1
|
Murase S, Severin D, Dye L, Mesik L, Moreno C, Kirkwood A, Quinlan EM. Adult visual deprivation engages associative, presynaptic plasticity of thalamic input to cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626829. [PMID: 39677752 PMCID: PMC11643054 DOI: 10.1101/2024.12.04.626829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Associative plasticity at thalamocortical synapses is thought to be constrained by age in the mammalian cortex. However, here we show for the first time that prolonged visual deprivation induces robust and reversible plasticity at synapses between first order visual thalamus and cortical layer 4 pyramidal neurons. The plasticity is associative and expressed by changes in presynaptic function, thereby amplifying and relaying the change in efferent drive to the visual cortex.
Collapse
|
2
|
Mesik L, Parkins S, Severin D, Grier BD, Ewall G, Kotha S, Wesselborg C, Moreno C, Jaoui Y, Felder A, Huang B, Johnson MB, Harrigan TP, Knight AE, Lani SW, Lemaire T, Kirkwood A, Hwang GM, Lee HK. Transcranial Low-Intensity Focused Ultrasound Stimulation of the Visual Thalamus Produces Long-Term Depression of Thalamocortical Synapses in the Adult Visual Cortex. J Neurosci 2024; 44:e0784232024. [PMID: 38316559 PMCID: PMC10941064 DOI: 10.1523/jneurosci.0784-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.
Collapse
Affiliation(s)
- Lukas Mesik
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Samuel Parkins
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Cell Molecular Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218
| | - Daniel Severin
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Bryce D Grier
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Gabrielle Ewall
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Sumasri Kotha
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Christian Wesselborg
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Cell Molecular Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218
| | - Cristian Moreno
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Yanis Jaoui
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Adrianna Felder
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Brian Huang
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marina B Johnson
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Timothy P Harrigan
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Anna E Knight
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Shane W Lani
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Théo Lemaire
- Neuroscience Institute, New York University Langone Health, New York, New York 10016
| | - Alfredo Kirkwood
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Grace M Hwang
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Hey-Kyoung Lee
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
3
|
Bayazitov IT, Teubner BJW, Feng F, Wu Z, Li Y, Blundon JA, Zakharenko SS. Sound-evoked adenosine release in cooperation with neuromodulatory circuits permits auditory cortical plasticity and perceptual learning. Cell Rep 2024; 43:113758. [PMID: 38358887 PMCID: PMC10939737 DOI: 10.1016/j.celrep.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.
Collapse
Affiliation(s)
- Ildar T Bayazitov
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Feng
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaofa Wu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jay A Blundon
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
Carlos-Lima E, Higa GSV, Viana FJC, Tamais AM, Cruvinel E, Borges FDS, Francis-Oliveira J, Ulrich H, De Pasquale R. Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex. Int J Mol Sci 2023; 25:519. [PMID: 38203689 PMCID: PMC10778629 DOI: 10.3390/ijms25010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Serotonergic neurons constitute one of the main systems of neuromodulators, whose diffuse projections regulate the functions of the cerebral cortex. Serotonin (5-HT) is known to play a crucial role in the differential modulation of cortical activity related to behavioral contexts. Some features of the 5-HT signaling organization suggest its possible participation as a modulator of activity-dependent synaptic changes during the critical period of the primary visual cortex (V1). Cells of the serotonergic system are among the first neurons to differentiate and operate. During postnatal development, ramifications from raphe nuclei become massively distributed in the visual cortical area, remarkably increasing the availability of 5-HT for the regulation of excitatory and inhibitory synaptic activity. A substantial amount of evidence has demonstrated that synaptic plasticity at pyramidal neurons of the superficial layers of V1 critically depends on a fine regulation of the balance between excitation and inhibition (E/I). 5-HT could therefore play an important role in controlling this balance, providing the appropriate excitability conditions that favor synaptic modifications. In order to explore this possibility, the present work used in vitro intracellular electrophysiological recording techniques to study the effects of 5-HT on the E/I balance of V1 layer 2/3 neurons, during the critical period. Serotonergic action on the E/I balance has been analyzed on spontaneous activity, evoked synaptic responses, and long-term depression (LTD). Our results pointed out that the predominant action of 5-HT implies a reduction in the E/I balance. 5-HT promoted LTD at excitatory synapses while blocking it at inhibitory synaptic sites, thus shifting the Hebbian alterations of synaptic strength towards lower levels of E/I balance.
Collapse
Affiliation(s)
- Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo 09210-580, SP, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Alicia Moraes Tamais
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, New York, NY 11203, USA;
| | - José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| |
Collapse
|
5
|
Lee HK. Metaplasticity framework for cross-modal synaptic plasticity in adults. Front Synaptic Neurosci 2023; 14:1087042. [PMID: 36685084 PMCID: PMC9853192 DOI: 10.3389/fnsyn.2022.1087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Sensory loss leads to widespread adaptation of neural circuits to mediate cross-modal plasticity, which allows the organism to better utilize the remaining senses to guide behavior. While cross-modal interactions are often thought to engage multisensory areas, cross-modal plasticity is often prominently observed at the level of the primary sensory cortices. One dramatic example is from functional imaging studies in humans where cross-modal recruitment of the deprived primary sensory cortex has been observed during the processing of the spared senses. In addition, loss of a sensory modality can lead to enhancement and refinement of the spared senses, some of which have been attributed to compensatory plasticity of the spared sensory cortices. Cross-modal plasticity is not restricted to early sensory loss but is also observed in adults, which suggests that it engages or enables plasticity mechanisms available in the adult cortical circuit. Because adult cross-modal plasticity is observed without gross anatomical connectivity changes, it is thought to occur mainly through functional plasticity of pre-existing circuits. The underlying cellular and molecular mechanisms involve activity-dependent homeostatic and Hebbian mechanisms. A particularly attractive mechanism is the sliding threshold metaplasticity model because it innately allows neurons to dynamically optimize their feature selectivity. In this mini review, I will summarize the cellular and molecular mechanisms that mediate cross-modal plasticity in the adult primary sensory cortices and evaluate the metaplasticity model as an effective framework to understand the underlying mechanisms.
Collapse
|
6
|
Kourosh-Arami M, Hosseini N, Komaki A. Brain is modulated by neuronal plasticity during postnatal development. J Physiol Sci 2021; 71:34. [PMID: 34789147 PMCID: PMC10716960 DOI: 10.1186/s12576-021-00819-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022]
Abstract
Neuroplasticity is referred to the ability of the nervous system to change its structure or functions as a result of former stimuli. It is a plausible mechanism underlying a dynamic brain through adaptation processes of neural structure and activity patterns. Nevertheless, it is still unclear how the plastic neural systems achieve and maintain their equilibrium. Additionally, the alterations of balanced brain dynamics under different plasticity rules have not been explored either. Therefore, the present article primarily aims to review recent research studies regarding homosynaptic and heterosynaptic neuroplasticity characterized by the manipulation of excitatory and inhibitory synaptic inputs. Moreover, it attempts to understand different mechanisms related to the main forms of synaptic plasticity at the excitatory and inhibitory synapses during the brain development processes. Hence, this study comprised surveying those articles published since 1988 and available through PubMed, Google Scholar and science direct databases on a keyword-based search paradigm. All in all, the study results presented extensive and corroborative pieces of evidence for the main types of plasticity, including the long-term potentiation (LTP) and long-term depression (LTD) of the excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs).
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
All-or-none disconnection of pyramidal inputs onto parvalbumin-positive interneurons gates ocular dominance plasticity. Proc Natl Acad Sci U S A 2021; 118:2105388118. [PMID: 34508001 DOI: 10.1073/pnas.2105388118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 12/16/2022] Open
Abstract
Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, "all-or-none," elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (Pyr→PV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of Pyr→PV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of Pyr→PV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local Pyr→PV circuitry gates experience-dependent cortical plasticity.
Collapse
|
8
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Miyamoto D, Marshall W, Tononi G, Cirelli C. Net decrease in spine-surface GluA1-containing AMPA receptors after post-learning sleep in the adult mouse cortex. Nat Commun 2021; 12:2881. [PMID: 34001888 PMCID: PMC8129120 DOI: 10.1038/s41467-021-23156-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
The mechanisms by which sleep benefits learning and memory remain unclear. Sleep may further strengthen the synapses potentiated by learning or promote broad synaptic weakening while protecting the newly potentiated synapses. We tested these ideas by combining a motor task whose consolidation is sleep-dependent, a marker of synaptic AMPA receptor plasticity, and repeated two-photon imaging to track hundreds of spines in vivo with single spine resolution. In mouse motor cortex, sleep leads to an overall net decrease in spine-surface GluA1-containing AMPA receptors, both before and after learning. Molecular changes in single spines during post-learning sleep are correlated with changes in performance after sleep. The spines in which learning leads to the largest increase in GluA1 expression have a relative advantage after post-learning sleep compared to sleep deprivation, because sleep weakens all remaining spines. These results are obtained in adult mice, showing that sleep-dependent synaptic down-selection also benefits the mature brain.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- University of Toyama, Toyama, Japan
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Jamann N, Dannehl D, Lehmann N, Wagener R, Thielemann C, Schultz C, Staiger J, Kole MHP, Engelhardt M. Sensory input drives rapid homeostatic scaling of the axon initial segment in mouse barrel cortex. Nat Commun 2021; 12:23. [PMID: 33397944 PMCID: PMC7782484 DOI: 10.1038/s41467-020-20232-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
The axon initial segment (AIS) is a critical microdomain for action potential initiation and implicated in the regulation of neuronal excitability during activity-dependent plasticity. While structural AIS plasticity has been suggested to fine-tune neuronal activity when network states change, whether it acts in vivo as a homeostatic regulatory mechanism in behaviorally relevant contexts remains poorly understood. Using the mouse whisker-to-barrel pathway as a model system in combination with immunofluorescence, confocal analysis and electrophysiological recordings, we observed bidirectional AIS plasticity in cortical pyramidal neurons. Furthermore, we find that structural and functional AIS remodeling occurs in distinct temporal domains: Long-term sensory deprivation elicits an AIS length increase, accompanied with an increase in neuronal excitability, while sensory enrichment results in a rapid AIS shortening, accompanied by a decrease in action potential generation. Our findings highlight a central role of the AIS in the homeostatic regulation of neuronal input-output relations.
Collapse
Affiliation(s)
- Nora Jamann
- Axonal Signaling Group, Netherlands Institute for Neurosciences (NIN), Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dominik Dannehl
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadja Lehmann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robin Wagener
- Clinic of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Corinna Thielemann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schultz
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Staiger
- Institute of Neuroanatomy, University Medical Center, Georg August University of Göttingen, Göttingen, Germany
| | - Maarten H P Kole
- Axonal Signaling Group, Netherlands Institute for Neurosciences (NIN), Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, The Netherlands.
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Maren Engelhardt
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Huang S, Kirkwood A. Endocannabinoid Signaling Contributes to Experience-Induced Increase of Synaptic Release Sites From Parvalbumin Interneurons in Mouse Visual Cortex. Front Cell Neurosci 2020; 14:571133. [PMID: 33192316 PMCID: PMC7556304 DOI: 10.3389/fncel.2020.571133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
During postnatal development of the visual cortex between eye-opening to puberty, visual experience promotes a gradual increase in the strength of inhibitory synaptic connections from parvalbumin-positive interneurons (PV-INs) onto layer 2/3 pyramidal cells. However, the detailed connectivity properties and molecular mechanisms underlying these developmental changes are not well understood. Using dual-patch clamp in brain slices from G42 mice, we revealed that both connection probability and the number of synaptic release sites contributed to the enhancement of synaptic strength. The increase of release site number was hindered by dark rearing from eye-opening and rescued by 3-days re-exposure to the normal visual environment. The effect of light re-exposure on restoring synaptic release sites in dark reared mice was mimicked by the agonist of cannabinoid-1 (CB1) receptors and blocked by an antagonist of these receptors, suggesting a role for endocannabinoid signaling in light-induced maturation of inhibitory connectivity from PV-INs to pyramidal cells during postnatal development.
Collapse
Affiliation(s)
- Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States.,The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Xu W, Löwel S, Schlüter OM. Silent Synapse-Based Mechanisms of Critical Period Plasticity. Front Cell Neurosci 2020; 14:213. [PMID: 32765222 PMCID: PMC7380267 DOI: 10.3389/fncel.2020.00213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Critical periods are postnatal, restricted time windows of heightened plasticity in cortical neural networks, during which experience refines principal neuron wiring configurations. Here, we propose a model with two distinct types of synapses, innate synapses that establish rudimentary networks with innate function, and gestalt synapses that govern the experience-dependent refinement process. Nascent gestalt synapses are constantly formed as AMPA receptor-silent synapses which are the substrates for critical period plasticity. Experience drives the unsilencing and stabilization of gestalt synapses, as well as synapse pruning. This maturation process changes synapse patterning and consequently the functional architecture of cortical excitatory networks. Ocular dominance plasticity (ODP) in the primary visual cortex (V1) is an established experimental model for cortical plasticity. While converging evidence indicates that the start of the critical period for ODP is marked by the maturation of local inhibitory circuits, recent results support our model that critical periods end through the progressive maturation of gestalt synapses. The cooperative yet opposing function of two postsynaptic signaling scaffolds of excitatory synapses, PSD-93 and PSD-95, governs the maturation of gestalt synapses. Without those proteins, networks do not progress far beyond their innate functionality, resulting in rather impaired perception. While cortical networks remain malleable throughout life, the cellular mechanisms and the scope of critical period and adult plasticity differ. Critical period ODP is initiated with the depression of deprived eye responses in V1, whereas adult ODP is characterized by an initial increase in non-deprived eye responses. Our model proposes the gestalt synapse-based mechanism for critical period ODP, and also predicts a different mechanism for adult ODP based on the sparsity of nascent gestalt synapses at that age. Under our model, early life experience shapes the boundaries (the gestalt) for network function, both for its optimal performance as well as for its pathological state. Thus, reintroducing nascent gestalt synapses as plasticity substrates into adults may improve the network gestalt to facilitate functional recovery.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Neuroscience, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, University of Göttingen, Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Oliver M. Schlüter
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Cereb Cortex 2020; 30:2555-2572. [PMID: 31832634 PMCID: PMC7174998 DOI: 10.1093/cercor/bhz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.
Collapse
Affiliation(s)
- Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Sb Finnie
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taekeun Kim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eitan S Kaplan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Samuel F Cooke
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Maurice Wohl Institute for Clinical Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- The Medical Research Council Centre for Neurodevelopmental Disorders (MRC CNDD), King's College London, London SE5 8AF, UK
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Cirelli C, Tononi G. Effects of sleep and waking on the synaptic ultrastructure. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190235. [PMID: 32248785 PMCID: PMC7209920 DOI: 10.1098/rstb.2019.0235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We summarize here several studies performed in our laboratory, mainly using serial block-face scanning electron microscopy (SBEM), to assess how sleep, spontaneous waking and short sleep deprivation affect the size and number of synapses in the cerebral cortex and hippocampus. With SBEM, we reconstructed thousands of cortical and hippocampal excitatory, axospinous synapses and compared the distribution of their size after several hours of sleep relative to several hours of waking. Because stronger synapses are on average also bigger, the goal was to test a prediction of the synaptic homeostasis hypothesis, according to which overall synaptic strength increases during waking, owing to ongoing learning, and needs to be renormalized during sleep, to avoid saturation and to benefit memory consolidation and integration. Consistent with this hypothesis, we found that the size of the axon–spine interface (ASI), a morphological measure of synaptic strength, was on average smaller after sleep, but with interesting differences between primary cortex and the CA1 region of the hippocampus. In two-week-old mouse pups, the decline in ASI size after sleep was larger, and affected more cortical synapses, compared with one-month-old adolescent mice, suggesting that synaptic renormalization during sleep may be especially important during early development. This work is still in progress and other brain areas need to be tested after sleep, acute sleep loss and chronic sleep restriction. Still, the current results show that a few hours of sleep or waking lead to significant changes in synaptic morphology that can be linked to changes in synaptic efficacy. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| |
Collapse
|
15
|
Rodríguez G, Chakraborty D, Schrode KM, Saha R, Uribe I, Lauer AM, Lee HK. Cross-Modal Reinstatement of Thalamocortical Plasticity Accelerates Ocular Dominance Plasticity in Adult Mice. Cell Rep 2019; 24:3433-3440.e4. [PMID: 30257205 PMCID: PMC6233297 DOI: 10.1016/j.celrep.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Plasticity of thalamocortical (TC) synapses is robust during early
development and becomes limited in the adult brain. We previously reported that
a short duration of deafening strengthens TC synapses in the primary visual
cortex (V1) of adult mice. Here, we demonstrate that deafening restores NMDA
receptor (NMDAR)-dependent long-term potentiation (LTP) of TC synapses onto
principal neurons in V1 layer 4 (L4), which is accompanied by an increase in
NMDAR function. In contrast, deafening did not recover long-term depression
(LTD) at TC synapses. Potentiation of TC synapses by deafening is absent in
parvalbumin-positive (PV+) interneurons, resulting in an increase in feedforward
excitation to inhibition (E/I) ratio. Furthermore, we found that a brief
duration of deafening adult mice recovers rapid ocular dominance plasticity
(ODP) mainly by accelerating potentiation of the open-eye responses. Our results
suggest that cross-modal sensory deprivation promotes adult cortical plasticity
by specifically recovering TC-LTP and increasing the E/I ratio. Plasticity of thalamocortical (TC) synapses is limited in adults.
Rodríguez et al. demonstrate that a brief period of deafening adults
recovers LTP at TC synapses in visual cortex and accelerates ocular dominance
plasticity. These results suggest that cross-modal sensory deprivation may be an
effective way to promote adult cortical plasticity.
Collapse
Affiliation(s)
- Gabriela Rodríguez
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA; Cellular Molecular Developmental Biology and Biophysics Program, Johns Hopkins University, Mudd Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Darpan Chakraborty
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, 720 Rutland Ave., Traylor Building, Baltimore, MD 21205, USA
| | - Rinki Saha
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA
| | - Isabel Uribe
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, 720 Rutland Ave., Traylor Building, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA; Cellular Molecular Developmental Biology and Biophysics Program, Johns Hopkins University, Mudd Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Lee HK, Kirkwood A. Mechanisms of Homeostatic Synaptic Plasticity in vivo. Front Cell Neurosci 2019; 13:520. [PMID: 31849610 PMCID: PMC6901705 DOI: 10.3389/fncel.2019.00520] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are many mechanisms that can endow homeostatic control, sliding threshold and synaptic scaling are unique in that they operate by providing homeostatic control of synaptic strength. The former mechanism operates by adjusting the threshold for synaptic plasticity, while the latter mechanism directly alters the gain of synapses. Both modes of homeostatic synaptic plasticity have been studied across various preparations from reduced in vitro systems, such as neuronal cultures, to in vivo intact circuitry. While most of the cellular and molecular mechanisms of homeostatic synaptic plasticity have been worked out using reduced preparations, there are unique challenges present in intact circuitry in vivo, which deserve further consideration. For example, in an intact circuit, neurons receive distinct set of inputs across their dendritic tree which carry unique information. Homeostatic synaptic plasticity in vivo needs to operate without compromising processing of these distinct set of inputs to preserve information processing while maintaining network stability. In this mini review, we will summarize unique features of in vivo homeostatic synaptic plasticity, and discuss how sliding threshold and synaptic scaling may act across different activity regimes to provide homeostasis.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
17
|
Cho KH, Lee SY, Joo K, Rhie DJ. Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:317-328. [PMID: 31496869 PMCID: PMC6717785 DOI: 10.4196/kjpp.2019.23.5.317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.
Collapse
Affiliation(s)
- Kwang-Hyun Cho
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seul-Yi Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kayoung Joo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Duck-Joo Rhie
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
18
|
Sun YJ, Liu BH, Tao HW, Zhang LI. Selective Strengthening of Intracortical Excitatory Input Leads to Receptive Field Refinement during Auditory Cortical Development. J Neurosci 2019; 39:1195-1205. [PMID: 30587538 PMCID: PMC6381237 DOI: 10.1523/jneurosci.2492-18.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/17/2018] [Accepted: 12/07/2018] [Indexed: 11/21/2022] Open
Abstract
In the primary auditory cortex (A1) of rats, refinement of excitatory input to layer (L)4 neurons contributes to the sharpening of their frequency selectivity during postnatal development. L4 neurons receive both feedforward thalamocortical and recurrent intracortical inputs, but how potential developmental changes of each component can account for the sharpening of excitatory input tuning remains unclear. By combining in vivo whole-cell recording and pharmacological silencing of cortical spiking in young rats of both sexes, we examined developmental changes at three hierarchical stages: output of auditory thalamic neurons, thalamocortical input and recurrent excitatory input to an A1 L4 neuron. In the thalamus, the tonotopic map matured with an expanded range of frequency representations, while the frequency tuning of output responses was unchanged. On the other hand, the tuning shape of both thalamocortical and intracortical excitatory inputs to a L4 neuron became sharpened. In particular, the intracortical input became better tuned than thalamocortical excitation. Moreover, the weight of intracortical excitation around the optimal frequency was selectively strengthened, resulting in a dominant role of intracortical excitation in defining the total excitatory input tuning. Our modeling work further demonstrates that the frequency-selective strengthening of local recurrent excitatory connections plays a major role in the refinement of excitatory input tuning of L4 neurons.SIGNIFICANCE STATEMENT During postnatal development, sensory cortex undergoes functional refinement, through which the size of sensory receptive field is reduced. In the rat primary auditory cortex, such refinement in layer (L)4 is mainly attributed to improved selectivity of excitatory input a L4 neuron receives. In this study, we further examined three stages along the hierarchical neural pathway where excitatory input refinement might occur. We found that developmental refinement takes place at both thalamocortical and intracortical circuit levels, but not at the thalamic output level. Together with modeling results, we revealed that the optimal-frequency-selective strengthening of intracortical excitation plays a dominant role in the refinement of excitatory input tuning.
Collapse
Affiliation(s)
- Yujiao J Sun
- Zilkha Neurogenetic Institute
- Graduate Program in Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Bao-Hua Liu
- Zilkha Neurogenetic Institute
- Graduate Program in Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute,
- Department of Physiology and Neuroscience, and
| | - Li I Zhang
- Zilkha Neurogenetic Institute,
- Department of Physiology and Neuroscience, and
| |
Collapse
|
19
|
Hackett TA. Adenosine A 1 Receptor mRNA Expression by Neurons and Glia in the Auditory Forebrain. Anat Rec (Hoboken) 2018; 301:1882-1905. [PMID: 30315630 PMCID: PMC6282551 DOI: 10.1002/ar.23907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co‐transmitters, or serve as signals in neuron–glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1R). In the auditory forebrain, restriction of A1R‐adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1R‐mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1R transcripts (Adora1), based on co‐expression with cell‐specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1R‐mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1R‐adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here. Anat Rec, 301:1882–1905, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Metaplasticity in the Visual Cortex: Crosstalk Between Visual Experience and Reactive Oxygen Species. J Neurosci 2018; 38:5649-5665. [PMID: 29789380 DOI: 10.1523/jneurosci.2617-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/17/2018] [Accepted: 05/12/2018] [Indexed: 01/18/2023] Open
Abstract
Metaplasticity is the regulation of synaptic plasticity based on the history of previous synaptic activation. This concept was formulated after observing that synaptic changes in the visual cortex are not fixed, but dynamic and dependent on the history of visual information flux. In visual cortical neurons, sustained synaptic stimulation activate the enzymatic complex NOX2, resulting in the generation of reactive oxygen species (ROS). NOX2 is the main molecular structure responsible for translating neural activity into redox modulation of intracellular signaling pathways involved in plastic changes. Here, we studied the interaction between NOX2 and visual experience as metaplastic factors regulating synaptic plasticity at the supergranular layers of the mouse visual cortex. We found that genetic inhibition of NOX2 reverses the polarizing effects of dark rearing from LTP to LTD. In addition, we demonstrate that this process relies on changes in the NMDA receptor functioning. Altogether, this work indicates a role of ROS in the activity-dependent regulation of cortical synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity in the visual cortex is modulated by the history of sensory experience and this modulation has been defined as metaplasticity. Dark rearing facilitates synaptic potentiation as a mechanism optimizing the range of synaptic modification. This process requires the production of reactive oxygen species mediated by the enzymatic complex NOX2. If the activity of NOX2 is inhibited, then visual deprivation results in synaptic depression. These findings increase our knowledge about metaplasticity and help in our understanding of how neural activity modulates cellular mechanisms of synaptic change.
Collapse
|
21
|
Li Y, Wang L, Zhang X, Huang M, Li S, Wang X, Chen L, Jiang B, Yang Y. Inhibition of Cdk5 rejuvenates inhibitory circuits and restores experience-dependent plasticity in adult visual cortex. Neuropharmacology 2017; 128:207-220. [PMID: 29031852 DOI: 10.1016/j.neuropharm.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) acts as an essential modulator for neural development and neurological disorders. Here we show that Cdk5 plays a pivotal role in modulating GABAergic signaling and the maturation of visual system. In adult mouse primary visual cortex, Cdk5 formed complex with the GABA synthetic enzyme glutamate decarboxylase GAD67, but not with GAD65. In addition to enhancement in the surface level of NR2B-containing NMDA receptors, inhibition of Cdk5 reduced the protein levels of GADs and Otx2, while leaving intact the expression of vesicular GABA transporter and subunits of GABAA or AMPA receptors. Whole-cell patch-clamp recording in layer II/III pyramidal neurons revealed a decrease in the frequency of miniature inhibitory postsynaptic current (mIPSC). Consequently, pharmacological inhibition and genetic knockdown of Cdk5 in adult mice led to a restoration of juvenile-like ocular dominance plasticity in vivo and long-term synaptic potential in layer II/III induced by white matter stimulation in vitro. Interestingly, we did not observe an alteration of perineuronal nets of extracellular matrix, but a reinstatement of the capability to evoke long-term depression at inhibitory synapses (iLTD), which depended on presynaptic endocannabinoid receptors and was a sign of the rejuvenated GABAergic synapses. Enhancement of GABA signaling by diazepam impeded ocular dominance plasticity rescued by Cdk5 inhibition. These results thus suggest that a physiological role of Cdk5 in visual cortex is to consolidate and stabilize neural circuits through controlling GABAergic signaling.
Collapse
Affiliation(s)
- Yue Li
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Laijian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xinxin Zhang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mengyao Huang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Sitong Li
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xinxing Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Yupeng Yang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
22
|
Honjoh S, de Vivo L, Okuno H, Bito H, Tononi G, Cirelli C. Higher Arc Nucleus-to-Cytoplasm Ratio during Sleep in the Superficial Layers of the Mouse Cortex. Front Neural Circuits 2017; 11:60. [PMID: 28878629 PMCID: PMC5572345 DOI: 10.3389/fncir.2017.00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
The activity-regulated cytoskeleton associated protein Arc is strongly and quickly upregulated by neuronal activity, synaptic potentiation and learning. Arc entry in the synapse is followed by the endocytosis of glutamatergic AMPA receptors (AMPARs), and its nuclear accumulation has been shown in vitro to result in a small decline in the transcription of the GluA1 subunit of AMPARs. Since these effects result in a decline in synaptic strength, we asked whether a change in Arc dynamics may temporally correlate with sleep-dependent GluA1 down-regulation. We measured the ratio of nuclear to cytoplasmic Arc expression (Arc Nuc/Cyto) in the cerebral cortex of EGFP-Arc transgenic mice that were awake most of the night and then perfused immediately before lights on (W mice), or were awake most of the night and then allowed to sleep (S mice) or sleep deprived (SD mice) for the first 2 h of the light phase. In primary motor cortex (M1), neurons with high levels of nuclear Arc (High Arc cells) were present in all mice, but in these cells Arc Nuc/Cyto was higher in S mice than in W mice and, importantly, ~15% higher in S mice than in SD mice collected at the same time of day, ruling out circadian effects. Greater Arc Nuc/Cyto with sleep was observed in the superficial layers of M1, but not in the deep layers. In High Arc cells, Arc Nuc/Cyto was also ~15%-30% higher in S mice than in W and SD mice in the superficial layers of primary somatosensory cortex (S1) and cingulate cortex area 1 (Cg1). In High Arc Cells of Cg1, Arc Nuc/Cyto and cytoplasmic levels of GluA1 immunoreactivities in the soma were also negatively correlated, independent of behavioral state. Thus, Arc moves to the nucleus during both sleep and wake, but its nuclear to cytoplasmic ratio increases with sleep in the superficial layers of several cortical areas. It remains to be determined whether the relative increase in nuclear Arc contributes significantly to the overall decline in the strength of excitatory synapses that occurs during sleep. Similarly, it remains to be determined whether the entry of Arc into specific synapses is gated by sleep.
Collapse
Affiliation(s)
- Sakiko Honjoh
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| | - Hiroyuki Okuno
- Medical Innovation Center, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of TokyoTokyo, Japan
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, United States
| |
Collapse
|
23
|
Brief Novel Visual Experience Fundamentally Changes Synaptic Plasticity in the Mouse Visual Cortex. J Neurosci 2017; 37:9353-9360. [PMID: 28821676 DOI: 10.1523/jneurosci.0334-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/29/2022] Open
Abstract
LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity, which may involve changes in NMDAR subunit composition and function. However, the effects of reexposure to light after dark rearing from birth on LTP induction have not been explored. Here, we showed that the light exposure after dark rearing revealed a novel NMDAR independent form of LTP in the layer 2/3 pyramidal cells in visual cortex of mice of both sexes, which is dependent on mGluR5 activation and is associated with intracellular Ca2+ rise, CaMKII activity, PKC activity, and intact protein synthesis. Moreover, the capacity to induce mGluR-dependent LTP is transient: it only occurs when mice of both sexes reared in the dark from birth are exposed to light for 10-12 h, and it does not occur in vision-experienced, male mice, even after prolonged exposure to dark. Thus, the mGluR5-LTP unmasked by short visual experience can only be observed after dark rearing but not after dark exposure. These results suggested that, as in hippocampus, in layer 2/3 of visual cortex, there is coexistence of two distinct activity-dependent systems of synaptic plasticity, NMDAR-LTP, and mGluR5-LTP. The mGluR5-LTP unmasked by short visual experience may play a critical role in the faster establishment of normal receptive field properties.SIGNIFICANCE STATEMENT LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity. NMDAR-dependent form of LTP in visual cortex has been well characterized. Here, we report that an NMDAR-independent form of LTP can be promoted by novel visual experience on dark-reared mice, characterized as dependent on intracellular Ca2+ rise, PKC activity, and intact protein synthesis and also requires the activation of mGluR5. These findings suggest that, in layer 2/3 of visual cortex, as in hippocampus, there is coexistence of two distinct activity-dependent systems of synaptic plasticity.
Collapse
|
24
|
Gu Y, Cang J. Binocular matching of thalamocortical and intracortical circuits in the mouse visual cortex. eLife 2016; 5. [PMID: 28033094 PMCID: PMC5199194 DOI: 10.7554/elife.22032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Visual cortical neurons are tuned to similar orientations through the two eyes. The binocularly-matched orientation preference is established during a critical period in early life, but the underlying circuit mechanisms remain unknown. Here, we optogenetically isolated the thalamocortical and intracortical excitatory inputs to individual layer 4 neurons and studied their binocular matching. In adult mice, the thalamic and cortical inputs representing the same eyes are similarly tuned and both are matched binocularly. In mice before the critical period, the thalamic input is already slightly matched, but the weak matching is not manifested due to random connections in the cortex, especially those serving the ipsilateral eye. Binocular matching is thus mediated by orientation-specific changes in intracortical connections and further improvement of thalamic matching. Together, our results suggest that the feed-forward thalamic input may play a key role in initiating and guiding the functional refinement of cortical circuits in critical period development. DOI:http://dx.doi.org/10.7554/eLife.22032.001
Collapse
Affiliation(s)
- Yu Gu
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Jianhua Cang
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
25
|
Assessment of Methods for the Intracellular Blockade of GABAA Receptors. PLoS One 2016; 11:e0160900. [PMID: 27501143 PMCID: PMC4976935 DOI: 10.1371/journal.pone.0160900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility.
Collapse
|
26
|
de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex. Sleep 2016; 39:861-74. [PMID: 26715225 DOI: 10.5665/sleep.5644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/21/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. METHODS Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). RESULTS Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. CONCLUSIONS Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Juliana Noguti
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
27
|
Lee HK, Whitt JL. Cross-modal synaptic plasticity in adult primary sensory cortices. Curr Opin Neurobiol 2015; 35:119-26. [PMID: 26310109 DOI: 10.1016/j.conb.2015.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
Abstract
Sensory loss leads to widespread adaptation of brain circuits to allow an organism to navigate its environment with its remaining senses, which is broadly referred to as cross-modal plasticity. Such adaptation can be observed even in the primary sensory cortices, and falls into two distinct categories: recruitment of the deprived sensory cortex for processing the remaining senses, which we term 'cross-modal recruitment', and experience-dependent refinement of the spared sensory cortices referred to as 'compensatory plasticity.' Here we will review recent studies demonstrating that cortical adaptation to sensory loss involves LTP/LTD and homeostatic synaptic plasticity. Cross-modal synaptic plasticity is observed in adults, hence cross-modal sensory deprivation may be an effective way to promote plasticity in adult primary sensory cortices.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, United States.
| | - Jessica L Whitt
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
28
|
Martens MB, Celikel T, Tiesinga PHE. A Developmental Switch for Hebbian Plasticity. PLoS Comput Biol 2015; 11:e1004386. [PMID: 26172394 PMCID: PMC4501799 DOI: 10.1371/journal.pcbi.1004386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
Hebbian forms of synaptic plasticity are required for the orderly development of sensory circuits in the brain and are powerful modulators of learning and memory in adulthood. During development, emergence of Hebbian plasticity leads to formation of functional circuits. By modeling the dynamics of neurotransmitter release during early postnatal cortical development we show that a developmentally regulated switch in vesicle exocytosis mode triggers associative (i.e. Hebbian) plasticity. Early in development spontaneous vesicle exocytosis (SVE), often considered as 'synaptic noise', is important for homogenization of synaptic weights and maintenance of synaptic weights in the appropriate dynamic range. Our results demonstrate that SVE has a permissive, whereas subsequent evoked vesicle exocytosis (EVE) has an instructive role in the expression of Hebbian plasticity. A timed onset for Hebbian plasticity can be achieved by switching from SVE to EVE and the balance between SVE and EVE can control the effective rate of Hebbian plasticity. We further show that this developmental switch in neurotransmitter release mode enables maturation of spike-timing dependent plasticity. A mis-timed or inadequate SVE to EVE switch may lead to malformation of brain networks thereby contributing to the etiology of neurodevelopmental disorders. Neurotransmitter release is the principal form of chemical communication in the brain. When an action potential reaches a synapse, calcium influx activates the machinery for neurotransmitter release. During early neuronal development this machinery matures such that neurotransmitter release becomes time-locked to action potentials. By modeling this change in neurotransmitter release, we mechanistically show that the maturation process can be solely responsible for switching on associative (i.e. Hebbian) plasticity in the brain. The relevant proteins of the release machinery can thereby regulate the rate at which neural circuits represent sensory input, providing a novel mechanism to control the learning rate and onset. Appropriately timing of the onset of Hebbian plasticity is important because during early development sensory experience fine-tunes, often irreversibly, the neural wiring in our brain.
Collapse
Affiliation(s)
- Marijn B. Martens
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| | - Tansu Celikel
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Department of Neurophysiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Paul H. E. Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Sun W, Wang L, Li S, Tie X, Jiang B. Layer-specific endocannabinoid-mediated long-term depression of GABAergic neurotransmission onto principal neurons in mouse visual cortex. Eur J Neurosci 2015; 42:1952-65. [PMID: 25997857 DOI: 10.1111/ejn.12958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Visually induced endocannabinoid-mediated long-term depression of GABAergic neurotransmission (iLTD) mediates the maturation of GABAergic release in layer 2/3 of visual cortex. Here we examined whether the maturation of GABAergic transmission in other layers of visual cortex also requires endocannabinoids. The developmental plasticity of GABAergic neurotransmission onto the principal neurons in different layers of mouse visual cortex was examined in cortical slices by whole-cell recordings of inhibitory postsynaptic currents evoked by presynaptic inhibitory inputs. Theta burst stimulation of GABAergic inputs induced an endocannabinoid-mediated long-term depression of GABAergic neurotransmission onto pyramidal cells in layer 2/3 from postnatal day (P)10 to 30 and in layer 5 from P10 to 40, whereas that of GABAergic inputs did not induce iLTD onto star pyramidal neurons in layer 4 at any time postnatally, indicating that this plasticity is laminar-specific. The developmental loss of iLTD paralleled the maturation of GABAergic inhibition in both layer 2/3 and layer 5. Visual deprivation delayed the developmental loss of iLTD in layers 3 and 5 during a critical period, while 2 days of light exposure eliminated iLTD in both layers. Furthermore, the GABAergic synapses in layers 2/3 and 5 did not normally mature in the type 1 cannabinoid receptor knock-out mice, whereas those in layer 4 did not require endocannabinoid receptor for maturation. These results suggest that visually induced endocannabinoid-dependent iLTD mediates the maturation of GABAergic release in extragranular layer rather than in granular layer of mouse visual cortex.
Collapse
Affiliation(s)
- Wenjuan Sun
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Laijian Wang
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Shuo Li
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoxiu Tie
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Bin Jiang
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| |
Collapse
|
30
|
Yasuda H, Mukai H. Turning off of GluN2B subunits and turning on of CICR in hippocampal LTD induction after developmental GluN2 subunit switch. Hippocampus 2015; 25:1274-84. [PMID: 25727316 DOI: 10.1002/hipo.22435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 11/08/2022]
Abstract
NMDA receptors (NMDARs) are essential for the induction of synaptic plasticity that mediates activity-dependent refinement of neural circuits during development. GluN2B subunits of NMDARs are abundant at synapses in the immature hippocampus and begin to be replaced by GluN2A subunits with the help of casein kinase 2 activity in the second postnatal week, the critical period for the GluN2 subunit switch (Sanz-Clemente et al. (2000) Neuron 67:984-996). However, the physiological role of GluN2B subunits in the hippocampus during this critical period has not been elucidated. Here, we report that GluN2B subunits mediate the induction of long-term depression (LTD) in the CA1 region of the hippocampus only until this period. Ifenprodil and Ro25-6981, selective inhibitors of NMDARs containing GluN2B subunits, blocked LTD in postnatal Day 11-14 (P11-14) rat hippocampal slices but not in P18-22 hippocampus. Just a few days after P14, synaptic NMDAR currents became narrower than those at P11-14, and calcium influx through NMDARs must be reduced. We found that calcium-induced calcium release (CICR) through ryanodine receptors starts to support the induction of NMDAR-dependent LTD at P18-22. Intracellular application of thapsigargin and ryanodine, inhibitors of Ca2+ -ATP pumps on internal stores and ryanodine receptors, respectively, did not at all affect LTD in the hippocampus at P11-14 but completely blocked LTD in the P18-22 hippocampus. Therefore, calcium influx through NMDAR with GluN2B subunits is sufficient to induce LTD at P11-14, after which CICR compensates for the decrease in calcium influx during LTD induction.
Collapse
Affiliation(s)
- Hiroki Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | |
Collapse
|
31
|
Abstract
Visual cortical neurons selectively respond to particular features of visual stimuli and this selective responsiveness emerges from specific connectivity in the cortex. Most visual response properties are basically established by eye opening and are thereafter modified or refined by visual experience based on activity-dependent synaptic modifications during an early postnatal period. Visual deprivation during this period impairs development of visual functions, such as visual acuity. We previously demonstrated that fine-scale networks composed of a population of interconnected layer 2/3 (L2/3) pyramidal neurons receiving common inputs from adjacent neurons are embedded in a small area in rat visual cortex. We suggested that this network could be a functional unit for visual information processing. In this study, we investigated the effects of early visual experience on the development of fine-scale networks and individual synaptic connections in rat visual cortical slices. We used two kinds of deprivation, binocular deprivation and dark rearing, which allowed visual inputs with only diffuse light and no visual input, respectively. The probability and strength of excitatory connections to L2/3 pyramidal cells increased during the 2 weeks after eye opening, and these changes were prevented by dark rearing, but not binocular deprivation. Fine-scale networks were absent just after eye opening and established during the following 2 weeks in rats reared with normal visual experience, but not with either type of deprivation. These results indicate that patterned vision is required for the emergence of the fine-scale network, whereas diffuse light stimulation is sufficient for the maturation of individual synapses.
Collapse
|
32
|
Nott A, Cho S, Seo J, Tsai LH. HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex. ACTA ACUST UNITED AC 2015; 1:34-40. [PMID: 25705589 DOI: 10.1016/j.nepig.2014.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An experience-dependent postnatal increase in GABAergic inhibition in the visual cortex is important for the closure of a critical period of enhanced synaptic plasticity. Although maturation of the subclass of Parvalbumin (Pv)-expressing GABAergic interneurons is known to contribute to critical period closure, the role of epigenetics on cortical inhibition and synaptic plasticity has not been explored. The transcription regulator, histone deacetylase 2 (HDAC2), has been shown to modulate synaptic plasticity and learning processes in hippocampal excitatory neurons. We found that genetic deletion of HDAC2 specifically from Pv-interneurons reduces inhibitory input in the visual cortex of adult mice, and coincides with enhanced long-term depression (LTD) that is more typical of young mice. These findings show that HDAC2 loss in Pv-interneurons leads to a delayed closure of the critical period in the visual cortex and supports the hypothesis that HDAC2 is a key negative regulator of synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Alexi Nott
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sukhee Cho
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jinsoo Seo
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
33
|
Abstract
Reactive oxygen species (ROS) are signaling factors involved in many intracellular transduction pathways. In the nervous system, ROS are thought to modulate various mechanisms of synaptic plasticity. One important source of ROS production in the brain is the NADPH oxidase complex. Stimulation of NMDA receptors activates NADPH oxidase, which provides selective oxidative responses accompanying the induction of synaptic changes. The activity of NADPH oxidase is known to be crucial for the induction of LTP in the hippocampus. However, the involvement of this complex in cortical synaptic plasticity is still unclear. Here we provide evidence that genetic ablation of NOX2 (the prototypical member of NADPH oxidase family of proteins) suppresses LTP and LTD in the primary visual cortex of the mouse. We also found that the involvement of NOX2 on LTP is partially age-dependent, as the activity of this complex is not critical for mechanisms of synaptic potentiation occurring in immature animals. Furthermore, we show that inhibition of NOX2 reduces the NMDA receptor function, suggesting a possible mechanism that could be the basis of the effects on synaptic plasticity.
Collapse
|
34
|
Rebound potentiation of inhibition in juvenile visual cortex requires vision-induced BDNF expression. J Neurosci 2014; 34:10770-9. [PMID: 25100608 DOI: 10.1523/jneurosci.5454-13.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The developmental increase in the strength of inhibitory synaptic circuits defines the time window of the critical period for plasticity in sensory cortices. Conceptually, plasticity of inhibitory synapses is an attractive mechanism to allow for homeostatic adaptation to the sensory environment. However, a brief duration of visual deprivation that causes maximal change in excitatory synapses produces minimal change in inhibitory synaptic transmission. Here we examined developmental and experience-dependent changes in inhibition by measuring miniature IPSCs (mIPSCs) in layer 2/3 pyramidal neurons of mouse visual cortex. During development from postnatal day 21 (P21) to P35, GABAA receptor function changed from fewer higher-conductance channels to more numerous lower-conductance channels without altering the average mIPSC amplitude. Although a week of visual deprivation did not alter the average mIPSC amplitude, a subsequent 2 h exposure to light produced a rapid rebound potentiation. This form of plasticity is restricted to a critical period before the developmental change in GABAergic synaptic properties is completed, and hence is absent by P35. Visual experience-dependent rebound potentiation of mIPSCs is accompanied by an increase in the open channel number and requires activity-dependent transcription of brain-derived neurotrophic factor (BDNF). Mice lacking BDNF transcription through promoter IV did not show developmental changes in inhibition and lacked rebound potentiation. Our results suggest that sensory experience may have distinct functional consequences in normal versus deprived sensory cortices, and that experience-dependent BDNF expression controls the plasticity of inhibitory synaptic transmission particularly when recovering vision during the critical period.
Collapse
|
35
|
Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. PROGRESS IN BRAIN RESEARCH 2014; 207:3-34. [PMID: 24309249 DOI: 10.1016/b978-0-444-63327-9.00001-1] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potency of the environment to shape brain function changes dramatically across the lifespan. Neural circuits exhibit profound plasticity during early life and are later stabilized. A focus on the cellular and molecular bases of these developmental trajectories has begun to unravel mechanisms, which control the onset and closure of such critical periods. Two important concepts have emerged from the study of critical periods in the visual cortex: (1) excitatory-inhibitory circuit balance is a trigger; and (2) molecular "brakes" limit adult plasticity. The onset of the critical period is determined by the maturation of specific GABA circuits. Targeting these circuits using pharmacological or genetic approaches can trigger premature onset or induce a delay. These manipulations are so powerful that animals of identical chronological age may be at the peak, before, or past their plastic window. Thus, critical period timing per se is plastic. Conversely, one of the outcomes of normal development is to stabilize the neural networks initially sculpted by experience. Rather than being passively lost, the brain's intrinsic potential for plasticity is actively dampened. This is demonstrated by the late expression of brake-like factors, which reversibly limit excessive circuit rewiring beyond a critical period. Interestingly, many of these plasticity regulators are found in the extracellular milieu. Understanding why so many regulators exist, how they interact and, ultimately, how to lift them in noninvasive ways may hold the key to novel therapies and lifelong learning.
Collapse
Affiliation(s)
- Anne E Takesian
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
36
|
Yang S, Yang S, Park JS, Kirkwood A, Bao S. Failed stabilization for long-term potentiation in the auditory cortex of FMR1 knockout mice. PLoS One 2014; 9:e104691. [PMID: 25115962 PMCID: PMC4130563 DOI: 10.1371/journal.pone.0104691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/10/2014] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1) gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has different effects on long-term synaptic plasticity in somatosensory and visual cortical neurons, providing insights on how it may differentially affect the sensory systems. Here we present evidence that long-term potentiation (LTP) is impaired in the developing auditory cortex of the Fmr1 knockout (KO) mice. This impairment of synaptic plasticity is consistent with impaired frequency map plasticity in the Fmr1 KO mouse. Together, these results suggest a potential role of LTP in sensory map plasticity during early sensory development.
Collapse
Affiliation(s)
- Sungchil Yang
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Sunggu Yang
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jae-Sung Park
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alfredo Kirkwood
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shaowen Bao
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
In primates, the functional connectivity of adult primary visual cortex is susceptible to be modified by sensory training during perceptual learning. It is widely held that this type of neural plasticity might involve mechanisms like long-term potentiation (LTP) and long-term depression (LTD). NMDAR-dependent forms of LTP and LTD are particularly attractive because in rodents they can be induced in a Hebbian manner by near coincidental presynaptic and postsynaptic firing, in a paradigm termed spike timing-dependent plasticity (STDP). These fundamental properties of LTP and LTD, Hebbian induction and NMDAR dependence, have not been examined in primate cortex. Here we demonstrate these properties in the primary visual cortex of the rhesus macaque (Macaca mulatta), and also show that, like in rodents, STDP is gated by neuromodulators. These findings indicate that the cellular principles governing cortical plasticity are conserved across mammalian species, further validating the use of rodents as a model system.
Collapse
|
38
|
Bhaumik B, Shah NP. Development and matching of binocular orientation preference in mouse V1. Front Syst Neurosci 2014; 8:128. [PMID: 25104927 PMCID: PMC4109519 DOI: 10.3389/fnsys.2014.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/26/2014] [Indexed: 12/11/2022] Open
Abstract
Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.
Collapse
Affiliation(s)
- Basabi Bhaumik
- Electrical Engineering Department, Indian Institute of Technology Delhi New Delhi, India
| | - Nishal P Shah
- Electrical Engineering Department, Indian Institute of Technology Delhi New Delhi, India
| |
Collapse
|
39
|
Trinh MA, Ma T, Kaphzan H, Bhattacharya A, Antion MD, Cavener DR, Hoeffer CA, Klann E. The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression. Learn Mem 2014; 21:298-304. [PMID: 24741110 PMCID: PMC3994503 DOI: 10.1101/lm.032219.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proper regulation of translation is required for the expression of long-lasting synaptic plasticity. A major site of translational control involves the phosphorylation of eukaryotic initiation factor 2 α (eIF2α) by PKR-like endoplasmic reticulum (ER) kinase (PERK). To determine the role of PERK in hippocampal synaptic plasticity, we used the Cre-lox expression system to selectively disrupt PERK expression in the adult mouse forebrain. Here, we demonstrate that in hippocampal area CA1, metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) is associated with increased eIF2α phosphorylation, whereas stimulation of early- and late-phase long-term potentiation (E-LTP and L-LTP, respectively) is associated with decreased eIF2α phosphorylation. Interesting, although PERK-deficient mice exhibit exaggerated mGluR-LTD, both E-LTP and L-LTP remained intact. We also found that mGluR-LTD is associated with a PERK-dependent increase in eIF2α phosphorylation. Our findings are consistent with the notion that eIF2α phosphorylation is a key site for the bidirectional control of persistent forms of synaptic LTP and LTD and suggest a distinct role for PERK in mGluR-LTD.
Collapse
Affiliation(s)
- Mimi A Trinh
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Crossmodal induction of thalamocortical potentiation leads to enhanced information processing in the auditory cortex. Neuron 2014; 81:664-73. [PMID: 24507197 DOI: 10.1016/j.neuron.2013.11.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2013] [Indexed: 11/21/2022]
Abstract
Sensory systems do not work in isolation; instead, they show interactions that are specifically uncovered during sensory loss. To identify and characterize these interactions, we investigated whether visual deprivation leads to functional enhancement in primary auditory cortex (A1). We compared sound-evoked responses of A1 neurons in visually deprived animals to those from normally reared animals. Here, we show that visual deprivation leads to improved frequency selectivity as well as increased frequency and intensity discrimination performance of A1 neurons. Furthermore, we demonstrate in vitro that in adults visual deprivation strengthens thalamocortical (TC) synapses in A1, but not in primary visual cortex (V1). Because deafening potentiated TC synapses in V1, but not A1, crossmodal TC potentiation seems to be a general property of adult cortex. Our results suggest that adults retain the capability for crossmodal changes whereas such capability is absent within a sensory modality. Thus, multimodal training paradigms might be beneficial in sensory-processing disorders.
Collapse
|
41
|
Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L. The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age dependent. J Comp Neurol 2014; 522:950-70. [DOI: 10.1002/cne.23455] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/17/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Jeroen Aerts
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Ellen Ytebrouck
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Samme Vreysen
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics; KU Leuven; 3000 Leuven Belgium
| |
Collapse
|
42
|
Cooke SF, Bear MF. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130284. [PMID: 24298166 DOI: 10.1098/rstb.2013.0284] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional 'Hebbian' plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.
Collapse
Affiliation(s)
- Sam F Cooke
- Howard Hughes Medical Institute and The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, , 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
43
|
Abstract
In pyramidal cells, the induction of spike-dependent plasticity (STDP) follows a simple Hebbian rule in which the order of presynaptic and postsynaptic firing dictates the induction of LTP or LTD. In contrast, cortical fast spiking (FS) interneurons, which control the rate and timing of pyramidal cell firing, reportedly express timing-dependent LTD, but not timing-dependent LTP. Because a mismatch in STDP rules could impact the maintenance of the excitation/inhibition balance, we examined the neuromodulation of STDP in FS cells of mouse visual cortex. We found that stimulation of adrenergic receptors enables the induction of Hebbian bidirectional STDP in FS cells in a manner consistent with a pull-push mechanism previously characterized in pyramidal cells. However, in pyramidal cells, STDP induction depends on NMDA receptors, whereas in FS cells it depends on mGluR5 receptors. We propose that neuromodulators control the polarity of STDP in different synapses in the same manner, and independently of the induction mechanism, by acting downstream in the plasticity cascade. By doing so, neuromodulators may allow coordinated plastic changes in FS and pyramidal cells.
Collapse
|
44
|
Gu Y, Huang S, Chang MC, Worley P, Kirkwood A, Quinlan EM. Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron 2013; 79:335-46. [PMID: 23889936 DOI: 10.1016/j.neuron.2013.05.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/25/2022]
Abstract
The immediate early gene neuronal activity-regulated pentraxin (NARP) is an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) binding protein that is specifically enriched at excitatory synapses onto fast-spiking parvalbumin-positive interneurons (FS [PV] INs). Here, we show that transgenic deletion of NARP decreases the number of excitatory synaptic inputs onto FS (PV) INs and reduces net excitatory synaptic drive onto FS (PV) INs. Accordingly, the visual cortex of NARP(-/-) mice is hyperexcitable and unable to express ocular dominance plasticity, although many aspects of visual function are unimpaired. Importantly, the number and strength of inhibitory synaptic contacts from FS (PV) INs onto principle neurons in the visual cortex is normal in NARP(-/-) mice, and enhancement of this output recovers the expression of experience-dependent synaptic plasticity. Thus the recruitment of inhibition from FS (PV) INs plays a central role in enabling the critical period for ocular dominance plasticity.
Collapse
Affiliation(s)
- Yu Gu
- Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
45
|
A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Neuron 2013; 80:51-63. [PMID: 24094102 DOI: 10.1016/j.neuron.2013.07.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 11/20/2022]
Abstract
What causes critical periods (CPs) to open? For the best-studied case, ocular dominance plasticity in primary visual cortex in response to monocular deprivation (MD), the maturation of inhibition is necessary and sufficient. How does inhibition open the CP? We present a theory: the transition from pre-CP to CP plasticity arises because inhibition preferentially suppresses responses to spontaneous relative to visually driven input activity, switching learning cues from internal to external sources. This differs from previous proposals in (1) arguing that the CP can open without changes in plasticity mechanisms when activity patterns become more sensitive to sensory experience through circuit development, and (2) explaining not simply a transition from no plasticity to plasticity, but a change in outcome of MD-induced plasticity from pre-CP to CP. More broadly, hierarchical organization of sensory-motor pathways may develop through a cascade of CPs induced as circuit maturation progresses from "lower" to "higher" cortical areas.
Collapse
|
46
|
Reciprocal Homosynaptic and heterosynaptic long-term plasticity of corticogeniculate projection neurons in layer VI of the mouse visual cortex. J Neurosci 2013; 33:7787-98. [PMID: 23637171 DOI: 10.1523/jneurosci.5350-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most neurons in layer VI of the visual cortex project to the dorsal lateral geniculate nucleus (dLGN). These corticogeniculate projection neurons (CG cells) receive top-down synaptic inputs from upper layers (ULs) and bottom-up inputs from the underlying white matter (WM). Use-dependent plasticity of these synapses in layer VI of the cortex has received less attention than in other layers. In the present study, we used a retrograde tracer injected into dLGN to identify CG cells, and, by analyzing EPSPs evoked by electrical stimulation of the UL or WM site, examined whether these synapses show long-term synaptic plasticity. Theta-burst stimulation induced long-term potentiation (LTP) of activated synapses (hom-LTP) and long-term depression (LTD) of nonactivated synapses (het-LTD) in either pathway. The paired-pulse stimulation protocol and the analysis of coefficient variation of EPSPs suggested postsynaptic induction of these changes except UL-induced het-LTD, which may be presynaptic in origin. Intracellular injection of a Ca(2+)-chelator suggested an involvement of postsynaptic Ca(2+) rise in all types of long-term plasticity. Pharmacological analysis indicated that NMDA receptors and type-5 metabotropic glutamate receptors are involved in WM-induced and UL-induced plasticity, respectively. Analysis with inhibitors and/or in transgenic mice suggested an involvement of cannabinoid type 1 receptors and calcineurin in UL-induced and WM-induced het-LTD, respectively. These results suggest that hom-LTP and het-LTD may play a role in switching the top-down or bottom-up regulation of CG cell function and/or in maintaining stability of synaptic transmission efficacy through different molecular mechanisms.
Collapse
|
47
|
Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex. J Neurosci 2013; 33:7345-57. [PMID: 23616541 DOI: 10.1523/jneurosci.4500-12.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical maps in sensory cortices are plastic, changing in response to sensory experience. The cellular site of such plasticity is currently debated. Thalamocortical (TC) projections deliver sensory information to sensory cortices. TC synapses are currently dismissed as a locus of cortical map plasticity because TC synaptic plasticity is thought to be limited to neonates, whereas cortical map plasticity can be induced in both neonates and adults. However, in the auditory cortex (ACx) of adults, cortical map plasticity can be induced if animals attend to a sound or receive sounds paired with activation of cholinergic inputs from the nucleus basalis. We now show that, in the ACx, long-term potentiation (LTP), a major form of synaptic plasticity, is expressed at TC synapses in both young and mature mice but becomes gated with age. Using single-cell electrophysiology, two-photon glutamate uncaging, and optogenetics in TC slices containing the auditory thalamus and ACx, we show that TC LTP is expressed postsynaptically and depends on group I metabotropic glutamate receptors. TC LTP in mature ACx can be unmasked by cortical disinhibition combined with activation of cholinergic inputs from the nucleus basalis. Cholinergic inputs passing through the thalamic radiation activate M1 muscarinic receptors on TC projections and sustain glutamate release at TC synapses via negative regulation of presynaptic adenosine signaling through A1 adenosine receptors. These data indicate that TC LTP in the ACx persists throughout life and therefore can potentially contribute to experience-dependent cortical map plasticity in the ACx in both young and adult animals.
Collapse
|
48
|
Abstract
Thalamocortical circuits are central to sensory and cognitive processing. Recent work suggests that the thalamocortical inputs onto L4 and L6, the main input layers of neocortex, are activated differently by visual stimulation. Whether these differences depend on layer-specific organization of thalamocortical circuits; or on specific properties of synapses onto receiving neurons is unknown. Here we combined optogenetic stimulation of afferents from the visual thalamus and paired recording electrophysiology in L4 and L6 of rat primary visual cortex to determine the organization and plasticity of thalamocortical synapses. We show that thalamocortical inputs onto L4 and L6 differ in synaptic dynamics and sensitivity to visual drive. We also demonstrate that the two layers differ in the organization of thalamocortical and recurrent intracortical connectivity. In L4, a significantly larger proportion of excitatory neurons responded to light activation of thalamocortical terminal fields than in L6. The local microcircuit in L4 showed a higher degree of recurrent connectivity between excitatory neurons than the microcircuit in L6. In addition, L4 recurrently connected neurons were driven by thalamocortical inputs of similar magnitude indicating the presence of local subnetworks that may be activated by the same axonal projection. Finally, brief manipulation of visual drive reduced the amplitude of light-evoked thalamocortical synaptic currents selectively onto L4. These data are the first direct indication that thalamocortical circuits onto L4 and L6 support different aspects of cortical function through layer-specific synaptic organization and plasticity.
Collapse
|
49
|
Funahashi R, Maruyama T, Yoshimura Y, Komatsu Y. Silent synapses persist into adulthood in layer 2/3 pyramidal neurons of visual cortex in dark-reared mice. J Neurophysiol 2013; 109:2064-76. [DOI: 10.1152/jn.00912.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immature excitatory synapses often have NMDA receptors but not AMPA receptors in central neurons, including visual cortical pyramidal neurons. These synapses, called silent synapses, are converted to functional synapses with AMPA receptors by NMDA receptor activation during early development. It is likely that this process underlies the activity-dependent refinement of neuronal circuits and brain functions. In the present study, we investigated postnatal development of excitatory synapses, focusing on the role of visual inputs in the conversion of silent to functional synapses in mouse visual cortex. We analyzed presumably unitary excitatory postsynaptic currents (EPSCs) between a pair of layer 2/3 pyramidal neurons, using minimal stimulation with a patch pipette attached to the soma of one of the pair. The proportion of silent synapses was estimated by the difference in the failure rate between AMPA- and NMDA-EPSCs. In normal development, silent synapses were present abundantly before eye opening, decreased considerably by the critical period of ocular dominance plasticity, and almost absent in adulthood. This decline in silent synapses was prevented by dark rearing. The amplitude of presumably unitary AMPA-EPSCs increased with age, but this increase was suppressed by dark rearing. The quantal amplitude of AMPA-EPSCs and paired-pulse ratio of NMDA-EPSCs both remained unchanged during development, independent of visual experience. These results indicate that visual inputs are required for the conversion of silent to functional synapses and this conversion largely contributes to developmental increases in the amplitude of presumably unitary AMPA-EPSCs.
Collapse
Affiliation(s)
- Rie Funahashi
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya, Japan; and
| | - Takuro Maruyama
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya, Japan; and
| | - Yumiko Yoshimura
- Division of Developmental Neurophysiology, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, Japan
| | - Yukio Komatsu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya, Japan; and
| |
Collapse
|
50
|
Blundon JA, Zakharenko SS. Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex. Neuroscientist 2013; 19:465-78. [PMID: 23558179 DOI: 10.1177/1073858413482983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory cortices can not only detect and analyze incoming sensory information but can also undergo plastic changes while learning behaviorally important sensory cues. This experience-dependent cortical plasticity is essential for shaping and modifying neuronal circuits to perform computations of multiple, previously unknown sensations, the adaptive process that is believed to underlie perceptual learning. Intensive efforts to identify the mechanisms of cortical plasticity have provided several important clues; however, the exact cellular sites and mechanisms within the intricate neuronal networks that underlie cortical plasticity have yet to be elucidated. In this review, we present several parallels between cortical plasticity in the auditory cortex and recently discovered mechanisms of synaptic plasticity gating at thalamocortical projections that provide the main input to sensory cortices. Striking similarities between the features and mechanisms of thalamocortical synaptic plasticity and those of experience-dependent cortical plasticity in the auditory cortex, especially in terms of regulation of an early critical period, point to thalamocortical projections as an important locus of plasticity in sensory cortices.
Collapse
Affiliation(s)
- Jay A Blundon
- Department of Development Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|