1
|
Rossi FM, Pizzorusso T. Neuroproteomics applied to the study of visual cortex plasticity. Neuroscience 2025; 576:8-16. [PMID: 40258567 DOI: 10.1016/j.neuroscience.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
The huge complexity of neuronal circuits arises from a temporarily overlapped influence of genetic and environmental factors (Nature and Nurture). During specific temporal windows of postnatal development, the so-called critical or sensitive periods of plasticity, the brain is particularly susceptible to the effects of experience, though this sensitivity declines with age. The most widely used experimental paradigm for studying critical periods of plasticity is the ocular dominance model in the mammalian visual cortex. Recent advancements in large-scale methodological approaches have enabled the analysis of the cellular and molecular factors regulating plasticity, highlighting the complex interaction among various metabolic and regulatory pathways. Traditionally, genomic and transcriptomic techniques have been employed to investigate the Central Nervous System in a comprehensive manner, including studies on critical period plasticity in the visual cortex. However, it is the technical advancements in proteomic approaches that have established neuroproteomics as a powerful tool for investigating both normal and pathological brain states. Despite its potential, proteomics has been underutilized in studying visual cortical plasticity. Here, we review existing studies and emphasize the importance of exploiting neuroproteomics, and of integrating with other complementary "omic" approaches, to accurately identify the true active cellular agents and ultimate mediators of brain functions.
Collapse
Affiliation(s)
- Francesco Mattia Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Tommaso Pizzorusso
- BIO@SNS Laboratory, Scuola Normale Superiore/Institute of Neuroscience, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Shmal D, Mantero G, Floss T, Benfenati F, Maya-Vetencourt JF. Restoring vision in adult amblyopia by enhancing plasticity through deletion of the transcriptional repressor REST. iScience 2024; 27:109507. [PMID: 38591011 PMCID: PMC11000024 DOI: 10.1016/j.isci.2024.109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Visual cortical plasticity is high during early life, but gradually decreases with development. This is due to the Otx2-driven maturation of intracortical inhibition that parallels the condensation of extracellular matrix components into perineuronal nets mainly around parvalbumin-positive GABAergic neurons. Repressor Element 1 Silencing Transcription (REST) epigenetically controls the expression of a plethora of neuron-specific genes. We demonstrate that the conditional knockout of REST in the primary visual cortex of adult mice induces a shift of ocular dominance after short-term monocular deprivation and promotes the recovery of vision in long-term deprived animals after reverse suture. These phenomena paralleled a reduction of perineuronal net density and increased expression of REST target genes, but not of the homeoprotein Otx2 in the visual cortex contralateral to the deprived eye. This shows that REST regulates adult visual cortical plasticity and is a potential therapeutic target to restore vision in adult amblyopia by enhancing V1 plasticity.
Collapse
Affiliation(s)
- Dmytro Shmal
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giulia Mantero
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Thomas Floss
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - José Fernando Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Laguardia A, Dapueto A, McCuistion H, Rossi FM. Cofilin 1 Is Dynamically Modulated During Postnatal Development and by Visual Input in the Mouse Visual Cortex. Neuroscience 2023; 510:147-156. [PMID: 36470478 DOI: 10.1016/j.neuroscience.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Cofilin 1 is an actin depolymerizing protein playing a fundamental role in the turnover of actin filaments specifically in dendritic spines, where it has been associated with structural and functional plasticity processes. Using a differential proteomic approach, we recently identified cofilin 1 as a potential candidate for controlling plasticity levels in the mouse visual cortex. Here, we focus on analyzing the expression of cofilin 1 and of its serine-3 phosphorylated inactive form in the mouse visual cortex during postnatal development and its modulation by visual input. Western blot experiments showed that cofilin 1 decreases from the critical period to the adult stage, in correlation with the decreasing level of cortical plasticity, and that monocular deprivation increases its expression in the cortex contralateral to the deprived eye during the critical period but not in the adult stage. By immunohistochemistry, we identified that the phospho-cofilin 1 immunopositive signal is homogeneously expressed along the different layers of the mouse visual cortex and that it increases during postnatal development. Furthermore, monocular deprivation increases the phospho-cofilin 1 signal in the contralateral cortex to the deprived eye during the critical period but not in the adult stage. Altogether, these results suggest that cofilin 1 and its modification by phosphorylation are relevant players in the processes controlling experience-dependent plasticity in the mouse visual cortex.
Collapse
Affiliation(s)
- Agustin Laguardia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Agustina Dapueto
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Hanna McCuistion
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Francesco Mattia Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
4
|
Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M. Heterosynaptic Plasticity and the Experience-Dependent Refinement of Developing Neuronal Circuits. Front Neural Circuits 2021; 15:803401. [PMID: 34949992 PMCID: PMC8689143 DOI: 10.3389/fncir.2021.803401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Neurons remodel the structure and strength of their synapses during critical periods of development in order to optimize both perception and cognition. Many of these developmental synaptic changes are thought to occur through synapse-specific homosynaptic forms of experience-dependent plasticity. However, homosynaptic plasticity can also induce or contribute to the plasticity of neighboring synapses through heterosynaptic interactions. Decades of research in vitro have uncovered many of the molecular mechanisms of heterosynaptic plasticity that mediate local compensation for homosynaptic plasticity, facilitation of further bouts of plasticity in nearby synapses, and cooperative induction of plasticity by neighboring synapses acting in concert. These discoveries greatly benefited from new tools and technologies that permitted single synapse imaging and manipulation of structure, function, and protein dynamics in living neurons. With the recent advent and application of similar tools for in vivo research, it is now feasible to explore how heterosynaptic plasticity contribute to critical periods and the development of neuronal circuits. In this review, we will first define the forms heterosynaptic plasticity can take and describe our current understanding of their molecular mechanisms. Then, we will outline how heterosynaptic plasticity may lead to meaningful refinement of neuronal responses and observations that suggest such mechanisms are indeed at work in vivo. Finally, we will use a well-studied model of cortical plasticity—ocular dominance plasticity during a critical period of visual cortex development—to highlight the molecular overlap between heterosynaptic and developmental forms of plasticity, and suggest potential avenues of future research.
Collapse
Affiliation(s)
- Kyle R Jenks
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Katya Tsimring
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jose C Zepeda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
5
|
The Cytotoxic Necrotizing Factors (CNFs)-A Family of Rho GTPase-Activating Bacterial Exotoxins. Toxins (Basel) 2021; 13:toxins13120901. [PMID: 34941738 PMCID: PMC8709095 DOI: 10.3390/toxins13120901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host-pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.
Collapse
|
6
|
Urbinati C, Cosentino L, Germinario EAP, Valenti D, Vigli D, Ricceri L, Laviola G, Fiorentini C, Vacca RA, Fabbri A, De Filippis B. Treatment with the Bacterial Toxin CNF1 Selectively Rescues Cognitive and Brain Mitochondrial Deficits in a Female Mouse Model of Rett Syndrome Carrying a MeCP2-Null Mutation. Int J Mol Sci 2021; 22:6739. [PMID: 34201747 PMCID: PMC8269120 DOI: 10.3390/ijms22136739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Daniela Valenti
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Laura Ricceri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI), 00165 Rome, Italy;
| | - Rosa Anna Vacca
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| |
Collapse
|
7
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
8
|
Vannini E, Mori E, Tantillo E, Schmidt G, Caleo M, Costa M. CTX-CNF1 Recombinant Protein Selectively Targets Glioma Cells In Vivo. Toxins (Basel) 2021; 13:194. [PMID: 33800135 PMCID: PMC7998600 DOI: 10.3390/toxins13030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
Current strategies for glioma treatment are only partly effective because of the poor selectivity for tumoral cells. Hence, the necessity to identify novel approaches is urgent. Recent studies highlighted the effectiveness of the bacterial protein cytotoxic necrotizing factor 1 (CNF1) in reducing tumoral mass, increasing survival of glioma-bearing mice and protecting peritumoral neural tissue from dysfunction. However, native CNF1 needs to be delivered into the brain, because of its incapacity to cross the blood-brain barrier (BBB) per se, thus hampering its clinical translation. To allow a non-invasive administration of CNF1, we here developed a chimeric protein (CTX-CNF1) conjugating CNF1 with chlorotoxin (CTX), a peptide already employed in clinics due to its ability of passing the BBB and selectively binding glioma cells. After systemic administration, we found that CTX-CNF1 is able to target glioma cells and significantly prolong survival of glioma-bearing mice. Our data point out the potentiality of CTX-CNF1 as a novel effective tool to treat gliomas.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
- Fondazione Umberto Veronesi, 20122 Milan, Italy
| | | | - Elena Tantillo
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
| | - Gudula Schmidt
- Medizinische Fakultät, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, University of Freiburg, 79085 Freiburg, Germany;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy; (E.T.); (M.C.); (M.C.)
| |
Collapse
|
9
|
Saraceno C, Catania M, Paterlini A, Fostinelli S, Ciani M, Zanardini R, Binetti G, Di Fede G, Caroppo P, Benussi L, Ghidoni R, Bolognin S. Altered Expression of Circulating Cdc42 in Frontotemporal Lobar Degeneration. J Alzheimers Dis 2019; 61:1477-1483. [PMID: 29376863 DOI: 10.3233/jad-170722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The term frontotemporal lobar degeneration (FTLD) defines a group of heterogeneous conditions histologically characterized by neuronal degeneration, inclusions of various proteins, and synaptic loss. However, the molecular mechanisms contributing to these alterations are still unknown. As the Rho-GTPase family member Cell division cycle 42 (Cdc42) plays a key role in the regulation of actin cytoskeleton dynamics and spine formation, we investigated whether Cdc42 protein levels were altered in the disease. Cdc42 was increased in the frontal cortex of FTLD patients compared to age-matched controls, but also in Alzheimer's disease (AD) patients included in the data-set. On the other hand, the pool of circulating Cdc42 in the plasma was altered in FTLD but not in AD patients. Interestingly, the stratification of the FTLD patients according to the different clinical variants showed a specific decrease of Cdc42 expression in the behavioral subgroup. This data support a role of Cdc42 in FTLD and specifically in the behavioral variant.
Collapse
Affiliation(s)
- Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marcella Catania
- Division of Neurology and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Anna Paterlini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuseppe Di Fede
- Division of Neurology and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Paola Caroppo
- Division of Neurology and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Bolognin
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
10
|
Borin M, Saraceno C, Catania M, Lorenzetto E, Pontelli V, Paterlini A, Fostinelli S, Avesani A, Di Fede G, Zanusso G, Benussi L, Binetti G, Zorzan S, Ghidoni R, Buffelli M, Bolognin S. Rac1 activation links tau hyperphosphorylation and Aβ dysmetabolism in Alzheimer's disease. Acta Neuropathol Commun 2018; 6:61. [PMID: 30005699 PMCID: PMC6045891 DOI: 10.1186/s40478-018-0567-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
One of the earliest pathological features characterizing Alzheimer’s disease (AD) is the loss of dendritic spines. Among the many factors potentially mediating this loss of neuronal connectivity, the contribution of Rho-GTPases is of particular interest. This family of proteins has been known for years as a key regulator of actin cytoskeleton remodeling. More recent insights have indicated how its complex signaling might be triggered also in pathological conditions. Here, we showed that the Rho-GTPase family member Rac1 levels decreased in the frontal cortex of AD patients compared to non-demented controls. Also, Rac1 increased in plasma samples of AD patients with Mini-Mental State Examination < 18 compared to age-matched non demented controls. The use of different constitutively active peptides allowed us to investigate in vitro Rac1 specific signaling. Its activation increased the processing of amyloid precursor protein and induced the translocation of SET from the nucleus to the cytoplasm, resulting in tau hyperphosphorylation at residue pT181. Notably, Rac1 was abnormally activated in the hippocampus of 6-week-old 3xTg-AD mice. However, the total protein levels decreased at 7-months. A rescue strategy based on the intranasal administration of Rac1 active peptide at 6.5 months prevented dendritic spine loss. This data suggests the intriguing possibility of a dual role of Rac1 according to the different stages of the pathology. In an initial stage, Rac1 deregulation might represent a triggering co-factor due to the direct effect on Aβ and tau. However, at a later stage of the pathology, it might represent a potential therapeutic target due to the beneficial effect on spine dynamics.
Collapse
|
11
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
12
|
Tantillo E, Colistra A, Vannini E, Cerri C, Pancrazi L, Baroncelli L, Costa M, Caleo M. Bacterial Toxins and Targeted Brain Therapy: New Insights from Cytotoxic Necrotizing Factor 1 (CNF1). Int J Mol Sci 2018; 19:ijms19061632. [PMID: 29857515 PMCID: PMC6032336 DOI: 10.3390/ijms19061632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023] Open
Abstract
Pathogenic bacteria produce toxins to promote host invasion and, therefore, their survival. The extreme potency and specificity of these toxins confer to this category of proteins an exceptionally strong potential for therapeutic exploitation. In this review, we deal with cytotoxic necrotizing factor (CNF1), a cytotoxin produced by Escherichia coli affecting fundamental cellular processes, including cytoskeletal dynamics, cell cycle progression, transcriptional regulation, cell survival and migration. First, we provide an overview of the mechanisms of action of CNF1 in target cells. Next, we focus on the potential use of CNF1 as a pharmacological treatment in central nervous system’s diseases. CNF1 appears to impact neuronal morphology, physiology, and plasticity and displays an antineoplastic activity on brain tumors. The ability to preserve neural functionality and, at the same time, to trigger senescence and death of proliferating glioma cells, makes CNF1 an encouraging new strategy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Elena Tantillo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Fondazione Pisana per la Scienza Onlus (FPS), via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy.
| | - Antonella Colistra
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Departement of Biology, University of Pisa, via Luca Ghini 13, 56126 Pisa, Italy.
| | - Eleonora Vannini
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Chiara Cerri
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy.
| | - Laura Pancrazi
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Laura Baroncelli
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Mario Costa
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
13
|
Maroccia Z, Loizzo S, Travaglione S, Frank C, Fabbri A, Fiorentini C. New therapeutics from Nature: The odd case of the bacterial cytotoxic necrotizing factor 1. Biomed Pharmacother 2018; 101:929-937. [PMID: 29635902 DOI: 10.1016/j.biopha.2018.02.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Natural products may represent a rich source of new drugs. The enthusiasm toward this topic has recently been fueled by the 2015 Nobel Prize in Physiology or Medicine, awarded for the discovery of avermectin and artemisinin, natural products from Bacteria and Plantae, respectively, which have targeted one of the major global health issues, the parasitic diseases. Specifically, bacteria either living in the environment or colonizing our body may produce compounds of unexpected biomedical value with the potentiality to be employed as therapeutic drugs. In this review, the fascinating history of CNF1, a protein toxin produced by pathogenic strains of Escherichia coli, is divulged. Even if produced by bacteria responsible for a variety of diseases, CNF1 can behave as a promising benefactor to mankind. By modulating the Rho GTPases, this bacterial product plays a key role in organizing the actin cytoskeleton, enhancing synaptic plasticity and brain energy level, rescuing cognitive deficits, reducing glioma growth in experimental animals. These abilities strongly suggest the need to proceed with the studies on this odd drug in order to pave the way toward clinical trials.
Collapse
Affiliation(s)
- Zaira Maroccia
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Loizzo
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Travaglione
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Claudio Frank
- Italian Centre for Rare Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Alessia Fabbri
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Fiorentini
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
14
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
15
|
Aguilar BJ, Zhu Y, Lu Q. Rho GTPases as therapeutic targets in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:97. [PMID: 29246246 PMCID: PMC5732365 DOI: 10.1186/s13195-017-0320-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
The progress we have made in understanding Alzheimer’s disease (AD) pathogenesis has led to the identification of several novel pathways and potential therapeutic targets. Rho GTPases have been implicated as critical components in AD pathogenesis, but their various functions and interactions make understanding their complex signaling challenging to study. Recent advancements in both the field of AD and Rho GTPase drug development provide novel tools for the elucidation of Rho GTPases as a viable target for AD. Herein, we summarize the fluctuating activity of Rho GTPases in various stages of AD pathogenesis and in several in vitro and in vivo AD models. We also review the current pharmacological tools such as NSAIDs, RhoA/ROCK, Rac1, and Cdc42 inhibitors used to target Rho GTPases and their use in AD-related studies. Finally, we summarize the behavioral modifications following Rho GTPase modulation in several AD mouse models. As key regulators of several AD-related signals, Rho GTPases have been studied as targets in AD. However, a consensus has yet to be reached regarding the stage at which targeting Rho GTPases would be the most beneficial. The studies discussed herein emphasize the critical role of Rho GTPases and the benefits of their modulation in AD.
Collapse
Affiliation(s)
- Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| | - Yi Zhu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA. .,The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
16
|
Valenti D, de Bari L, Vigli D, Lacivita E, Leopoldo M, Laviola G, Vacca RA, De Filippis B. Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology 2017; 121:79-88. [PMID: 28419872 DOI: 10.1016/j.neuropharm.2017.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that neurobehavioral and brain molecular alterations can be rescued in a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family, crucially involved in the regulation of brain structural plasticity and cognitive processes, can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective agonist. The present study extends previous findings by demonstrating that LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues mitochondrial respiratory chain impairment, oxidative phosphorylation deficiency and the reduced energy status in the brain of heterozygous female mice from two highly validated mouse models of RTT (MeCP2-308 and MeCP2-Bird mice). Moreover, LP-211 treatment completely restored the radical species overproduction by brain mitochondria in the MeCP2-308 model and partially recovered the oxidative imbalance in the more severely affected MeCP2-Bird model. These results provide the first evidence that RTT brain mitochondrial dysfunction can be rescued targeting the brain 5-HT7R and add compelling preclinical evidence of the potential therapeutic value of LP-211 as a pharmacological approach for this devastating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Enza Lacivita
- Dept. Pharmacy, University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy
| | - Marcello Leopoldo
- Dept. Pharmacy, University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
17
|
Abstract
Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer's disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/CCdh1 substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/CCdh1-mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration.
Collapse
|
18
|
Vannini E, Maltese F, Olimpico F, Fabbri A, Costa M, Caleo M, Baroncelli L. Progression of motor deficits in glioma-bearing mice: impact of CNF1 therapy at symptomatic stages. Oncotarget 2017; 8:23539-23550. [PMID: 28212563 PMCID: PMC5410325 DOI: 10.18632/oncotarget.15328] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor. In this context, animal models represent excellent tools for the early detection and longitudinal mapping of neuronal dysfunction, that are critical in the preclinical validation of new therapeutic strategies. In a mouse glioma model, we developed sensitive behavioral readouts that allow early recognizing and following neurological symptoms. We injected GL261 cells into the primary motor cortex of syngenic mice and we used a battery of behavioral tests to longitudinally monitor the dysfunction induced by tumor growth. Grip strength test revealed an early onset of functional deficit associated to the glioma growth, with a significant forelimb weakness appearing 9 days after tumor inoculation. A later deficit was observed in the rotarod and in the grid walk tasks. Using this model, we found reduced tumor growth and maintenance of behavioral functions following treatment with Cytotoxic Necrotizing Factor 1 (CNF1) at a symptomatic stage. Our data provide a detailed and precise examination of how tumor growth reverberates on the behavioral functions of glioma-bearing mice, providing normative data for the study of therapeutic strategies for glioma treatment. The reduced tumor volume and robust functional sparing observed in CNF1-treated, glioma-bearing mice strengthen the notion that CNF1 delivery is a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Eleonora Vannini
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Federica Maltese
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | | | | | - Mario Costa
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Matteo Caleo
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
19
|
Alia C, Spalletti C, Lai S, Panarese A, Micera S, Caleo M. Reducing GABA A-mediated inhibition improves forelimb motor function after focal cortical stroke in mice. Sci Rep 2016; 6:37823. [PMID: 27897203 PMCID: PMC5126677 DOI: 10.1038/srep37823] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/21/2016] [Indexed: 11/25/2022] Open
Abstract
A deeper understanding of post-stroke plasticity is critical to devise more effective pharmacological and rehabilitative treatments. The GABAergic system is one of the key modulators of neuronal plasticity, and plays an important role in the control of “critical periods” during brain development. Here, we report a key role for GABAergic inhibition in functional restoration following ischemia in the adult mouse forelimb motor cortex. After stroke, the majority of cortical sites in peri-infarct areas evoked simultaneous movements of forelimb, hindlimb and tail, consistent with a loss of inhibitory signalling. Accordingly, we found a delayed decrease in several GABAergic markers that accompanied cortical reorganization. To test whether reductions in GABAergic signalling were causally involved in motor improvements, we treated animals during an early post-stroke period with a benzodiazepine inverse agonist, which impairs GABAA receptor function. We found that hampering GABAA signalling led to significant restoration of function in general motor tests (i.e., gridwalk and pellet reaching tasks), with no significant impact on the kinematics of reaching movements. Improvements were persistent as they remained detectable about three weeks after treatment. These data demonstrate a key role for GABAergic inhibition in limiting motor improvements after cortical stroke.
Collapse
Affiliation(s)
- Claudia Alia
- Scuola Normale Superiore, 56126, Pisa, Italy.,CNR Neuroscience Institute, 56124, Pisa, Italy
| | | | - Stefano Lai
- The BioRobotics Institute Scuola Superiore Sant'Anna, 56025, Pontedera (PI), Italy
| | - Alessandro Panarese
- The BioRobotics Institute Scuola Superiore Sant'Anna, 56025, Pontedera (PI), Italy
| | - Silvestro Micera
- The BioRobotics Institute Scuola Superiore Sant'Anna, 56025, Pontedera (PI), Italy.,Ecole Polytechnique Federale de Lausanne (EPFL), Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
20
|
Guadagni V, Cerri C, Piano I, Novelli E, Gargini C, Fiorentini C, Caleo M, Strettoi E. The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa. Sci Rep 2016; 6:35919. [PMID: 27775019 PMCID: PMC5075935 DOI: 10.1038/srep35919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited pathologies characterized by progressive photoreceptor degeneration. In rodent models of RP, expression of defective genes and retinal degeneration usually manifest during the first weeks of postnatal life, making it difficult to distinguish consequences of primary genetic defects from abnormalities in retinal development. Moreover, mouse eyes are small and not always adequate to test pharmacological and surgical treatments. An inducible paradigm of retinal degeneration potentially extensible to large animals is therefore desirable. Starting from the serendipitous observation that intraocular injections of a Rho GTPase activator, the bacterial toxin Cytotoxic Necrotizing Factor 1 (CNF1), lead to retinal degeneration, we implemented an inducible model recapitulating most of the key features of Retinitis Pigmentosa. The model also unmasks an intrinsic vulnerability of photoreceptors to the mechanism of CNF1 action, indicating still unexplored molecular pathways potentially leading to the death of these cells in inherited forms of retinal degeneration.
Collapse
Affiliation(s)
- Viviana Guadagni
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Chiara Cerri
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy.,Accademia dei Lincei, Rome, 00165, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, 56126, Italy
| | - Elena Novelli
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa, Pisa, 56126, Italy
| | | | - Matteo Caleo
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council (CNR), Pisa, 56124, Italy
| |
Collapse
|
21
|
Therapeutic effects of the Rho GTPase modulator CNF1 in a model of Parkinson’s disease. Neuropharmacology 2016; 109:357-365. [DOI: 10.1016/j.neuropharm.2016.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/25/2016] [Accepted: 06/17/2016] [Indexed: 11/23/2022]
|
22
|
SRGAP2 and Its Human-Specific Paralog Co-Regulate the Development of Excitatory and Inhibitory Synapses. Neuron 2016; 91:356-69. [PMID: 27373832 DOI: 10.1016/j.neuron.2016.06.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/12/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
The proper function of neural circuits requires spatially and temporally balanced development of excitatory and inhibitory synapses. However, the molecular mechanisms coordinating excitatory and inhibitory synaptogenesis remain unknown. Here we demonstrate that SRGAP2A and its human-specific paralog SRGAP2C co-regulate the development of excitatory and inhibitory synapses in cortical pyramidal neurons in vivo. SRGAP2A promotes synaptic maturation, and ultimately the synaptic accumulation of AMPA and GABAA receptors, by interacting with key components of both excitatory and inhibitory postsynaptic scaffolds, Homer and Gephyrin. Furthermore, SRGAP2A limits the density of both types of synapses via its Rac1-GAP activity. SRGAP2C inhibits all identified functions of SRGAP2A, protracting the maturation and increasing the density of excitatory and inhibitory synapses. Our results uncover a molecular mechanism coordinating critical features of synaptic development and suggest that human-specific duplication of SRGAP2 might have contributed to the emergence of unique traits of human neurons while preserving the excitation/inhibition balance.
Collapse
|
23
|
Vannini E, Olimpico F, Middei S, Ammassari-Teule M, de Graaf EL, McDonnell L, Schmidt G, Fabbri A, Fiorentini C, Baroncelli L, Costa M, Caleo M. Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function. Neuro Oncol 2016; 18:1634-1643. [PMID: 27298309 DOI: 10.1093/neuonc/now114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/22/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. METHODS We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle- and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. RESULTS Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. CONCLUSIONS Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies.
Collapse
Affiliation(s)
- Eleonora Vannini
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Francesco Olimpico
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Silvia Middei
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Martine Ammassari-Teule
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Erik L de Graaf
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Liam McDonnell
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Gudula Schmidt
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Alessia Fabbri
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Carla Fiorentini
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Laura Baroncelli
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Mario Costa
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Matteo Caleo
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| |
Collapse
|
24
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
25
|
Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases. Neural Plast 2016; 2016:3025948. [PMID: 26989514 PMCID: PMC4775798 DOI: 10.1155/2016/3025948] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders.
Collapse
|
26
|
Lewis DA, Glausier JR. Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:31-75. [PMID: 27627824 DOI: 10.1007/978-3-319-30596-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Adhesion GPCRs as Novel Actors in Neural and Glial Cell Functions: From Synaptogenesis to Myelination. Handb Exp Pharmacol 2016; 234:275-298. [PMID: 27832492 DOI: 10.1007/978-3-319-41523-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) are emerging as key regulators of nervous system development and health. aGPCRs can regulate many aspects of neural development, including cell signaling, cell-cell and cell-matrix interactions, and, potentially, mechanosensation. Here, we specifically focus on the roles of several aGPCRs in synapse biology, dendritogenesis, and myelinating glial cell development. The lessons learned from these examples may be extrapolated to other contexts in the nervous system and beyond.
Collapse
|
28
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
29
|
Cell-to-cell propagation of the bacterial toxin CNF1 via extracellular vesicles: potential impact on the therapeutic use of the toxin. Toxins (Basel) 2015; 7:4610-21. [PMID: 26556375 PMCID: PMC4663523 DOI: 10.3390/toxins7114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells secrete extracellular vesicles (EVs), either constitutively or in a regulated manner, which represent an important mode of intercellular communication. EVs serve as vehicles for transfer between cells of membrane and cytosolic proteins, lipids and RNA. Furthermore, certain bacterial protein toxins, or possibly their derived messages, can be transferred cell to cell via EVs. We have herein demonstrated that eukaryotic EVs represent an additional route of cell-to-cell propagation for the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1). Our results prove that EVs from CNF1 pre-infected epithelial cells can induce cytoskeleton changes, Rac1 and NF-κB activation comparable to that triggered by CNF1. The observation that the toxin is detectable inside EVs derived from CNF1-intoxicated cells strongly supports the hypothesis that extracellular vesicles can offer to the toxin a novel route to travel from cell to cell. Since anthrax and tetanus toxins have also been reported to engage in the same process, we can hypothesize that EVs represent a common mechanism exploited by bacterial toxins to enhance their pathogenicity.
Collapse
|
30
|
Travaglione S, Ballan G, Fortuna A, Ferri A, Guidotti M, Campana G, Fiorentini C, Loizzo S. CNF1 Enhances Brain Energy Content and Counteracts Spontaneous Epileptiform Phenomena in Aged DBA/2J Mice. PLoS One 2015; 10:e0140495. [PMID: 26457896 PMCID: PMC4601759 DOI: 10.1371/journal.pone.0140495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022] Open
Abstract
Epilepsy, one of the most common conditions affecting the brain, is characterized by neuroplasticity and brain cell energy defects. In this work, we demonstrate the ability of the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) to counteract epileptiform phenomena in inbred DBA/2J mice, an animal model displaying genetic background with an high susceptibility to induced- and spontaneous seizures. Via modulation of the Rho GTPases, CNF1 regulates actin dynamics with a consequent increase in spine density and length in pyramidal neurons of rat visual cortex, and influences the mitochondrial homeostasis with remarkable changes in the mitochondrial network architecture. In addition, CNF1 improves cognitive performances and increases ATP brain content in mouse models of Rett syndrome and Alzheimer's disease. The results herein reported show that a single dose of CNF1 induces a remarkable amelioration of the seizure phenotype, with a significant augmentation in neuroplasticity markers and in cortex mitochondrial ATP content. This latter effect is accompanied by a decrease in the expression of mitochondrial fission proteins, suggesting a role of mitochondrial dynamics in the CNF1-induced beneficial effects on this epileptiform phenotype. Our results strongly support the crucial role of brain energy homeostasis in the pathogenesis of certain neurological diseases, and suggest that CNF1 could represent a putative new therapeutic tool for epilepsy.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Giulia Ballan
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Andrea Fortuna
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Alberto Ferri
- Institute of Cellular Biology and Neurobiology, CNR, Via del Fosso di Fiorano 64/65, 00143, Roma, Italy
| | - Marco Guidotti
- Department of Veterinary Public Health and Food Safety, Viale Regina Elena 299, 00161, Roma, Italy
| | - Gabriele Campana
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
- * E-mail:
| |
Collapse
|
31
|
Liu H, Li Y, Wang Y, Wang X, An X, Wang S, Chen L, Liu G, Yang Y. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain 2015; 8:49. [PMID: 26282667 PMCID: PMC4539718 DOI: 10.1186/s13041-015-0141-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/10/2015] [Indexed: 01/23/2023] Open
Abstract
Background Experience-dependent plasticity is confined to the critical period of early postnatal life, and declines dramatically thereafter. This attenuation promotes the stabilization of cortical circuits, but also limits functional recovery of several brain diseases. The cognitive functions and synaptic plasticity in the hippocampus and prefrontal cortex are elevated following chronic magnesium treatment. Here, we explored the effect of magnesium treatment on visual plasticity and the potential clinical significance. Results Visual plasticity in adult mice was dramatically enhanced following magnesium treatment, which was concurrent with an increase in the expression of NR2 subunits of N-methyl-D-aspartate receptors. Blockade of NR2B activity in both the induction and expression periods of plasticity prevented this reinstatement. However, the plasticity restored via a decrease in cortical inhibition was independent on the activation of NR2B, indicating a different underlying mechanism. The functional excitatory synapses on layer 2/3 pyramidal neurons were increased following magnesium supplementation. Moreover, the synaptic and neuronal responses were reminiscent of that within the critical period, and this rejuvenation of adult visual cortex facilitated the recovery of visual functions in amblyopia. Conclusions Collectively, our data reveal two distinct mechanisms underlying the restoration of visual plasticity in adulthood, and the rejuvenation of adult visual cortex following magnesium treatment provides a new avenue to develop clinical therapies for adult amblyopia, as well as to explore plasticity-based treatment of other brain diseases, such as stroke and aphasia. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0141-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanxiao Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Yue Li
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xinxing Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xu An
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Siying Wang
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Lin Chen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Guosong Liu
- Tsinghua-Peking Centre for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yupeng Yang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
32
|
Ruiz-Perera L, Muniz M, Vierci G, Bornia N, Baroncelli L, Sale A, Rossi FM. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex. Sci Rep 2015. [PMID: 26205348 PMCID: PMC4513348 DOI: 10.1038/srep12517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain.
Collapse
Affiliation(s)
- L Ruiz-Perera
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - M Muniz
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - G Vierci
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - N Bornia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - L Baroncelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - A Sale
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - F M Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| |
Collapse
|
33
|
Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome. Eur Neuropsychopharmacol 2015; 25:889-901. [PMID: 25890884 DOI: 10.1016/j.euroneuro.2015.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/03/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
Abstract
Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.
Collapse
|
34
|
De Filippis B, Chiodi V, Adriani W, Lacivita E, Mallozzi C, Leopoldo M, Domenici MR, Fuso A, Laviola G. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Front Behav Neurosci 2015; 9:86. [PMID: 25926782 PMCID: PMC4396444 DOI: 10.3389/fnbeh.2015.00086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/21/2015] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family—crucially involved in the regulation of brain structural plasticity and cognitive processes—can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes mazetest) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Valentina Chiodi
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - Walter Adriani
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari "A. Moro" Bari, Italy
| | - Cinzia Mallozzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | | | - Maria Rosaria Domenici
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome Rome, Italy ; European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
35
|
Fu Y, Kaneko M, Tang Y, Alvarez-Buylla A, Stryker MP. A cortical disinhibitory circuit for enhancing adult plasticity. eLife 2015; 4:e05558. [PMID: 25626167 PMCID: PMC4337686 DOI: 10.7554/elife.05558] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
The adult brain continues to learn and can recover from injury, but the elements and operation of the neural circuits responsible for this plasticity are not known. In previous work, we have shown that locomotion dramatically enhances neural activity in the visual cortex (V1) of the mouse (Niell and Stryker, 2010), identified the cortical circuit responsible for this enhancement (Fu et al., 2014), and shown that locomotion also dramatically enhances adult plasticity (Kaneko and Stryker, 2014). The circuit that is responsible for enhancing neural activity in the visual cortex contains both vasoactive intestinal peptide (VIP) and somatostatin (SST) neurons (Fu et al., 2014). Here, we ask whether this VIP-SST circuit enhances plasticity directly, independent of locomotion and aerobic activity. Optogenetic activation or genetic blockade of this circuit reveals that it is both necessary and sufficient for rapidly increasing V1 cortical responses following manipulation of visual experience in adult mice. These findings reveal a disinhibitory circuit that regulates adult cortical plasticity. DOI:http://dx.doi.org/10.7554/eLife.05558.001
Collapse
Affiliation(s)
- Yu Fu
- Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Megumi Kaneko
- Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Yunshuo Tang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Michael P Stryker
- Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
36
|
Lefort R. Reversing synapse loss in Alzheimer's disease: Rho-guanosine triphosphatases and insights from other brain disorders. Neurotherapeutics 2015; 12:19-28. [PMID: 25588580 PMCID: PMC4322073 DOI: 10.1007/s13311-014-0328-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Alzheimer's disease (AD) is a monumental public health crisis with no effective cure or treatment. To date, therapeutic strategies have focused almost exclusively on upstream signaling events in the disease, namely on β-amyloid and amyloid precursor protein processing, and have, unfortunately, yielded few, if any, promising results. An alternative approach may be to target signaling events downstream of β-amyloid and even tau. However, with so many pathways already linked to the disease, understanding which ones are "drivers" versus "passengers" in the pathogenesis of the disease remains a tremendous challenge. Given the critical roles of Rho-guanosine triphosphatases (GTPases) in regulating the actin cytoskeleton and spine dynamics, and the strong association between spine abnormalities and cognition, it is not surprising that mutations in a number of genes involved in Rho-GTPase signaling have been implicated in several brain disorders, including schizophrenia and autism. And now, there is mounting literature implicating Rho-GTPase signaling in AD pathogenesis as well. Here, I review this evidence, with a particular emphasis on the regulators of Rho-GTPase signaling, namely guanine nucleotide exchange factors and GTPase-activating proteins. Several of these have been linked to various aspects of AD, and each offers a novel potential therapeutic target for AD.
Collapse
Affiliation(s)
- Roger Lefort
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA,
| |
Collapse
|
37
|
Travaglione S, Loizzo S, Rizza T, Del Brocco A, Ballan G, Guidotti M, Vona R, Di Nottia M, Torraco A, Carrozzo R, Fiorentini C, Fabbri A. Enhancement of mitochondrial ATP production by the Escherichia coli cytotoxic necrotizing factor 1. FEBS J 2014; 281:3473-88. [PMID: 24925215 DOI: 10.1111/febs.12874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles that constantly change shape and structure in response to different stimuli and metabolic demands of the cell. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) has recently been reported to influence mitochondrial activity in a mouse model of Rett syndrome and to increase ATP content in the brain tissue of an Alzheimer's disease mouse model. In the present work, the ability of CNF1 to influence mitochondrial activity was investigated in IEC-6 normal intestinal crypt cells. In these cells, the toxin was able to induce an increase in cellular ATP content, probably due to an increment of the mitochondrial electron transport chain. In addition, the CNF1-induced Rho GTPase activity also caused changes in the mitochondrial architecture that mainly consisted in the formation of a complex network of elongated mitochondria. The involvement of the cAMP-dependent protein kinase A signaling pathway was postulated. Our results demonstrate that CNF1 positively affects mitochondria by bursting their energetic function and modifying their morphology.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
De Filippis B, Romano E, Laviola G. Aberrant Rho GTPases signaling and cognitive dysfunction: in vivo evidence for a compelling molecular relationship. Neurosci Biobehav Rev 2014; 46 Pt 2:285-301. [PMID: 24971827 DOI: 10.1016/j.neubiorev.2014.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 01/11/2023]
Abstract
Rho GTPases are key intracellular signaling molecules that coordinate dynamic changes in the actin cytoskeleton, thereby stimulating a variety of processes, including morphogenesis, migration, neuronal development, cell division and adhesion. Deviations from normal Rho GTPases activation state have been proposed to disrupt cognition and synaptic plasticity. This review focuses on the functional consequences of genetic ablation of upstream and downstream Rho GTPases molecules on cognitive function and neuronal morphology and connectivity. Available information on this issue is described and compared to that gained from mice carrying mutations in the most studied Rho GTPases and from pharmacological in vivo studies in which brain Rho GTPases signaling was modulated. Results from reviewed literature provide definitive evidence of a compelling link between Rho GTPases signaling and cognitive function, thus supporting the notion that Rho GTPases and their downstream effectors may represent important therapeutic targets for disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca De Filippis
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy.
| | - Emilia Romano
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy; Bambino Gesù, Children Hospital, IRCCS, Roma, Italy
| | - Giovanni Laviola
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
39
|
Vannini E, Panighini A, Cerri C, Fabbri A, Lisi S, Pracucci E, Benedetto N, Vannozzi R, Fiorentini C, Caleo M, Costa M. The bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1) provides long-term survival in a murine glioma model. BMC Cancer 2014; 14:449. [PMID: 24939046 PMCID: PMC4075618 DOI: 10.1186/1471-2407-14-449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastomas are largely unresponsive to all available treatments and there is therefore an urgent need for novel therapeutics. Here we have probed the antineoplastic effects of a bacterial protein toxin, the cytotoxic necrotizing factor 1 (CNF1), in the syngenic GL261 glioma cell model. CNF1 produces a long-lasting activation of Rho GTPases, with consequent blockade of cytodieresis in proliferating cells and promotion of neuron health and plasticity. Methods We have tested the antiproliferative effects of CNF1 on GL261 cells and human glioma cells obtained from surgical specimens. For the in vivo experiments, we injected GL261 cells into the adult mouse visual cortex, and five days later we administered either a single intracerebral dose of CNF1 or vehicle. To compare CNF1 with a canonical antitumoral drug, we infused temozolomide (TMZ) via minipumps for 1 week in an additional animal group. Results In culture, CNF1 was very effective in blocking proliferation of GL261 cells, leading them to multinucleation, senescence and death within 15 days. CNF1 had a similar cytotoxic effect in primary human glioma cells. CNF1 also inhibited motility of GL261 cells in a scratch-wound migration assay. Low dose (2 nM) CNF1 and continuous TMZ infusion significantly prolonged animal survival (median survival 35 days vs. 28 days in vehicle controls). Remarkably, increasing CNF1 concentration to 80 nM resulted in a dramatic enhancement of survival with no obvious toxicity. Indeed, 57% of the CNF1-treated animals survived up to 60 days following GL261 glioma cell transplant. Conclusions The activation of Rho GTPases by CNF1 represents a novel potential therapeutic strategy for the treatment of central nervous system tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Matteo Caleo
- CNR Neuroscience Institute, Via Moruzzi 1, 56124 Pisa, Italy.
| | | |
Collapse
|
40
|
Allegra M, Genovesi S, Maggia M, Cenni MC, Zunino G, Sgadò P, Caleo M, Bozzi Y. Altered GABAergic markers, increased binocularity and reduced plasticity in the visual cortex of Engrailed-2 knockout mice. Front Cell Neurosci 2014; 8:163. [PMID: 24987331 PMCID: PMC4060086 DOI: 10.3389/fncel.2014.00163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/29/2014] [Indexed: 01/23/2023] Open
Abstract
The maturation of the GABAergic system is a crucial determinant of cortical development during early postnatal life, when sensory circuits undergo a process of activity-dependent refinement. An altered excitatory/inhibitory balance has been proposed as a possible pathogenic mechanism of autism spectrum disorders (ASD). The homeobox-containing transcription factor Engrailed-2 (En2) has been associated to ASD, and En2 knockout (En2−/−) mice show ASD-like features accompanied by a partial loss of cortical GABAergic interneurons. Here we studied GABAergic markers and cortical function in En2−/− mice, by exploiting the well-known anatomical and functional features of the mouse visual system. En2 is expressed in the visual cortex at postnatal day 30 and during adulthood. When compared to age-matched En2+/+ controls, En2−/− mice showed an increased number of parvalbumin (PV+), somatostatin (SOM+), and neuropeptide Y (NPY+) positive interneurons in the visual cortex at P30, and a decreased number of SOM+ and NPY+ interneurons in the adult. At both ages, the differences in distinct interneuron populations observed between En2+/+ and En2−/− mice were layer-specific. Adult En2−/− mice displayed a normal eye-specific segregation in the retino-geniculate pathway, and in vivo electrophysiological recordings showed a normal development of basic functional properties (acuity, response latency, receptive field size) of the En2−/− primary visual cortex. However, a significant increase of binocularity was found in P30 and adult En2−/− mice, as compared to age-matched controls. Differently from what observed in En2+/+ mice, the En2−/− primary visual cortex did not respond to a brief monocular deprivation performed between P26 and P29, during the so-called “critical period.” These data suggest that altered GABAergic circuits impact baseline binocularity and plasticity in En2−/− mice, while leaving other visual functional properties unaffected.
Collapse
Affiliation(s)
- Manuela Allegra
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy ; Laboratory of Neurobiology, Scuola Normale Superiore Pisa, Italy
| | - Sacha Genovesi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Marika Maggia
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Maria C Cenni
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| | - Giulia Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Paola Sgadò
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| | - Yuri Bozzi
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy ; Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| |
Collapse
|
41
|
Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014; 269:343-66. [PMID: 24721734 DOI: 10.1016/j.neuroscience.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
Collapse
Affiliation(s)
| | - C Messier
- School of Psychology, University of Ottawa, Canada.
| |
Collapse
|
42
|
Bolognin S, Lorenzetto E, Diana G, Buffelli M. The potential role of rho GTPases in Alzheimer's disease pathogenesis. Mol Neurobiol 2014; 50:406-22. [PMID: 24452387 DOI: 10.1007/s12035-014-8637-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by a wide loss of synapses and dendritic spines. Despite extensive efforts, the molecular mechanisms driving this detrimental alteration have not yet been determined. Among the factors potentially mediating this loss of neuronal connectivity, the contribution of Rho GTPases is of particular interest. This family of proteins is classically considered a key regulator of actin cytoskeleton remodeling and dendritic spine maintenance, but new insights into the complex dynamics of its regulation have recently determined how its signaling cascade is still largely unknown, both in physiological and pathological conditions. Here, we review the growing evidence supporting the potential involvement of Rho GTPases in spine loss, which is a unanimously recognized hallmark of early AD pathogenesis. We also discuss some new insights into Rho GTPase signaling framework that might explain several controversial results that have been published. The study of the connection between AD and Rho GTPases represents a quite unchartered avenue that holds therapeutic potential.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurological and Movement Sciences, Section of Physiology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
43
|
Travaglione S, Loizzo S, Ballan G, Fiorentini C, Fabbri A. The E. coli CNF1 as a pioneering therapy for the central nervous system diseases. Toxins (Basel) 2014; 6:270-82. [PMID: 24402235 PMCID: PMC3920261 DOI: 10.3390/toxins6010270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 01/24/2023] Open
Abstract
The Cytotoxic Necrotizing Factor 1 (CNF1), a protein toxin from pathogenic E. coli, modulates the Rho GTPases, thus, directing the organization of the actin cytoskeleton. In the nervous system, the Rho GTPases play a key role in several processes, controlling the morphogenesis of dendritic spines and synaptic plasticity in brain tissues. This review is focused on the peculiar property of CNF1 to enhance brain plasticity in in vivo animal models of central nervous system (CNS) diseases, and on its possible application in therapy.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Giulia Ballan
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
44
|
Patent Highlights. Pharm Pat Anal 2013. [DOI: 10.4155/ppa.13.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Snapshot of key developments in the patent literature accompanied by explanatory synopses
Collapse
|
45
|
Ferrari E, Gu C, Niranjan D, Restani L, Rasetti-Escargueil C, Obara I, Geranton SM, Arsenault J, Goetze TA, Harper CB, Nguyen TH, Maywood E, O'Brien J, Schiavo G, Wheeler DW, Meunier FA, Hastings M, Edwardson JM, Sesardic D, Caleo M, Hunt SP, Davletov B. Synthetic self-assembling clostridial chimera for modulation of sensory functions. Bioconjug Chem 2013; 24:1750-9. [PMID: 24011174 PMCID: PMC3901392 DOI: 10.1021/bc4003103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridial neurotoxins reversibly block neuronal communication for weeks and months. While these proteolytic neurotoxins hold great promise for clinical applications and the investigation of brain function, their paralytic activity at neuromuscular junctions is a stumbling block. To redirect the clostridial activity to neuronal populations other than motor neurons, we used a new self-assembling method to combine the botulinum type A protease with the tetanus binding domain, which natively targets central neurons. The two parts were produced separately and then assembled in a site-specific way using a newly introduced 'protein stapling' technology. Atomic force microscopy imaging revealed dumbbell shaped particles which measure ∼23 nm. The stapled chimera inhibited mechanical hypersensitivity in a rat model of inflammatory pain without causing either flaccid or spastic paralysis. Moreover, the synthetic clostridial molecule was able to block neuronal activity in a defined area of visual cortex. Overall, we provide the first evidence that the protein stapling technology allows assembly of distinct proteins yielding new biomedical properties.
Collapse
Affiliation(s)
- Enrico Ferrari
- MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons. Mol Psychiatry 2013; 18:943-50. [PMID: 23628982 PMCID: PMC3730300 DOI: 10.1038/mp.2013.46] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 11/09/2022]
Abstract
Adhesion-G protein-coupled receptors (GPCRs) are a poorly studied subgroup of the GPCRs, which have diverse biological roles and are major targets for therapeutic intervention. Among them, the Brain Angiogenesis Inhibitor (BAI) family has been linked to several psychiatric disorders, but despite their very high neuronal expression, the function of these receptors in the central nervous system has barely been analyzed. Our results, obtained using expression knockdown and overexpression experiments, reveal that the BAI3 receptor controls dendritic arborization growth and branching in cultured neurons. This role is confirmed in Purkinje cells in vivo using specific expression of a deficient BAI3 protein in transgenic mice, as well as lentivirus driven knockdown of BAI3 expression. Regulation of dendrite morphogenesis by BAI3 involves activation of the RhoGTPase Rac1 and the binding to a functional ELMO1, a critical Rac1 regulator. Thus, activation of the BAI3 signaling pathway could lead to direct reorganization of the actin cytoskeleton through RhoGTPase signaling in neurons. Given the direct link between RhoGTPase/actin signaling pathways, neuronal morphogenesis and psychiatric disorders, our mechanistic data show the importance of further studying the role of the BAI adhesion-GPCRs to understand the pathophysiology of such brain diseases.
Collapse
|
47
|
CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer's disease. PLoS One 2013; 8:e65898. [PMID: 23738020 PMCID: PMC3667817 DOI: 10.1371/journal.pone.0065898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis.
Collapse
|
48
|
Martino A, Ettorre M, Musilli M, Lorenzetto E, Buffelli M, Diana G. Rho GTPase-dependent plasticity of dendritic spines in the adult brain. Front Cell Neurosci 2013; 7:62. [PMID: 23734098 PMCID: PMC3661998 DOI: 10.3389/fncel.2013.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 01/12/2023] Open
Abstract
Brain activity is associated with structural changes in the neural connections. However, in vivo imaging of the outer cortical layers has shown that dendritic spines, on which most excitatory synapses insist, are predominantly stable in adulthood. Changes in dendritic spines are governed by small GTPases of the Rho family through modulation of the actin cytoskeleton. Yet, while there are abundant data about this functional effect of Rho GTPases in vitro, there is limited evidence that Rho GTPase signaling in the brain is associated with changes in neuronal morphology. In the present work, both chronic in vivo two-photon imaging and Golgi staining reveal that the activation of Rho GTPases in the adult mouse brain is associated with little change of dendritic spines in the apical dendrites of primary visual cortex pyramidal neurons. On the contrary, considerable increase in spine density is observed (i) in the basal dendrites of the same neurons (ii) in both basal and apical dendrites of the hippocampal CA1 pyramidal cells. While confirming that Rho GTPase-dependent increase in spine density can be substantial, the study indicates region and dendrite selectivity with relative stability of superficial cortical circuits.
Collapse
Affiliation(s)
- Assunta Martino
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità Roma, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Goh WWB, Sergot MJ, Sng JCG, Sng JC, Wong L. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice. J Proteome Res 2013; 12:2116-27. [PMID: 23557376 PMCID: PMC3805323 DOI: 10.1021/pr301127f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Despite
its prominence for characterization of complex mixtures,
LC–MS/MS frequently fails to identify many proteins. Network-based
analysis methods, based on protein–protein interaction networks
(PPINs), biological pathways, and protein complexes, are useful for
recovering non-detected proteins, thereby enhancing analytical resolution.
However, network-based analysis methods do come in varied flavors
for which the respective efficacies are largely unknown. We compare
the recovery performance and functional insights from three distinct
instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline
(PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario
of valproic acid (VPA)-treated mice. We find that the most comprehensive
functional insights, as well as best non-detected protein recovery
performance, are derived from FCS utilizing real biological complexes.
This outstrips other network-based methods such as Maxlink or Proteomics
Expansion Pipeline (PEP). From FCS, we identified known biological
complexes involved in epigenetic modifications, neuronal system development,
and cytoskeletal rearrangements. This is congruent with the observed
phenotype where adult mice showed an increase in dendritic branching
to allow the rewiring of visual cortical circuitry and an improvement
in their visual acuity when tested behaviorally. In addition, PEP
also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB,
and TJP1, which is functionally related to the observed phenotype.
Although our results suggest different network analysis methods can
produce different results, on the whole, the findings are mutually
supportive. More critically, the non-overlapping information each
provides can provide greater holistic understanding of complex phenotypes.
Collapse
|
50
|
Behavioral effects of Rho GTPase modulation in a model of Alzheimer's disease. Behav Brain Res 2012; 237:223-9. [PMID: 23026376 DOI: 10.1016/j.bbr.2012.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 12/19/2022]
Abstract
Small GTPases of the Rho family, including Rho, Rac and CDC42 subfamilies, play key role in neural connectivity and cognition. The pharmacological modulation of these regulatory proteins is associated with enhancement of learning and memory. We sought to determine whether the modulation of cerebral Rho GTPases may correct behavioral disturbances in a mouse model of Alzheimer's disease (AD). TgCRND8 mice show early-onset Abeta amyloid deposits associated with deficits in several cognitive tasks. We report that four-month old TgCRND8 mice display (a) increased locomotor activity in an open field, (b) mild deficits in the learning of a fixed platform position in a water maze task. More markedly, after displacement of the escape platform, TgCRND8 mice exhibit impairment in the learning of the novel position (reversal learning), as they perseverate searching in the familiar position. The administration of the Rho GTPase activator Cytotoxic Necrotizing Factor 1 (CNF1, 1.0 fmol kg(-1) intracerebroventricularly) reduces locomotor hyperactivity and corrects the deficits in reversal learning, thus re-establishing normal behavioral plasticity. We conclude that the pharmacological modulation of Rho GTPase signaling might be beneficial for the treatment of AD. Reversal learning in TgCRND8 mice may represent a convenient pre-clinical assay for the efficacy of therapeutic interventions in AD.
Collapse
|