1
|
Lamberti A, Aprile S, Cabañero D, Travagin F, Butron L, Fernández-Ballester G, Tron GC, Fernández-Carvajal A, Ferrer-Montiel A, Galli U. An adamantane-based ligand as a novel chemical tool for thermosensory TRPM8 channel therapeutic modulation. FEBS J 2025. [PMID: 40123199 DOI: 10.1111/febs.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Transient receptor potential cation channel subfamily M member 8 (TRPM8) is a nonselective thermosensory cation channel expressed in peripheral nociceptor terminals where it transduces cold temperatures and cooling agents such as menthol. TRPM8 dysfunction has been involved in disabling sensory symptoms, such as cold allodynia. In addition, its widespread expression has signaled this channel as a pivotal therapeutic target for a variety of diseases, from peripheral neuropathies to cancer. Thus, the design and therapeutic validation of TRPM8 antagonists is an important endeavor in biomedicine. To address this, we used the multicomponent Passerini and Ugi reactions to design a novel family of TRPM8 modulators using as a scaffold the adamantane ring that exhibits drug-like qualities. These green chemistry transformations are ideal for the fast synthesis of libraries of medium complexity with minimal or no generation of waste by-products. We report the identification of a family of TRPM8 agonists and antagonists. Among them, 2-((3S,5S,7S)-adamantan-1-ylamino)-2-oxoethyl [1,1'-biphenyl]-2-carboxylate (referred to as compound 23) is a potent and selective antagonist that reduces TRPM8-induced neuronal firing in primary nociceptor cultures. Compound 23 exhibits 10-fold higher potency for human TRPM8 (hTRPM8) than for hTRPV1 and hTRPA1 channels. Notably, local administration of compound 23 significantly attenuated oxaliplatin-induced peripheral cold allodynia by modulating epidermal TRPM8 sensory endings. Thus, α-acyloxy carboxamide 23 appears as a promising therapeutic candidate to topically intervene on TRPM8-mediated peripheral neuropathies.
Collapse
Affiliation(s)
- Angela Lamberti
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Spain
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Spain
| | - Fabio Travagin
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Laura Butron
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Spain
| | - Gian Cesare Tron
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Spain
| | - Ubaldina Galli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| |
Collapse
|
2
|
Du L, Zhu J, Liu S, Yang W, Hu X, Zhang W, Cui W, Yang Y, Wang C, Yang Y, Gao T, Zhang C, Zhang R, Lou M, Zhou H, Rao J, Maoying Q, Chu Y, Wang Y, Mi W. Transient receptor potential melastatin 8 contributes to the interleukin-33-mediated cold allodynia in a mouse model of neuropathic pain. Pain 2025; 166:347-359. [PMID: 39132923 DOI: 10.1097/j.pain.0000000000003346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Cold allodynia is a common complaint of patients suffering from neuropathic pain initiated by peripheral nerve injury. However, the mechanisms that drive neuropathic cold pain remain elusive. In this study, we show that the interleukin (IL)-33/ST2 signaling in the dorsal root ganglion (DRG) is a critical contributor to neuropathic cold pain by interacting with the cold sensor transient receptor potential melastatin 8 (TRPM8). By using the St2-/- mice, we demonstrate that ST2 is required for the generation of nociceptor hyperexcitability and cold allodynia in a mouse model of spared nerve injury (SNI). Moreover, the selective elimination of ST2 function from the Nav1.8-expressing nociceptor markedly suppresses SNI-induced cold allodynia. Consistent with the loss-of-function studies, intraplantar injection of recombinant IL-33 (rIL-33) is sufficient to induce cold allodynia. Mechanistically, ST2 is co-expressed with TRPM8 in both mouse and human DRG neurons and rIL-33-induced Ca 2+ influx in mouse DRG neurons through TRPM8. Co-immunoprecipitation assays further reveal that ST2 interacts with TRPM8 in DRG neurons. Importantly, rIL-33-induced cold allodynia is abolished by pharmacological inhibition of TRPM8 and genetic ablation of the TRPM8-expressing neurons. Thus, our findings suggest that the IL-33/ST2 signaling mediates neuropathic cold pain through downstream cold-sensitive TRPM8 channels, thereby identifying a potential analgesic target for the treatment of neuropathic cold pain.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Zhou
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Jia Rao
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Piña R, Ugarte G, Guevara C, Pino R, Valdebenito K, Romero S, Gómez del Campo A, Cornejo VH, Pertusa M, Madrid R. A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage. Front Pharmacol 2024; 15:1484387. [PMID: 39703391 PMCID: PMC11655194 DOI: 10.3389/fphar.2024.1484387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca2+ imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery in vivo, we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch. We found that cold allodynia induced by IoN-CCI is linked to an increase in the proportion of cold-sensitive neurons (CSNs) contributing to this branch and a shift in their thermal thresholds to higher temperatures. These changes are correlated to a reduction of the Kv1.1-1.2-dependent brake potassium current IKD in IoN CSNs and a rise in the percentage of trigeminal neurons expressing TRPM8. The analysis of the electrophysiological properties of CSNs contributing to the IoN suggests that painful cold hypersensitivity involves the recruitment of silent nociceptive afferents that become sensitive to mild cold in response to nerve damage. Notably, pharmacological suppression of TRPM8 channels and AAV-based transduction of trigeminal neurons with the Kv1.1 channel in vivo effectively reverted the nociceptive phenotype in injured animals. Altogether, our results unveil a crucial role of TRPM8 and Kv1 channels in orofacial cold allodynia, suggesting that both the specific TRPM8-blocking and the AAV-driven expression of potassium channels underlying IKD in trigeminal neurons can be effective tools to revert this damage-triggered sensory alteration.
Collapse
Affiliation(s)
- Ricardo Piña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Gonzalo Ugarte
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camilo Guevara
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
| | - Richard Pino
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Katherine Valdebenito
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sofía Romero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Ana Gómez del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Víctor Hugo Cornejo
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| |
Collapse
|
4
|
Behrendt M. Implications of TRPM3 and TRPM8 for sensory neuron sensitisation. Biol Chem 2024; 405:583-599. [PMID: 39417661 DOI: 10.1515/hsz-2024-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Marc Behrendt
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, MCTN, Tridomus, Building C, Ludolf-Krehl-Straße 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
5
|
Lewis CM, Griffith TN. Ion channels of cold transduction and transmission. J Gen Physiol 2024; 156:e202313529. [PMID: 39051992 PMCID: PMC11273221 DOI: 10.1085/jgp.202313529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Thermosensation requires the activation of a unique collection of ion channels and receptors that work in concert to transmit thermal information. It is widely accepted that transient receptor potential melastatin 8 (TRPM8) activation is required for normal cold sensing; however, recent studies have illuminated major roles for other ion channels in this important somatic sensation. In addition to TRPM8, other TRP channels have been reported to contribute to cold transduction mechanisms in diverse sensory neuron populations, with both leak- and voltage-gated channels being identified for their role in the transmission of cold signals. Whether the same channels that contribute to physiological cold sensing also mediate noxious cold signaling remains unclear; however, recent work has found a conserved role for the kainite receptor, GluK2, in noxious cold sensing across species. Additionally, cold-sensing neurons likely engage in functional crosstalk with nociceptors to give rise to cold pain. This Review will provide an update on our understanding of the relationship between various ion channels in the transduction and transmission of cold and highlight areas where further investigation is required.
Collapse
Affiliation(s)
- Cheyanne M Lewis
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Theanne N Griffith
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Mandlem VKK, Rivera A, Khan Z, Quazi SH, Deba F. TLR4 induced TRPM2 mediated neuropathic pain. Front Pharmacol 2024; 15:1472771. [PMID: 39329114 PMCID: PMC11424904 DOI: 10.3389/fphar.2024.1472771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels play an important role in mediating pain through signal transduction, regulation, and control of responses, particularly in neuropathic pain. Transient receptor potential channel superfamily plays an important role in cation permeability and cellular signaling. Transient receptor potential channel Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to various chemicals and signals from the surrounding environment. TRPM2 has a role in several physiological functions such as cellular osmosis, temperature sensing, cellular proliferation, as well as the manifestation of many disease processes such as pain process, cancer, apoptosis, endothelial dysfunction, angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like Receptor 4 (TLR4) is a critical initiator of the immune response to inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS). It activates downstream pathways leading to the production of oxidative molecules and inflammatory cytokines, which are modulated by basal and store-operated calcium ion signaling. The cytokine production and release cause an imbalance of antioxidant enzymes and redox potential in the Endoplasmic Reticulum and mitochondria due to oxidative stress, which results from TLR-4 activation and consequently induces the production of inflammatory cytokines in neuronal cells, exacerbating the pain process. Very few studies have reported the role of TRPM2 and its association with Toll-like receptors in the context of neuropathic pain. However, the molecular mechanism underlying the interaction between TRPM2 and TLR-4 and the quantum of impact in acute and chronic neuropathic pain remains unclear. Understanding the link between TLR-4 and TRPM2 will provide more insights into pain regulation mechanisms for the development of new therapeutic molecules to address neuropathic pain.
Collapse
Affiliation(s)
- Venkata Kiran Kumar Mandlem
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Ana Rivera
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Zaina Khan
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Departmental of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Sohel H Quazi
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Department of Biology, Division of Natural and Computation Sciences, Texas College, Tyler, TX, United States
| | - Farah Deba
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
7
|
Ummadisetty O, Akhilesh, Gadepalli A, Chouhan D, Patil U, Singh SP, Singh S, Tiwari V. Dermorphin [D-Arg2, Lys4] (1-4) Amide Alleviates Frostbite-Induced Pain by Regulating TRP Channel-Mediated Microglial Activation and Neuroinflammation. Mol Neurobiol 2024; 61:6089-6100. [PMID: 38277118 DOI: 10.1007/s12035-024-03949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Cold injury or frostbite is a common medical condition that causes serious clinical complications including sensory abnormalities and chronic pain ultimately affecting overall well-being. Opioids are the first-choice drug for the treatment of frostbite-induced chronic pain; however, their notable side effects, including sedation, motor incoordination, respiratory depression, and drug addiction, present substantial obstacle to their clinical utility. To address this challenge, we have exploited peripheral mu-opioid receptors as potential target for the treatment of frostbite-induced chronic pain. In this study, we investigated the effect of dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a peripheral mu-opioid receptor agonist, on frostbite injury and hypersensitivity induced by deep freeze magnet exposure in rats. Animals with frostbite injury displayed significant hypersensitivity to mechanical, thermal, and cold stimuli which was significant ameliorated on treatment with different doses of DALDA (1, 3, and 10 mg/kg) and ibuprofen (100 mg/kg). Further, molecular biology investigations unveiled heightened oxido-nitrosative stress, coupled with a notable upregulation in the expression of TRP channels (TRPA1, TRPV1, and TRPM8), glial cell activation, and neuroinflammation (TNF-α, IL-1β) in the sciatic nerve, dorsal root ganglion (DRG), and spinal cord of frostbite-injured rats. Treatment with DALDA leads to substantial reduction in TRP channels, microglial activation, and suppression of the inflammatory cascade in the ipsilateral L4-L5 DRG and spinal cord of rats. Overall, findings from the present study suggest that activation of peripheral mu-opioid receptors mitigates chronic pain in rats by modulating the expression of TRP channels and suppressing glial cell activation and neuroinflammation.
Collapse
Affiliation(s)
- Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Utkarsh Patil
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjay Singh
- Baba Saheb Bhim Rao Ambedkar Central University (BBAU), Lucknow, Uttar Pradesh, 226025, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
8
|
Zhang W, Xu X, Leng H, Shen Q, Lu Q, Zheng X. An exploration of clinical features and factors associated with pain frequency and pain intensity in children with growing pains: a cross-sectional study from Chongqing, China. Pain Rep 2024; 9:e1164. [PMID: 38835745 PMCID: PMC11146583 DOI: 10.1097/pr9.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 06/06/2024] Open
Abstract
Instruction Growing pains are the most common cause of musculoskeletal pain in children, affecting both children's and caregivers' well-being. The lack of definitive diagnostic criteria complicates diagnosis and treatment. Objectives This study aims to outline the clinical features and identify factors associated with the frequency and intensity of growing pains in children in Chongqing, China. Methods A cross-sectional study was conducted in a children's hospital using its Internet hospital follow-up platform. Children initially diagnosed with growing pains between July and September 2022 were enrolled. Sociodemographics, pain locations, duration, frequency, intensity, and potentially related factors were collected. Results Eight hundred sixty-three children were enrolled (average age: 8.19 ± 3.24 years; 455 boys [52.72%]). Pain frequency was reported as quarterly (62.11%), monthly (24.80%), biweekly (1.74%), weekly (10.08%), and daily (1.27%). The prevalence of mild, moderate, and severe pain was 26.65%, 55.74%, and 17.61%, respectively. The knee was the most common pain location (63.85%), mostly encountered between 4 pm and 5 pm (20.51%). Multivariate analysis revealed that pain frequency negatively correlated with vitamin supplementation during pregnancy, positively correlated with underweight, bad temper, increased exercise, and cold lower extremities. Pain intensity positively correlated with irritability, increased exercise, and pain sensitivity but negatively correlated with age and vitamin supplementation during lactation. Conclusion Growing pains typically occur on a quarterly basis, predominantly affecting the knees during 4 pm to 5 pm. Factors in sociodemographics, maternal aspect, temperament, and exercise levels can influence pain frequency and intensity. Clinicians should consider these aspects when developing comprehensive strategies for pain management.
Collapse
Affiliation(s)
- Wenni Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ximing Xu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Big Data Center for Children's Medical Care, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyao Leng
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Shen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiufan Lu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xianlan Zheng
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Emre M, Karamazi Y, Emre T, Avci Ç, Aydin C, Ebrahimi S, Pekmezekmek AB. The effect of 6GHz radiofrequency electromagnetic radiation on rat pain perception. Electromagn Biol Med 2024:1-8. [PMID: 38521997 DOI: 10.1080/15368378.2024.2331134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
This paper presents data on pain perception in rats exposed to 6 GHz radiofrequency electromagnetic radiation (RF-EMR). Rats were divided into two groups: control (n = 10, 4 replicates per test) and RF-EMR exposed group (n = 10, 4 replicates per test). Nociceptive responses of the groups were measured using rodent analgesiometry. Rats were divided into control and RF-EMR exposed groups. Nociceptive responses were measured using rodent analgesiometry. RF-EMR exposed rats had a 15% delay in responding to hot plate thermal stimulation compared to unexposed rats. The delay in responding to radiant heat thermal stimulation was 21%. We determined that RF-EMR promoted the occurrence of pressure pain as statistical significance by + 42% (p < 0.001). We observed that RF-EMR exposure increased nociceptive pain by + 35% by promoting cold plate stimulation (p < 0.05). RF-EMR exposure did not affect thermal preference as statistical significance but did support the formation of pressure pain perception.
Collapse
Affiliation(s)
- Mustafa Emre
- Department of Biophysics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Yasin Karamazi
- Department of Biophysics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Toygar Emre
- Department of Industry, Faculty of Engineering, Boğaziçi University, İstanbul, Türkiye
| | - Çağrı Avci
- Department of Virology, Ceyhan Veterinary Medicine, Cukurova University, Adana, Türkiye
| | - Cagatay Aydin
- Department of Pharmacology, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Sonia Ebrahimi
- Department of Electrical-Electronics, Faculty of Engineering, Ege University, Izmir, Türkiye
| | | |
Collapse
|
10
|
Seyed-Razavi Y, Kenyon BM, Qiu F, Harris DL, Hamrah P. A novel animal model of neuropathic corneal pain-the ciliary nerve constriction model. Front Neurosci 2023; 17:1265708. [PMID: 38144209 PMCID: PMC10749205 DOI: 10.3389/fnins.2023.1265708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Neuropathic pain arises as a result of peripheral nerve injury or altered pain processing within the central nervous system. When this phenomenon affects the cornea, it is referred to as neuropathic corneal pain (NCP), resulting in pain, hyperalgesia, burning, and photoallodynia, severely affecting patients' quality of life. To date there is no suitable animal model for the study of NCP. Herein, we developed an NCP model by constriction of the long ciliary nerves innervating the eye. Methods Mice underwent ciliary nerve constriction (CNC) or sham procedures. Safety was determined by corneal fluorescein staining to assess ocular surface damage, whereas Cochet-Bonnet esthesiometry and confocal microscopy assessed the function and structure of corneal nerves, respectively. Efficacy was assessed by paw wipe responses within 30 seconds of applying hyperosmolar (5M) saline at Days 3, 7, 10, and 14 post-constriction. Additionally, behavior was assessed in an open field test (OFT) at Days 7, 14, and 21. Results CNC resulted in significantly increased response to hyperosmolar saline between groups (p < 0.0001), demonstrating hyperalgesia and induction of neuropathic pain. Further, animals that underwent CNC had increased anxiety-like behavior in an open field test compared to controls at the 14- and 21-Day time-points (p < 0.05). In contrast, CNC did not result in increased corneal fluorescein staining or decreased sensation as compared to sham controls (p > 0.05). Additionally, confocal microscopy of corneal whole-mounts revealed that constriction resulted in only a slight reduction in corneal nerve density (p < 0.05), compared to naïve and sham groups. Discussion The CNC model induces a pure NCP phenotype and may be a useful model for the study of NCP, recapitulating features of NCP, including hyperalgesia in the absence of ocular surface damage, and anxiety-like behavior.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Fangfang Qiu
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Departments of Neuroscience and Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Giuliani C, Sivtseva T, Semenov S, Ksenofontov A, Nikolaeva M, Khusnutdinova E, Zakharova R, Vedunova M, Franceschi C, Ivanchenko M. Epigenetics of the far northern Yakutian population. Clin Epigenetics 2023; 15:189. [PMID: 38053163 PMCID: PMC10699032 DOI: 10.1186/s13148-023-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before. RESULTS This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, among others, geographic region-specific differentially methylated regions associated with adaptation to climatic conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demonstrated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, whereas no significant sex differences were found between the regions. CONCLUSIONS We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention to region-specific features, aging processes, age acceleration, and sex specificity.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | | | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Tatiana Sivtseva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Sergey Semenov
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Artem Ksenofontov
- State Budgetary Institution of the Republic of Sakha (Yakutia) Republican Center for Public Health and Medical Prevention, Yakutsk, 677001, Russia
| | - Maria Nikolaeva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia, 450054
| | - Raisa Zakharova
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
12
|
Zhang Q, Weng W, Gu X, Xiang J, Yang Y, Zhu MX, Gu W, He Z, Li Y. hnRNPA1 SUMOylation promotes cold hypersensitivity in chronic inflammatory pain by stabilizing TRPA1 mRNA. Cell Rep 2023; 42:113401. [PMID: 37943660 DOI: 10.1016/j.celrep.2023.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
TRPA1 is pivotal in cold hypersensitivity, but its regulatory mechanisms in inflammatory cold hyperalgesia remain poorly understood. We show here that the upregulation of SUMO1-conjugated protein levels in a complete Freund's adjuvant (CFA)-induced inflammatory pain model enhances TRPA1 mRNA stability, ultimately leading to increased expression levels. We further demonstrate that hnRNPA1 binds to TRPA1 mRNA, and its SUMOylation, upregulated in CFA-induced inflammatory pain, contributes to stabilizing TRPA1 mRNA by accumulating hnRNPA1 in the cytoplasm. Moreover, we find that wild-type hnRNPA1 viral infection in dorsal root ganglia neurons, and not infection with the SUMOylation-deficient hnRNPA1 mutant, can rescue the reduced ability of hnRNPA1-knockdown mice to develop inflammatory cold pain hypersensitivity. These results suggest that hnRNPA1 is a regulator of TRPA1 mRNA stability, the capability of which is enhanced upon SUMO1 conjugation at lysine 3 in response to peripheral inflammation, and the increased expression of TRPA1 in turn underlies the development of chronic inflammatory cold pain hypersensitivity.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaokun Gu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinhua Xiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhenzhou He
- Department of Anesthesiology, Minhang Hospital Affiliated to Fudan University, Shanghai 201199, China.
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
13
|
Pakalniskis J, Soares S, Rajan S, Vyshnevska A, Schmelz M, Solinski HJ, Rukwied R, Carr R. Human pain ratings to electrical sinusoids increase with cooling through a cold-induced increase in C-fibre excitability. Pain 2023; 164:1524-1536. [PMID: 36972485 DOI: 10.1097/j.pain.0000000000002849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 03/29/2023]
Abstract
ABSTRACT Low-frequency sinusoidal current applied to human skin evokes local axon reflex flare and burning pain, indicative of C-fibre activation. Because topical cooling works well as a local analgesic, we examined the effect of cooling on human pain ratings to sinusoidal and rectangular profiles of constant current stimulation. Unexpectedly, pain ratings increased upon cooling the skin from 32 to 18°C. To explore this paradoxical observation, the effects of cooling on C-fibre responses to stimulation with sinusoidal and rectangular current profiles were determined in ex vivo segments of mouse sural and pig saphenous nerve. As expected by thermodynamics, the absolute value of electrical charge required to activate C-fibre axons increased with cooling from 32°C to 20°C, irrespective of the stimulus profile used. However, for sinusoidal stimulus profiles, cooling enabled a more effective integration of low-intensity currents over tens of milliseconds resulting in a delayed initiation of action potentials. Our findings indicate that the paradoxical cooling-induced enhancement of electrically evoked pain in people can be explained by an enhancement of C-fibre responsiveness to slow depolarization at lower temperatures. This property may contribute to symptoms of enhanced cold sensitivity, especially cold allodynia, associated with many forms of neuropathic pain.
Collapse
Affiliation(s)
- Julius Pakalniskis
- Department of Experimental Pain Research, Mannheim Centre for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zimova L, Ptakova A, Mitro M, Krusek J, Vlachova V. Activity dependent inhibition of TRPC1/4/5 channels by duloxetine involves voltage sensor-like domain. Biomed Pharmacother 2022; 152:113262. [PMID: 35691156 DOI: 10.1016/j.biopha.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential canonical 5 (TRPC5) is a polymodal, calcium-permeable, nonselective ion channel that is expressed in the brain and 75 % of human sensory neurons. Its pharmacological or genetic inhibition leads to the relief of neuropathic and inflammatory pain. The clinically approved drug duloxetine is superior to other serotonin and norepinephrine reuptake inhibitors at managing painful neuropathies, but it is not known why. Here we ask whether the TRPC5 receptor is modulated by duloxetine and may contribute to its analgesic effect. Electrophysiological measurements of heterologously expressed human TRPC5 in HEK293T cells were performed to evaluate the effect of duloxetine. The interaction site was identified by molecular docking and molecular dynamics simulations in combination with point mutagenesis. We found that duloxetine inhibits TRPC5 in a concentration-dependent manner with a high potency (IC50 = 0.54 ± 0.03 µM). Our data suggest that duloxetine binds into a voltage sensor-like domain. For the interaction, Glu418 exhibited particular importance due to putative hydrogen bond formation. Duloxetine effectively inhibits TRPC5 currents induced by cooling, voltage, direct agonists and by the stimulation of the PLC pathway. The finding that this TRPC5 inhibitor is widely used and well tolerated provides a scaffold for new pain treatment strategies.
Collapse
Affiliation(s)
- Lucie Zimova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Alexandra Ptakova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | - Michal Mitro
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | - Jan Krusek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Viktorie Vlachova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
15
|
Jugait S, Areti A, Nellaiappan K, Narwani P, Saha P, Velayutham R, Kumar A. Neuroprotective Effect of Baicalein Against Oxaliplatin-Induced Peripheral Neuropathy: Impact on Oxidative Stress, Neuro-inflammation and WNT/β-Catenin Signaling. Mol Neurobiol 2022; 59:4334-4350. [DOI: 10.1007/s12035-022-02858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
|
16
|
Noah L, Morel V, Bertin C, Pouteau E, Macian N, Dualé C, Pereira B, Pickering G. Effect of a Combination of Magnesium, B Vitamins, Rhodiola, and Green Tea (L-Theanine) on Chronically Stressed Healthy Individuals-A Randomized, Placebo-Controlled Study. Nutrients 2022; 14:nu14091863. [PMID: 35565828 PMCID: PMC9102162 DOI: 10.3390/nu14091863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
The effect of a combination of magnesium, vitamins B6, B9, B12, rhodiola and green tea/L-theanine (Mg-Teadiola) on stress was evaluated in chronically stressed, otherwise healthy individuals. Effects on stress-related quality-of-life parameters (sleep and perception of pain) were also explored. Adults with stress for ≥1 month, scoring ≥14 points on the Depression Anxiety Stress Scale (DASS)-42 questionnaire, were randomized (1:1) to receive oral Mg-Teadiola (n = 49) or a placebo (n = 51), for 28 days, with a follow-up assessment on Day 56 (NCT04391452). The primary endpoint was the change in the DASS-42 stress score from baseline to Day 28 with Mg-Teadiola versus placebo. The DASS-42 stress scores significantly decreased from baseline to Day 28 with Mg-Teadiola versus placebo (effect size, 0.29; 95% CI [0.01, 0.57]; p = 0.04). Similar reductions were observed on Day 14 (p = 0.006) and Day 56 (p = 0.02). A significant reduction in sensitivity to cold pain (p = 0.01) and a trend for lower sensitivity to warm pain was observed (p = 0.06) on Day 28. Improvements in daytime dysfunction due to sleepiness (Pittsburgh Sleep Quality Index-7 component score) were reported on Day 28, and were significant on Day 56 (p < 0.001). Mg-Teadiola is effective in managing stress in otherwise healthy individuals. Its beneficial effects on sleep and pain perception need further investigation.
Collapse
Affiliation(s)
- Lionel Noah
- Sanofi, 82, Avenue Raspail, 94250 Gentilly, France; (C.B.); (E.P.)
- Correspondence:
| | - Veronique Morel
- CIC INSERM 1405/Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, CEDEX 1, 63000 Clermont-Ferrand, France; (V.M.); (N.M.); (C.D.); (B.P.); (G.P.)
| | - Claire Bertin
- Sanofi, 82, Avenue Raspail, 94250 Gentilly, France; (C.B.); (E.P.)
| | - Etienne Pouteau
- Sanofi, 82, Avenue Raspail, 94250 Gentilly, France; (C.B.); (E.P.)
| | - Nicolas Macian
- CIC INSERM 1405/Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, CEDEX 1, 63000 Clermont-Ferrand, France; (V.M.); (N.M.); (C.D.); (B.P.); (G.P.)
| | - Christian Dualé
- CIC INSERM 1405/Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, CEDEX 1, 63000 Clermont-Ferrand, France; (V.M.); (N.M.); (C.D.); (B.P.); (G.P.)
| | - Bruno Pereira
- CIC INSERM 1405/Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, CEDEX 1, 63000 Clermont-Ferrand, France; (V.M.); (N.M.); (C.D.); (B.P.); (G.P.)
| | - Gisèle Pickering
- CIC INSERM 1405/Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, CEDEX 1, 63000 Clermont-Ferrand, France; (V.M.); (N.M.); (C.D.); (B.P.); (G.P.)
| |
Collapse
|
17
|
Martín-Escura C, Medina-Peris A, Spear LA, de la Torre Martínez R, Olivos-Oré LA, Barahona MV, González-Rodríguez S, Fernández-Ballester G, Fernández-Carvajal A, Artalejo AR, Ferrer-Montiel A, González-Muñiz R. β-Lactam TRPM8 Antagonist RGM8-51 Displays Antinociceptive Activity in Different Animal Models. Int J Mol Sci 2022; 23:ijms23052692. [PMID: 35269831 PMCID: PMC8910920 DOI: 10.3390/ijms23052692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Transient receptor potential melastatin subtype 8 (TRPM8) is a cation channel extensively expressed in sensory neurons and implicated in different painful states. However, the effectiveness of TRPM8 modulators for pain relief is still a matter of discussion, since structurally diverse modulators lead to different results, depending on the animal pain model. In this work, we described the antinociceptive activity of a β–lactam derivative, RGM8-51, showing good TRPM8 antagonist activity, and selectivity against related thermoTRP channels and other pain-mediating receptors. In primary cultures of rat dorsal root ganglion (DRG) neurons, RGM8-51 potently reduced menthol-evoked neuronal firing without affecting the major ion conductances responsible for action potential generation. This compound has in vivo antinociceptive activity in response to cold, in a mouse model of oxaliplatin-induced peripheral neuropathy. In addition, it reduces cold, mechanical and heat hypersensitivity in a rat model of neuropathic pain arising after chronic constriction of the sciatic nerve. Furthermore, RGM8-51 exhibits mechanical hypersensitivity-relieving activity, in a mouse model of NTG-induced hyperesthesia. Taken together, these preclinical results substantiate that this TRPM8 antagonist is a promising pharmacological tool to study TRPM8-related diseases.
Collapse
Affiliation(s)
- Cristina Martín-Escura
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
- Alodia Farmacéutica SL, 28108 Alcobendas, Spain
| | - Alicia Medina-Peris
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Luke A. Spear
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
| | - Roberto de la Torre Martínez
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Luis A. Olivos-Oré
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Victoria Barahona
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sara González-Rodríguez
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Gregorio Fernández-Ballester
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Asia Fernández-Carvajal
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
- Correspondence: (A.F.-C.); (R.G.-M.); Tel.: +00-34-258-74-34 (R.G.-M.)
| | - Antonio R. Artalejo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.A.O.-O.); (M.V.B.); (A.R.A.)
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Ferrer-Montiel
- IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain; (A.M.-P.); (R.d.l.T.M.); (S.G.-R.); (G.F.-B.); (A.F.-M.)
| | - Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (C.M.-E.); (L.A.S.)
- Correspondence: (A.F.-C.); (R.G.-M.); Tel.: +00-34-258-74-34 (R.G.-M.)
| |
Collapse
|
18
|
Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk G. Transient and Steady-State Properties of Drosophila Sensory Neurons Coding Noxious Cold Temperature. Front Cell Neurosci 2022; 16:831803. [PMID: 35959471 PMCID: PMC9358291 DOI: 10.3389/fncel.2022.831803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Coding noxious cold signals, such as the magnitude and rate of temperature change, play essential roles in the survival of organisms. We combined electrophysiological and computational neuroscience methods to investigate the neural dynamics of Drosophila larva cold-sensing Class III (CIII) neurons. In response to a fast temperature change (-2 to -6°C/s) from room temperature to noxious cold, the CIII neurons exhibited a pronounced peak of a spiking rate with subsequent relaxation to a steady-state spiking. The magnitude of the peak was higher for a higher rate of temperature decrease, while slow temperature decrease (-0.1°C/s) evoked no distinct peak of the spiking rate. The rate of the steady-state spiking depended on the magnitude of the final temperature and was higher at lower temperatures. For each neuron, we characterized this dependence by estimating the temperature of the half activation of the spiking rate by curve fitting neuron's spiking rate responses to a Boltzmann function. We found that neurons had a temperature of the half activation distributed over a wide temperature range. We also found that CIII neurons responded to decrease rather than increase in temperature. There was a significant difference in spiking activity between fast and slow returns from noxious cold to room temperature: The CIII neurons usually stopped activity abruptly in the case of the fast return and continued spiking for some time in the case of the slow return. We developed a biophysical model of CIII neurons using a generalized description of transient receptor potential (TRP) current kinetics with temperature-dependent activation and Ca2+-dependent inactivation. This model recapitulated the key features of the spiking rate responses found in experiments and suggested mechanisms explaining the transient and steady-state activity of the CIII neurons at different cold temperatures and rates of their decrease and increase. We conclude that CIII neurons encode at least three types of cold sensory information: the rate of temperature decrease by a peak of the firing rate, the magnitude of cold temperature by the rate of steady spiking activity, and direction of temperature change by spiking activity augmentation or suppression corresponding to temperature decrease and increase, respectively.
Collapse
Affiliation(s)
- Natalia Maksymchuk
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Gennady Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
19
|
Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C. Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 2021; 201:105-114. [PMID: 34425141 DOI: 10.1016/j.toxicon.2021.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Snake venoms are substances mostly composed by proteins and peptides with high biological activity. Local and systemic effects culminate in clinical manifestations induced by these substances. Pain is the most uncomfortable condition, but it has not been well investigated. This review discusses Bothrops snakebite-induced nociception, highlighting molecules involved in the mediation of this process and perspectives in treatment of pain induced by Bothrops snake venoms (B. alternatus, B. asper, B. atrox, B. insularis, B. jararaca, B. pirajai, B. jararacussu, B. lanceolatus, B. leucurus, B. mattogrossensis, B. moojeni). We highlight, the understanding of the nociceptive signaling, especially in snakebite, enables more efficient treatment approaches. Finally, future perspectives for pain treatment concerning snakebite patients are discussed.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Francisco Assis Nogueira Júnior
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, Brazil.
| |
Collapse
|
20
|
Paguigan ND, Yan Y, Karthikeyan M, Chase K, Carter J, Leavitt LS, Lim AL, Lin Z, Memon T, Christensen S, Bentzen BH, Schmitt N, Reilly CA, Teichert RW, Raghuraman S, Olivera BM, Schmidt EW. The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons. ACS Chem Biol 2021; 16:1654-1662. [PMID: 34423964 DOI: 10.1021/acschembio.1c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.
Collapse
Affiliation(s)
- Noemi D. Paguigan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 81112, United States
| | - Yannan Yan
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Manju Karthikeyan
- Department of Biology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Kevin Chase
- Department of Biology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Jackson Carter
- Department of Biology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Lee S. Leavitt
- Department of Biology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Albebson L. Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 81112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 81112, United States
| | - Tosifa Memon
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Sean Christensen
- Department of Biology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Bo H. Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Russell W. Teichert
- Department of Biology, University of Utah, Salt Lake City, Utah 81112, United States
| | | | - Baldomero M. Olivera
- Department of Biology, University of Utah, Salt Lake City, Utah 81112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 81112, United States
| |
Collapse
|
21
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
22
|
Kittaka H, DeBrecht J, Mishra SK. Differential contribution of sensory transient receptor potential channels in response to the bioactive lipid sphingosine-1-phosphate. Mol Pain 2021; 16:1744806920903515. [PMID: 32089077 PMCID: PMC7040933 DOI: 10.1177/1744806920903515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hiroki Kittaka
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jennifer DeBrecht
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,The WM Keck Behavioral Center, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
23
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
24
|
Governo R, Eden-Green B, Dawes T, Mavridou I, Giles J, Rosten C, Rennie-Taylor J, Nduka C. Evaluation of facial electromyographic pain responses in healthy participants. Pain Manag 2020; 10:399-410. [PMID: 33073690 DOI: 10.2217/pmt-2020-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: Assessing pain perception through self-reports may not be possible in some patients, for example, sedated. Our group considered if facial electromyography (fEMG) could provide a useful alternative, by testing on healthy participants subjected to experimental pain. Materials & methods: Activity of four facial muscles was recorded using fEMG alongside self-reported pain scores and physiological parameters. Results: The pain stimulus elicited significant activity on all facial muscles of interest as well as increases in heart rate. Activity from two of the facial muscles correlated significantly against pain intensity. Conclusion: Pain perception can be assessed through fEMG on healthy participants. We believe that this model would be valuable to clinicians that need to diagnose pain perception in circumstances where verbal reporting is not possible.
Collapse
Affiliation(s)
- Ricardo Governo
- Brighton & Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Ben Eden-Green
- Department of Anaesthesia, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, RH19 3DZ, UK
| | - Thomas Dawes
- Department of Anaesthesia, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, RH19 3DZ, UK
| | | | - Julian Giles
- Department of Anaesthesia, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, RH19 3DZ, UK
| | - Claire Rosten
- School of Health Sciences, University of Brighton, Brighton, BN1 9PH, UK
| | - Joe Rennie-Taylor
- School of Applied Social Science, University of Brighton, Brighton, BN1 9PH, UK
| | - Charles Nduka
- Department of Plastic Surgery & Burns, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, RH19 3DZ, UK
| |
Collapse
|
25
|
Abstract
Mouthfeel refers to the physical or textural sensations in the mouth caused by foods and beverages that are essential to the acceptability of many edible products. The sensory subqualities contributing to mouthfeel are often chemogenic in nature and include heat, burning, cooling, tingling, and numbing. These "chemesthetic" sensations are a result of the chemical activation of receptors that are associated with nerve fibers mediating pain and mechanotransduction. Each of these chemesthetic sensations in the oral cavity are transduced in the nervous system by a combination of different molecular channels/receptors expressed on trigeminal nerve fibers that innervate the mouth and tongue. The molecular profile of these channels and receptors involved in mouthfeel include many transient receptor potential channels, proton-sensitive ion channels, and potassium channels to name a few. During the last several years, studies using molecular and physiological approaches have significantly expanded and enhanced our understanding of the neurobiological basis for these chemesthetic sensations. The purpose of the current review is to integrate older and newer studies to present a comprehensive picture of the channels and receptors involved in mouthfeel. We highlight that there still continue to be important gaps in our overall knowledge on flavor integration and perception involving chemesthetic sensations, and these gaps will continue to drive future research direction and future investigation.
Collapse
Affiliation(s)
- Christopher T Simons
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, USA
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| |
Collapse
|
26
|
Kim HK, Kim ME. Profiling thermal pain using quantitative sensory testing in patients with trigeminal nerve injury. Oral Dis 2020; 27:611-623. [PMID: 32726496 DOI: 10.1111/odi.13577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To investigate the thermal pain phenotypes using QST in patients with unilateral trigeminal nerve injury and to explore whether these different thermal pain phenotypes are associated with clinical and psychophysical characteristics. METHODS This retrospective study included 84 patients diagnosed with posttraumatic trigeminal neuropathy involving inferior alveolar nerve (IAN) and lingual nerve (LN). Data on clinical characteristics, subjective symptoms including hypoesthesia, dysesthesia, and allodynia, and objective signs using thermal QST were collected and explored. RESULTS Three heat (heat hypoalgesia, heat hyperalgesia, and within normal range) and cold pain phenotypes (cold hypoalgesia, cold hyperalgesia, and within normal ranges) were identified, respectively. Thermal hypoalgesia was more frequently observed than thermal hyperalgesia. Heat hypoalgesia regardless of cold pain abnormalities appears to be associated with subjective negative symptoms, while thermal hyperalgesia seems to have little relationship with negative and positive symptoms. Thermal pain phenotypes were associated with loss of innocuous thermal sensation. Unlike heat pain phenotypes, cold pain phenotypes differed between IAN injury and LN injury. CONCLUSION The thermal pain phenotypes identified in this study seem to be related to clinical and psychophysical findings differently. These results would be a good starting point for assessing posttraumatic trigeminal neuropathy and interpreting the thermal QST results.
Collapse
Affiliation(s)
- Hye-Kyoung Kim
- Department of Orofacial Pain and Oral Medicine, College of Dentistry, Dankook University, Cheonan, South Korea
| | - Mee-Eun Kim
- Department of Orofacial Pain and Oral Medicine, College of Dentistry, Dankook University, Cheonan, South Korea
| |
Collapse
|
27
|
Negative Modulation of TRPM8 Channel Function by Protein Kinase C in Trigeminal Cold Thermoreceptor Neurons. Int J Mol Sci 2020; 21:ijms21124420. [PMID: 32580281 PMCID: PMC7352406 DOI: 10.3390/ijms21124420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 01/19/2023] Open
Abstract
TRPM8 is the main molecular entity responsible for cold sensing. This polymodal ion channel is activated by cold, cooling compounds such as menthol, voltage, and rises in osmolality. In corneal cold thermoreceptor neurons (CTNs), TRPM8 expression determines not only their sensitivity to cold, but also their role as neural detectors of ocular surface wetness. Several reports suggest that Protein Kinase C (PKC) activation impacts on TRPM8 function; however, the molecular bases of this functional modulation are still poorly understood. We explored PKC-dependent regulation of TRPM8 using Phorbol 12-Myristate 13-Acetate to activate this kinase. Consistently, recombinant TRPM8 channels, cultured trigeminal neurons, and free nerve endings of corneal CTNs revealed a robust reduction of TRPM8-dependent responses under PKC activation. In corneal CTNs, PKC activation decreased ongoing activity, a key parameter in the role of TRPM8-expressing neurons as humidity detectors, and also the maximal cold-evoked response, which were validated by mathematical modeling. Biophysical analysis indicated that PKC-dependent downregulation of TRPM8 is mainly due to a decreased maximal conductance value, and complementary noise analysis revealed a reduced number of functional channels at the cell surface, providing important clues to understanding the molecular mechanisms of how PKC activity modulates TRPM8 channels in CTNs.
Collapse
|
28
|
Carceller A, González Torcal JP, Viscor G. Topical Nifedipine Administration for Secondary Prevention in Frostbitten Patients. Front Physiol 2020; 11:695. [PMID: 32655415 PMCID: PMC7326014 DOI: 10.3389/fphys.2020.00695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Frostbite is a cold-related injury with a growing incidence among healthy subjects. Sequelae after frostbite are frequent and vary among individuals. Here, we studied the thermal response in the digits of hands and feet of five subjects who had recovered from previous frostbite, except for their lasting sequelae. We considered three different conditions: digits unaffected by frostbite nor sequelae (healthy), those affected but which did not suffer amputation (frostbitten without amputation), and the remainder/stumps of digits that underwent partial amputation (frostbitten with amputation). Three consecutive immersions in cold water (8°C; 3 min) interspersed by 1 minute of thermal recovery were performed. After 30 min, a topical 10% nifedipine preparation was applied to hands and feet, and the same cold exposure protocol to evaluate its effect was followed. In basal condition and immediately after each immersion, the temperature of individual digits was assessed using thermography. We observed different thermal responses among the different digits of hands and feet, even without the nifedipine treatment. Nifedipine had a cooling effect on healthy and post-amputated tissue without thermal stress. In cold conditions, topic nifedipine application improved the cold response in healthy fingers but had a negative effect on those from which parts had been amputated. The topical nifedipine had detrimental effects on toes in all conditions. Topical nifedipine can help to the preservation of healthy fingers exposed to cold, with adequate thermal insulation; but it is necessary to remark its potentially harmful effects on previously frostbitten tissue. Because of the differences observed on individual regional response to cold, thermography can be a useful tool in the frostbite prevention for subjects habitually exposed to cold environment.
Collapse
Affiliation(s)
- Anna Carceller
- Secció de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Juan Pedro González Torcal
- Secció de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Castellanos A, Pujol-Coma A, Andres-Bilbe A, Negm A, Callejo G, Soto D, Noël J, Comes N, Gasull X. TRESK background K + channel deletion selectively uncovers enhanced mechanical and cold sensitivity. J Physiol 2020; 598:1017-1038. [PMID: 31919847 DOI: 10.1113/jp279203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS TRESK background K+ channel is expressed in sensory neurons and acts as a brake to reduce neuronal activation. Deletion of the channel enhances the excitability of nociceptors. Skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation in TRESK knockout animals. Channel deletion selectively enhances mechanical and cold sensitivity in mice, without altering sensitivity to heat. These results indicate that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing. ABSTRACT Background potassium-permeable ion channels play a critical role in tuning the excitability of nociceptors, yet the precise role played by different subsets of channels is not fully understood. Decreases in TRESK (TWIK-related spinal cord K+ channel) expression/function enhance excitability of sensory neurons, but its role in somatosensory perception and nociception is poorly understood. Here, we used a TRESK knockout (KO) mouse to address these questions. We show that TRESK regulates the sensitivity of sensory neurons in a modality-specific manner, contributing to mechanical and cold sensitivity but without any effect on heat sensitivity. Nociceptive neurons isolated from TRESK KO mice show a decreased threshold for activation and skin nociceptive C-fibres show an enhanced activation by cold and mechanical stimulation that was also observed in behavioural tests in vivo. TRESK is also involved in osmotic pain and in early phases of formalin-induced inflammatory pain, but not in the development of mechanical and heat hyperalgesia during chronic pain. In contrast, mice lacking TRESK present cold allodynia that is not further enhanced by oxaliplatin. In summary, genetic removal of TRESK uncovers enhanced mechanical and cold sensitivity, indicating that the channel regulates the excitability of specific neuronal subpopulations involved in mechanosensitivity and cold-sensing, acting as a brake to prevent activation by innocuous stimuli.
Collapse
Affiliation(s)
- Aida Castellanos
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Anna Pujol-Coma
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Alba Andres-Bilbe
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ahmed Negm
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Jacques Noël
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Nuria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| |
Collapse
|
30
|
MacDonald DI, Wood JN, Emery EC. Molecular mechanisms of cold pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 7:100044. [PMID: 32090187 PMCID: PMC7025288 DOI: 10.1016/j.ynpai.2020.100044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The sensation of cooling is essential for survival. Extreme cold is a noxious stimulus that drives protective behaviour and that we thus perceive as pain. However, chronic pain patients suffering from cold allodynia paradoxically experience innocuous cooling as excruciating pain. Peripheral sensory neurons that detect decreasing temperature express numerous cold-sensitive and voltage-gated ion channels that govern their response to cooling in health and disease. In this review, we discuss how these ion channels control the sense of cooling and cold pain under physiological conditions, before focusing on the molecular mechanisms by which ion channels can trigger pathological cold pain. With the ever-rising number of patients burdened by chronic pain, we end by highlighting the pressing need to define the cells and molecules involved in cold allodynia and so identify new, rational drug targets for the analgesic treatment of cold pain.
Collapse
|
31
|
Role of TRPM8 Channels in Altered Cold Sensitivity of Corneal Primary Sensory Neurons Induced by Axonal Damage. J Neurosci 2019; 39:8177-8192. [PMID: 31471469 DOI: 10.1523/jneurosci.0654-19.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
The cornea is extensively innervated by trigeminal ganglion cold thermoreceptor neurons expressing TRPM8 (transient receptor potential cation channel subfamily M member 8). These neurons respond to cooling, hyperosmolarity and wetness of the corneal surface. Surgical injury of corneal nerve fibers alters tear production and often causes dry eye sensation. The contribution of TRPM8-expressing corneal cold-sensitive neurons (CCSNs) to these symptoms is unclear. Using extracellular recording of CCSNs nerve terminals combined with in vivo confocal tracking of reinnervation, Ca2+ imaging and patch-clamp recordings of fluorescent retrogradely labeled corneal neurons in culture, we analyzed the functional modifications of CCSNs induced by peripheral axonal damage in male mice. After injury, the percentage of CCSNs, the cold- and menthol-evoked intracellular [Ca2+] rises and the TRPM8 current density in CCSNs were larger than in sham animals, with no differences in the brake K+ current I KD Active and passive membrane properties of CCSNs from both groups were alike and corresponded mainly to those of canonical low- and high-threshold cold thermoreceptor neurons. Ongoing firing activity and menthol sensitivity were higher in CCSN terminals of injured mice, an observation accounted for by mathematical modeling. These functional changes developed in parallel with a partial reinnervation of the cornea by TRPM8(+) fibers and with an increase in basal tearing in injured animals compared with sham mice. Our results unveil key TRPM8-dependent functional changes in CCSNs in response to injury, suggesting that increased tearing rate and ocular dryness sensation derived from deep surgical ablation of corneal nerves are due to enhanced functional expression of TRPM8 channels in these injured trigeminal primary sensory neurons.SIGNIFICANCE STATEMENT We unveil a key role of TRPM8 channels in the sensory and autonomic disturbances associated with surgical damage of eye surface nerves. We studied the damage-induced functional alterations of corneal cold-sensitive neurons using confocal tracking of reinnervation, extracellular corneal nerve terminal recordings, tearing measurements in vivo, Ca2+ imaging and patch-clamp recordings of cultured corneal neurons, and mathematical modeling. Corneal nerve ablation upregulates TRPM8 mainly in canonical cold thermoreceptors, enhancing their cold and menthol sensitivity, inducing a rise in the ongoing firing activity of TRPM8(+) nerve endings and an increase in basal tearing. Our results suggest that unpleasant dryness sensations, together with augmented tearing rate after corneal nerve injury, are largely due to upregulation of TRPM8 in cold thermoreceptor neurons.
Collapse
|
32
|
Children and adolescents with sickle cell disease have worse cold and mechanical hypersensitivity during acute painful events. Pain 2019; 160:407-416. [PMID: 30247266 DOI: 10.1097/j.pain.0000000000001407] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sickle cell disease (SCD) pain associates with cold temperature and touch. Patients and murine models with SCD have baseline thermal and mechanical pain. In SCD mice, the baseline hypersensitivity is exacerbated by experimental vaso-occlusive crises. We hypothesized that patients with SCD will similarly experience increased hypersensitivity to thermal and mechanical stimuli during acute painful events compared with baseline health. We conducted a prospective study of 24 patients with SCD aged 7 to 19 years. Patients underwent quantitative sensory testing to thermal (cold/heat) and mechanical stimuli on the thenar eminence of the nondominant hand (glabrous skin) and the lateral dorsum of the foot (hairy skin) during baseline health and within 48 hours of hospitalization for acute pain. Primary outcomes were changes in: (1) cold pain threshold (°C), (2) heat pain threshold (°C), and (3) mechanical pain threshold (g). Median age was 10.5 (interquartile range [IQR] 9-14.8) years, 67% were females, and 92% were on hydroxyurea. Patients with SCD had increased cold pain sensitivity in the hand during hospitalization compared with baseline (25.2°C [IQR 18.4-27.5°C] vs 21.3°C [IQR 4.9-26.2°C]; P = 0.011) and increased mechanical pain sensitivity in the foot during hospitalization (0.32 g [IQR 0.09-1.1 g] vs 1.7 g [IQR 0.4-8.3 g]; P = 0.003). There were no differences in heat pain sensitivity. The increased cold (P = 0.02) and mechanical (P = 0.0016) pain sensitivity during hospitalization persisted after adjusting for age, sex, hydroxyurea use, opioid consumption, and numeric pain score. Thus, cold and mechanical pain is significantly worse during an acute SCD painful event as compared to baseline health in patients with SCD.
Collapse
|
33
|
Cao S, Li Q, Hou J, Li Z, Cao X, Liu X, Qin B. Intrathecal TRPM8 blocking attenuates cold hyperalgesia via PKC and NF-κB signaling in the dorsal root ganglion of rats with neuropathic pain. J Pain Res 2019; 12:1287-1296. [PMID: 31114308 PMCID: PMC6497852 DOI: 10.2147/jpr.s197168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background: TRPM8 channel plays central roles in the sensitization of nociceptive transduction and is thought as one of the potential targets for the treatment of neuropathic pain. However, the specific molecular mechanisms are still less clear. Methods: Sciatic chronic constriction injury (CCI) rats were intrathecally administered with AMTB (TRPM8-selective antagonist) or PDTC (nuclear factor-kappa B (NF-κB) inhibitor). Cold-, thermal- and mechanical-pain thresholds were examined in CCI and sham-operated rats before and after intrathecal administration of AMTB or PDTC. Protein expression levels of TRPM8 and NF-κB p65, p-PKC/PKC value and p-PKA/PKA value in the CCI ipsilateral L4-6 dorsal root ganglions (DRGs) were analyzed. In addition, the co-expression of TRPM8 and NF-κB was evaluated in DRG. Results: Intrathecal injection of AMTB decreased the cold hypersensitivity and aggravated the thermal-hyperalgesia in the next 2 weeks after CCI surgery. The protein expression of TRPM8 and NF-κB p65 in the ipsilateral DRGs significantly increased after CCI surgery, which can be reversed by intrathecal administration of AMTB. The PKC, PKA, p-PKC/PKC and p-PKA/PKA values showed significantly increase after CCI surgery, while intrathecal AMTB administration offset the expression increase of PKC, p-PKC and p-PKC/PKC but PKA or p-PKA/PKA in the DRG. NF-κB inhibitor not only efficiently increased the cold-, thermal-pain threshold of CCI rats, but also enhanced AMTB’s anti-cold pain effect although exerted no anti-thermal hyperalgesia effect compared with TRPM8 blockade group. Immunofluorescence results showed co-expression of TRPM8 and NF-κB in DRG neurons. Conclusion: TRPM8 channels in DRGs participate in the pathogenesis of cold and thermal hyperalgesia (not mechanical allodynia) in rats with neuropathic pain, which could be regulated by PKC (not PKA) and NF-κB signaling. TRPM8 channel, PKC and NF-κB are potential targets for cold hyperalgesia treatment in neuropathic pain patients.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Qingmei Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jingfeng Hou
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Zhourui Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Xinya Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Bangyong Qin
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| |
Collapse
|
34
|
Abstract
The ability to detect environmental cold serves as an important survival tool. The sodium channels NaV1.8 and NaV1.9, as well as the TRP channel Trpm8, have been shown to contribute to cold sensation in mice. Surprisingly, transcriptional profiling shows that NaV1.8/NaV1.9 and Trpm8 are expressed in nonoverlapping neuronal populations. Here we have used in vivo GCaMP3 imaging to identify cold-sensing populations of sensory neurons in live mice. We find that ∼80% of neurons responsive to cold down to 1 °C do not express NaV1.8, and that the genetic deletion of NaV1.8 does not affect the relative number, distribution, or maximal response of cold-sensitive neurons. Furthermore, the deletion of NaV1.8 had no observable effect on transient cold-induced (≥5 °C) behaviors in mice, as measured by the cold-plantar, cold-plate (5 and 10 °C), or acetone tests. In contrast, nocifensive-like behavior to extreme cold-plate stimulation (-5 °C) was completely absent in mice lacking NaV1.8. Fluorescence-activated cell sorting (FACS) and subsequent microarray analysis of sensory neurons activated at 4 °C identified an enriched repertoire of ion channels, which include the Trp channel Trpm8 and potassium channel Kcnk9, that are potentially required for cold sensing above freezing temperatures in mouse DRG neurons. These data demonstrate the complexity of cold-sensing mechanisms in mouse sensory neurons, revealing a principal role for NaV1.8-negative neurons in sensing both innocuous and acute noxious cooling down to 1 °C, while NaV1.8-positive neurons are likely responsible for the transduction of prolonged extreme cold temperatures, where tissue damage causes pan-nociceptor activation.
Collapse
|
35
|
Gonçalves TC, Benoit E, Partiseti M, Servent D. The Na V1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons. Front Pharmacol 2018; 9:1000. [PMID: 30233376 PMCID: PMC6131673 DOI: 10.3389/fphar.2018.01000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Although necessary for human survival, pain may sometimes become pathologic if long-lasting and associated with alterations in its signaling pathway. Opioid painkillers are officially used to treat moderate to severe, and even mild, pain. However, the consequent strong and not so rare complications that occur, including addiction and overdose, combined with pain management costs, remain an important societal and economic concern. In this context, animal venom toxins represent an original source of antinociceptive peptides that mainly target ion channels (such as ASICs as well as TRP, CaV, KV and NaV channels) involved in pain transmission. The present review aims to highlight the NaV1.7 channel subtype as an antinociceptive target for spider toxins in adult dorsal root ganglia neurons. It will detail (i) the characteristics of these primary sensory neurons, the first ones in contact with pain stimulus and conveying the nociceptive message, (ii) the electrophysiological properties of the different NaV channel subtypes expressed in these neurons, with a particular attention on the NaV1.7 subtype, an antinociceptive target of choice that has been validated by human genetic evidence, and (iii) the features of spider venom toxins, shaped of inhibitory cysteine knot motif, that present high affinity for the NaV1.7 subtype associated with evidenced analgesic efficacy in animal models.
Collapse
Affiliation(s)
- Tânia C Gonçalves
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France.,Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Benoit
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR CNRS/Université Paris-Sud 9197, Gif-sur-Yvette, France
| | - Michel Partiseti
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
36
|
Señarís R, Ordás P, Reimúndez A, Viana F. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflugers Arch 2018; 470:761-777. [PMID: 29700598 DOI: 10.1007/s00424-018-2145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
37
|
Discrete Modules and Mesoscale Functional Circuits for Thermal Nociception within Primate S1 Cortex. J Neurosci 2018; 38:1774-1787. [PMID: 29335352 DOI: 10.1523/jneurosci.2795-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
This study addresses one long-standing question of whether functional separations are preserved for somatosensory modalities of touch, heat, and cold nociception within primate primary somatosensory (S1) cortex. This information is critical for understanding how the nature of pain is represented in the primate brain. Using a combination of submillimeter-resolution fMRI and microelectrode local field potential (LFP) and spike recordings, we identified spatially segregated cortical zones for processing touch and nociceptive heat and cold stimuli in somatotopically appropriate areas 3a, 3b, 1, and 2 of S1 in male monkeys. The distances between zones were comparable (∼3.4 mm) across stimulus modalities (heat, cold, and tactile), indicating the existence of uniform, modality-specific modules. Stimulus-evoked LFP maps validated the fMRI maps in areas 3b and 1. Isolation of heat and cold nociceptive neurons from the fMRI zones confirmed the validity of using fMRI to probe nociceptive regions and circuits. Resting-state fMRI analysis revealed distinct intrinsic functional circuits among functionally related zones. We discovered distinct modular structures and networks for thermal nociception within S1 cortex, a finding that has significant implications for studying chronic pain syndromes and guiding the selection of neuromodulation targets for chronic pain management.SIGNIFICANCE STATEMENT Primate S1 subregions contain discrete heat and cold nociceptive modules. Modules with the same properties exhibit strong functional connection. Nociceptive fMRI response coincides with LFP and spike activities of nociceptive neurons. Functional separation of heat and cold pain is retained within primate S1 cortex.
Collapse
|
38
|
Abstract
The sensation of pain plays a vital protecting role, alerting organisms about potentially damaging stimuli. Tissue injury is detected by nerve endings of specialized peripheral sensory neurons called nociceptors that are equipped with different ion channels activated by thermal, mechanic, and chemical stimuli. Several transient receptor potential channels have been identified as molecular transducers of thermal stimuli in pain-sensing neurons. Skin injury or inflammation leads to increased sensitivity to thermal and mechanic stimuli, clinically defined as allodynia or hyperalgesia. This hypersensitivity is also characteristic of systemic inflammatory disorders and neuropathic pain conditions. Mechanisms of thermal hyperalgesia include peripheral sensitization of nociceptor afferents and maladaptive changes in pain-encoding neurons within the central nervous system. An important aspect of pain management involves attempts to minimize the development of nociceptor hypersensitivity. However, knowledge about the cellular and molecular mechanisms causing thermal hyperalgesia and allodynia in human subjects is still limited, and such knowledge would be an essential step for the development of more effective therapies.
Collapse
Affiliation(s)
- Félix Viana
- Alicante Institute of Neurosciences, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.
| |
Collapse
|
39
|
Yokota Y, Bradley RM. Geniculate Ganglion Neurons are Multimodal and Variable in Receptive Field Characteristics. Neuroscience 2017; 367:147-158. [PMID: 29097269 DOI: 10.1016/j.neuroscience.2017.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/18/2023]
Abstract
Afferent chorda tympani (CT) fibers innervating anterior tongue fungiform papillae have neuron cell bodies in the geniculate ganglion (GG). To characterize electrophysiological and receptive field properties, we recorded extracellular responses from single GG neurons to lingual application with chemical, thermal and mechanical stimuli. Receptive field size was mapped by electrical stimulation of individual fungiform papillae. Responses of GG neurons to room temperature chemical stimuli representing five taste qualities, and distilled water at 4 °C and mechanical stimulation were used. Based on responses to these stimuli, GG neurons were divided into CHEMICAL, CHEMICAL/THERMAL, THERMAL and TACTILE groups. Neurons in the CHEMICAL group responded to taste stimuli but not to either cold water or stroking stimuli. CHEMICAL/THERMAL neurons responded to both taste stimuli and cold water. THERMAL neurons responded only to cold water and TACTILE neurons responded only to light stroking stimuli. The receptive field sizes for CHEMICAL, and CHEMICAL/THERMAL neurons averaged five papillae exceeding the field size of THERMAL and TACTILE neurons which averaged about two papillae. Detailed analysis of the receptive field of CHEMICAL/THERMAL neurons revealed that within one field only a subset of the fungiform papillae making up the receptive field responded to the cold stimuli, whereas the other papillae responded only to chemical stimuli. These finding demonstrate that fungiform papilla are complex sensory organs with a multisensory function suggesting a unique role in detecting and sampling food components prior to ingestion.
Collapse
Affiliation(s)
- Yusuke Yokota
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, United States
| | - Robert M Bradley
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, United States; Department of Molecular and Integrative Physiology, Medical School, University of Michigan, Ann Arbor, MI 48109-0622, United States.
| |
Collapse
|
40
|
Pabbidi MR, Premkumar LS. Role of Transient Receptor Potential Channels Trpv1 and Trpm8 in Diabetic Peripheral Neuropathy. JOURNAL OF DIABETES AND TREATMENT 2017; 2017:029. [PMID: 30613832 PMCID: PMC6317870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE 1.1.Transient Receptor Potential (Vanilloid 1) TRPV1 and (Melastatin 8) TRPM8 are heat and cold sensing non-selective cation channels, respectively. We sought to correlate the modulation of TRPV1- and TRPM8-mediated membrane currents and altered thermal sensitivity in Diabetic Peripheral Neuropathy (DPN). METHOD 1.2.Streptozotocin (STZ)-induced diabetic mice were used and thermal (heat and cold) pain sensitivities were determined using hot plate and acetone drop test, respectively. Membrane currents were recorded using patch-clamp techniques. RESULTS 1.3.First, we tested thermal pain sensitivities to implicate a possible role of TRPV1 and TRPM8 in DPN. Paw withdrawal latency on a hot plate test was decreased, and acetone-induced cold sensitivity was enhanced in diabetic mice as compared to non-diabetic mice. Dorsal Root Ganglion (DRG) neurons dissociated from diabetic hyperalgesic mice exhibited an increase in TRPV1-mediated current and a decrease in TRPM8-mediated currents as compared to non-diabetic mice. Then, we determined the modulation of TRPV1- and TRPM8-mediated currents using HEK cells heterologously expressing TRPV1 by promoting PKC- and PKA-mediated phosphorylation. Both Phorbol 12,13-Dibutyrate (PDBu), a PKC activator and forskolin, a PKA activator upregulated TRPV1-mediated currents but downregulated TRPM8-mediated currents. In diabetic mice, intraplantar injection of capsaicin, a TRPV1 agonist-induced nocifensive behavior but the severity of this behavior was significantly lower when co-administered with menthol, a TRPM8 agonist. CONCLUSIONS 1.4.These findings suggest that diabetic thermal hyperalgesia mediated by up-regulation of TRPV1 function may be further aggravated by the downregulation of TRPM8 function. Targeting TRPV1 may be a useful approach to alleviate pain associated with DPN.
Collapse
Affiliation(s)
| | - Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
41
|
Vale TA, Symmonds M, Polydefkis M, Byrnes K, Rice ASC, Themistocleous AC, Bennett DLH. Chronic non-freezing cold injury results in neuropathic pain due to a sensory neuropathy. Brain 2017; 140:2557-2569. [PMID: 28969380 PMCID: PMC5841153 DOI: 10.1093/brain/awx215] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/03/2023] Open
Abstract
Non-freezing cold injury develops after sustained exposure to cold temperatures, resulting in tissue cooling but not freezing. This can result in persistent sensory disturbance of the hands and feet including numbness, paraesthesia and chronic pain. Both vascular and neurological aetiologies of this pain have been suggested but remain unproven. We prospectively approached patients referred for clinical assessment of chronic pain following non-freezing cold injury between 12 February 2014 and 30 November 2016. Of 47 patients approached, 42 consented to undergo detailed neurological evaluations including: questionnaires to detail pain location and characteristics, structured neurological examination, quantitative sensory testing, nerve conduction studies and skin biopsy for intraepidermal nerve fibre assessment. Of the 42 study participants, all had experienced non-freezing cold injury while serving in the UK armed services and the majority were of African descent (76.2%) and male (95.2%). Many participants reported multiple exposures to cold. The median time between initial injury and referral was 3.72 years. Pain was principally localized to the hands and the feet, neuropathic in nature and in all study participants associated with cold hypersensitivity. Clinical examination and quantitative sensory testing were consistent with a sensory neuropathy. In all cases, large fibre nerve conduction studies were normal. The intraepidermal nerve fibre density was markedly reduced with 90.5% of participants having a count at or below the 0.05 centile of published normative controls. Using the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain grading for neuropathic pain, 100% had probable and 95.2% definite neuropathic pain. Chronic non-freezing cold injury is a disabling neuropathic pain disorder due to a sensory neuropathy. Why some individuals develop an acute painful sensory neuropathy on sustained cold exposure is not yet known, but individuals of African descent appear vulnerable. Screening tools, such as the DN4 questionnaire, and treatment algorithms for neuropathic pain should now be used in the management of these patients.
Collapse
Affiliation(s)
- Tom A Vale
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mkael Symmonds
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michael Polydefkis
- Cutaneous Nerve Laboratory, Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kelly Byrnes
- Cutaneous Nerve Laboratory, Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Andrew S C Rice
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, London, UK
- Pain Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | | | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Pertusa M, Madrid R. The IKD current in cold detection and pathological cold pain. Temperature (Austin) 2017; 4:346-349. [PMID: 29435474 DOI: 10.1080/23328940.2017.1341968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000 Santiago, Chile and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD)
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000 Santiago, Chile and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD)
| |
Collapse
|
43
|
Memon T, Chase K, Leavitt LS, Olivera BM, Teichert RW. TRPA1 expression levels and excitability brake by K V channels influence cold sensitivity of TRPA1-expressing neurons. Neuroscience 2017; 353:76-86. [PMID: 28408328 DOI: 10.1016/j.neuroscience.2017.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 12/30/2022]
Abstract
The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8-/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: (1) cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and (2) voltage-gated potassium (KV) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking KV channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons.
Collapse
Affiliation(s)
- Tosifa Memon
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, United States
| | - Kevin Chase
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, United States
| | - Lee S Leavitt
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, United States
| | - Baldomero M Olivera
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, United States
| | - Russell W Teichert
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, United States.
| |
Collapse
|
44
|
Hegarty DM, Hermes SM, Yang K, Aicher SA. Select noxious stimuli induce changes on corneal nerve morphology. J Comp Neurol 2017; 525:2019-2031. [PMID: 28213947 DOI: 10.1002/cne.24191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022]
Abstract
The surface of the cornea contains the highest density of nociceptive nerves of any tissue in the body. These nerves are responsive to a variety of modalities of noxious stimuli and can signal pain even when activated by low threshold stimulation. Injury of corneal nerves can lead to altered nerve morphology, including neuropathic changes which can be associated with chronic pain. Emerging technologies that allow imaging of corneal nerves in vivo are spawning questions regarding the relationship between corneal nerve density, morphology, and function. We tested whether noxious stimulation of the corneal surface can alter nerve morphology and neurochemistry. We used concentrations of menthol, capsaicin, and hypertonic saline that evoked comparable levels of nocifensive eye wipe behaviors when applied to the ocular surface of an awake rat. Animals were sacrificed and corneal nerves were examined using immunocytochemistry and three-dimensional volumetric analyses. We found that menthol and capsaicin both caused a significant reduction in corneal nerve density as detected with β-tubulin immunoreactivity 2 hr after stimulation. Hypertonic saline did not reduce nerve density, but did cause qualitative changes in nerves including enlarged varicosities that were also seen following capsaicin and menthol stimulation. All three types of noxious stimuli caused a depletion of CGRP from corneal nerves, indicating that all modalities of noxious stimuli evoked peptide release. Our findings suggest that studies aimed at understanding the relationship between corneal nerve morphology and chronic disease may also need to consider the effects of acute stimulation on corneal nerve morphology.
Collapse
Affiliation(s)
- Deborah M Hegarty
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Sam M Hermes
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Katherine Yang
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
45
|
Role of the Excitability Brake Potassium Current I KD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury. J Neurosci 2017; 37:3109-3126. [PMID: 28179555 DOI: 10.1523/jneurosci.3553-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 11/21/2022] Open
Abstract
Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current IKD Here we studied the role of IKD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. IKD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including IKD and TRPM8, showing that a reduction in IKD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of IKD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration.SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current IKD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of IKD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of IKD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain.
Collapse
|
46
|
González A, Herrera G, Ugarte G, Restrepo C, Piña R, Pertusa M, Orio P, Madrid R. IKD Current in Cold Transduction and Damage-Triggered Cold Hypersensitivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:265-277. [PMID: 29080031 DOI: 10.1007/978-3-319-62817-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In primary sensory neurons of the spinal and trigeminal somatosensory system, cold-sensitivity is strongly dependent on the functional balance between TRPM8 channels, the main molecular entity responsible for the cold-activated excitatory current, and Shaker-like Kv1.1-1.2 potassium channels, the molecular counterpart underlying the excitability brake current IKD. This slow-inactivating outward K+ current reduces the excitability of cold thermoreceptor neurons increasing their thermal threshold, and prevents unspecific activation by cold of neurons of other somatosensory modalities. Here we examine the main biophysical properties of this current in primary sensory neurons, its central role in cold thermotransduction, and its contribution to alterations in cold sensitivity triggered by peripheral nerve damage.
Collapse
Affiliation(s)
- Alejandro González
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Gaspar Herrera
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
| | - Gonzalo Ugarte
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Carlos Restrepo
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Ricardo Piña
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, Alameda L. Bdo. O'Higgins 3363, 9160000, Santiago, Chile.
| |
Collapse
|