMCID: PMC11152017 DOI: 10.1159/000536035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/24/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND By examining species-specific innate behaviours, neuroethologists have characterized unique neural strategies and specializations from throughout the animal kingdom. Simultaneously, the field of evolutionary developmental biology (informally, "evo-devo") seeks to make inferences about animals' evolutionary histories through careful comparison of developmental processes between species, because evolution is the evolution of development. Yet despite the shared focus on cross-species comparisons, there is surprisingly little crosstalk between these two fields. Insights can be gleaned at the intersection of neuroethology and evo-devo. Every animal develops within an environment, wherein ecological pressures advantage some behaviours and disadvantage others. These pressures are reflected in the neurodevelopmental strategies employed by different animals across taxa. SUMMARY Vision is a system of particular interest for studying the adaptation of animals to their environments. The visual system enables a wide variety of animals across the vertebrate lineage to interact with their environments, presenting a fantastic opportunity to examine how ecological pressures have shaped animals' behaviours and developmental strategies. Applying a neuroethological lens to the study of visual development, we advance a novel theory that accounts for the evolution of spontaneous retinal waves, an important phenomenon in the development of the visual system, across the vertebrate lineage. KEY MESSAGES We synthesize literature on spontaneous retinal waves from across the vertebrate lineage. We find that ethological considerations explain some cross-species differences in the dynamics of retinal waves. In zebrafish, retinal waves may be more important for the development of the retina itself, rather than the retinofugal projections. We additionally suggest empirical tests to determine whether Xenopus laevis experiences retinal waves.
Collapse
Affiliation(s)
- Jasper Elan Hunt
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kara Geo Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Boff JM, Shrestha AP, Madireddy S, Viswaprakash N, Della Santina L, Vaithianathan T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. Int J Mol Sci 2024; 25:2226. [PMID: 38396913 PMCID: PMC10889697 DOI: 10.3390/ijms25042226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The intricate functionality of the vertebrate retina relies on the interplay between neurotransmitter activity and calcium (Ca2+) dynamics, offering important insights into developmental processes, physiological functioning, and disease progression. Neurotransmitters orchestrate cellular processes to shape the behavior of the retina under diverse circumstances. Despite research to elucidate the roles of individual neurotransmitters in the visual system, there remains a gap in our understanding of the holistic integration of their interplay with Ca2+ dynamics in the broader context of neuronal development, health, and disease. To address this gap, the present review explores the mechanisms used by the neurotransmitters glutamate, gamma-aminobutyric acid (GABA), glycine, dopamine, and acetylcholine (ACh) and their interplay with Ca2+ dynamics. This conceptual outline is intended to inform and guide future research, underpinning novel therapeutic avenues for retinal-associated disorders.
Collapse
Affiliation(s)
- Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Saivikram Madireddy
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Nilmini Viswaprakash
- Department of Medical Education, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | | | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
5
|
Arjun McKinney A, Petrova R, Panagiotakos G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022; 149:dev198853. [PMID: 36102617 PMCID: PMC9578689 DOI: 10.1242/dev.198853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calcium influx can be stimulated by various intra- and extracellular signals to set coordinated gene expression programs into motion. As such, the precise regulation of intracellular calcium represents a nexus between environmental cues and intrinsic genetic programs. Mounting genetic evidence points to a role for the deregulation of intracellular calcium signaling in neuropsychiatric disorders of developmental origin. These findings have prompted renewed enthusiasm for understanding the roles of calcium during normal and dysfunctional prenatal development. In this Review, we describe the fundamental mechanisms through which calcium is spatiotemporally regulated and directs early neurodevelopmental events. We also discuss unanswered questions about intracellular calcium regulation during the emergence of neurodevelopmental disease, and provide evidence that disruption of cell-specific calcium homeostasis and/or redeployment of developmental calcium signaling mechanisms may contribute to adult neurological disorders. We propose that understanding the normal developmental events that build the nervous system will rely on gaining insights into cell type-specific calcium signaling mechanisms. Such an understanding will enable therapeutic strategies targeting calcium-dependent mechanisms to mitigate disease.
Collapse
Affiliation(s)
- Arpana Arjun McKinney
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Ralitsa Petrova
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Georgia Panagiotakos
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
7
|
Peerboom C, Wierenga CJ. The postnatal GABA shift: A developmental perspective. Neurosci Biobehav Rev 2021; 124:179-192. [PMID: 33549742 DOI: 10.1016/j.neubiorev.2021.01.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Persiconi I, Cosmi F, Guadagno NA, Lupo G, De Stefano ME. Dystrophin Is Required for the Proper Timing in Retinal Histogenesis: A Thorough Investigation on the mdx Mouse Model of Duchenne Muscular Dystrophy. Front Neurosci 2020; 14:760. [PMID: 32982660 PMCID: PMC7487415 DOI: 10.3389/fnins.2020.00760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disease caused by defective expression of the cytoskeletal protein dystrophin (Dp427). Selected autonomic and central neurons, including retinal neurons, express Dp427 and/or dystrophin shorter isoforms. Because of this, DMD patients may also experience different forms of cognitive impairment, neurological and autonomic disorders, and specific visual defects. DMD-related damages to the nervous system are established during development, suggesting a role for all dystrophin isoforms in neural circuit development and differentiation; however, to date, their function in retinogenesis has never been investigated. In this large-scale study, we analyzed whether the lack of Dp427 affects late retinogenesis in the mdx mouse, the most well studied animal model of DMD. Retinal gene expression and layer maturation, as well as neural cell proliferation, apoptosis, and differentiation, were evaluated in E18 and/or P0, P5, P10, and adult mice. In mdx mice, expression of Capn3, Id3 (E18-P5), and Dtnb (P5) genes, encoding proteins involved in different aspects of retina development and synaptogenesis (e.g., Calpain 3, DNA-binding protein inhibitor-3, and β-dystrobrevin, respectively), was transiently reduced compared to age-matched wild type mice. Concomitantly, a difference in the time required for the retinal ganglion cell layer to reach appropriate thickness was observed (P0–P5). Immunolabeling for specific cell markers also evidenced a significant dysregulation in the number of GABAergic amacrine cells (P5–P10), a transient decrease in the area immunopositive for the Vesicular Glutamate Transporter 1 (VGluT1) during ribbon synapse maturation (P10) and a reduction in the number of calretinin+ retinal ganglion cells (RGCs) (adults). Finally, the number of proliferating retinal progenitor cells (P5–P10) and apoptotic cells (P10) was reduced. These results support the hypothesis of a role for Dp427 during late retinogenesis different from those proposed in consolidated neural circuits. In particular, Dp427 may be involved in shaping specific steps of retina differentiation. Notably, although most of the above described quantitative alterations recover over time, the number of calretinin+ RGCs is reduced only in the mature retina. This suggests that alterations subtler than the timing of retinal maturation may occur, a hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Irene Persiconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Francesca Cosmi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Research in Neurobiology "Daniel Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Rule ME, Schnoerr D, Hennig MH, Sanguinetti G. Neural field models for latent state inference: Application to large-scale neuronal recordings. PLoS Comput Biol 2019; 15:e1007442. [PMID: 31682604 PMCID: PMC6855563 DOI: 10.1371/journal.pcbi.1007442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/14/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
Large-scale neural recording methods now allow us to observe large populations of identified single neurons simultaneously, opening a window into neural population dynamics in living organisms. However, distilling such large-scale recordings to build theories of emergent collective dynamics remains a fundamental statistical challenge. The neural field models of Wilson, Cowan, and colleagues remain the mainstay of mathematical population modeling owing to their interpretable, mechanistic parameters and amenability to mathematical analysis. Inspired by recent advances in biochemical modeling, we develop a method based on moment closure to interpret neural field models as latent state-space point-process models, making them amenable to statistical inference. With this approach we can infer the intrinsic states of neurons, such as active and refractory, solely from spiking activity in large populations. After validating this approach with synthetic data, we apply it to high-density recordings of spiking activity in the developing mouse retina. This confirms the essential role of a long lasting refractory state in shaping spatiotemporal properties of neonatal retinal waves. This conceptual and methodological advance opens up new theoretical connections between mathematical theory and point-process state-space models in neural data analysis. Developing statistical tools to connect single-neuron activity to emergent collective dynamics is vital for building interpretable models of neural activity. Neural field models relate single-neuron activity to emergent collective dynamics in neural populations, but integrating them with data remains challenging. Recently, latent state-space models have emerged as a powerful tool for constructing phenomenological models of neural population activity. The advent of high-density multi-electrode array recordings now enables us to examine large-scale collective neural activity. We show that classical neural field approaches can yield latent state-space equations and demonstrate that this enables inference of the intrinsic states of neurons from recorded spike trains in large populations.
Collapse
Affiliation(s)
- Michael E. Rule
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - David Schnoerr
- Theoretical Systems Biology, Imperial College London, London, United Kingdom
| | - Matthias H. Hennig
- Department of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Guido Sanguinetti
- Department of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Pietri T, Romano SA, Pérez-Schuster V, Boulanger-Weill J, Candat V, Sumbre G. The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs. Cell Rep 2018; 19:939-948. [PMID: 28467907 PMCID: PMC5437726 DOI: 10.1016/j.celrep.2017.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/15/2017] [Accepted: 04/04/2017] [Indexed: 01/24/2023] Open
Abstract
The brain is spontaneously active, even in the absence of sensory stimulation. The functionally mature zebrafish optic tectum shows spontaneous activity patterns reflecting a functional connectivity adapted for the circuit’s functional role and predictive of behavior. However, neither the emergence of these patterns during development nor the role of retinal inputs in their maturation has been characterized. Using two-photon calcium imaging, we analyzed spontaneous activity in intact and enucleated zebrafish larvae throughout tectum development. At the onset of retinotectal connections, intact larvae showed major changes in the spatiotemporal structure of spontaneous activity. Although the absence of retinal inputs had a significant impact on the development of the temporal structure, the tectum was still capable of developing a spatial structure associated with the circuit’s functional roles and predictive of behavior. We conclude that neither visual experience nor intrinsic retinal activity is essential for the emergence of a spatially structured functional circuit. Development of tectal circuitry is influenced by the onset of retinal inputs Enucleations impact the development of the tectum’s spontaneous activity correlations Enucleations only delay the topography of the correlated activity In the absence of retinal inputs, the tectal circuitry is capable of predicting behavior
Collapse
Affiliation(s)
- Thomas Pietri
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Sebastián A Romano
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Verónica Pérez-Schuster
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Jonathan Boulanger-Weill
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Virginie Candat
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Germán Sumbre
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France.
| |
Collapse
|
11
|
Khalil R, Moftah MZ, Moustafa AA. The effects of dynamical synapses on firing rate activity: a spiking neural network model. Eur J Neurosci 2017; 46:2445-2470. [PMID: 28921686 DOI: 10.1111/ejn.13712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/28/2022]
Abstract
Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABAA signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity.
Collapse
Affiliation(s)
- Radwa Khalil
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Marie Z Moftah
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed A Moustafa
- Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
12
|
Doyon N, Prescott SA, De Koninck Y. Mild KCC2 Hypofunction Causes Inconspicuous Chloride Dysregulation that Degrades Neural Coding. Front Cell Neurosci 2016; 9:516. [PMID: 26858607 PMCID: PMC4731508 DOI: 10.3389/fncel.2015.00516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/23/2015] [Indexed: 11/17/2022] Open
Abstract
Disinhibition caused by Cl− dysregulation is implicated in several neurological disorders. This form of disinhibition, which stems primarily from impaired Cl− extrusion through the co-transporter KCC2, is typically identified by a depolarizing shift in GABA reversal potential (EGABA). Here we show, using computer simulations, that intracellular [Cl−] exhibits exaggerated fluctuations during transient Cl− loads and recovers more slowly to baseline when KCC2 level is even modestly reduced. Using information theory and signal detection theory, we show that increased Cl− lability and settling time degrade neural coding. Importantly, these deleterious effects manifest after less KCC2 reduction than needed to produce the gross changes in EGABA required for detection by most experiments, which assess KCC2 function under weak Cl− load conditions. By demonstrating the existence and functional consequences of “occult” Cl− dysregulation, these results suggest that modest KCC2 hypofunction plays a greater role in neurological disorders than previously believed.
Collapse
Affiliation(s)
- Nicolas Doyon
- Institut Universitaire en Santé Mentale de QuébecQuébec, QC, Canada; Department of Mathematics and Statistics, Université LavalQuébec, QC, Canada
| | - Steven A Prescott
- Program in Neurosciences and Mental Health, Hospital for Sick ChildrenToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de QuébecQuébec, QC, Canada; Department of Psychiatry and Neuroscience, Université LavalQuébec, QC, Canada
| |
Collapse
|
13
|
Bennett JEM, Bair W. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity. PLoS Comput Biol 2015; 11:e1004422. [PMID: 26308406 PMCID: PMC4550436 DOI: 10.1371/journal.pcbi.1004422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022] Open
Abstract
Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. In several areas of the developing brain, waves of electrical activity trace out distinct patterns across the nervous tissue. These waves are intricately involved in developmental processes that set up the structural connections of the adult brain, but it is unclear what role the wave patterns play. Here, we examine how the strength of connections in these brain areas may change by a process called spike-timing dependent plasticity, which is sensitive to the precise times at which individual neurons become electrically active. We use mathematical models and simulations to show that interactions between waves and plasticity build highly structured patterns into the connections. The results of our model are analogous to many cases of biological pattern formation seen, for example, in zebra stripes, leopard spots and seashells. An important connectivity pattern we consider is the receptive field, which determines to a large extent the specific function of a neuron. We demonstrate how pattern formation can refine the shape of a receptive field and therefore the specificity of a neuron, and explore several ways in which pattern formation may be disrupted, providing clues regarding pathologies in receptive field development. Our theory makes several predictions that may be tested using existing experimental paradigms.
Collapse
Affiliation(s)
- James E. M. Bennett
- Dept. Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Wyeth Bair
- Dept. Biological Structure, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Khazipov R, Valeeva G, Khalilov I. Depolarizing GABA and developmental epilepsies. CNS Neurosci Ther 2014; 21:83-91. [PMID: 25438879 DOI: 10.1111/cns.12353] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/14/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022] Open
Abstract
Early in development, GABA, which is the main inhibitory neurotransmitter in adult brain, depolarizes immature neurons and exerts dual--excitatory and shunting/inhibitory--effects in the developing neuronal networks. The present review discusses some general questions, including the properties of excitation at depolarizing GABAergic synapse and shunting inhibition by depolarizing GABA; technical issues in exploration of depolarizing GABA using various techniques and preparations, including the developmental aspects of traumatic injury and what is known (or rather unknown) on the actions of GABA in vivo; complex roles of depolarizing GABA in developmental epilepsies, including a contribution of depolarizing GABA to enhanced excitability in the immature networks, caused by repetitive seizures accumulation of intracellular chloride concentration that increases excitatory GABA power and its synchronizing proconvulsive effects, and correction of chloride homeostasis as a potential strategy to treat neonatal seizures.
Collapse
Affiliation(s)
- Roustem Khazipov
- INMED-INSERM U901, Marseille, France; Aix-Marseille University, Marseille, France; Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | | |
Collapse
|
15
|
Lansdell B, Ford K, Kutz JN. A reaction-diffusion model of cholinergic retinal waves. PLoS Comput Biol 2014; 10:e1003953. [PMID: 25474327 PMCID: PMC4256014 DOI: 10.1371/journal.pcbi.1003953] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2014] [Indexed: 01/21/2023] Open
Abstract
Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability.
Collapse
Affiliation(s)
- Benjamin Lansdell
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Kevin Ford
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, Berdondini L, Sernagor E. Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. J Physiol 2013; 592:1545-63. [PMID: 24366261 PMCID: PMC3979611 DOI: 10.1113/jphysiol.2013.262840] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The immature retina generates spontaneous waves of spiking activity that sweep across the ganglion cell layer during a limited period of development before the onset of visual experience. The spatiotemporal patterns encoded in the waves are believed to be instructive for the wiring of functional connections throughout the visual system. However, the ontogeny of retinal waves is still poorly documented as a result of the relatively low resolution of conventional recording techniques. Here, we characterize the spatiotemporal features of mouse retinal waves from birth until eye opening in unprecedented detail using a large-scale, dense, 4096-channel multielectrode array that allowed us to record from the entire neonatal retina at near cellular resolution. We found that early cholinergic waves propagate with random trajectories over large areas with low ganglion cell recruitment. They become slower, smaller and denser when GABAA signalling matures, as occurs beyond postnatal day (P) 7. Glutamatergic influences dominate from P10, coinciding with profound changes in activity dynamics. At this time, waves cease to be random and begin to show repetitive trajectories confined to a few localized hotspots. These hotspots gradually tile the retina with time, and disappear after eye opening. Our observations demonstrate that retinal waves undergo major spatiotemporal changes during ontogeny. Our results support the hypotheses that cholinergic waves guide the refinement of retinal targets and that glutamatergic waves may also support the wiring of retinal receptive fields.
Collapse
Affiliation(s)
- Alessandro Maccione
- Institute of Neuroscience, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Throughout development, the nervous system produces patterned spontaneous activity. Research over the past two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e., linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
18
|
Toychiev AH, Yee CW, Sagdullaev BT. Correlated spontaneous activity persists in adult retina and is suppressed by inhibitory inputs. PLoS One 2013; 8:e77658. [PMID: 24204906 PMCID: PMC3812233 DOI: 10.1371/journal.pone.0077658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022] Open
Abstract
Spontaneous rhythmic activity is a hallmark feature of the developing retina, where propagating retinal waves instruct axonal targeting and synapse formation. Retinal waves cease around the time of eye-opening; however, the fate of the underlying synaptic circuitry is unknown. Whether retinal waves are unique to the developing retina or if they can be induced in adulthood is not known. Combining patch-clamp techniques with calcium imaging, we demonstrate that propagative events persist in adult mouse retina when it is deprived of inhibitory input. This activity originates in bipolar cells, resembling glutamatergic stage III retinal waves. We find that, as it develops, the network interactions progressively curtail this activity. Together, this provides evidence that the correlated propagative neuronal activity can be induced in adult retina following the blockade of inhibitory interactions.
Collapse
Affiliation(s)
- Abduqodir H Toychiev
- Department of Neurology, Weill Medical College of Cornell University, New York, New York, United States of America ; Department of Ophthalmology, Weill Medical College of Cornell University, New York, New York, United States of America
| | | | | |
Collapse
|
19
|
GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol Neurobiol 2013; 49:702-23. [PMID: 24022163 DOI: 10.1007/s12035-013-8548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
The activation of GABAA receptors (the type A receptors for γ-aminobutyric acid) produces two distinct forms of responses, phasic (i.e., transient) and tonic (i.e., persistent), that are mediated by synaptic and extrasynaptic GABAA receptors, respectively. During development, the intracellular chloride levels are high so activation of these receptors causes a net outward flow of anions that leads to neuronal depolarization rather than hyperpolarization. Therefore, in developing neural circuits, tonic activation of GABAA receptors may provide persistent depolarization. Recently, it became evident that GABAA receptor-mediated tonic depolarization alters the structure of patterned spontaneous activity, a feature that is common in developing neural circuits and is important for neural circuit refinement. Thus, this persistent depolarization may lead to a long-lasting increase in intracellular calcium level that modulates network properties via calcium-dependent signaling cascades. This article highlights the features of GABAA receptor-mediated tonic depolarization, summarizes the principles for discovery, reviews the current findings in diverse developing circuits, examines the underlying molecular mechanisms and modulation systems, and discusses their functional specializations for each developing neural circuit.
Collapse
|
20
|
Chabrol F, Eglen S, Sernagor E. GABAergic control of retinal ganglion cell dendritic development. Neuroscience 2012; 227:30-43. [DOI: 10.1016/j.neuroscience.2012.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/15/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
21
|
Demas JA, Payne H, Cline HT. Vision drives correlated activity without patterned spontaneous activity in developing Xenopus retina. Dev Neurobiol 2012; 72:537-46. [PMID: 21312343 PMCID: PMC3157589 DOI: 10.1002/dneu.20880] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABA(A) receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement.
Collapse
Affiliation(s)
| | | | - Hollis T. Cline
- Department of Cell Biology The Scripps Research Institute La Jolla, CA 92037
| |
Collapse
|
22
|
Gatti MG, Becucci E, Fargnoli F, Fagioli M, Ådén U, Buonocore G. Functional maturation of neocortex: a base of viability. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:101-3. [PMID: 22393933 DOI: 10.3109/14767058.2012.664351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The term "viability" is not simply a synonymous with being "born alive," but is closely related to the capability of having a "meaningful life" and having a reasonable period of survival. The definition of "viability" is generally based on two major criteria: the biological, which takes into consideration the maturity of the foetus, and the epidemiological, which is based on the survival rates reported in literature. The neuromaturation of the cerebral cortex is a dynamic process promoted by the subplate, a transient population of neurons that guides the development of cortical and thalamocortical connections. These connections are for example fundamental for cortical processing of sensory information and mental processes. The first thalamocortical and cortico-cortical connections grows at 23-24 postconceptional weeks, which coincides with the age limit for premature baby survival.
Collapse
Affiliation(s)
- M G Gatti
- Department of Pediatric, Obstetric and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
In the few weeks prior to the onset of vision, the retina undergoes a dramatic transformation. Neurons migrate into position and target appropriate synaptic partners to assemble the circuits that mediate vision. During this period of development, the retina is not silent but rather assembles and disassembles a series of transient circuits that use distinct mechanisms to generate spontaneous correlated activity called retinal waves. During the first postnatal week, this transient circuit is comprised of reciprocal cholinergic connections between starburst amacrine cells. A few days before the eyes open, these cholinergic connections are eliminated as the glutamatergic circuits involved in processing visual information are formed. Here, we discuss the assembly and disassembly of this transient cholinergic network and the role it plays in various aspects of retinal development.
Collapse
|
24
|
Maturation of the GABAergic transmission in normal and pathologic motoneurons. Neural Plast 2011; 2011:905624. [PMID: 21785735 PMCID: PMC3140191 DOI: 10.1155/2011/905624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/17/2011] [Indexed: 12/14/2022] Open
Abstract
γ-aminobutyric acid (GABA) acting on Cl−-permeable ionotropic type A (GABAA) receptors (GABAAR) is the major inhibitory neurotransmitter in the adult central nervous system of vertebrates. In immature brain structures, GABA exerts depolarizing effects mostly contributing to the expression of spontaneous activities that are instructive for the construction of neural networks but GABA also acts as a potent trophic factor. In the present paper, we concentrate on brainstem and spinal motoneurons that are largely targeted by GABAergic interneurons, and we bring together data on the switch from excitatory to inhibitory effects of GABA, on the maturation of the GABAergic system and GABAAR subunits. We finally discuss the role of GABA and its GABAAR in immature hypoglossal motoneurons of the spastic (SPA) mouse, a model of human hyperekplexic syndrome.
Collapse
|
25
|
Abstract
The inhibitory neurotransmitter, GABA, is a low-molecular-weight molecule that can achieve many low-energy conformations, which are recognized by GABA receptors and transporters. In this article, we assess the structure–activity relationship profiles of GABA analogs at the ionotropic ρ GABAC receptor. Such studies have significantly contributed to the design and development of potent and selective agonists and antagonists for this subclass of GABA receptors. With these tools in hand, the role of ρ GABAC receptors is slowly being realized. Of particular interest is the development of selective phosphinic acid analogs of GABA and their potential use in sleep disorders, inhibiting the development of myopia, and in improving learning and memory.
Collapse
|
26
|
Non-cell-autonomous factor induces the transition from excitatory to inhibitory GABA signaling in retina independent of activity. Proc Natl Acad Sci U S A 2010; 107:22302-7. [PMID: 21135238 DOI: 10.1073/pnas.1008775108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, the effect of activating GABA(A) receptors switches from depolarizing to hyperpolarizing. Several environmental factors have been implicated in the timing of this GABA switch, including neural activity, although these observations remain controversial. By using acutely isolated retinas from KO mice and pharmacological manipulations in retinal explants, we demonstrate that the timing of the GABA switch in retinal ganglion cells (RGCs) is unaffected by blockade of specific neurotransmitter receptors or global activity. In contrast to RGCs in the intact retina, purified RGCs remain depolarized by GABA, indicating that the GABA switch is not cell-autonomous. Indeed, purified RGCs cocultured with dissociated cells from the superior colliculus or cultured in media conditioned by superior collicular cells undergo a normal switch. Thus, a diffusible signal that acts independent of local circuit activity regulates the maturation of GABAergic inhibition in mouse RGCs.
Collapse
|
27
|
calaza KDC, Gardino PF. Neurochemical phenotype and birthdating of specific cell populations in the chick retina. AN ACAD BRAS CIENC 2010; 82:595-608. [DOI: 10.1590/s0001-37652010000300007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 11/16/2009] [Indexed: 11/21/2022] Open
Abstract
The chick embryo is one of the most traditional models in developing neuroscience and its visual system has been one of the most exhaustively studied. The retina has been used as a model for studying the development of the nervous system. Here, we describe the morphological features that characterize each stage of the retina development and studies of the neurogenesis period of some specific neurochemical subpopulations of retinal cells by using a combination of immunohistochemistry and autoradiography of tritiated-thymidine. It could be concluded that the proliferation period of dopaminergic, GABAergic, cholinoceptive and GABAceptive cells does not follow a common rule of the neurogenesis. In addition, some specific neurochemical cell groups can have a restrict proliferation period when compared to the total cell population.
Collapse
|
28
|
Zhang RW, Wei HP, Xia YM, Du JL. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol 2010; 588:2557-69. [PMID: 20498234 PMCID: PMC2916988 DOI: 10.1113/jphysiol.2010.187088] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/17/2010] [Indexed: 01/02/2023] Open
Abstract
The zebrafish retina has been an important model for studying morphological development of neural circuits in vivo. However, its functional development is not yet well understood. To investigate the functional development of zebrafish retina, we developed an in vivo patch-clamp whole-cell recording technique in intact zebrafish larvae. We first examined the developmental profile of light-evoked responses (LERs) in retinal ganglion cells (RGCs) from 2 to 9 days post-fertilization (dpf). Unstable LERs were first observed at 2.5 dpf. By 4 dpf, RGCs exhibited reliable light responses. As the GABAergic system is critical for retinal development, we then performed in vivo gramicidin perforated-patch whole-cell recording to characterize the developmental change of GABAergic action in RGCs. The reversal potential of GABA-induced currents (E(GABA)) in RGCs gradually shifted from depolarized to hyperpolarized levels during 2-4 dpf and the excitation-to-inhibition (E-I) switch of GABAergic action occurred at around 2.5 dpf when RGCs became light sensitive. Meanwhile, GABAergic transmission upstream to RGCs also became inhibitory by 2.5 dpf. Furthermore, down-regulation of the K(+)/Cl() co-transporter (KCC2) by the morpholino oligonucleotide-based knockdown approach, which shifted RGC E(GABA) towards a more depolarized level and thus delayed the E-I switch by one day, postponed the appearance of RGC LERs by one day. In addition, RGCs exhibited correlated giant inward current (GICs) during 2.5-3.5 dpf. The period of GICs was shifted to 3-4.5 dpf by KCC2 knockdown. Taken together, the GABAergic E-I switch occurs coincidently with the emergence of light responses and GICs in zebrafish RGCs, and may contribute to the functional development of retinal circuits.
Collapse
Affiliation(s)
- Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
29
|
Development of excitatory and inhibitory neurotransmitters in transitory cholinergic neurons, starburst amacrine cells, and GABAergic amacrine cells of rabbit retina, with implications for previsual and visual development of retinal ganglion cells. Vis Neurosci 2010; 27:19-42. [PMID: 20392300 DOI: 10.1017/s0952523810000052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Starburst amacrine cells (SACs), the only acetylcholine (ACh)-releasing amacrine cells (ACs) in adult rabbit retina, contain GABA and are key elements in the retina's directionally selective (DS) mechanism. Unlike many other GABAergic ACs, they use glutamic acid decarboxlyase (GAD)(67), not GAD(65), to synthesize GABA. Using immunocytochemistry, we demonstrate the apoptosis at birth (P0) of transitory putative ACs that exhibit immunoreactivity (IR) for the ACh-synthetic enzyme choline acetyltransferase (ChAT), GAD(67), and the GABA transporter, GAT1. Only a few intact, displaced ChAT-immunoreactive SAC bodies are detected at P0. At P2, ChAT-IR is detected in the two narrowly stratified substrata of starburst dendrites in the inner plexiform layer (IPL). Quantitative analysis reveals that in the first postnatal week, only a small fraction of SACs cells express ChAT- and GABA-IR. Not until the end of the second week are they expressed in all SACs. At P0, a three-tiered stratification of GABA-IR is present in the IPL, entirely different from the adult pattern of seven substrata, emerging at P3-P4, and optimally visualized at P13. At P0, GAD(65) is detectable in normally placed AC bodies. At P1, GAD(65)-IR appears in dendrites of nonstarburst GABAergic ACs, and by P5 is robust in the adult pattern of four substrata in the IPL. GAD(65)-IR never co-localizes with ChAT-IR. In a temporal comparison of our data with physiological, pharmacological, and ultrastructural studies, we suggest that transitory ChAT-immunoreactive cells share with SACs production of stage II (nicotinic) waves of previsual synchronous activity in ganglion cells (GCs). Further, we conclude that (1) GAD(65)-immunoreactive, non-SAC GABAergic ACs are the most likely candidates responsible for the suppression of stage III (muscarinic/AMPA-kainate) waves and (2) DS responses first appear in DS GCs, when about 50% of SACs express ChAT- and GABA-IR, and in 100% of DS GCs, when expression occurs in all SACs.
Collapse
|
30
|
Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 2009; 11:18-29. [PMID: 19953103 DOI: 10.1038/nrn2759] [Citation(s) in RCA: 542] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Patterned, spontaneous activity occurs in many developing neural circuits, including the retina, the cochlea, the spinal cord, the cerebellum and the hippocampus, where it provides signals that are important for the development of neurons and their connections. Despite there being differences in adult architecture and output across these various circuits, the patterns of spontaneous network activity and the mechanisms that generate it are remarkably similar. The mechanisms can include a depolarizing action of GABA (gamma-aminobutyric acid), transient synaptic connections, extrasynaptic transmission, gap junction coupling and the presence of pacemaker-like neurons. Interestingly, spontaneous activity is robust; if one element of a circuit is disrupted another will generate similar activity. This research suggests that developing neural circuits exhibit transient and tunable features that maintain a source of correlated activity during crucial stages of development.
Collapse
Affiliation(s)
- Aaron G Blankenship
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
31
|
Godfrey KB, Eglen SJ. Theoretical models of spontaneous activity generation and propagation in the developing retina. MOLECULAR BIOSYSTEMS 2009; 5:1527-35. [PMID: 19763323 DOI: 10.1039/b907213f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spontaneous neural activity is present in many parts of the developing nervous system, including visual, auditory and motor areas. In the developing retina, nearby neurons are spontaneously active and produce propagating patterns of activity, known as retinal waves. Such activity is thought to instruct the refinement of retinal axons. In this article we review several computational models used to help evaluate the mechanisms that might be responsible for the generation of retinal waves. We then discuss the models relative to the molecular mechanisms underlying wave activity, including gap junctions, neurotransmitters and second messenger systems. We examine how well the models represent these mechanisms and propose areas for future modelling research. The retinal wave models are also discussed in relation to models of spontaneous activity in other areas of the developing nervous system.
Collapse
Affiliation(s)
- Keith B Godfrey
- Cambridge Computational Biology Institute, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, UK
| | | |
Collapse
|
32
|
Blankenship AG, Ford KJ, Johnson J, Seal RP, Edwards RH, Copenhagen DR, Feller MB. Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 2009; 62:230-41. [PMID: 19409268 PMCID: PMC2807181 DOI: 10.1016/j.neuron.2009.03.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 01/28/2009] [Accepted: 03/17/2009] [Indexed: 11/28/2022]
Abstract
In the few days prior to eye-opening in mice, the excitatory drive underlying waves switches from cholinergic to glutamatergic. Here, we describe the unique synaptic and spatiotemporal properties of waves generated by the retina's glutamatergic circuits. First, knockout mice lacking vesicular glutamate transporter type 1 do not have glutamatergic waves, but continue to exhibit cholinergic waves, demonstrating that the two wave-generating circuits are linked. Second, simultaneous outside-out patch and whole-cell recordings reveal that retinal waves are accompanied by transient increases in extrasynaptic glutamate, directly demonstrating the existence of glutamate spillover during waves. Third, the initiation rate and propagation speed of retinal waves, as assayed by calcium imaging, are sensitive to pharmacological manipulations of spillover and inhibition, demonstrating a role for both signaling pathways in shaping the spatiotemporal properties of glutamatergic retinal waves.
Collapse
Affiliation(s)
- Aaron G Blankenship
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kerschensteiner D, Wong ROL. A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Neuron 2008; 58:851-8. [PMID: 18579076 PMCID: PMC2553397 DOI: 10.1016/j.neuron.2008.04.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/19/2008] [Accepted: 04/18/2008] [Indexed: 10/21/2022]
Abstract
Patterns of coordinated spontaneous activity have been proposed to guide circuit refinement in many parts of the developing nervous system. It is unclear, however, how such patterns, which are thought to indiscriminately synchronize nearby cells, could provide the cues necessary to segregate functionally distinct circuits within overlapping cell populations. Here, we report that glutamatergic retinal waves possess a substructure in the bursting of neighboring retinal ganglion cells with opposite light responses (ON or OFF). Within a wave, cells fire repetitive nonoverlapping bursts in a fixed order: ON before OFF. This pattern is absent from cholinergic waves, which precede glutamate-dependent activity, providing a developmental sequence of distinct activity-encoded cues. Asynchronous bursting of ON and OFF retinal ganglion cells depends on inhibition between these parallel pathways. Similar asynchronous activity patterns could arise throughout the nervous system, as inhibition matures and might help to separate connections of functionally distinct subnetworks.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195, USA.
| | | |
Collapse
|
34
|
Delpy A, Allain AE, Meyrand P, Branchereau P. NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron. J Physiol 2008; 586:1059-75. [PMID: 18096599 PMCID: PMC2375629 DOI: 10.1113/jphysiol.2007.146993] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 12/13/2007] [Indexed: 12/30/2022] Open
Abstract
Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential (E(Cl)) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5-E13.5) when GABA(A) receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes E(Cl). In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life.
Collapse
Affiliation(s)
- Alain Delpy
- Centre de Neuroscience Intégratives et Cognitives, Université Bordeaux and CNRS, UMR 5228, Avenue des Facultés, 33405 Talence cedex, France
| | | | | | | |
Collapse
|
35
|
Godfrey KB, Swindale NV. Retinal wave behavior through activity-dependent refractory periods. PLoS Comput Biol 2008; 3:e245. [PMID: 18052546 PMCID: PMC2098868 DOI: 10.1371/journal.pcbi.0030245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 10/24/2007] [Indexed: 11/30/2022] Open
Abstract
In the developing mammalian visual system, spontaneous retinal ganglion cell (RGC) activity contributes to and drives several aspects of visual system organization. This spontaneous activity takes the form of spreading patches of synchronized bursting that slowly advance across portions of the retina. These patches are non-repeating and tile the retina in minutes. Several transmitter systems are known to be involved, but the basic mechanism underlying wave production is still not well-understood. We present a model for retinal waves that focuses on acetylcholine mediated waves but whose principles are adaptable to other developmental stages. Its assumptions are that a) spontaneous depolarizations of amacrine cells drive wave activity; b) amacrine cells are locally connected, and c) cells receiving more input during their depolarization are subsequently less responsive and have longer periods between spontaneous depolarizations. The resulting model produces waves with non-repeating borders and randomly distributed initiation points. The wave generation mechanism appears to be chaotic and does not require neural noise to produce this wave behavior. Variations in parameter settings allow the model to produce waves that are similar in size, frequency, and velocity to those observed in several species. Our results suggest that retinal wave behavior results from activity-dependent refractory periods and that the average velocity of retinal waves depends on the duration a cell is excitatory: longer periods of excitation result in slower waves. In contrast to previous studies, we find that a single layer of cells is sufficient for wave generation. The principles described here are very general and may be adaptable to the description of spontaneous wave activity in other areas of the nervous system. Neurons from the immature retina extend axons that make connections in the visual centers of the brain. Chemical markers provide guidance for these axons, but patterned neural activity is necessary to refine their connections. Much of this activity occurs in a distinctive pattern of waves before the retina is responsive to light, but it is not known how these waves are generated. In this study, we describe a simple mechanism that can explain the production of retinal waves. We use the knowledge that immature retinal cells are spontaneously active and show that waves will result if cells that receive more input when they are spontaneously active have longer intervals between activity. The resulting model reproduces experimentally observed waves in a variety of species, including ferret, chick, mouse, rabbit, and turtle, both at the level of individual cells and of the entire retina. The behavior appears intrinsically chaotic and the model is not tied to the properties of any particular biochemical pathway. We suggest that this mechanism could underlie not only the spontaneous patterns of activity that are generated in the retina but other areas of the developing brain as well.
Collapse
Affiliation(s)
- Keith B Godfrey
- Department of Opthamology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
36
|
Sipilä ST, Kaila K. GABAergic control of CA3-driven network events in the developing hippocampus. Results Probl Cell Differ 2008; 44:99-121. [PMID: 17622497 DOI: 10.1007/400_2007_033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Endogenous activity is a characteristic feature of developing neuronal networks. In the neonatal rat hippocampus, spontaneously occurring network events known as "Giant Depolarizing Potentials" (GDPs) are seen in vitro at a stage when GABAergic transmission is depolarizing. GDPs are triggered by the CA3 region and they are seen as brief recurrent events in field-potential recordings, paralleled by depolarization and spiking of pyramidal neurons. In the light of current data, GDPs are triggered by the glutamatergic pyramidal neurons which act as conditional pacemakers, while the depolarizing action of GABA plays a permissive role for the generation of these events in in vitro preparations. From an in vivo perspective, GDPs appear to be an immature form of hippocampal sharp waves.
Collapse
Affiliation(s)
- Sampsa T Sipilä
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | | |
Collapse
|
37
|
Zhang LL, Delpire E, Vardi N. NKCC1 does not accumulate chloride in developing retinal neurons. J Neurophysiol 2007; 98:266-77. [PMID: 17493914 DOI: 10.1152/jn.00288.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA excites immature neurons due to their relatively high intracellular chloride concentration. This initial high concentration is commonly attributed to the ubiquitous chloride cotransporter NKCC1, which uses a sodium gradient to accumulate chloride. Here we tested this hypothesis in immature retinal amacrine and ganglion cells. Western blotting detected NKCC1 at birth and its expression first increased, then decreased to the adult level. Immunocytochemistry confirmed this early expression of NKCC1 and localized it to all nuclear layers. In the ganglion cell layer, staining peaked at P4 and then decreased with age, becoming undetectable in adult. In comparison, KCC2, the chloride extruder, steadily increased with age localizing primarily to the synaptic layers. For functional tests, we used calcium imaging with fura-2 and chloride imaging with 6-methoxy-N-ethylquinolinium iodide. If NKCC1 accumulates chloride in ganglion and amacrine cells, deleting or blocking it should abolish the GABA-evoked calcium rise. However, at P0-5 GABA consistently evoked a calcium rise that was not abolished in the NKCC1-null retinas, nor by applying high concentrations of bumetanide (NKCC blocker) for long periods. Furthermore, intracellular chloride concentration in amacrine and ganglion cells of the NKCC1-null retinas was approximately 30 mM, same as in wild type at this age. This concentration was not lowered by applying bumetanide or by decreasing extracellular sodium concentration. Costaining for NKCC1 and cellular markers suggested that at P3, NKCC1 is restricted to Müller cells. We conclude that NKCC1 does not serve to accumulate chloride in immature retinal neurons, but it may enable Müller cells to buffer extracellular chloride.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Dept of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
38
|
Lee EJ, Merwine DK, Padilla M, Grzywacz NM. Choline acetyltransferase-immunoreactive neurons in the retina of normal and dark-reared turtle. J Comp Neurol 2007; 503:768-78. [PMID: 17570494 DOI: 10.1002/cne.21416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual deprivation alters retinal-ganglion-cell response properties through changes in spontaneous wave-like activity (Sernagor and Grzywacz [1996] Curr Biol 6:1503-1508). This activity depends on cholinergic synaptic transmission in the turtle retina (ibid; Sernagor and Mehta [ 2001] J Anat 199:375-383). We studied the expression of choline acetyltransferase (ChAT) by immunocytochemistry and Western blot in developing retinas of control and dark-reared turtles. At postnatal day 0 (P0), right after hatching, ChAT-immunoreactivity was present in the ganglion cell layer (GCL), in the inner nuclear layer (INL), and in two distinct bands of the inner plexiform layer (IPL). In P14- and P28-control, and P14- and P28-dark-reared retinas, ChAT-immunoreactivity showed similar patterns to those in P0. However, in P14- and P28-dark-reared retinas the density of ChAT-immunoreactive cells was higher in both the INL and GCL than in P14- and P28-control retinas, respectively. Moreover, Western blotting showed that ChAT protein levels were significantly increased in the dark-reared retina compared to those of the control. TUNEL studies indicated that the difference between normal and dark-reared conditions was not due to extra apoptosis in the former. In turn, proliferating-cell nuclear antigen immunocytochemistry showed no extra proliferating cells in the latter. Finally, nearest-neighbor analysis revealed that the denser population of cholinergic cells in dark-reared turtles formed a mosaic as regular as the normal ones in the GCL. Thus, light deprivation increases the expression of ChAT, increasing the apparent density of cholinergic neurons in the developing turtle retina.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center for Vision Science and Technology, University of Southern California, Los Angeles, California 90089-1111, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Early neural activity, both prenatal spontaneous bursts and early visual experience, is believed to be important for dendritic proliferation and for the maturation of neural circuitry in the developing retina. In this study, we have investigated the possible role of early neural activity in shaping developing turtle retinal ganglion cell (RGC) dendritic arbors. RGCs were back-labelled from the optic nerve with horseradish peroxidase (HRP). Changes in dendritic growth patterns were examined across development and following chronic blockade or modification of spontaneous activity and/or visual experience. Dendrites reach peak proliferation at embryonic stage 25 (S25, one week before hatching), followed by pruning in large field RGCs around the time of hatching. When spontaneous activity is chronically blocked in vivo from early embryonic stages (S22) with curare, a cholinergic nicotinic antagonist, RGC dendritic growth is inhibited. On the other hand, enhancement of spontaneous activity by dark-rearing (Sernagor & Grzywacz (1996)Curr. Biol., 6, 1503-1508) promotes dendritic proliferation in large-field RGCs, an effect that is counteracted by exposure to curare from hatching. We also recorded spontaneous activity from individual RGCs labelled with lucifer yellow (LY). We found a tendency of RGCs with large dendritic fields to be spontaneously more active than small-field cells. From all these observations, we conclude that immature spontaneous activity promotes dendritic growth in developing RGCs.
Collapse
Affiliation(s)
- Vandana Mehta
- School of Neurology, Neurobiology and Psychiatry, Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
40
|
Mehta V, Sernagor E. Receptive field structure-function correlates in developing turtle retinal ganglion cells. Eur J Neurosci 2006; 24:787-94. [PMID: 16930408 DOI: 10.1111/j.1460-9568.2006.04971.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mature retinal ganglion cells (RGCs) have distinct morphologies that often reflect specialized functional properties such as On and Off responses. But the structural correlates of many complex receptive field (RF) properties (e.g. responses to motion) remain to be deciphered. In this study, we have investigated whether motion anisotropies (non-homogeneities) characteristic of embryonic turtle RGCs arise from immature dendritic arborization in these cells. To test this hypothesis, we have looked at structure-function correlates of developing turtle RGCs from Stage 23 (S23) when light responses emerge, until 15 weeks post-hatching (PH). Using whole cell patch clamp recordings, RGCs were labelled with Lucifer Yellow (LY) while recording their responses to moving edges of light. Comparison of RF and dendritic arbor layouts revealed a weak correlation. To obtain a larger structural sample of developing RGCs, we have looked at dendritic morphology in RGCs retrogradely filled with the tracer horseradish peroxidase (HRP) from S22 (when RGCs become spontaneously active, shortly before they become sensitive to light) until two weeks PH. We found that there was intense dendritic growth from S22 onwards, reaching peak proliferation at S25 (a week before hatching), while RGCs are still exhibiting significant motion anisotropies. Based on these observations, we suggest that immature anisotropic RGC RFs must originate from sparse synaptic inputs onto RGCs rather than from the immaturity of their growing dendritic trees.
Collapse
Affiliation(s)
- Vandana Mehta
- School of Neurology, Neurobiology and Psychiatry, Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
41
|
Firth SI, Feller MB. Dissociated GABAergic retinal interneurons exhibit spontaneous increases in intracellular calcium. Vis Neurosci 2006; 23:807-14. [PMID: 17020635 DOI: 10.1017/s095252380623013x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/13/2006] [Indexed: 11/06/2022]
Abstract
Early in development, before the retina is responsive to light, neurons exhibit spontaneous activity. Recently it was demonstrated that starburst amacrine cells, a unique class of neurons that secretes both GABA and acetylcholine, spontaneously depolarize. Networks comprised of spontaneously active starburst cells initiate correlated bursts of action potentials that propagate across the developing retina with a periodicity on the order minutes. To determine whether other retinal interneurons have similar “pacemaking” properties, we have utilized cultures of dissociated neurons from the rat retina. In the presence of antagonists for fast neurotransmitter receptors, distinct populations of neurons exhibited spontaneous, uncorrelated increases in intracellular calcium concentration. These increases in intracellular calcium concentration were sensitive to tetrodotoxin, indicating they are mediated by spontaneous membrane depolarizations. By combining immunofluorescence and calcium imaging, we found that 44% of spontaneously active neurons were GABAergic and included starburst amacrine cells. Whole cell voltage clamp recordings in the absence of antagonists for fast neurotransmitters revealed that after 7 days in culture, individual retinal neurons receive bursts of GABA-A receptor mediated synaptic input with a periodicity similar to that measured in spontaneously active GABAergic neurons. Low concentrations of GABA-A receptor antagonists did not alter the inter-burst interval despite significant reduction of post-synaptic current amplitude, indicating that pacemaker activity of GABAergic neurons was not influenced by network interactions. Together, these findings indicate that spiking GABAergic interneurons can function as pacemakers in the developing retina.
Collapse
Affiliation(s)
- Sally I Firth
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, San Diego, California, USA
| | | |
Collapse
|
42
|
Liu F, Merwine DK, Grzywacz NM. Statistically robust detection of spontaneous, non-stereotypical neural signals. J Neurosci Methods 2006; 153:299-311. [PMID: 16430965 DOI: 10.1016/j.jneumeth.2005.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 11/08/2005] [Accepted: 11/18/2005] [Indexed: 11/29/2022]
Abstract
Neural signals of interest are often temporally spontaneous and non-stereotypical in waveform. Detecting such signals is difficult, since one cannot use time-locking or simple template-matching techniques. We have sought a statistical method for automatically estimating the baseline in these conditions, and subsequently detecting the occurrence of neural signals. One could consider the signals as outliers in the distribution of neural activity and thus separate them from the baseline with median-based techniques. However, we found that baseline estimators that rely on the median are problematic. They introduce progressively greater estimation errors as the neural signal's duration, amplitude or frequency increases. Therefore, we tested several mode-based algorithms, taking advantage of the most probable state of the neural activity being the baseline. We found that certain mode-based algorithms perform baseline estimation well, with low susceptibility to changes in event duration, amplitude or frequency. Once the baseline is properly established, its median absolute deviation (MAD) can be determined. One can then use it to detect spontaneous signals robustly as outliers from the noise distribution. We also demonstrate how the choice of detection threshold in terms of MADs can be used to bias against false positives, without creating too many false negatives or vice versa.
Collapse
Affiliation(s)
- Fan Liu
- Department of Biomedical Engineering, University of Southern California, DRB 140, Los Angeles, CA 90089-1111, United States
| | | | | |
Collapse
|
43
|
Zhang LL, Pathak HR, Coulter DA, Freed MA, Vardi N. Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina. J Neurophysiol 2005; 95:2404-16. [PMID: 16371454 DOI: 10.1152/jn.00578.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA and glycine provide excitatory action during early development: they depolarize neurons and increase intracellular calcium concentration. As neurons mature, GABA and glycine become inhibitory. This switch from excitation to inhibition is thought to result from a shift of intracellular chloride concentration ([Cl-]i) from high to low, but in retina, measurements of [Cl-]i or chloride equilibrium potential (ECl) during development have not been made. Using the developing mouse retina, we systematically measured [Cl-]i in parallel with GABA's actions on calcium and chloride. In ganglion and amacrine cells, fura-2 imaging showed that before postnatal day (P) 6, exogenous GABA, acting via ionotropic GABA receptors, evoked calcium rise, which persisted in HCO3- -free buffer but was blocked with 0 extracellular calcium. After P6, GABA switched to inhibiting spontaneous calcium transients. Concomitant with this switch we observed the following: 6-methoxy-N-ethylquinolinium iodide (MEQ) chloride imaging showed that GABA caused an efflux of chloride before P6 and an influx afterward; gramicidin-perforated-patch recordings showed that the reversal potential for GABA decreased from -45 mV, near threshold for voltage-activated calcium channel, to -60 mV, near resting potential; MEQ imaging showed that [Cl-]i shifted steeply around P6 from 29 to 14 mM, corresponding to a decline of ECl from -39 to -58 mV. We also show that GABAergic amacrine cells became stratified by P4, potentially allowing GABA's excitatory action to shape circuit connectivity. Our results support the hypothesis that a shift from high [Cl-]i to low causes GABA to switch from excitatory to inhibitory.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Deaprtment of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | |
Collapse
|
44
|
Chub N, Mentis GZ, O'donovan MJ. Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity. J Neurophysiol 2005; 95:323-30. [PMID: 16192339 DOI: 10.1152/jn.00162.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular Cl(-) ([Cl(-)](in)) homeostasis is thought to be an important regulator of spontaneous activity in the spinal cord of the chick embryo. We investigated this idea by visualizing the variations of [Cl(-)](in) in motoneurons retrogradely labeled with the Cl-sensitive dye 6-methoxy-N-ethylquinolinium iodide (MEQ) applied to cut muscle nerves in the isolated E10-E12 spinal cord. This labeling procedure obviated the need for synthesizing the reduced, cell-permeable dihydro-MEQ (DiH-MEQ). The specificity of motoneuron labeling was confirmed using retrograde co-labeling with Texas Red Dextran and immunocytochemistry for choline acetyltransferase (ChAT). In MEQ-labeled motoneurons, the GABA(A) receptor agonist isoguvacine (100 muM) increased somatic and dendritic fluorescence by 7.4 and 16.7%, respectively. The time course of this fluorescence change mirrored that of the depolarization recorded from the axons of the labeled motoneurons. Blockade of the inward Na(+)/K(-)/2Cl(-) co-transporter (NKCC1) with bumetanide (20 microM) or with a low-Na(+) bath solution (12 mM), increased MEQ fluorescence by 5.3 and 11.4%, respectively, consistent with a decrease of [Cl(-)](in). After spontaneous episodes of activity, MEQ fluorescence increased and then declined to the pre-episode level during the interepisode interval. The largest fluorescence changes occurred over motoneuron dendrites (19.7%) with significantly smaller changes (5.2%) over somata. Collectively, these results show that retrogradely loaded MEQ can be used to detect [Cl(-)](in) in motoneurons, that the bumetanide-sensitive NKCC1 co-transporter is at least partially responsible for the elevated [Cl(-)](in) of developing motoneurons, and that dendritic [Cl(-)](in) decreases during spontaneous episodes and recovers during the inter-episode interval, presumably due to the action of NKCC1.
Collapse
Affiliation(s)
- Nikolai Chub
- Laboratory of Neural Control, NINDS/NIH, Rm. 3BC911, 35 Convent Dr., Bethesda, MD 20892-3700, USA.
| | | | | |
Collapse
|
45
|
Torborg CL, Feller MB. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 2005; 76:213-35. [PMID: 16280194 DOI: 10.1016/j.pneurobio.2005.09.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/30/2005] [Accepted: 09/22/2005] [Indexed: 11/22/2022]
Abstract
A characteristic feature of sensory circuits is the existence of orderly connections that represent maps of sensory space. A major research focus in developmental neurobiology is to elucidate the relative contributions of neural activity and guidance molecules in sensory map formation. Two model systems for addressing map formation are the retinotopic map formed by retinal projections to the superior colliculus (SC) (or its non-mammalian homolog, the optic tectum (OT)), and the eye-specific map formed by retinal projections to the lateral geniculate nucleus of the thalamus. In mammals, a substantial portion of retinotopic and eye-specific refinement of retinal axons occurs before vision is possible, but at a time when there is a robust, patterned spontaneous retinal activity called retinal waves. Though complete blockade of retinal activity disrupts normal map refinement, attempts at more refined perturbations, such as pharmacological and genetic manipulations that alter features of retinal waves critical for map refinement, remain controversial. Here we review: (1) the mechanisms that underlie the generation of retinal waves; (2) recent experiments that have investigated a role for guidance molecules and retinal activity in map refinement; and (3) experiments that have implicated various signaling cascades, both in retinal ganglion cells (RGCs) and their post-synaptic targets, in map refinement. It is likely that an understanding of retinal activity, guidance molecules, downstream signaling cascades, and the interactions between these biological systems will be critical to elucidating the mechanisms of sensory map formation.
Collapse
Affiliation(s)
- Christine L Torborg
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The polarity of action of gamma-aminobutyric acid (GABA) changes from inhibition to excitation in the developing brain and in epilepsies. This review deals with recent observations concerning the mechanisms and clinical implications of the shift in GABA's activity from inhibition to excitation. RECENT FINDINGS GABAergic synapses provide most transmitter-gated inhibition and are the targets of numerous clinically active agents, notably antiepileptic drugs. In a wide range of brain structures and species, GABAergic synapses are excitatory during maturation because of a higher concentration of intracellular chloride. These findings suggest that activation of GABA synapses will excite foetal neurones while inhibiting those of the mother. In epilepsies, recurrent seizures also lead to an accumulation of chloride and an excitatory action of GABA. These observations have major implications for clinical practice and research. They suggest that use of benzodiazepines by pregnant mothers may lead to deleterious consequences when they are taken during the period when GABA is the main excitatory transmitter. Because neuronal activity alters important cell functions, including migration and morphogenesis, aberrant excessive excitation may lead to profound deleterious consequences. SUMMARY In several physiological and pathological conditions, activation of GABAergic synapses excites neurones instead of producing classical inhibition. This shift, which is due to an intracellular accumulation of chloride, has major consequences for both the operation of networks and the pathogenic effects of epilepsies. This is particularly important in the immature brain, where the excitatory actions of GABA are particularly prominent.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Institut de Neurobiologie de le Méditerranée, INSERM, Parc scientifique de Luminy, Marseilles, France.
| | | |
Collapse
|
47
|
Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2005; 190 Suppl 1:S8-21. [PMID: 15498537 DOI: 10.1016/j.expneurol.2004.03.027] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/29/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Neurotransmitters are released from neurons and mediate neuronal communication. Neuromodulators can also be released from other cells and influence the neuronal signaling. Both neurotransmitters and neuromodulators play an important role in the shaping and the wiring of the nervous system possibly during critical windows of the development. Monoamines are expressed in the very early embryo, at which stage the notochord already contains high noradrenaline levels. Purines and neuropeptides are probably also expressed at an early stage, in a similar way as they occur during early phylogenesis. The levels of most neurotransmitters and neuromodulators increase concomitantly with synapse formation. Some of them surge during the perinatal period (such as glutamate, catecholamines, and some neuropeptides) and then level off. The interesting question is to what extent the expression of neuroactive agents is related to the functional state of the fetus and the newborn. Monoamines are expressed in the very early embryo, at which stage the notochord already contains high noradrenaline levels. They may have an important role for neurotransmission in the fetus. In the adult mammal, the fast switching excitatory amino acids dominate. However, they also seem to be important for the wiring of the brain and the plasticity before birth. NMDA receptors that are supposed to mediate these effects dominate and are then substituted by AMPA receptors. The main inhibitory amino acids gamma-aminobutyric acid (GABA) and glycine are excitatory in the developing brain by depolarizing developing neurons that have high Cl- concentrations. This seems to be of major importance for the wiring of neuronal circuits. Prenatal or neonatal stress, for example, hypoxia, can affect the programming of neurotransmitter and receptor expression, which can lead to long-term behavioral effects.
Collapse
Affiliation(s)
- Eric Herlenius
- Department of Women and Child Health, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
48
|
Zheng JJ, Lee S, Zhou ZJ. A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 2005; 44:851-64. [PMID: 15572115 DOI: 10.1016/j.neuron.2004.11.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2004] [Revised: 08/26/2004] [Accepted: 11/12/2004] [Indexed: 10/26/2022]
Abstract
Dual patch-clamp recording and Ca2+ uncaging revealed Ca2+-dependent corelease of ACh and GABA from, and the presence of reciprocal nicotinic and GABAergic synapses between, starburst cells in the perinatal rabbit retina. With maturation, the nicotinic synapses between starburst cells dramatically diminished, whereas the GABAergic synapses remained and changed from excitatory to inhibitory, indicating a coordinated conversion of the starburst network excitability from an early hyperexcitatory to a mature nonepileptic state. We show that this transition allows the starburst cells to use their neurotransmitters for two completely different functions. During early development, the starburst network mediates recurrent excitation and spontaneous retinal waves, which are important for visual system development. After vision begins, starburst cells release GABA in a prolonged and Ca2+-dependent manner and inhibit each other laterally via direct GABAergic synapses, which may be important for visual integration, such as the detection of motion direction.
Collapse
Affiliation(s)
- Ji-Jian Zheng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
49
|
Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 2005; 562:27-36. [PMID: 15528236 PMCID: PMC1665491 DOI: 10.1113/jphysiol.2004.077495] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 10/28/2004] [Indexed: 01/19/2023] Open
Abstract
GABAergic signalling has the unique property of 'ionic plasticity', which is based on short-term and long-term changes in the Cl(-) and HCO(3)(-) ion concentrations in the postsynaptic neurones. While short-term ionic plasticity is caused by activity-dependent, channel-mediated anion shifts, long-term ionic plasticity depends on changes in the expression patterns and kinetic regulation of molecules involved in anion homeostasis. During development the efficacy and also the qualitative nature (depolarization/excitation versus hyperpolarization/inhibition) of GABAergic transmission is influenced by the neuronal expression of two key molecules: the chloride-extruding K(+)-Cl(-) cotransporter KCC2, and the cytosolic carbonic anhydrase (CA) isoform CAVII. In rat hippocampal pyramidal neurones, a steep up-regulation of KCC2 accounts for the 'developmental switch', which converts depolarizing and excitatory GABA responses of immature neurones to classical hyperpolarizing inhibition by the end of the second postnatal week. The immature hippocampus generates large-scale network activity, which is abolished in parallel by the up-regulation of KCC2 and the consequent increase in the efficacy of neuronal Cl(-) extrusion. At around postnatal day 12 (P12), an abrupt, steep increase in intrapyramidal CAVII expression takes place, promoting excitatory responses evoked by intense GABAergic activity. This is largely caused by a GABAergic potassium transient resulting in spatially widespread neuronal depolarization and synchronous spike discharges. These facts point to CAVII as a putative target of CA inhibitors that are used as antiepileptic drugs. KCC2 expression in adult rat neurones is down-regulated following epileptiform activity and/or neuronal damage by BDNF/TrkB signalling. The lifetime of membrane-associated KCC2 is very short, in the range of tens of minutes, which makes KCC2 ideally suited for mediating GABAergic ionic plasticity. In addition, factors influencing the trafficking and kinetic modulation of KCC2 as well as activation/deactivation of CAVII are obvious candidates in the ionic modulation of GABAergic responses. The down-regulation of KCC2 under pathophysiological conditions (epilepsy, damage) in mature neurones seems to reflect a 'recapitulation' of early developmental mechanisms, which may be a prerequisite for the re-establishment of connectivity in damaged brain tissue.
Collapse
Affiliation(s)
- Claudio Rivera
- Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
50
|
Syed MM, Lee S, Zheng J, Zhou ZJ. Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol 2004; 560:533-49. [PMID: 15308679 PMCID: PMC1665265 DOI: 10.1113/jphysiol.2004.066597] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We report here a systematic investigation of the dynamics, regulation and distribution of spontaneous waves in the rabbit retina during the course of wave development prior to eye opening. Three major findings were obtained in this longitudinal study. (1) Spontaneous retinal waves underwent three developmental stages, each of which displayed distinct wave dynamics, pharmacology and mechanism of generation and regulation. Stage I waves emerged prior to synaptogenesis and appeared as frequent, fast propagating waves that did not form spatial boundaries between waves. These waves could be inhibited by blockers of gap junctions and adenosine receptors, but not by nicotinic antagonists. Stage I waves lasted about one day (around embryonic day 22) and then switched rapidly to stage II, resulting in slower and less frequent waves that could be blocked by nicotinic antagonists and had a characteristic postwave refractory period and spatial boundaries between adjacent waves. Immediately after the transition from stage I to stage II, the waves could be reverted back to stage I by blocking nicotinic receptors, indicating the presence of mutually compensatory mechanisms for wave generation. Stage III waves emerged around postnatal day 3-4 (P3-4), and they were mediated by glutamtergic and muscarinic interactions. With age, these waves became weaker, more localized and less frequent. Spontaneous waves were rarely detected after P7. (2) GABA strongly modulated the wave dynamics in a stage- and receptor type-dependent manner. At stage I, endogenous GABAB activation downregulated the waves. The GABAB modulation disappeared during stage II and was replaced by a strong GABA(A/C)-mediated inhibition at stage III. Blocking GABA(A/C) receptors not only dramatically enhanced spontaneous stage III waves, but also induced propagating waves in >P7 retinas that did not show spontaneous waves, indicating a role of GABA inhibition in the disappearance of spontaneous waves. (3) Spontaneous retinal waves were found in both the inner and outer retina at all three stages. The waves in the outer retina (ventricular zone) also showed stage-dependent pharmacology and dynamics. Together, the results revealed a multistaged developmental sequence and stage-dependent dynamics, pharmacology and regulation of spontaneous retinal waves in the mammalian retina. The presence of retinal waves during multiple developmental stages and in multiple retinal layers suggests that the waves are a general developmental phenomenon with diverse functions.
Collapse
Affiliation(s)
- Mohsin Md Syed
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | | |
Collapse
|