1
|
Karova K, Polcanova Z, Knight L, Suchankova S, Nieuwenhuis B, Holota R, Herynek V, Machova Urdzikova L, Turecek R, Kwok JC, van den Herik J, Verhaagen J, Eva R, Fawcett JW, Jendelova P. Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract. Mol Ther 2025; 33:752-770. [PMID: 39748509 PMCID: PMC11852985 DOI: 10.1016/j.ymthe.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Neurons in the CNS lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonizes PI3K signaling by hydrolyzing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores whether increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signaling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioral tests showed significant improvements in paw reaching, grip strength, and ladder-rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscle electromyography. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post SCI.
Collapse
Affiliation(s)
- Kristyna Karova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Zuzana Polcanova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lydia Knight
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Stepanka Suchankova
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Radovan Holota
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Ecology, Faculty of Science, P.J. Safarik University in Kosice, Srobarova 2, Kosice 041 54, Slovak Republic
| | - Vit Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, 120 00 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rostislav Turecek
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jessica C Kwok
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Joelle van den Herik
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Richard Eva
- Kings College London, Wolfson Sensory Pain and Regeneration Centre (SPaRC), Guy's Campus, London Bridge, London SE1 1UL, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
2
|
Ooi E, Xiang R, Chamberlain AJ, Goddard ME. Archetypal clustering reveals physiological mechanisms linking milk yield and fertility in dairy cattle. J Dairy Sci 2024; 107:4726-4742. [PMID: 38369117 DOI: 10.3168/jds.2023-23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Fertility in dairy cattle has declined as an unintended consequence of single-trait selection for high milk yield. The unfavorable genetic correlation between milk yield and fertility is now well documented; however, the underlying physiological mechanisms are still uncertain. To understand the relationship between these traits, we developed a method that clusters variants with similar patterns of effects and, after the integration of gene expression data, identifies the genes through which they are likely to act. Biological processes that are enriched in the genes of each cluster were then identified. We identified several clusters with unique patterns of effects. One of the clusters included variants associated with increased milk yield and decreased fertility, where the "archetypal" variant (i.e., the one with the largest effect) was associated with the GC gene, whereas others were associated with TRIM32, LRRK2, and U6-associated snRNA. These genes have been linked to transcription and alternative splicing, suggesting that these processes are likely contributors to the unfavorable relationship between the 2 traits. Another cluster, with archetypal variant near DGAT1 and including variants associated with CDH2, BTRC, SFRP2, ZFHX3, and SLITRK5, appeared to affect milk yield but have little effect on fertility. These genes have been linked to insulin, adipose tissue, and energy metabolism. A third cluster with archetypal variant near ZNF613 and including variants associated with ROBO1, EFNA5, PALLD, GPC6, and PTPRT were associated with fertility but not milk yield. These genes have been linked to GnRH neuronal migration, embryonic development, or ovarian function. The use of archetypal clustering to group variants with similar patterns of effects may assist in identifying the biological processes underlying correlated traits. The method is hypothesis generating and requires experimental confirmation. However, we have uncovered several novel mechanisms potentially affecting milk production and fertility such as GnRH neuronal migration. We anticipate our method to be a starting point for experimental research into novel pathways, which have been previously unexplored within the context of dairy production.
Collapse
Affiliation(s)
- E Ooi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - R Xiang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - A J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - M E Goddard
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| |
Collapse
|
3
|
Mulas C. Control of cell state transitions by post-transcriptional regulation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230050. [PMID: 38432322 PMCID: PMC10909504 DOI: 10.1098/rstb.2023.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 03/05/2024] Open
Abstract
Cell state transitions are prevalent in biology, playing a fundamental role in development, homeostasis and repair. Dysregulation of cell state transitions can lead to or occur in a wide range of diseases. In this letter, I explore and highlight the role of post-transcriptional regulatory mechanisms in determining the dynamics of cell state transitions. I propose that regulation of protein levels after transcription provides an under-appreciated regulatory route to obtain fast and sharp transitions between distinct cell states. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Carla Mulas
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK
| |
Collapse
|
4
|
Karalis V, Wood D, Teaney NA, Sahin M. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry 2024; 29:1165-1178. [PMID: 38212374 DOI: 10.1038/s41380-023-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Tuberous Sclerosis Complex 1 and 2 proteins, TSC1 and TSC2 respectively, participate in a multiprotein complex with a crucial role for the proper development and function of the nervous system. This complex primarily acts as an inhibitor of the mechanistic target of rapamycin (mTOR) kinase, and mutations in either TSC1 or TSC2 cause a neurodevelopmental disorder called Tuberous Sclerosis Complex (TSC). Neurological manifestations of TSC include brain lesions, epilepsy, autism, and intellectual disability. On the cellular level, the TSC/mTOR signaling axis regulates multiple anabolic and catabolic processes, but it is not clear how these processes contribute to specific neurologic phenotypes. Hence, several studies have aimed to elucidate the role of this signaling pathway in neurons. Of particular interest are axons, as axonal defects are associated with severe neurocognitive impairments. Here, we review findings regarding the role of the TSC1/2 protein complex in axons. Specifically, we will discuss how TSC1/2 canonical and non-canonical functions contribute to the formation and integrity of axonal structure and function.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Delaney Wood
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Lin X, Wang X, Zhang Y, Chu G, Liang J, Zhang B, Lu Y, Steward O, Luo J. Synergistic effect of chemogenetic activation of corticospinal motoneurons and physical exercise in promoting functional recovery after spinal cord injury. Exp Neurol 2023; 370:114549. [PMID: 37774765 DOI: 10.1016/j.expneurol.2023.114549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Single therapeutic interventions have not yet been successful in restoring function after spinal cord injury. Accordingly, combinatorial interventions targeting multiple factors may hold greater promise for achieving maximal functional recovery. In this study, we applied a combinatorial approach of chronic chemogenetic neuronal activation and physical exercise including treadmill running and forelimb training tasks to promote functional recovery. In a mouse model of cervical (C5) dorsal hemisection of the spinal cord, which transects almost all descending corticospinal tract axons, combining selective activation of corticospinal motoneurons (CMNs) by intersectional chemogenetics with physical exercise significantly promoted functional recovery evaluated by the grid walking test, grid hanging test, rotarod test, and single pellet-reaching tasks. Electromyography and histological analysis showed increased activation of forelimb muscles via chemogenetic stimuli, and a greater density of vGlut1+ innervation in spinal cord grey matter rostral to the injury, suggesting enhanced neuroplasticity and connectivity. Combined therapy also enhanced activation of mTOR signaling and reduced apoptosis in spinal motoneurons, Counts revealed increased numbers of detectable choline acetyltransferase-positive motoneurons in the ventral horn. Taken together, the findings from this study validate a novel combinatorial approach to enhance motor function after spinal cord injury.
Collapse
Affiliation(s)
- Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuping Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwen Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA; Department of Neurobiology & Behavior, University of California Irvine, USA; Department of Neurosurgery, University of California Irvine School of Medicine, USA.
| | - Juan Luo
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
7
|
Zhang T, Song C, Li H, Zheng Y, Zhang Y. Different Extracellular β-Amyloid (1-42) Aggregates Differentially Impair Neural Cell Adhesion and Neurite Outgrowth through Differential Induction of Scaffold Palladin. Biomolecules 2022; 12:biom12121808. [PMID: 36551236 PMCID: PMC9775237 DOI: 10.3390/biom12121808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular amyloid β-protein (1-42) (Aβ42) aggregates have been recognized as toxic agents for neural cells in vivo and in vitro. The aim of this study was to investigate the cytotoxic effects of extracellular Aβ42 aggregates in soluble (or suspended, SAβ42) and deposited (or attached, DAβ42) forms on cell adhesion/re-adhesion, neurite outgrowth, and intracellular scaffold palladin using the neural cell lines SH-SY5Y and HT22, and to elucidate the potential relevance of these effects. The effect of extracellular Aβ42 on neural cell adhesion was directly associated with their neurotrophic or neurotoxic activity, with SAβ42 aggregates reducing cell adhesion and associated live cell de-adherence more than DAβ42 aggregates, while causing higher mortality. The reduction in cell adhesion due to extracellular Aβ42 aggregates was accompanied by the impairment of neurite outgrowth, both in length and number, and similarly, SAβ42 aggregates impaired the extension of neurites more severely than DAβ42 aggregates. Further, the disparate changes of intracellular palladin induced by SAβ42 and DAβ42 aggregates, respectively, might underlie their aforementioned effects on target cells. Further, the use of anti-oligomeric Aβ42 scFv antibodies revealed that extracellular Aβ42 aggregates, especially large DAβ42 aggregates, had some independent detrimental effects, including physical barrier effects on neural cell adhesion and neuritogenesis in addition to their neurotoxicity, which might be caused by the rigid C-terminal clusters formed between adjacent Aβ42 chains in Aβ42 aggregates. Our findings, concerning how scaffold palladin responds to extracellular Aβ42 aggregates, and is closely connected with declines in cell adhesion and neurite outgrowth, provide new insights into the cytotoxicity of extracellular Aβ42 aggregates in Alzheimer disease.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yanru Zheng
- School of Life Science, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
- School of Life Science, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
8
|
Fort PE, Losiewicz MK, Elghazi L, Kong D, Cras-Méneur C, Fingar DC, Kimball SR, Rajala RVS, Smith AJ, Ali RR, Abcouwer SF, Gardner TW. mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. J Biol Chem 2022; 298:101944. [PMID: 35447116 PMCID: PMC9117545 DOI: 10.1016/j.jbc.2022.101944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.
Collapse
Affiliation(s)
- Patrice E Fort
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mandy K Losiewicz
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lynda Elghazi
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dejuan Kong
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Corentin Cras-Méneur
- Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scot R Kimball
- Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Raju V S Rajala
- Departments of Ophthalmology and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alexander J Smith
- Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Robin R Ali
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Steven F Abcouwer
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Thomas W Gardner
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Eisen TJ, Li JJ, Bartel DP. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. RNA (NEW YORK, N.Y.) 2022; 28:808-831. [PMID: 35273099 PMCID: PMC9074895 DOI: 10.1261/rna.079046.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Neurons provide a rich setting for studying post-transcriptional control. Here, we investigate the landscape of translational control in neurons and search for mRNA features that explain differences in translational efficiency (TE), considering the interplay between TE, mRNA poly(A)-tail lengths, microRNAs, and neuronal activation. In neurons and brain tissues, TE correlates with tail length, and a few dozen mRNAs appear to undergo cytoplasmic polyadenylation upon light or chemical stimulation. However, the correlation between TE and tail length is modest, explaining <5% of TE variance, and even this modest relationship diminishes when accounting for other mRNA features. Thus, tail length appears to affect TE only minimally. Accordingly, miRNAs, which accelerate deadenylation of their mRNA targets, primarily influence target mRNA levels, with no detectable effect on either steady-state tail lengths or TE. Larger correlates with TE include codon composition and predicted mRNA folding energy. When combined in a model, the identified correlates explain 38%-45% of TE variance. These results provide a framework for considering the relative impact of factors that contribute to translational control in neurons. They indicate that when examined in bulk, translational control in neurons largely resembles that of other types of post-embryonic cells. Thus, detection of more specialized control might require analyses that can distinguish translation occurring in neuronal processes from that occurring in cell bodies.
Collapse
Affiliation(s)
- Timothy J Eisen
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jingyi Jessica Li
- Department of Statistics, Department of Biostatistics, Department of Computational Medicine, and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
10
|
Jankowska U, Skupien-Rabian B, Swiderska B, Prus G, Dziedzicka-Wasylewska M, Kedracka-Krok S. Proteome Analysis of PC12 Cells Reveals Alterations in Translation Regulation and Actin Signaling Induced by Clozapine. Neurochem Res 2021; 46:2097-2111. [PMID: 34024016 PMCID: PMC8254727 DOI: 10.1007/s11064-021-03348-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells’ proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-β1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.
Collapse
Affiliation(s)
- Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a str, 30-387, Krakow, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, Warsaw, Poland
| | - Gabriela Prus
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| |
Collapse
|
11
|
[Role and mechanism of histone deacetylases in mouse neuronal development]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021. [PMID: 33691925 PMCID: PMC7969194 DOI: 10.7499/j.issn.1008-8830.2011098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the role and mechanism of histone deacetylase 1 (HDAC1) and histone deacetylase 2 (HDAC2) in mouse neuronal development. METHODS The mice with Synapsin1-Cre recombinase were bred with HDAC1&2flox/flox mice to obtain the mice with neuron-specific HDAC1&2 conditional knockout (knockout group), and their littermates without HDAC1&2 knockout were used as the control group. The general status of the mice was observed and survival curves were plotted. Brain tissue samples were collected from the knockout group and the control group. Western blot and immunohistochemistry were used to measure the protein expression of related neuronal and axonal markers, neuronal nuclear antigen (NeuN), non-phosphorylated neurofilament heavy chain (np-NF200), and phosphorylated neurofilament heavy chain (p-NF200), as well as the downstream effector of the mTOR signaling pathway, phosphorylated S6 ribosomal protein (p-S6). RESULTS The mice with HDAC1&2 conditional knockout usually died within one month after birth and were significantly smaller than those in the control group, with motor function abnormalities such as tremor and clasping of hindlimbs. Compared with the control group, the knockout group had significant reductions in the protein expression levels of NeuN, np-NF200, p-NF200, and p-S6 (P < 0.05; n=3). CONCLUSIONS Deletion of HDAC1 and HDAC2 in mouse neurons results in reduced neuronal maturation and axonal dysplasia, which may be associated with the mTOR signaling pathway.
Collapse
|
12
|
Cloning and promoter analysis of palladin 90-kDa, 140-kDa, and 200-kDa isoforms involved in skeletal muscle cell maturation. BMC Res Notes 2020; 13:321. [PMID: 32620172 PMCID: PMC7333403 DOI: 10.1186/s13104-020-05152-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022] Open
Abstract
Objective Palladin is a ubiquitous phosphoprotein expressed in vertebrate cells that works as a scaffolding protein. Several isoforms deriving from alternative splicing are originated from the palladin gene and involved in mesenchymal and muscle cells formation, maturation, migration, and contraction. Recent studies have linked palladin to the invasive spread of cancer and myogenesis. However, since its discovery, the promoter region of the palladin gene has never been studied. The objective of this study was to predict, identify, and measure the activity of the promoter regions of palladin gene. Results By using promoter prediction programs, we successfully identified the transcription start sites for the Palld isoforms and revealed the presence of a variety of transcriptional regulatory elements including TATA box, GATA, MyoD, myogenin, MEF, Nkx2-5, and Tcf3 upstream promoter regions. The transcriptome profiling approach confirmed the active role of predicted transcription factors in the mouse genome. This study complements the missing piece in the characterization of palladin gene and certainly contributes to understanding the complexity and enrollment of palladin regulatory factors in gene transcription.
Collapse
|