1
|
Yılmaz M, Yılmaz S. Electrocardiographic frontal QRS-T angle is independently associated with panic disorder. Int J Psychiatry Med 2024; 59:167-181. [PMID: 37342881 DOI: 10.1177/00912174231184759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
OBJECTIVE Panic disorder (PD) may cause serious cardiac arrhythmias by causing electrical abnormalities. Abnormal P-wave axis (aPwa), presence of fragmented QRS (fQRS), wide frontal QRS-T angle (fQRSTa), QRS duration corrected (QRSdc) and log/ logQRS duration/RR interval (log/logQRS/RR) have been correlated with increased risk of serious supraventricular and ventricular cardiac arrhythmias in a general population. The purpose of this study was to compare these newly explored atrial and ventricular arrhythmia indicators in patients with PD and in healthy subjects. METHOD A total of 169 newly diagnosed PD patients and 128 healthy subjects were included in the study. The Panic and Agoraphobia Scale (PAS) was administered, and 12-lead electrocardiography (ECG) measurements were obtained. Electrocardiographic parameters including aPwa, fQRSTa, presence of fQRS, QRS duration corrected (QRSdc), and log/logQRS duration/RR distance (log/logQRS/RR) were compared between the two groups. RESULTS aPwa and fQRS, in addition to fQRSTa, QRSdc, and log/ logQRS/RR ratio values, were significantly increased in the PD group compared to healthy controls. Correlation analyses revealed that wider fQRSTa, number of fQRS derivation, number of total fQRS, wider QRSdc, and log/logQRS/RR ratio significantly correlated with PAS score. Logistic regression analysis demonstrated that fQRSTa and the number of total fQRS were independently associated with PD. CONCLUSION PD is associated with wider fQRSTa, QRSdc, and log/logQRS/RR in addition to the increased abnormal aPwa and presence of fQRS. These findings suggest that untreated PD patients may be susceptible to supraventricular and ventricular arrhythmia, indicating that ECG should be routinely obtained in the management of PD patients.
Collapse
Affiliation(s)
- Mücahid Yılmaz
- Department of Cardiology, Elazig Fethi Sekin Sehir Hastanesi, Elazig, Turkey
| | - Seda Yılmaz
- Department of Psychiatry, Elazig Fethi Sekin Sehir Hastanesi, Elazig, Turkey
| |
Collapse
|
2
|
Gomes-de-Souza L, Santana FG, Duarte JO, Barretto-de-Souza L, Crestani CC. Angiotensinergic neurotransmission in the bed nucleus of the stria terminalis is involved in cardiovascular responses to acute restraint stress in rats. Pflugers Arch 2023; 475:517-526. [PMID: 36715761 DOI: 10.1007/s00424-023-02791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023]
Abstract
The brain angiotensin II acting via AT1 receptors is a prominent mechanism involved in physiological and behavioral responses during aversive situations. The AT2 receptor has also been implicated in stress responses, but its role was less explored. Despite these pieces of evidence, the brain sites related to control of the changes during aversive threats by the brain renin-angiotensin system (RAS) are poorly understood. The bed nucleus of the stria terminalis (BNST) is a limbic structure related to the cardiovascular responses by stress, and components of the RAS system were identified in this forebrain region. Therefore, we investigated the role of angiotensinergic neurotransmission present within the BNST acting via local AT1 and AT2 receptors in cardiovascular responses evoked by an acute session of restraint stress in rats. For this, rats were subjected to bilateral microinjection of either the angiotensin-converting enzyme inhibitor captopril, the selective AT1 receptor antagonist losartan, or the selective AT2 receptor antagonist PD123319 before they underwent the restraint stress session. We observed that BNST treatment with captopril reduced the decrease in tail skin temperature evoked by restraint stress, without affecting the pressor and tachycardic responses. Local AT2 receptor antagonism within the BNST reduced both the tachycardia and the drop in tail skin temperature during restraint. Bilateral microinjection of losartan into the BNST did not affect the restraint-evoked cardiovascular changes. Taken together, these data indicate an involvement of BNST angiotensinergic neurotransmission acting via local AT2 receptors in cardiovascular responses during stressful situations.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Flávia G Santana
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Barretto-de-Souza
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
3
|
Impact of embryonic manipulations on core body temperature dynamics and survival in broilers exposed to cyclic heat stress. Sci Rep 2022; 12:15110. [PMID: 36068282 PMCID: PMC9448727 DOI: 10.1038/s41598-022-19063-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Ambient temperature-associated stress has been shown to affect the normal physiological functions of birds. The recent literature indicated that both, embryonic thermal manipulation (ETM) and in ovo feeding (IOF) of γ-aminobutyric acid (GABA) can mitigate the deleterious effects of heat stress (HS) in young broiler chicks. Therefore, this study intended to assess the effects of cyclic HS (32 ± 1 °C, 4 h/day from day 29 to 35) on rectal temperatures (RTs) and survival in broiler chickens after ETM and in IOF of GABA. A total of 275 RT data points and survival data were collected from chicks assigned to the following five treatments: chicks hatched from control eggs (CON); chicks hatched from control eggs but exposed to HS (CON + HS); chicks hatched from eggs injected at 17.5 days of incubation with 0.6 mL of 10% GABA and exposed to HS (G10 + HS); chicks hatched from thermally manipulated eggs (39.6 °C, 6 h/day from embryonic days 10 to 18) and exposed to HS (TM + HS); chicks hatched from eggs that received both previous treatments during incubation and exposed to HS (G10 + TM + HS). Under thermoneutral conditions, RTs increased quadratically from 39.9 ± 0.2 °C at hatching to 41.4 ± 0.1 °C at 8 days of age. When exposed to cyclic HS during the last week of rearing, the birds' RTs tended to decrease at the end of the heat stress challenge (from 43.0 ± 0.2 °C on day 29 to 42.4 ± 0.1 °C on day 35). A stepwise Cox regression indicated that treatment was predictive of birds' survival. Hazard ratios (HR) and their confidence intervals (CI) were calculated to assess the likelihood of death during the trial. The birds, belonging to the G10 + TM + HS group, were less likely to die under HS (HR 0.11, 95% CI 0.02 to 0.91, P = 0.041) compared to the CON + HS birds. Taken together, the combination of ETM and GABA IOF may help mitigate the drawbacks of cyclic HS by improving the survival of broilers.
Collapse
|
4
|
Chen X, Zhang Y, Wang H, Liu L, Li W, Xie P. The regulatory effects of lactic acid on neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2022; 2:8. [PMID: 37861858 PMCID: PMC10501010 DOI: 10.1007/s44192-022-00011-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/04/2022] [Indexed: 10/21/2023]
Abstract
Lactic acid is produced mainly in astrocytes in the brain and serves as a substance that supplies energy to neurons. In recent years, numerous studies identified the potential effects of lactic acid on the central nervous system and demonstrated its role in regulating brain function as an energy metabolism substrate or cellular signaling molecule. Both deficiency and accumulation of lactic acid cause neurological dysfunction, which further lead to the development of neuropsychiatric disorders, such as Major depressive disorder, Schizophrenia, Alzheimer's disease, and Multiple sclerosis. Although an association between lactic acid and neuropsychiatric disorders was reported in previous research, the underlying pathogenic mechanisms remain unclear. Therefore, an in-depth understanding of the molecular mechanisms by which lactic acid regulates brain function is of significance for the early diagnosis and prevention of neuropsychiatric disorders. In this review, we summarize evidence that is focused on the potential mechanisms of lactic acid as a signaling molecule involved in the pathogenesis of neuropsychiatric disorders and propose a new mechanism by which lactic acid regulates brain function and disease through the microbiota-gut-brain axis to offer new insight into the prevention and treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xueyi Chen
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Sfera A, Osorio C, Rahman L, Zapata-Martín del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021; 15:770387. [PMID: 34776871 PMCID: PMC8586713 DOI: 10.3389/fncel.2021.770387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 virus, the etiologic agent of COVID-19, has affected almost every aspect of human life, precipitating stress-related pathology in vulnerable individuals. As the prevalence rate of posttraumatic stress disorder in pandemic survivors exceeds that of the general and special populations, the virus may predispose to this disorder by directly interfering with the stress-processing pathways. The SARS-CoV-2 interactome has identified several antigens that may disrupt the blood-brain-barrier by inducing premature senescence in many cell types, including the cerebral endothelial cells. This enables the stress molecules, including angiotensin II, endothelin-1 and plasminogen activator inhibitor 1, to aberrantly activate the amygdala, hippocampus, and medial prefrontal cortex, increasing the vulnerability to stress related disorders. This is supported by observing the beneficial effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in both posttraumatic stress disorder and SARS-CoV-2 critical illness. In this narrative review, we take a closer look at the virus-host dialog and its impact on the renin-angiotensin system, mitochondrial fitness, and brain-derived neurotrophic factor. We discuss the role of furin cleaving site, the fibrinolytic system, and Sigma-1 receptor in the pathogenesis of psychological trauma. In other words, learning from the virus, clarify the molecular underpinnings of stress related disorders, and design better therapies for these conditions. In this context, we emphasize new potential treatments, including furin and bromodomains inhibitors.
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rahman
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Jose Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
6
|
Saavedra JM. Angiotensin Receptor Blockers Are Not Just for Hypertension Anymore. Physiology (Bethesda) 2021; 36:160-173. [PMID: 33904788 DOI: 10.1152/physiol.00036.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beyond blood pressure control, angiotensin receptor blockers reduce common injury mechanisms, decreasing excessive inflammation and protecting endothelial and mitochondrial function, insulin sensitivity, the coagulation cascade, immune responses, cerebrovascular flow, and cognition, properties useful to treat inflammatory, age-related, neurodegenerative, and metabolic disorders of many organs including brain and lung.
Collapse
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
7
|
Marvar PJ, Andero R, Hurlemann R, Lago TR, Zelikowsky M, Dabrowska J. Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. J Neurosci 2021; 41:901-910. [PMID: 33472824 PMCID: PMC7880296 DOI: 10.1523/jneurosci.1647-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology & Physiology, Department of Psychiatry and Behavioral Sciences, George Washington Institute for Neuroscience, George Washington University, Washington, DC, 20037
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain, 08193. Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain, 28029. ICREA, Pg. Lluís Companys 23, Barcelona, Spain, 08010
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, and Research Center Neurosensory Science, University of Oldenburg, Oldenburg, 26129, Germany
| | - Tiffany R Lago
- Department of Psychiatry, Veterans Administration Boston Healthcare System, Boston, Massachusetts, 02130
| | - Moriel Zelikowsky
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah, 84112
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, 60064
| |
Collapse
|
8
|
Lin SY, Lin CL, Lin CC, Hsu WH, Lin CD, Wang IK, Hsieh MH, Hsu CY, Kao CH. Association between angiotensin receptor blockers and suicide: nationwide population-based propensity score matching study. J Affect Disord 2020; 276:815-821. [PMID: 32738666 DOI: 10.1016/j.jad.2020.07.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) have been reported to ameliorate anxiety and mood disorders in animal models. Cohort links between ARB use and suicide risk in humans require clarification. METHODS Data were obtained from the National Health Insurance Research Database. Patients diagnosed as having hypertension according to the criteria of the International Classification of Diseases, Ninth Revision, Clinical Modification (401-405) from January 1, 2000 to December 31, 2012 were enrolled as the target population. We defined enrollees who had received ARB prescriptions for at least 28 days as ARB users. Those who had never taken ARB prior or during the study period were defined as ARB nonusers and were propensity score-matched with ARB users. The end outcome was confirmation of a suicide attempt. RESULTS After propensity score matching was conducted, 40,976 ARB users and 40,976 nonusers were selected as the matched cohorts. The overall incidence rate of suicide attempt was significantly lower in ARB users than in nonusers (0.51 vs. 1.07 per 10,000 person-years; adjusted hazard ratio = 0.48, 95% confidence interval = 0.26-0.87). A Kaplan-Meier survival analysis with a log-rank test revealed a lower cumulative incidence of suicide attempt in ARB users than in nonusers (p < 0.001 for the unmatched cohort; p = 0.01 for the matched cohort). CONCLUSIONS ARB use was not associated with an increased risk for suicide compared with non-ARB use.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Chest Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Der Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Han Hsieh
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Y Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Chest Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Kreutzmann JC, Fendt M. Chronic inhibition of GABA synthesis in the infralimbic cortex facilitates conditioned safety memory and reduces contextual fear. Transl Psychiatry 2020; 10:120. [PMID: 32332716 PMCID: PMC7182568 DOI: 10.1038/s41398-020-0788-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Accurate discrimination between danger and safety cues is essential for survival. Recent findings in humans indicate that patients suffering from anxiety disorders cannot reliably use safety cues in order to inhibit fear responses. However, the neuroanatomical pathways of conditioned safety are still unclear. Aim of the present study was to investigate whether chronic inhibition of GABA synthesis in the infralimbic (IL) cortex, a critical region for fear inhibition, would lead to enhanced conditioned safety memory. Male Sprague Dawley rats were equipped with osmotic mini-pumps attached to an infusion cannula aimed at the IL. Mini-pumps were either filled with the glutamate decarboxylase (GAD) inhibitor L-allylglycine (L-AG) or the inactive enantiomer D-allylglycine (D-AG). Previous studies demonstrated that chronic infusions of L-AG lead to lower GABA levels and overall enhanced neural activity. The effect of IL disinhibition on conditioned safety was investigated utilizing the acoustic startle response. Chronic disinhibition of the IL facilitated conditioned safety memory, along with reduced contextual fear and lower corticosterone levels. The present findings suggest that the IL is a key brain region for conditioned safety memory. Because anxiety disorder patients are often not capable to use safety cues to inhibit unnecessary fear responses, the present findings are of clinical relevance and could potentially contribute to therapy optimization.
Collapse
Affiliation(s)
- Judith C. Kreutzmann
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Molosh AI, Dustrude ET, Lukkes JL, Fitz SD, Caliman IF, Abreu ARR, Dietrich AD, Truitt WA, Ver Donck L, Ceusters M, Kent JM, Johnson PL, Shekhar A. Panic results in unique molecular and network changes in the amygdala that facilitate fear responses. Mol Psychiatry 2020; 25:442-460. [PMID: 30108314 PMCID: PMC6410355 DOI: 10.1038/s41380-018-0119-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/03/2018] [Accepted: 05/25/2018] [Indexed: 11/12/2022]
Abstract
Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal gray, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2-positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients.
Collapse
Affiliation(s)
- A I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E T Dustrude
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J L Lukkes
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - I F Caliman
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A R R Abreu
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A D Dietrich
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - W A Truitt
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Ver Donck
- Janssen Research & Development, Beerse, Belgium
| | - M Ceusters
- Janssen Research & Development, Beerse, Belgium
| | - J M Kent
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - P L Johnson
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Paul and Carol Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Mamdani M, Gomes T, Greaves S, Manji S, Juurlink DN, Tadrous M, Kennedy SH, Antoniou T. Association Between Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers, and Suicide. JAMA Netw Open 2019; 2:e1913304. [PMID: 31617924 PMCID: PMC6806420 DOI: 10.1001/jamanetworkopen.2019.13304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
IMPORTANCE The renin-angiotensin system has been implicated in mood disorders. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are among the most commonly used medications, yet their effects on mental health outcomes, particularly suicide, are poorly understood. This study examined the association between suicide and exposure to ACEIs and ARBs. Because of differences in their mode of action, it was speculated that ARBs would be associated with a higher risk of suicide than ACEIs. OBJECTIVE To examine the association between suicide and exposure to ARBs compared with ACEIs. DESIGN, SETTING, AND PARTICIPANTS This population-based nested case-control study of individuals aged 66 years and older used administrative claims databases in Ontario, Canada, from January 1, 1995, to December 31, 2015. Data analysis was performed from January to April 2019. Cases were individuals who died by suicide within 100 days of receiving an ACEI or ARB. The date of death served as the index date. For each case, 4 controls were identified and matched by age (within 1 year), sex, and presence of hypertension and diabetes. All individuals received an ACEI or ARB within 100 days before the index date. EXPOSURES Use of an ACEI or ARB. MAIN OUTCOMES AND MEASURES Conditional logistic regression was used to estimate odds ratios for the association between suicide and exposure to ARBs compared with ACEIs. RESULTS Nine hundred sixty-four cases were matched to 3856 controls. The median (interquartile range) age of cases and controls was 76 (70-82) years. Most cases (768 [79.7%]) and controls (3068 [79.6%]) were men. Among cases, 260 (26.0%) were exposed to ARBs, and 704 (18.4%) were exposed to ACEIs. Among controls, 741 (74.0%) were exposed to ARBs, and 3115 (81.6%) were exposed to ACEIs. Compared with ACEI exposure, ARB exposure was associated with higher risk of death by suicide (adjusted odds ratio, 1.63; 95% CI, 1.33-2.00). The findings were consistent in a sensitivity analysis excluding individuals with a history of self-harm (odds ratio, 1.60; 95% CI, 1.29-1.98). CONCLUSIONS AND RELEVANCE The use of ARBs may be associated with an increased risk of suicide compared with ACEIs. Preferential use of ACEIs over ARBs should be considered whenever possible, particularly in patients with severe mental health illness.
Collapse
Affiliation(s)
- Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- King Saud University, Riyadh, Saudi Arabia
| | - Tara Gomes
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | | | - Selina Manji
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - David N. Juurlink
- ICES, Toronto, Ontario, Canada
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mina Tadrous
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Sidney H. Kennedy
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, St Michael’s Hospital, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tony Antoniou
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
- Department for Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Sévoz-Couche C. Vulnerability to stress consequences induced by repeated social defeat in rats: Contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated to low brain derived neurotrophic factor. Eur J Pharmacol 2019; 861:172595. [DOI: 10.1016/j.ejphar.2019.172595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
|
13
|
Choy KHC, Chavez CA, Yu J, Mayorov DN. The effect of angiotensin AT 1A inactivation on innate and learned fear responses in mice and its relationship to blood pressure. Psychoneuroendocrinology 2019; 107:208-216. [PMID: 31150966 DOI: 10.1016/j.psyneuen.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
Abstract
Angiotensin AT1 receptors are implicated in behavioral and physiological processes associated with fear and stress. However, the precise role of AT1 receptors in modulating fear-related behavior and its relation to their physiological effects remains unclear. Here, we examined innate and learned fear responses and their relationship to cardiovascular arousal in AT1A receptor knockout (AT1A-/-) mice. Using synchronized video and blood pressure telemetry, we found that, in a novel test environment, AT1A-/- mice showed reduced neophobia but a similar rise in blood pressure, as compared to AT1A+/+ mice. In response to a discrete threat, footshock, both flight behavior and cardiovascular arousal were decreased in AT1A-/- mice. Reduced flight behavior was also observed in AT1A-/- mice in the elevated T-maze test. During fear conditioning, the immediate freezing response to the first shock, but not the rate of freezing acquisition was decreased in AT1A-/- mice. Likewise, AT1A-/- mice showed reduced freezing and pressor responses to the first re-exposure, but normal rate of freezing extinction over subsequent trials. Similarly, in the elevated T-maze, the rates of avoidance acquisition and escape learning remained unchanged in AT1A-/- mice. Finally, after re-exposure, AT1A-/- mice displayed altered c-Fos expression, compared to AT1A+/+ mice, in the hypothalamus and periaqueductal gray but not in fear-related limbic-cortical areas, nor in medullary nuclei that convey visceral afferent information. We conclude that AT1A receptor knockout reduces innate fear responses, without affecting learning efficiency in mice. These effects are dissociable from cardiovascular effects and likely reflect altered neurotransmission in hypothalamic-midbrain defense regions.
Collapse
Affiliation(s)
- Kwok H C Choy
- Dept. of Pharmacology, University of Melbourne, Victoria, Australia
| | | | - Jing Yu
- Dept. of Pharmacology, University of Melbourne, Victoria, Australia
| | - Dmitry N Mayorov
- Dept. of Pharmacology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Winter A, Ahlbrand R, Sah R. Recruitment of central angiotensin II type 1 receptor associated neurocircuits in carbon dioxide associated fear. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:378-386. [PMID: 30776402 DOI: 10.1016/j.pnpbp.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022]
Abstract
Individuals with fear-associated conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD) display increased emotional responses to interoceptive triggers, such as CO2 inhalation, that signal a threat to physiological homeostasis. Currently, effector systems and mechanisms underlying homeostatic modulation of fear memory are not well understood. In this regard, the renin angiotensin system (RAS), particularly the angiotensin receptor type 1 (AT1R), a primary homeostatic regulatory target, has gained attention. RAS polymorphisms have been reported in PD and PTSD, and recent studies report AT1R-mediated modulation of fear extinction. However, contribution of AT1Rs in fear evoked by the interoceptive threat of CO2 has not been investigated. Using pharmacological, behavioral, and AT1R/ACE gene transcription analyses, we assessed central AT1R recruitment in CO2-associated fear. CO2 inhalation led to significant AT1R and ACE mRNA upregulation in homeostatic regulatory regions, subfornical organ (SFO) and paraventricular nucleus (PVN), in a temporal manner. Intracerebroventricular infusion of selective AT1R antagonist, losartan, significantly attenuated freezing during CO2 inhalation, and during re-exposure to CO2 context, suggestive of AT1R modulation of contextual fear. Regional Fos mapping in losartan-treated mice post-behavior revealed significantly attenuated labeling in areas regulating defensive behavior, contextual fear, and threat responding; such as, the bed nucleus of stria terminalis, dorsal periaqueductal gray, hypothalamic nuclei, hippocampus, and prefrontal areas such as the prelimbic, infralimbic, and anterior cingulate cortices. Sub-regions of the amygdala did not show CO2-associated AT1R regulation or altered Fos labeling. Collectively, our data suggests central AT1R recruitment in modulation of fear behaviors associated with CO2 inhalation via engagement of neurocircuits regulating homeostasis and defensive behaviors. Our data provides mechanistic insights into the interoceptive regulation of fear, relevant to fear related disorders such as PD and PTSD.
Collapse
Affiliation(s)
- Andrew Winter
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States
| | - Rebecca Ahlbrand
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States
| | - Renu Sah
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States.
| |
Collapse
|
15
|
Park SC, Kim YK. A Novel Bio-Psychosocial-Behavioral Treatment Model of Panic Disorder. Psychiatry Investig 2019; 16:4-15. [PMID: 30301303 PMCID: PMC6354044 DOI: 10.30773/pi.2018.08.21.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
To conceptualize a novel bio-psychosocial-behavioral treatment model of panic disorder (PD), it is necessary to completely integrate behavioral, psychophysiological, neurobiological, and genetic data. Molecular genetic research on PD is specifically focused on neurotransmitters, including serotonin, neuropeptides, glucocorticoids, and neurotrophins. Although pharmacological interventions for PD are currently available, the need for more effective, faster-acting, and more tolerable pharmacological interventions is unmet. Thus, glutamatergic receptor modulators, orexin receptor antagonists, corticotrophin-releasing factor 1 receptor antagonists, and other novel mechanism-based anti-panic therapeutics have been proposed. Research on the neural correlates of PD is focused on the dysfunctional "cross-talk" between emotional drive (limbic structure) and cognitive inhibition (prefrontal cortex) and the fear circuit, which includes the amygdala-hippocampus-prefrontal axis. The neural perspective regarding PD supports the idea that cognitive-behavioral therapy normalizes alterations in top-down cognitive processing, including increased threat expectancy and attention to threat. Consistent with the concept of "personalized medicine," it is speculated that Research Domain Criteria can enlighten further treatments targeting dysfunctions underlying PD more precisely and provide us with better definitions of moderators used to identify subgroups according to different responses to treatment. Structuring of the "negative valence systems" domain, which includes fear/anxiety, is required to define PD. Therefore, targeting glutamate- and orexin-related molecular mechanisms associated with the fear circuit, which includes the amygdala-hippocampus-prefrontal cortex axis, is required to define a novel bio-psychosocial-behavioral treatment model of PD.
Collapse
Affiliation(s)
- Seon-Cheol Park
- Department of Psychiatry, Inje University College of Medicine and Haeundae Paik Hospital, Busan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
16
|
Tashev R, Ivanova M. Involvement of hippocampal angiotensin 1 receptors in anxiety-like behaviour of olfactory bulbectomized rats. Pharmacol Rep 2018; 70:847-852. [DOI: 10.1016/j.pharep.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
17
|
Bonaventure P, Dugovic C, Shireman B, Preville C, Yun S, Lord B, Nepomuceno D, Wennerholm M, Lovenberg T, Carruthers N, Fitz SD, Shekhar A, Johnson PL. Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation. Front Pharmacol 2017; 8:357. [PMID: 28649201 PMCID: PMC5465257 DOI: 10.3389/fphar.2017.00357] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]-N-[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.
Collapse
Affiliation(s)
| | | | - Brock Shireman
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Cathy Preville
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Sujin Yun
- Janssen Research & Development, LLC, San DiegoCA, United States
| | - Brian Lord
- Janssen Research & Development, LLC, San DiegoCA, United States
| | | | | | | | | | - Stephanie D. Fitz
- Department of Psychiatry, Indiana University School of Medicine, IndianapolisIN, United States
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, IndianapolisIN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IndianapolisIN, United States
| | - Philip L. Johnson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IndianapolisIN, United States
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IndianapolisIN, United States
| |
Collapse
|
18
|
Moura Santos D, Ribeiro Marins F, Limborço-Filho M, de Oliveira ML, Hamamoto D, Xavier CH, Moreira FA, Santos RAS, Campagnole-Santos MJ, Peliky Fontes MA. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior. Stress 2017; 20:189-196. [PMID: 28288545 DOI: 10.1080/10253890.2017.1296949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can reduce some of the effects of stress. We found that angiotensin-(1-7), acting in the brain, can reduce anxiety and reduce the increase in heart rate associated with emotional stress. These findings may provide a lead for design of new drugs to reduce stress.
Collapse
Affiliation(s)
- Danielle Moura Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Fernanda Ribeiro Marins
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marcelo Limborço-Filho
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marilene Luzia de Oliveira
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | | | - Carlos Henrique Xavier
- c Department of Physiology , Institute of Biological Sciences, Federal University of Goiás , Goiás , Brazil Goiânia
| | - Fabrício Araújo Moreira
- d Department of Pharmacology , Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Robson Augusto Souza Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
- b Alamantec/LABFAR , Minas Gerais , Brazil
- e Institute of Cardiology , University Foundation of Cardiology , Rio Grande do Sul , Brazil
| | - Maria José Campagnole-Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marco Antonio Peliky Fontes
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| |
Collapse
|
19
|
High fat diet induced-obesity facilitates anxiety-like behaviors due to GABAergic impairment within the dorsomedial hypothalamus in rats. Behav Brain Res 2017; 316:38-46. [DOI: 10.1016/j.bbr.2016.08.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022]
|
20
|
Chen HH, Cheng PW, Ho WY, Lu PJ, Lai CC, Tseng YM, Fang HC, Sun GC, Hsiao M, Liu CP, Tseng CJ. Renal Denervation Improves the Baroreflex and GABA System in Chronic Kidney Disease-induced Hypertension. Sci Rep 2016; 6:38447. [PMID: 27917928 PMCID: PMC5137107 DOI: 10.1038/srep38447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
Hypertensive rats with chronic kidney disease (CKD) exhibit enhanced gamma-aminobutyric acid (GABA)B receptor function and regulation within the nucleus tractus solitarii (NTS). For CKD with hypertension, renal denervation (RD) interrupts the afferent renal sympathetic nerves, which are connecting to the NTS. The objective of the present study was to investigate how RD improves CKD-induced hypertension. Rats underwent 5/6 nephrectomy for 8 weeks, which induced CKD and hypertension. RD was induced by applying phenol to surround the renal artery in CKD. RD improved blood pressure (BP) by lowering sympathetic nerve activity and markedly restored the baroreflex response in CKD. The GABAB receptor expression was increased in the NTS of CKD; moreover, the central GABA levels were reduced in the cerebrospinal fluid, and the peripheral GABA levels were increased in the serum. RD restored the glutamic acid decarboxylase activity in the NTS in CKD, similar to the effect observed for central treatment with baclofen, and the systemic administration of gabapentin reduced BP. RD slightly improved renal function and cardiac load in CKD. RD may improve CKD-induced hypertension by modulating the baroreflex response, improving GABA system dysfunction and preventing the development and reducing the severity of cardiorenal syndrome type 4 in CKD rats.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Yuh-Ing Junior College of Health Care &Management, Kaohsiung, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Yuh-Ing Junior College of Health Care &Management, Kaohsiung, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Graduate Institute of Clinical Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chi-Cheng Lai
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yang-Ming Tseng
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hua-Chang Fang
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Peng Liu
- Department of Administration, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Section of Cardiology, Department of Medcine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Hu H, Bai X, Shah AA, Dai S, Wang L, Hua J, Che C, He S, Wen A, Jiang J. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:907-915. [PMID: 26493197 DOI: 10.1007/s00484-015-1084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased (P < 0.05) daily weight gain (DWG), daily feed consumption (DFC), the concentrations of Gln, glutamate (Glu), and GABA, and the activities of glutaminase and glutamic acid decarboxylase (GAD) in breast muscle at 28, 35, and 42 days, while it increased (P < 0.05) the activities of glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved (P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased (P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased (P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased (P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased (P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions (P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Xi Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Assar Ali Shah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sifa Dai
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China.
| | - Like Wang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Jinpeng Jiang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| |
Collapse
|
22
|
Fontes MAP, Martins Lima A, Santos RASD. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides 2016; 56:9-17. [PMID: 26584971 DOI: 10.1016/j.npep.2015.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Emotional stress is now considered a risk factor for several diseases including cardiac arrhythmias and hypertension. It is well known that the activation of neuroendocrine and autonomic mechanisms features the response to emotional stress. However, its link to cardiovascular diseases and the regulatory mechanisms involved remain to be further comprehended. The renin-angiotensin system (RAS) plays an important role in homeostasis on all body systems. Specifically in the brain, the RAS regulates a number of physiological aspects. Recent data indicate that the activation of angiotensin-converting enzyme/angiotensin II/AT1 receptor axis facilitates the emotional stress responses. On the other hand, growing evidence indicates that its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/(Ang)iotensin-(1-7)/Mas axis, reduces anxiety and attenuates the physiological responses to emotional stress. The present review focuses on angiotensin-(1-7)/Mas axis as a promising target to attenuate the physiological response to emotional stress reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT - Nanobiofar), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Augusto Martins Lima
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Robson Augusto Souza dos Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT - Nanobiofar), Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Institute of Cardiology, University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Hurt RC, Garrett JC, Keifer OP, Linares A, Couling L, Speth RC, Ressler KJ, Marvar PJ. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear. GENES BRAIN AND BEHAVIOR 2015; 14:526-33. [PMID: 26257395 DOI: 10.1111/gbb.12235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/17/2023]
Abstract
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1a R signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1a R gene from its CRF-releasing cells (CRF-AT1a R((-/-)) ). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1a R((-/-)) mice exhibit less freezing than wild-type mice during tests of conditioned fear expression-an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1a R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1 R antagonists may act to modulate fear extinction.
Collapse
Affiliation(s)
- R C Hurt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - J C Garrett
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - O P Keifer
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - A Linares
- Farquhar College of Arts and Sciences.,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - L Couling
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - R C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA.,Howard Hughes Medical Institute, Bethesda, MD
| | - P J Marvar
- Department of Pharmacology and Physiology, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| |
Collapse
|
24
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
25
|
Vollmer LL, Strawn JR, Sah R. Acid-base dysregulation and chemosensory mechanisms in panic disorder: a translational update. Transl Psychiatry 2015; 5:e572. [PMID: 26080089 PMCID: PMC4471296 DOI: 10.1038/tp.2015.67] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/19/2015] [Accepted: 04/06/2015] [Indexed: 12/13/2022] Open
Abstract
Panic disorder (PD), a complex anxiety disorder characterized by recurrent panic attacks, represents a poorly understood psychiatric condition which is associated with significant morbidity and an increased risk of suicide attempts and completed suicide. Recently however, neuroimaging and panic provocation challenge studies have provided insights into the pathoetiology of panic phenomena and have begun to elucidate potential neural mechanisms that may underlie panic attacks. In this regard, accumulating evidence suggests that acidosis may be a contributing factor in induction of panic. Challenge studies in patients with PD reveal that panic attacks may be reliably provoked by agents that lead to acid-base dysbalance such as CO2 inhalation and sodium lactate infusion. Chemosensory mechanisms that translate pH into panic-relevant fear, autonomic, and respiratory responses are therefore of high relevance to the understanding of panic pathophysiology. Herein, we provide a current update on clinical and preclinical studies supporting how acid-base imbalance and diverse chemosensory mechanisms may be associated with PD and discuss future implications of these findings.
Collapse
Affiliation(s)
- L L Vollmer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - J R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Cincinnati Children's Hospital Medical Center, Department of Psychiatry, Cincinnati, OH, USA
| | - R Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Veterens' Affairs Medical Center, Cincinnati, OH, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA. E-mail:
| |
Collapse
|
26
|
Bonaventure P, Yun S, Johnson PL, Shekhar A, Fitz SD, Shireman BT, Lebold TP, Nepomuceno D, Lord B, Wennerholm M, Shelton J, Carruthers N, Lovenberg T, Dugovic C. A selective orexin-1 receptor antagonist attenuates stress-induced hyperarousal without hypnotic effects. J Pharmacol Exp Ther 2015; 352:590-601. [PMID: 25583879 PMCID: PMC4352589 DOI: 10.1124/jpet.114.220392] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/09/2015] [Indexed: 11/22/2022] Open
Abstract
Orexins (OXs) are peptides produced by perifornical (PeF) and lateral hypothalamic neurons that exert a prominent role in arousal-related processes, including stress. A critical role for the orexin-1 receptor (OX1R) in complex emotional behavior is emerging, such as overactivation of the OX1R pathway being associated with panic or anxiety states. Here we characterize a brain-penetrant, selective, and high-affinity OX1R antagonist, compound 56 [N-({3-[(3-ethoxy-6-methylpyridin-2-yl)carbonyl]-3-azabicyclo[4.1.0]hept-4-yl}methyl)-5-(trifluoromethyl)pyrimidin-2-amine]. Ex vivo receptor binding studies demonstrated that, after subcutaneous administration, compound 56 crossed the blood-brain barrier and occupied OX1Rs in the rat brain at lower doses than standard OX1R antagonists GSK-1059865 [5-bromo-N-({1-[(3-fluoro-2-methoxyphenyl)carbonyl]-5-methylpiperidin-2-yl}methyl)pyridin-2-amine], SB-334867 [1-(2-methyl-1,3-benzoxazol-6-yl)-3-(1,5-naphthyridin-4-yl)urea], and SB-408124 [1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea]. Although compound 56 did not alter spontaneous sleep in rats and in wild-type mice, its administration in orexin-2 receptor knockout mice selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. In a rat model of psychological stress induced by cage exchange, the OX1R antagonist prevented the prolongation of sleep onset without affecting sleep duration. In a rat model of panic vulnerability (involving disinhibition of the PeF OX region) to threatening internal state changes (i.e., intravenous sodium lactate infusion), compound 56 attenuated sodium lactate-induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. In conclusion, OX1R antagonism represents a novel therapeutic strategy for the treatment of various psychiatric disorders associated with stress or hyperarousal states.
Collapse
Affiliation(s)
- Pascal Bonaventure
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Sujin Yun
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Philip L Johnson
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Anantha Shekhar
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Stephanie D Fitz
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Brock T Shireman
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Terry P Lebold
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Diane Nepomuceno
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Brian Lord
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Michelle Wennerholm
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Jonathan Shelton
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Nicholas Carruthers
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Timothy Lovenberg
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| | - Christine Dugovic
- Janssen Research & Development, LLC, San Diego, California (P.B., S.Y., B.T.S., T.P.L., D.N., B.L., M.W., J.S., N.C., T.L., C.D.); and Indiana University School of Medicine, Indianapolis, Indiana (P.L.J., A.S., S.D.F.)
| |
Collapse
|
27
|
Perna G, Schruers K, Alciati A, Caldirola D. Novel investigational therapeutics for panic disorder. Expert Opin Investig Drugs 2014; 24:491-505. [DOI: 10.1517/13543784.2014.996286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giampaolo Perna
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
- 2University of Maastricht, Medicine and Life Sciences, Department of Psychiatry and Neuropsychology, Faculty of Health, Maastricht, The Netherlands
- 3University of Miami, Leonard Miller School of Medicine, Department of Psychiatry and Behavioral Sciences, Miami, FL, USA
| | - Koen Schruers
- 2University of Maastricht, Medicine and Life Sciences, Department of Psychiatry and Neuropsychology, Faculty of Health, Maastricht, The Netherlands
- 4Faculty of Psychology, University of Leuven, Center for Learning and Experimental Psychology, Loeven, Belgium
| | - Alessandra Alciati
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
| | - Daniela Caldirola
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
| |
Collapse
|
28
|
Paul ED, Johnson PL, Shekhar A, Lowry CA. The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev 2014; 46 Pt 3:379-96. [PMID: 24661986 PMCID: PMC4170046 DOI: 10.1016/j.neubiorev.2014.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/15/2014] [Accepted: 03/01/2014] [Indexed: 12/20/2022]
Abstract
The Deakin/Graeff hypothesis proposes that different subpopulations of serotonergic neurons through topographically organized projections to forebrain and brainstem structures modulate the response to acute and chronic stressors, and that dysfunction of these neurons increases vulnerability to affective and anxiety disorders, including panic disorder. We outline evidence supporting the existence of a serotonergic system originally discussed by Deakin/Graeff that is implicated in the inhibition of panic-like behavioral and physiological responses. Evidence supporting this panic inhibition system comes from the following observations: (1) serotonergic neurons located in the 'ventrolateral dorsal raphe nucleus' (DRVL) as well as the ventrolateral periaqueductal gray (VLPAG) inhibit dorsal periaqueductal gray-elicited panic-like responses; (2) chronic, but not acute, antidepressant treatment potentiates serotonin's panicolytic effect; (3) contextual fear activates a central nucleus of the amygdala-DRVL/VLPAG circuit implicated in mediating freezing and inhibiting panic-like escape behaviors; (4) DRVL/VLPAG serotonergic neurons are central chemoreceptors and modulate the behavioral and cardiorespiratory response to panicogenic agents such as sodium lactate and CO2. Implications of the panic inhibition system are discussed.
Collapse
Affiliation(s)
- Evan D Paul
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Philip L Johnson
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Anantha Shekhar
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| |
Collapse
|
29
|
Johnson PL, Federici LM, Shekhar A. Etiology, triggers and neurochemical circuits associated with unexpected, expected, and laboratory-induced panic attacks. Neurosci Biobehav Rev 2014; 46 Pt 3:429-54. [PMID: 25130976 DOI: 10.1016/j.neubiorev.2014.07.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene×environment and gene×hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lauren M Federici
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
30
|
Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. Biol Psychiatry 2014; 75:864-72. [PMID: 24094510 PMCID: PMC3975818 DOI: 10.1016/j.biopsych.2013.08.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND The current effective treatment options for posttraumatic stress disorder (PTSD) are limited, and therefore the need to explore new treatment strategies is critical. Pharmacological inhibition of the renin-angiotensin system is a common approach to treat hypertension, and emerging evidence highlights the importance of this pathway in stress and anxiety. A recent clinical study from our laboratory provides evidence supporting a role for the renin-angiotensin system in the regulation of the stress response in patients diagnosed with PTSD. METHODS With an animal model of PTSD and the selective angiotensin receptor type 1 (AT1) antagonist losartan, we investigated the acute and long-term effects of AT1 receptor inhibition on fear memory and baseline anxiety. After losartan treatment, we performed classical Pavlovian fear conditioning pairing auditory cues with footshocks and examined extinction behavior, gene expression changes in the brain, as well as neuroendocrine and cardiovascular responses. RESULTS After cued fear conditioning, both acute and 2-week administration of losartan enhanced the consolidation of extinction memory but had no effect on fear acquisition, baseline anxiety, blood pressure, and neuroendocrine stress measures. Gene expression changes in the brain were also altered in mice treated with losartan for 2 weeks, in particular reduced amygdala AT1 receptor and bed nucleus of the stria terminalis c-Fos messenger RNA levels. CONCLUSIONS These data suggest that AT1 receptor antagonism enhances the extinction of fear memory and therefore might be a beneficial therapy for PTSD patients who have impairments in extinction of aversive memories.
Collapse
|
31
|
Angiotensin type 1 receptor antagonists-a novel approach to augmenting posttraumatic stress disorder and phobia therapies? Biol Psychiatry 2014; 75:836-7. [PMID: 24837620 DOI: 10.1016/j.biopsych.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/20/2022]
|
32
|
Johnson PL, Sajdyk TJ, Fitz SD, Hale MW, Lowry CA, Hay-Schmidt A, Shekhar A. Angiotensin II's role in sodium lactate-induced panic-like responses in rats with repeated urocortin 1 injections into the basolateral amygdala: amygdalar angiotensin receptors and panic. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:248-56. [PMID: 23523745 PMCID: PMC3665353 DOI: 10.1016/j.pnpbp.2013.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/19/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Rats treated with three daily urocortin 1 (UCN) injections into the basolateral amygdala (BLA; i.e., UCN/BLA-primed rats) develop prolonged anxiety-associated behavior and vulnerability to panic-like physiological responses (i.e., tachycardia, hypertension and tachypnea) following intravenous infusions of 0.5 M sodium lactate (NaLac, an ordinarily mild interoceptive stressor). In these UCN-primed rats, the osmosensitive subfornical organ (SFO) may be a potential site that detects increases in plasma NaLac and mobilizes panic pathways since inhibiting the SFO blocks panic following NaLac in this model. Furthermore, since SFO neurons synthesize angiotensin II (A-II), we hypothesized that the SFO projects to the BLA and releases A-II to mobilizing panic responses in UCN/BLA-primed rats following NaLac infusions. To test this hypothesis, rats received daily bilateral injections of UCN or vehicle into the BLA daily for 3 days. Five to seven days following the intra-BLA injections, we microinjected either the nonspecific A-II type 1 (AT1r) and 2 (AT2r) receptor antagonist saralasin, or the AT2r-selective antagonist PD123319 into the BLA prior to the NaLac challenge. The UCN/BLA-primed rats pre-injected with saralasin, but not PD123319 or vehicle, had reduced NaLac-induced anxiety-associated behavior and panic-associated tachycardia and tachypnea responses. We then confirmed the presence of AT1rs in the BLA using immunohistochemistry which, combined with the previous data, suggest that A-II's panicogenic effects in the BLA is AT1r dependent. Surprisingly, the SFO had almost no neurons that directly innervate the BLA, which suggests an indirect pathway for relaying the NaLac signal. Overall these results are the first to implicate A-II and AT1rs as putative neurotransmitter-receptors in NaLac induced panic-like responses in UCN/BLA-primed rats.
Collapse
Affiliation(s)
- Philip L. Johnson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana,Department of Institute of Psychiatric Research Departments of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tammy J. Sajdyk
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie D. Fitz
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mathew W. Hale
- Department of School of Psychological Science, La Trobe University, Melbourne, Vic, Australia
| | - Christopher A. Lowry
- Department of Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anantha Shekhar
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
33
|
Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary. Int J Hypertens 2013; 2013:175428. [PMID: 23573410 PMCID: PMC3614054 DOI: 10.1155/2013/175428] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors.
Collapse
|
34
|
Johnson PL, Fitz SD, Engleman EA, Svensson KA, Schkeryantz JM, Shekhar A. Group II metabotropic glutamate receptor type 2 allosteric potentiators prevent sodium lactate-induced panic-like response in panic-vulnerable rats. J Psychopharmacol 2013; 27:152-61. [PMID: 22914798 PMCID: PMC4300988 DOI: 10.1177/0269881112454230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rats with chronic inhibition of GABA synthesis by infusion of l-allyglycine, a glutamic acid decarboxylase inhibitor, into their dorsomedial/perifornical hypothalamus are anxious and exhibit panic-like cardio-respiratory responses to treatment with intravenous (i.v.) sodium lactate (NaLac) infusions, in a manner similar to what occurs in patients with panic disorder. We previously showed that either NMDA receptor antagonists or metabotropic glutamate receptor type 2/3 receptor agonists can block such a NaLac response, suggesting that a glutamate mechanism is contributing to this panic-like state. Using this animal model of panic, we tested the efficacy of CBiPES and THIIC, which are selective group II metabotropic glutamate type 2 receptor allosteric potentiators (at 10-30 mg/kg i.p.), in preventing NaLac-induced panic-like behavioral and cardiovascular responses. The positive control was alprazolam (3mg/kg i.p.), a clinically effective anti-panic benzodiazepine. As predicted, panic-prone rats given a NaLac challenge displayed NaLac-induced panic-like cardiovascular (i.e. tachycardia and hypertensive) responses and "anxiety" (i.e. decreased social interaction time) and "flight" (i.e. increased locomotion) -associated behaviors; however, systemic injection of the panic-prone rats with CBiPES, THIIC or alprazolam prior to the NaLac dose blocked all NaLac-induced panic-like behaviors and cardiovascular responses. These data suggested that in a rat animal model, selective group II metabotropic glutamate type 2 receptor allosteric potentiators show an anti-panic efficacy similar to alprazolam.
Collapse
Affiliation(s)
- Philip L Johnson
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Stephanie D Fitz
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Eric A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, USA
| | | | | | - Anantha Shekhar
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
35
|
Biagioni AF, de Freitas RL, da Silva JA, de Oliveira RC, de Oliveira R, Alves VM, Coimbra NC. Serotonergic neural links from the dorsal raphe nucleus modulate defensive behaviours organised by the dorsomedial hypothalamus and the elaboration of fear-induced antinociception via locus coeruleus pathways. Neuropharmacology 2012. [PMID: 23201351 DOI: 10.1016/j.neuropharm.2012.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decrease of γ-aminobutyric acid (GABA)-mediated neurotransmission in the dorsomedial hypothalamus (DMH) evokes instinctive fear-like responses. The aim of the present study was to investigate the involvement of the serotonin (5-HT)- and norepinephrine-mediated pathways of the endogenous pain inhibitory system, including the dorsal raphe nucleus (DRN) and the locus coeruleus (LC), in the defensive responses and antinociceptive processes triggered by the blockade of GABAergic receptors in the DMH. The intra-hypothalamic microinjection of the GABA(A) receptor antagonist bicuculline (40 ng/200 nL) elicited elaborate defensive behaviours interspersed with exploratory responses. This escape behaviour was followed by significantly increased pain thresholds, a phenomenon known as fear-induced antinociception. Furthermore, at 5 and 14 days after DRN serotonin-containing neurons were damaged using the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), the frequency and duration of alertness and escape behaviour evoked by the GABA(A) receptor blockade in the DMH decreased, as well as fear-induced antinociception. Pre-treatment with the non-selective 5-HT receptor antagonist methysergide, the 5-HT(2A/2C) receptor antagonist ketanserin and the 5-HT(2A) receptor selective antagonist R-96544 in the LC also decreased fear-induced antinociception, without significant changes in the expression of defensive behaviours. These data suggest that the serotonergic neurons of the DRN are directly involved in the organisation of defensive responses as well as in the elaboration of the innate fear-induced antinociception. However, serotonin-mediated inputs from the NDR to the LC modulate only fear-induced antinociception and not the defensive behaviours evoked by GABA(A) receptor blockade in the DMH.
Collapse
Affiliation(s)
- Audrey Francisco Biagioni
- Laboratório de Neuroanatomia & Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Av. dos Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury.
Collapse
Affiliation(s)
- Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Dai S, Gao F, Xu X, Zhang W, Song S, Zhou G. Effects of dietary glutamine and gamma-aminobutyric acid on meat colour, pH, composition, and water-holding characteristic in broilers under cyclic heat stress. Br Poult Sci 2012; 53:471-81. [DOI: 10.1080/00071668.2012.719148] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- S.F. Dai
- a Key Laboratory of Meat Processing and Quality Control of Ministry of Education , College of Animal Science and Technology, Nanjing Agricultural University , Nanjing 210095 , PR China
- b College of Animal Science, Anhui Science and Technology University , Fengyang 233100 , PR China
| | - F. Gao
- a Key Laboratory of Meat Processing and Quality Control of Ministry of Education , College of Animal Science and Technology, Nanjing Agricultural University , Nanjing 210095 , PR China
| | - X.L. Xu
- a Key Laboratory of Meat Processing and Quality Control of Ministry of Education , College of Animal Science and Technology, Nanjing Agricultural University , Nanjing 210095 , PR China
| | - W.H. Zhang
- a Key Laboratory of Meat Processing and Quality Control of Ministry of Education , College of Animal Science and Technology, Nanjing Agricultural University , Nanjing 210095 , PR China
| | - S.X. Song
- a Key Laboratory of Meat Processing and Quality Control of Ministry of Education , College of Animal Science and Technology, Nanjing Agricultural University , Nanjing 210095 , PR China
| | - G.H. Zhou
- a Key Laboratory of Meat Processing and Quality Control of Ministry of Education , College of Animal Science and Technology, Nanjing Agricultural University , Nanjing 210095 , PR China
| |
Collapse
|
38
|
Kohtz AS, Frye CA. Dissociating behavioral, autonomic, and neuroendocrine effects of androgen steroids in animal models. Methods Mol Biol 2012; 829:397-431. [PMID: 22231829 DOI: 10.1007/978-1-61779-458-2_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developments in behavioral assessment, autonomic and/or baseline reactivity, psychopharmacology, and genetics, have contributed significantly to the assessment of performance-enhancing drugs in animal models. Particular classes of steroid hormones: androgenic steroids are of interest. Anecdotally, the performance enhancing effects of androgens are attributed to anabolic events. However, there is a discrepancy between anecdotal evidence and investigative data. While some androgen steroids may promote muscle growth (myogenesis), effects of androgens on performance enhancement are not always seen. Indeed, some effects of androgens on performance may be attributable to their psychological and cardiovascular effects. As such, we consider androgen effects in terms of their behavioral, autonomic, and neuroendocrine components. Techniques are discussed in this chapter, some of which are well established, while others have been more recently developed to study androgen action. Androgens may be considered for their positive impact, negative consequence, or psychotropic properties. Thus, this review aims to elucidate some of the effects and/or mechanisms of androgens on behavioral, autonomic, and/or neuroendocrine assessment that may underlie their controversial performance enhancing effects.
Collapse
Affiliation(s)
- Amy S Kohtz
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | | |
Collapse
|
39
|
Gao J, Chao J, Parbhu KJK, Yu L, Xiao L, Gao F, Gao L. Ontogeny of angiotensin type 2 and type 1 receptor expression in mice. J Renin Angiotensin Aldosterone Syst 2012; 13:341-52. [PMID: 22526820 DOI: 10.1177/1470320312443720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the current experiment, we determined angiotensin type 2 receptor (AT2R) and angiotensin type 1 receptor (AT1R) protein expression by western blot analysis in developing normal mice. The results indicate that: (1) in all detected brain regions and in the spinal cord, adult mice exhibited significantly higher AT2R expression and lower AT1R expression in total protein extracts compared to fetuses and neonates; (2) other major organs, including heart, lung, liver and kidney, exhibited the same expression pattern as the brain and spinal cord; (3) reciprocal changes in AT2R and AT1R expression were found in the total protein extracts from the brainstems of mice from one-day prenatal to six weeks of age, and there was a negative correlation between AT2R and AT1R protein expression; (4) in both membrane and cytosolic fractions from the brainstem, adult mice exhibited higher AT2R and lower AT1R expression than did fetuses and neonates; and (5) in the brainstem, there were no significant differences in AT2R and AT1R messenger RNA (mRNA) levels among fetal, neonatal and adult mice. The above results reconfirmed our previous finding in rats that adult animals have higher AT2R and lower AT1R expression compared to fetuses and neonates. These data imply an involvement of AT1R in fetal development and of AT2R in adult function.
Collapse
Affiliation(s)
- Juan Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Angiotensin II AT1 receptor blocker candesartan prevents the fast up-regulation of cerebrocortical benzodiazepine-1 receptors induced by acute inflammatory and restraint stress. Behav Brain Res 2012; 232:84-92. [PMID: 22503782 DOI: 10.1016/j.bbr.2012.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
Centrally acting Angiotensin II AT(1) receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 μg/kg) with or without 3 days of pretreatment with the ARB candesartan (1mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ(1) receptors and reduced mRNA expression of the GABA(A) receptor γ(2) subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ(1) receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ(1) binding, and decreased γ(2) subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF(1) receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF(2) receptor binding was undetectable, but CRF(2) mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ(1) receptor expression; and that the stress-induced BZ(1) receptor expression is under the control of AT(1) receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ(1) receptors.
Collapse
|
41
|
An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav 2012; 107:686-98. [PMID: 22484112 DOI: 10.1016/j.physbeh.2012.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 01/12/2023]
Abstract
Panic disorder (PD) is a severe anxiety disorder characterized by susceptibility to induction of panic attacks by subthreshold interoceptive stimuli such as sodium lactate infusions or hypercapnia induction. Here we review a model of panic vulnerability in rats involving chronic inhibition of GABAergic tone in the dorsomedial/perifornical hypothalamic (DMH/PeF) region that produces enhanced anxiety and freezing responses in fearful situations, as well as a vulnerability to displaying acute panic-like increases in cardioexcitation, respiration activity and "flight" associated behavior following subthreshold interoceptive stimuli that do not elicit panic responses in control rats. This model of panic vulnerability was developed over 15 years ago and has provided an excellent preclinical model with robust face, predictive and construct validity. The model recapitulates many of the phenotypic features of panic attacks associated with human panic disorder (face validity) including greater sensitivity to panicogenic stimuli demonstrated by sudden onset of anxiety and autonomic activation following an administration of a sub-threshold (i.e., do not usually induce panic in healthy subjects) stimulus such as sodium lactate, CO(2), or yohimbine. The construct validity is supported by several key findings; DMH/PeF neurons regulate behavioral and autonomic components of a normal adaptive panic response, as well as being implicated in eliciting panic-like responses in humans. Additionally, patients with PD have deficits in central GABA activity and pharmacological restoration of central GABA activity prevents panic attacks, consistent with this model. The model's predictive validity is demonstrated by not only showing panic responses to several panic-inducing agents that elicit panic in patients with PD, but also by the positive therapeutic responses to clinically used agents such as alprazolam and antidepressants that attenuate panic attacks in patients. More importantly, this model has been utilized to discover novel drugs such as group II metabotropic glutamate agonists and a new class of translocator protein enhancers of GABA, both of which subsequently showed anti-panic properties in clinical trials. All of these data suggest that this preparation provides a strong preclinical model of some forms of human panic disorders.
Collapse
|
42
|
Renin-Angiotensin system hyperactivation can induce inflammation and retinal neural dysfunction. Int J Inflam 2012; 2012:581695. [PMID: 22536545 PMCID: PMC3321303 DOI: 10.1155/2012/581695] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/09/2011] [Accepted: 01/04/2012] [Indexed: 12/21/2022] Open
Abstract
The renin-angiotensin system (RAS) is a hormone system that has been classically known as a blood pressure regulator but is becoming well recognized as a proinflammatory mediator. In many diverse tissues, RAS pathway elements are also produced intrinsically, making it possible for tissues to respond more dynamically to systemic or local cues. While RAS is important for controlling normal inflammatory responses, hyperactivation of the pathway can cause neural dysfunction by inducing accelerated degradation of some neuronal proteins such as synaptophysin and by activating pathological glial responses. Chronic inflammation and oxidative stress are risk factors for high incidence vision-threatening diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. In fact, increasing evidence suggests that RAS inhibition may actually prevent progression of various ocular diseases including uveitis, DR, AMD, and glaucoma. Therefore, RAS inhibition may be a promising therapeutic approach to fine-tune inflammatory responses and to prevent or treat certain ocular and neurodegenerative diseases.
Collapse
|
43
|
Bayoglu B, Cengiz M, Karacetin G, Uysal O, Kocabasoğlu N, Bayar R, Balcioglu I. Genetic polymorphism of angiotensin I-converting enzyme (ACE), but not angiotensin II type I receptor (ATr1), has a gender-specific role in panic disorder. Psychiatry Clin Neurosci 2012; 66:130-7. [PMID: 22353325 DOI: 10.1111/j.1440-1819.2011.02318.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Angiotensins were shown to have some role in the development of panic disorder (PD). In this study, we aimed to determine the frequency of polymorphisms in two angiotensin-related genes, angiotensin I-converting enzyme (ACE) and angiotensin II type I receptor (ATr1), in a sample of Turkish patients with PD and to evaluate their association with PD development. METHODS Polymerase chain reaction and restriction fragment length polymorphism was used to analyze ATr1 A1166C polymorphism, and only polymerase chain reaction was used to analyze functional ACE insertion/deletion polymorphism in 123 patients with PD and in 169 similarly aged disease-free controls. RESULTS There was no significant difference in the genotype distribution between PD patients and controls for each polymorphism (P>0.05). Allele frequency of ACE insertion/deletion was borderline statistically significant between the groups (P=0.055; odds ratio: 1.39; 95% confidence interval: 0.99-1.95), and allele frequency of ATr1 A1166C was not significantly different between the groups (P=0.32; odds ratio: 0.81; 95% confidence interval: 0.53-1.22). CONCLUSION This study suggests that polymorphisms of ACE I/D and ATr1 A1166C are not associated with risk of PD in Turkish patients. However, in ACE insertion/deletion polymorphism, the insertion allele was found to be more frequent in the male subgroup of patients (χ²=4.61, P=0.032) than in controls, suggesting a potential male-specific role of the less active ACE insertion allele in the pathogenesis of PD.
Collapse
Affiliation(s)
- Burcu Bayoglu
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu F, Havens J, Yu Q, Wang G, Davisson RL, Pickel VM, Iadecola C. The link between angiotensin II-mediated anxiety and mood disorders with NADPH oxidase-induced oxidative stress. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2012; 4:28-35. [PMID: 22461954 PMCID: PMC3312460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/22/2012] [Indexed: 05/31/2023]
Abstract
The renin-angiotensin system (RAS) and its active peptide angiotensin II (AngII) have major involvements not only in hypertension but also in mood and anxiety disorders. Substantial evidence supports the notion that AngII acts as a neuromodulator in the brain. In this review, we provide an overview of the link between the RAS and anxiety or mood disorders, and focus on recent advances in the understanding of AngII-linked, NADPH oxidase-derived oxidative stress in the central nervous system, which may underlie pathogenesis of mood and anxiety disorders.
Collapse
Affiliation(s)
- Feng Liu
- Department of Child & Adolescent Psychiatry, New York University-Bellevue Hospital CenterNew York, NY 10016, USA
| | - Jennifer Havens
- Department of Child & Adolescent Psychiatry, New York University-Bellevue Hospital CenterNew York, NY 10016, USA
| | - Qi Yu
- Department of Neurology & Neuroscience, Weill Cornell Medical CollegeNew York, NY 10065, USA
| | - Gang Wang
- Department of Neurology & Neuroscience, Weill Cornell Medical CollegeNew York, NY 10065, USA
| | - Robin L. Davisson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY 14853, USA
| | - Virginia M. Pickel
- Department of Neurology & Neuroscience, Weill Cornell Medical CollegeNew York, NY 10065, USA
| | - Costantino Iadecola
- Department of Neurology & Neuroscience, Weill Cornell Medical CollegeNew York, NY 10065, USA
| |
Collapse
|
45
|
Salim S, Chugh G, Asghar M. Inflammation in Anxiety. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY VOLUME 88 2012; 88:1-25. [DOI: 10.1016/b978-0-12-398314-5.00001-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. PROGRESS IN BRAIN RESEARCH 2012; 198:133-61. [PMID: 22813973 DOI: 10.1016/b978-0-444-59489-1.00009-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A panic response is an adaptive response to deal with an imminent threat and consists of an integrated pattern of behavioral (aggression, fleeing, or freezing) and increased cardiorespiratory and endocrine responses that are highly conserved across vertebrate species. In the 1920s and 1940s, Philip Bard and Walter Hess, respectively, determined that the posterior regions of the hypothalamus are critical for a "fight-or-flight" reaction to deal with an imminent threat. Since the 1940s it was determined that the posterior hypothalamic panic area was located dorsal (perifornical hypothalamus: PeF) and dorsomedial (dorsomedial hypothalamus: DMH) to the fornix. This area is also critical for regulating circadian rhythms and in 1998, a novel wake-promoting neuropeptide called orexin (ORX)/hypocretin was discovered and determined to be almost exclusively synthesized in the DMH/PeF perifornical hypothalamus and adjacent lateral hypothalamus. The most proximally emergent role of ORX is in regulation of wakefulness through interactions with efferent systems that mediate arousal and energy homeostasis. A hypoactive ORX system is also linked to narcolepsy. However, ORX role in more complex emotional responses is emerging in more recent studies where ORX is linked to depression and anxiety states. Here, we review data that demonstrates ORX ability to mobilize a coordinated adaptive panic/defense response (anxiety, cardiorespiratory, and endocrine components), and summarize the evidence that supports a hyperactive ORX system being linked to pathological panic and anxiety states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | |
Collapse
|
47
|
Saavedra JM. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell Mol Neurobiol 2011; 32:667-81. [PMID: 21938488 DOI: 10.1007/s10571-011-9754-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/26/2011] [Indexed: 01/06/2023]
Abstract
Excessive allostatic load as a consequence of deregulated brain inflammation participates in the development and progression of multiple brain diseases, including but not limited to mood and neurodegenerative disorders. Inhibition of the peripheral and brain Renin-Angiotensin System by systemic administration of Angiotensin II AT(1) receptor blockers (ARBs) ameliorates inflammatory stress associated with hypertension, cold-restraint, and bacterial endotoxin administration. The mechanisms involved include: (a) decreased inflammatory factor production in peripheral organs and their release to the circulation; (b) reduced progression of peripherally induced inflammatory cascades in the cerebral vasculature and brain parenchyma; and (c) direct anti-inflammatory effects in cerebrovascular endothelial cells, microglia, and neurons. In addition, ARBs reduce bacterial endotoxin-induced anxiety and depression. Further pre-clinical experiments reveal that ARBs reduce brain inflammation, protect cognition in rodent models of Alzheimer's disease, and diminish brain inflammation associated with genetic hypertension, ischemia, and stroke. The anti-inflammatory effects of ARBs have also been reported in circulating human monocytes. Clinical studies demonstrate that ARBs improve mood, significantly reduce cognitive decline after stroke, and ameliorate the progression of Alzheimer's disease. ARBs are well-tolerated and extensively used to treat cardiovascular and metabolic disorders such as hypertension and diabetes, where inflammation is an integral pathogenic mechanism. We propose that including ARBs in a novel integrated approach for the treatment of brain disorders such as depression and Alzheimer's disease may be of immediate translational relevance.
Collapse
Affiliation(s)
- Juan M Saavedra
- Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Effects of dietary glutamine and gamma-aminobutyric acid on performance, carcass characteristics and serum parameters in broilers under circular heat stress. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Mayorov DN. Brain angiotensin AT1 receptors as specific regulators of cardiovascular reactivity to acute psychoemotional stress. Clin Exp Pharmacol Physiol 2011; 38:126-35. [PMID: 21143493 DOI: 10.1111/j.1440-1681.2010.05469.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Cardiovascular reactivity, an abrupt rise in blood pressure (BP) and heart rate in response to psychoemotional stress, is a risk factor for heart disease. Pharmacological and molecular genetic studies suggest that brain angiotensin (Ang) II and AT(1) receptors are required for the normal expression of sympathetic cardiovascular responses to various psychological stressors. Moreover, overactivity of the brain AngII system may contribute to enhanced cardiovascular reactivity in hypertension. 2. Conversely, brain AT(1) receptors appear to be less important for the regulation of sympathetic cardiovascular responses to a range of stressors involving an immediate physiological threat (physical stressors) in animal models. 3. Apart from threatening events, appetitive stimuli can induce a distinct, central nervous system-mediated rise in BP. However, evidence indicates that brain AT(1) receptors are not essential for the regulation of cardiovascular arousal associated with positively motivated behaviour, such as anticipation and the consumption of palatable food. The role of central AT(1) receptors in regulating cardiovascular activation elicited by other types of appetitive stimuli remains to be determined. 4. Emerging evidence also indicates that brain AT(1) receptors play a limited role in the regulation of cardiovascular responses to non-emotional natural daily activities, sleep and exercise. 5. Collectively, these findings suggest that, with respect to cardiovascular arousal, central AT(1) receptors may be involved primarily in the regulation of the defence response. Therefore, these receptors could be a potential therapeutic target for selective attenuation of BP hyperreactivity to aversive stressors, without altering physiologically important cardiovascular adjustments to normal daily activities, sleep and exercise.
Collapse
Affiliation(s)
- Dmitry N Mayorov
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
50
|
Krause EG, de Kloet AD, Flak JN, Smeltzer MD, Solomon MB, Evanson NK, Woods SC, Sakai RR, Herman JP. Hydration state controls stress responsiveness and social behavior. J Neurosci 2011; 31:5470-6. [PMID: 21471383 PMCID: PMC3086063 DOI: 10.1523/jneurosci.6078-10.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 12/25/2022] Open
Abstract
Life stress frequently occurs within the context of homeostatic challenge, requiring integration of physiological and psychological need into appropriate hormonal, cardiovascular, and behavioral responses. To test neural mechanisms underlying stress integration within the context of homeostatic adversity, we evaluated the impact of a pronounced physiological (hypernatremia) challenge on hypothalamic-pituitary-adrenal (HPA), cardiovascular, and behavioral responses to an acute psychogenic stress. Relative to normonatremic controls, rats rendered mildly hypernatremic had decreased HPA activation in response to physical restraint, a commonly used rodent model of psychogenic stress. In addition, acute hypernatremia attenuated the cardiovascular response to restraint and promoted faster recovery to prestress levels. Subsequent to restraint, hypernatremic rats had significantly more c-Fos expression in oxytocin- and vasopressin-containing neurons within the supraoptic and paraventricular nuclei of the hypothalamus. Hypernatremia also completely eliminated the increased plasma renin activity that accompanied restraint in controls, but greatly elevated circulating levels of oxytocin. The endocrine and cardiovascular profile of hypernatremic rats was predictive of decreased anxiety-like behavior in the social interaction test. Collectively, the results indicate that acute hypernatremia is a potent inhibitor of the HPA, cardiovascular, and behavioral limbs of the stress response. The implications are that the compensatory responses that promote renal-sodium excretion when faced with hypernatremia also act on the nervous system to decrease reactivity to psychogenic stressors and facilitate social behavior, which may suppress the anxiety associated with approaching a communal water source and support the social interactions that may be encountered when engaging in drinking behavior.
Collapse
Affiliation(s)
- Eric G. Krause
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
| | - Annette D. de Kloet
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
- Program in Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237, and
| | - Jonathan N. Flak
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
- Program in Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237, and
| | - Michael D. Smeltzer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
| | - Matia B. Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
| | - Nathan K. Evanson
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Stephen C. Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
| | - Randall R. Sakai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
| | - James P. Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45219
| |
Collapse
|