1
|
Lu Z, Julian JB, Aguirre GK, Epstein RA. A neural compass in the human brain during naturalistic virtual navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590112. [PMID: 38712211 PMCID: PMC11071287 DOI: 10.1101/2024.04.18.590112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A central component of wayfinding is the ability to maintain a consistent representation of one's facing direction when moving about the world. In rodents, head direction cells are believed to support this "neural compass", but identifying a similar mechanism in humans during dynamic naturalistic navigation has been challenging. To address this issue, we acquired fMRI data while participants freely navigated through a virtual reality city. Encoding model analyses revealed voxel clusters in retrosplenial complex and superior parietal lobule that exhibited reliable tuning as a function of facing direction. Crucially, these directional tunings were consistent across perceptually different versions of the city, spatially separated locations within the city, and motivationally distinct phases of the behavioral task. Analysis of the model weights indicated that these regions may represent facing direction relative to the principal axis of the environment. These findings reveal specific mechanisms in the human brain that allow us to maintain a sense of direction during naturalistic, dynamic navigation.
Collapse
|
2
|
Muhle-Karbe PS, Sheahan H, Pezzulo G, Spiers HJ, Chien S, Schuck NW, Summerfield C. Goal-seeking compresses neural codes for space in the human hippocampus and orbitofrontal cortex. Neuron 2023; 111:3885-3899.e6. [PMID: 37725981 DOI: 10.1016/j.neuron.2023.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023]
Abstract
Humans can navigate flexibly to meet their goals. Here, we asked how the neural representation of allocentric space is distorted by goal-directed behavior. Participants navigated an agent to two successive goal locations in a grid world environment comprising four interlinked rooms, with a contextual cue indicating the conditional dependence of one goal location on another. Examining the neural geometry by which room and context were encoded in fMRI signals, we found that map-like representations of the environment emerged in both hippocampus and neocortex. Cognitive maps in hippocampus and orbitofrontal cortices were compressed so that locations cued as goals were coded together in neural state space, and these distortions predicted successful learning. This effect was captured by a computational model in which current and prospective locations are jointly encoded in a place code, providing a theory of how goals warp the neural representation of space in macroscopic neural signals.
Collapse
Affiliation(s)
- Paul S Muhle-Karbe
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; School of Psychology, University of Birmingham, Birmingham B15 2SA, UK; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, UK.
| | - Hannah Sheahan
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Google DeepMind, London EC4A 3TW, UK
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy
| | - Hugo J Spiers
- Department of Experimental Psychology, University College London, London WC1E 6BT, UK
| | - Samson Chien
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, 14195 Berlin, Germany; Institute of Psychology, Universität Hamburg, 20146 Hamburg, Germany
| | - Christopher Summerfield
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, UK.
| |
Collapse
|
3
|
Clark IA, Maguire EA. Release of cognitive and multimodal MRI data including real-world tasks and hippocampal subfield segmentations. Sci Data 2023; 10:540. [PMID: 37587129 PMCID: PMC10432478 DOI: 10.1038/s41597-023-02449-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
We share data from N = 217 healthy adults (mean age 29 years, range 20-41; 109 females, 108 males) who underwent extensive cognitive assessment and neuroimaging to examine the neural basis of individual differences, with a particular focus on a brain structure called the hippocampus. Cognitive data were collected using a wide array of questionnaires, naturalistic tests that examined imagination, autobiographical memory recall and spatial navigation, traditional laboratory-based tests such as recalling word pairs, and comprehensive characterisation of the strategies used to perform the cognitive tests. 3 Tesla MRI data were also acquired and include multi-parameter mapping to examine tissue microstructure, diffusion-weighted MRI, T2-weighted high-resolution partial volume structural MRI scans (with the masks of hippocampal subfields manually segmented from these scans), whole brain resting state functional MRI scans and partial volume high resolution resting state functional MRI scans. This rich dataset will be of value to cognitive and clinical neuroscientists researching individual differences, real-world cognition, brain-behaviour associations, hippocampal subfields and more. All data are freely available on Dryad.
Collapse
Affiliation(s)
- Ian A Clark
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
4
|
Ginosar G, Karpas ED, Weitzner I, Ulanovsky N. Dissociating two aspects of human 3D spatial perception by studying fighter pilots. Sci Rep 2023; 13:11265. [PMID: 37438399 DOI: 10.1038/s41598-023-37759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Human perception of 3D space has been investigated extensively, but there are conflicting reports regarding its distortions. A possible solution to these discrepancies is that 3D perception is in fact comprised of two different processes-perception of traveled space, and perception of surrounding space. Here we tested these two aspects on the same subjects, for the first time. To differentiate these two aspects and investigate whether they emerge from different processes, we asked whether these two aspects are affected differently by the individual's experience of 3D locomotion. Using an immersive high-grade flight-simulator with realistic virtual-reality, we compared these two aspects of 3D perception in fighter pilots-individuals highly experienced in 3D locomotion-and in control subjects. We found that the two aspects of 3D perception were affected differently by 3D locomotion experience: the perception of 3D traveled space was plastic and experience-dependent, differing dramatically between pilots and controls, while the perception of surrounding space was rigid and unaffected by experience. This dissociation suggests that these two aspects of 3D spatial perception emerge from two distinct processes.
Collapse
Affiliation(s)
- Gily Ginosar
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ehud D Karpas
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Idan Weitzner
- Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
5
|
Purohit P, Dutta P, Roy PK. Empirically validated theoretical analysis of visual-spatial perception under change of nervous system arousal. Front Comput Neurosci 2023; 17:1136985. [PMID: 37251600 PMCID: PMC10213702 DOI: 10.3389/fncom.2023.1136985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Visual-spatial perception is a process for extracting the spatial relationship between objects in the environment. The changes in visual-spatial perception due to factors such as the activity of the sympathetic nervous system (hyperactivation) or parasympathetic nervous system (hypoactivation) can affect the internal representation of the external visual-spatial world. We formulated a quantitative model of the modulation of visual-perceptual space under action by hyperactivation or hypoactivation-inducing neuromodulating agents. We showed a Hill equation based relationship between neuromodulator agent concentration and alteration of visual-spatial perception utilizing the metric tensor to quantify the visual space. Methods We computed the dynamics of the psilocybin (hyperactivation-inducing agent) and chlorpromazine (hypoactivation-inducing agent) in brain tissue. Then, we validated our quantitative model by analyzing the findings of different independent behavioral studies where subjects were assessed for alterations in visual-spatial perception under the action of psilocybin and under chlorpromazine. To validate the neuronal correlates, we simulated the effect of the neuromodulating agent on the computational model of the grid-cell network, and also performed diffusion MRI-based tractography to find the neural tracts between the cortical areas involved: V2 and the entorhinal cortex. Results We applied our computational model to an experiment (where perceptual alterations were measured under psilocybin) and found that for n (Hill-coefficient) = 14.8 and k = 1.39, the theoretical prediction followed experimental observations very well (χ2 test robustly satisfied, p > 0.99). We predicted the outcome of another psilocybin-based experiment using these values (n = 14.8 and k = 1.39), whereby our prediction and experimental outcomes were well corroborated. Furthermore, we found that also under hypoactivation (chlorpromazine), the modulation of the visual-spatial perception follows our model. Moreover, we found neural tracts between the area V2 and entorhinal cortex, thus providing a possible brain network responsible for encoding visual-spatial perception. Thence, we simulated the altered grid-cell network activity, which was also found to follow the Hill equation. Conclusion We developed a computational model of visuospatial perceptual alterations under altered neural sympathetic/parasympathetic tone. We validated our model using analysis of behavioral studies, neuroimaging assessment, and neurocomputational evaluation. Our quantitative approach may be probed as a potential behavioral screening and monitoring methodology in neuropsychology to analyze perceptual misjudgment and mishaps by highly stressed workers.
Collapse
Affiliation(s)
- Pratik Purohit
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Prasun Dutta
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, India
| | - Prasun K. Roy
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
- Department of Life Sciences, Shiv Nadar University (SNU), Greater Noida, India
| |
Collapse
|
6
|
Kwon M, Lee SW, Lee SH. Hippocampal integration and separation processes with different temporal and spatial dynamics during learning for associative memory. Hum Brain Mapp 2023; 44:3873-3884. [PMID: 37145954 DOI: 10.1002/hbm.26319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
The hippocampus is known to be critically involved in associative memory formation. However, the role of the hippocampus during the learning of associative memory is still controversial; while the hippocampus is considered to play a critical role in the integration of related stimuli, numerous studies also suggest a role of the hippocampus in the separation of different memory traces for rapid learning. Here, we employed an associative learning paradigm consisting of repeated learning cycles. By tracking the changes in the hippocampal representations of associated stimuli on a cycle-by-cycle basis as learning progressed, we show that both integration and separation processes occur in the hippocampus with different temporal dynamics. We found that the degree of shared representations for associated stimuli decreased significantly during the early phase of learning, whereas it increased during the later phase of learning. Remarkably, these dynamic temporal changes were observed only for stimulus pairs remembered 1 day or 4 weeks after learning, but not for forgotten pairs. Further, the integration process during learning was prominent in the anterior hippocampus, while the separation process was obvious in the posterior hippocampus. These results demonstrate temporally and spatially dynamic hippocampal processing during learning that can lead to the maintenance of associative memory.
Collapse
Affiliation(s)
- Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sue-Hyun Lee
- Department of Psychology, College of Social Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Abstract
This chapter will provide a review of research into human cognition through the lens of VR-based paradigms for studying memory. Emphasis is placed on why VR increases the ecological validity of memory research and the implications of such enhancements.
Collapse
Affiliation(s)
- Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
| |
Collapse
|
8
|
Martin CB, Hong B, Newsome RN, Savel K, Meade ME, Xia A, Honey CJ, Barense MD. A smartphone intervention that enhances real-world memory and promotes differentiation of hippocampal activity in older adults. Proc Natl Acad Sci U S A 2022; 119:e2214285119. [PMID: 36512503 PMCID: PMC9907156 DOI: 10.1073/pnas.2214285119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
The act of remembering an everyday experience influences how we interpret the world, how we think about the future, and how we perceive ourselves. It also enhances long-term retention of the recalled content, increasing the likelihood that it will be recalled again. Unfortunately, the ability to recollect event-specific details and reexperience the past tends to decline with age. This decline in recollection may reflect a corresponding decrease in the distinctiveness of hippocampal memory representations. Despite these well-established changes, there are few effective cognitive behavioral interventions that target real-world episodic memory. We addressed this gap by developing a smartphone-based application called HippoCamera that allows participants to record labeled videos of everyday events and subsequently replay, high-fidelity autobiographical memory cues. In two experiments, we found that older adults were able to easily integrate this noninvasive intervention into their daily lives. Using HippoCamera to repeatedly reactivate memories for real-world events improved episodic recollection and it evoked more positive autobiographical sentiment at the time of retrieval. In both experiments, these benefits were observed shortly after the intervention and again after a 3-mo delay. Moreover, more detailed recollection was associated with more differentiated memory signals in the hippocampus. Thus, using this smartphone application to systematically reactivate memories for recent real-world experiences can help to maintain a bridge between the present and past in older adults.
Collapse
Affiliation(s)
- Chris B. Martin
- Department of Psychology, Florida State University, Tallahassee, FL, 32306
| | - Bryan Hong
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Rachel N. Newsome
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Katarina Savel
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Melissa E. Meade
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Andrew Xia
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
| | - Christopher J. Honey
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218
| | - Morgan D. Barense
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, M6A 2X8Canada
| |
Collapse
|
9
|
Dalong G, Yufei Q, Lei Y, Pengfei L, Anqi Y, Zichuan G, Cong W, Yubin Z. Modulation of thalamic network connectivity using transcranial direct current stimulation based on resting-state functional magnetic resonance imaging to improve hypoxia-induced cognitive impairments. Front Neurosci 2022; 16:955096. [PMID: 36090294 PMCID: PMC9462417 DOI: 10.3389/fnins.2022.955096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic conditions at high altitudes severely affect cognitive functions such as vigilance, attention, and memory and reduce cognitive ability. Hence, there is a critical need to investigate methods and associated mechanisms for improving the cognitive ability of workers at high altitudes. This study aimed to use transcranial direct current stimulation (tDCS) to modulate thalamic network functional connectivity to enhance cognitive ability. We recruited 20 healthy participants that underwent hypoxia exposure in a hypoxic chamber at atmospheric pressure to simulate a hypoxic environment at 4,000 m. Participants received both sham and real stimulation. tDCS significantly improved the participants’ emotional status, including depression, fatigue, and energy level. These effects were sustained for more than 6 h (P < 0.05 at the second to fifth measurements). In addition, tDCS enhanced vigilance, but this was only effective within 2 h (P < 0.05 at the second and third measurements). Central fatigue was significantly ameliorated, and cerebral blood oxygen saturation was increased within 4 h (P < 0.05 at the second, third, and fourth measurements). Furthermore, functional connectivity results using the thalamus as a seed revealed enhanced connectivity between the thalamus and hippocampus, cingulate gyrus, and amygdala after tDCS. These results indicated that tDCS increased local cerebral blood oxygen saturation and enhanced thalamic network connectivity in a hypoxic environment, thereby improving vigilance, depression, fatigue, and energy levels. These findings suggest that tDCS may partially rescue the cognitive decline caused by hypoxia within a short period. This approach affords a safe and effective cognitive enhancement method for all types of high-altitude workers with a large mental load.
Collapse
|
10
|
Kim M, Doeller CF. Adaptive cognitive maps for curved surfaces in the 3D world. Cognition 2022; 225:105126. [PMID: 35461111 DOI: 10.1016/j.cognition.2022.105126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Terrains in a 3D world can be undulating. Yet, most prior research has exclusively investigated spatial representations on a flat surface, leaving a 2D cognitive map as the dominant model in the field. Here, we investigated whether humans represent a curved surface by building a dimension-reduced flattened 2D map or a full 3D map. Participants learned the location of objects positioned on a flat and curved surface in a virtual environment by driving on the concave side of the surface (Experiment 1), driving and looking vertically (Experiment 2), or flying (Experiment 3). Subsequently, they were asked to retrieve either the path distance or the 3D Euclidean distance between the objects. Path distance estimation was good overall, but we found a significant underestimation bias for the path distance on the curve, suggesting an influence of potential 3D shortcuts, even though participants were only driving on the surface. Euclidean distance estimation was better when participants were exposed more to the global 3D structure of the environment by looking and flying. These results suggest that the representation of the 2D manifold, embedded in a 3D world, is neither purely 2D nor 3D. Rather, it is flexible and dependent on the behavioral experience and demand.
Collapse
Affiliation(s)
- Misun Kim
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Leipzig University, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Trondheim, Norway.
| |
Collapse
|
11
|
When humans can fly: Imprecise vertical encoding in human 3D spatial navigation. Behav Brain Res 2022; 426:113835. [DOI: 10.1016/j.bbr.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
|
12
|
Jeffery K, Guo W, Ball D, Rodriguez-Sanchez J. Visual imagination and cognitive mapping of a virtual building. JOURNAL OF NAVIGATION 2022; 75:1-14. [PMID: 35418722 PMCID: PMC7612610 DOI: 10.1017/s0373463321000588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We investigated the contribution of visual imagination to the cognitive mapping of a building when initial exploration was simulated either visually by using a passive video walk-through, or mentally by using verbal guidance. Building layout had repeating elements with either rotational or mirror symmetry. Cognitive mapping of the virtual building, determined using questionnaires and map drawings, was present following verbal guidance but inferior to that following video guidance. Mapping was not affected by the building's structural symmetry. However, notably, it correlated with small-scale mental rotation scores for both video and verbal guidance conditions. There was no difference between males and females. A common factor that may have influenced cognitive mapping was the availability of visual information about the relationships of the building elements, either directly perceived (during the video walk-through) or imagined (during the verbal walk-through and/or during recall). Differences in visual imagination, particularly mental rotation, may thus account for some of the individual variance in cognitive mapping of complex built environments, which is relevant to how designers provide navigation-relevant information.
Collapse
Affiliation(s)
- Kate Jeffery
- Experimental Psychology, University College London, London, UK
| | - Wanying Guo
- Experimental Psychology, University College London, London, UK
| | - Danny Ball
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | |
Collapse
|
13
|
Shtoots L, Dagan T, Levine J, Rothstein A, Shati L, Levy DA. The Effects of Theta EEG Neurofeedback on the Consolidation of Spatial Memory. Clin EEG Neurosci 2021; 52:338-344. [PMID: 33207955 DOI: 10.1177/1550059420973107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How can the stability of a recently acquired memory be improved? Recent findings regarding the importance of theta frequency EEG activity in the hippocampus suggest that entraining neural activity in that frequency band might increase post-encoding waking replay, reinforcing learning-related plasticity. Our previous studies revealed that upregulating postlearning theta power using EEG neurofeedback (NFB) significantly benefitted procedural and episodic memory performance (both immediate and delayed), and may provide optimal conditions for stabilization of new memories. We have now explored whether memory benefits of theta NFB generalize to delayed spatial memory, an additional hippocampus-dependent process. Participants learned to associate object images with locations on a computer screen. NFB was used to enable participants to selectively increase scalp EEG theta power for 30 minutes. Visuo-spatial memory was tested one week later, with the theta NFB participants compared with 2 control groups (beta-augmentation NFB as an active control group, and an additional passive control group that did not engage in NFB). Theta upregulation was found to improve visuo-spatial memory, as reflected in reduced error distances in location marking and faster reaction time for correct answers by the theta group. This supports the contention that theta upregulation immediately after learning strengthens early consolidation of visuo-spatial memory. This intervention could potentially benefit various memory-challenged populations, as well as healthy individuals.
Collapse
Affiliation(s)
- Limor Shtoots
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Tom Dagan
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Josh Levine
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Aryeh Rothstein
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Liran Shati
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| |
Collapse
|
14
|
Fritch HA, Thakral PP, Slotnick SD, Ross RS. Distinct patterns of hippocampal activity associated with color and spatial source memory. Hippocampus 2021; 31:1039-1047. [PMID: 34101292 DOI: 10.1002/hipo.23368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/08/2022]
Abstract
The hippocampus is known to be involved in source memory across a wide variety of stimuli and source types. Thus, source memory activity in the hippocampus is thought to be domain-general such that different types of source information are similarly processed in the hippocampus. However, there is some evidence of domain-specificity for spatial and temporal source information. The current fMRI study aimed to determine whether patterns of activity in the hippocampus differed for two types of visual source information: spatial location and background color. Participants completed three runs of a spatial memory task and three runs of a color memory task. During the study phase, 32 line drawings of common objects and animals were presented to either the left or right of fixation for the spatial memory task or on either a red or green background for the color memory task. During the test phase of both tasks, 48 object word labels were presented in the center of the screen and participants classified the corresponding item as old and previously on the "left"/on a "green" background, old and previously on the "right"/on a "red" background, or "new." Two analysis methods were employed to assess whether hippocampal activity differed between the two source types: a general linear model analysis and a classification-based searchlight multivoxel pattern analysis (MVPA). The searchlight MVPA revealed that activity associated with spatial memory and color memory could be classified with above-chance accuracy in a region of the right anterior hippocampus, and a follow-up analysis revealed that there was a significant effect of memory accuracy. These results indicate that different types of source memory are represented by distinct patterns of activity in the hippocampus.
Collapse
Affiliation(s)
- Haley A Fritch
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Preston P Thakral
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Robert S Ross
- Department of Psychology, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
15
|
Delaux A, de Saint Aubert JB, Ramanoël S, Bécu M, Gehrke L, Klug M, Chavarriaga R, Sahel JA, Gramann K, Arleo A. Mobile brain/body imaging of landmark-based navigation with high-density EEG. Eur J Neurosci 2021; 54:8256-8282. [PMID: 33738880 PMCID: PMC9291975 DOI: 10.1111/ejn.15190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023]
Abstract
Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation.
Collapse
Affiliation(s)
- Alexandre Delaux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Lukas Gehrke
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Marius Klug
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Ricardo Chavarriaga
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Zurich University of Applied Sciences, ZHAW Datalab, Winterthur, Switzerland
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Klaus Gramann
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
16
|
Barron HC, Mars RB, Dupret D, Lerch JP, Sampaio-Baptista C. Cross-species neuroscience: closing the explanatory gap. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190633. [PMID: 33190601 PMCID: PMC7116399 DOI: 10.1098/rstb.2019.0633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals. Recent advances in invasive methods now permit large-scale recording and circuit-level manipulations with exquisite spatio-temporal precision. Yet, there has been limited progress in relating these microcircuit measures to complex cognition and behaviour observed in humans. Contemporary neuroscience thus faces an explanatory gap between macroscopic descriptions of the human brain and microscopic descriptions in animal models. To close the explanatory gap, we propose adopting a cross-species approach. Despite dramatic differences in the size of mammalian brains, this approach is broadly justified by preserved homology. Here, we outline a three-armed approach for effective cross-species investigation that highlights the need to translate different measures of neural activity into a common space. We discuss how a cross-species approach has the potential to transform basic neuroscience while also benefiting neuropsychiatric drug development where clinical translation has, to date, seen minimal success. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Helen C. Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, CanadaM5G 1L7
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
17
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|
18
|
Zhang B, Naya Y. Medial Prefrontal Cortex Represents the Object-Based Cognitive Map When Remembering an Egocentric Target Location. Cereb Cortex 2020; 30:5356-5371. [PMID: 32483594 DOI: 10.1093/cercor/bhaa117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 01/25/2023] Open
Abstract
A cognitive map, representing an environment around oneself, is necessary for spatial navigation. However, compared with its constituent elements such as individual landmarks, neural substrates of coherent spatial information, which consists in a relationship among the individual elements, remain largely unknown. The present study investigated how the brain codes map-like representations in a virtual environment specified by the relative positions of three objects. Representational similarity analysis revealed an object-based spatial representation in the hippocampus (HPC) when participants located themselves within the environment, while the medial prefrontal cortex (mPFC) represented it when they recollected a target object's location relative to their self-body. During recollection, task-dependent functional connectivity increased between the two areas implying exchange of self-location and target location signals between the HPC and mPFC. Together, the object-based cognitive map, whose coherent spatial information could be formed by objects, may be recruited in the HPC and mPFC for complementary functions during navigation, which may generalize to other aspects of cognition, such as navigating social interactions.
Collapse
Affiliation(s)
- Bo Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100805, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100805, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing 100805, China.,Center for Life Sciences, Peking University, Beijing 100805, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100805, China
| |
Collapse
|
19
|
The Hippocampus Maps Concept Space, Not Feature Space. J Neurosci 2020; 40:7318-7325. [PMID: 32826311 DOI: 10.1523/jneurosci.0494-20.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/20/2023] Open
Abstract
The hippocampal formation encodes maps of space and a key question in neuroscience is whether its spatial coding principles also provide a universal metric for the organization of nonspatial, conceptual information. Previous work demonstrated directional coding during navigation through a continuous stimulus feature space as well as mapping of distances in a feature space that was relevant for concept learning. Here we provide the first unambiguous evidence for a hippocampal representation of the actual concept space, by showing that the hippocampal distance signal selectively reflects the mapping of specifically conceptually relevant rather than of all feature dimensions. During fMRI scanning of 32 human participants (21 females), we presented everyday objects, which had beforehand been associated with specific values on three continuous feature dimensions. Crucially, only two dimensions were relevant to prior concept learning. We find that hippocampal responses to the objects reflect their relative distances in a space defined along conceptually relevant dimensions compared with distances in a space defined along all feature dimensions. These findings suggest that the hippocampus supports knowledge acquisition by dynamically encoding information in a space spanned along dimensions that are relevant in relation to define concepts.SIGNIFICANCE STATEMENT How are neural representations of conceptual knowledge organized, such that humans are able to infer never experienced relations or categorize new exemplars? Map-like representations as supported by the hippocampal formation to encode physical space during navigation have been suggested as a suitable format. Here we provide the first evidence for a hippocampal representation of a conceptual space compared with a general feature-based space.
Collapse
|
20
|
Schöberl F, Zwergal A, Brandt T. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control. Front Neural Circuits 2020; 14:6. [PMID: 32210769 PMCID: PMC7069479 DOI: 10.3389/fncir.2020.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Successful navigation relies on the flexible and appropriate use of metric representations of space or topological knowledge of the environment. Spatial dimensions (2D vs. 3D), spatial scales (vista-scale vs. large-scale environments) and the abundance of visual landmarks critically affect navigation performance and behavior in healthy human subjects. Virtual reality (VR)-based navigation paradigms in stationary position have given insight into the major navigational strategies, namely egocentric (body-centered) and allocentric (world-centered), and the cerebral control of navigation. However, VR approaches are biased towards optic flow and visual landmark processing. This major limitation can be overcome to some extent by increasingly immersive and realistic VR set-ups (including large-screen projections, eye tracking and use of head-mounted camera systems). However, the highly immersive VR settings are difficult to apply particularly to older subjects and patients with neurological disorders because of cybersickness and difficulties with learning and conducting the tasks. Therefore, a need for the development of novel spatial tasks in real space exists, which allows a synchronous analysis of navigational behavior, strategy, visual explorations and navigation-induced brain activation patterns. This review summarizes recent findings from real space navigation studies in healthy subjects and patients with different cognitive and sensory neurological disorders. Advantages and limitations of real space navigation testing and different VR-based navigation paradigms are discussed in view of potential future applications in clinical neurology.
Collapse
Affiliation(s)
- Florian Schöberl
- Department of Neurology, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany.,Clinical Neurosciences, LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Grieves RM, Jedidi-Ayoub S, Mishchanchuk K, Liu A, Renaudineau S, Jeffery KJ. The place-cell representation of volumetric space in rats. Nat Commun 2020; 11:789. [PMID: 32034157 PMCID: PMC7005894 DOI: 10.1038/s41467-020-14611-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/20/2020] [Indexed: 11/29/2022] Open
Abstract
Place cells are spatially modulated neurons found in the hippocampus that underlie spatial memory and navigation: how these neurons represent 3D space is crucial for a full understanding of spatial cognition. We wirelessly recorded place cells in rats as they explored a cubic lattice climbing frame which could be aligned or tilted with respect to gravity. Place cells represented the entire volume of the mazes: their activity tended to be aligned with the maze axes, and when it was more difficult for the animals to move vertically the cells represented space less accurately and less stably. These results demonstrate that even surface-dwelling animals represent 3D space and suggests there is a fundamental relationship between environment structure, gravity, movement and spatial memory.
Collapse
Affiliation(s)
- Roddy M Grieves
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK.
| | - Selim Jedidi-Ayoub
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Karyna Mishchanchuk
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Anyi Liu
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Sophie Renaudineau
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Kate J Jeffery
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK.
| |
Collapse
|
22
|
Yu F, Shang J, Hu Y, Milford M. NeuroSLAM: a brain-inspired SLAM system for 3D environments. BIOLOGICAL CYBERNETICS 2019; 113:515-545. [PMID: 31571007 DOI: 10.1007/s00422-019-00806-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Roboticists have long drawn inspiration from nature to develop navigation and simultaneous localization and mapping (SLAM) systems such as RatSLAM. Animals such as birds and bats possess superlative navigation capabilities, robustly navigating over large, three-dimensional environments, leveraging an internal neural representation of space combined with external sensory cues and self-motion cues. This paper presents a novel neuro-inspired 4DoF (degrees of freedom) SLAM system named NeuroSLAM, based upon computational models of 3D grid cells and multilayered head direction cells, integrated with a vision system that provides external visual cues and self-motion cues. NeuroSLAM's neural network activity drives the creation of a multilayered graphical experience map in a real time, enabling relocalization and loop closure through sequences of familiar local visual cues. A multilayered experience map relaxation algorithm is used to correct cumulative errors in path integration after loop closure. Using both synthetic and real-world datasets comprising complex, multilayered indoor and outdoor environments, we demonstrate NeuroSLAM consistently producing topologically correct three-dimensional maps.
Collapse
Affiliation(s)
- Fangwen Yu
- Faculty of Information Engineering, China University of Geosciences and National Engineering Research Center for Geographic Information System, Wuhan, 430074, China
- Science and Engineering Faculty, Queensland University of Technology and Australian Centre for Robotic Vision, Brisbane, QLD, 4000, Australia
| | - Jianga Shang
- Faculty of Information Engineering, China University of Geosciences and National Engineering Research Center for Geographic Information System, Wuhan, 430074, China.
| | - Youjian Hu
- Faculty of Information Engineering, China University of Geosciences and National Engineering Research Center for Geographic Information System, Wuhan, 430074, China
| | - Michael Milford
- Science and Engineering Faculty, Queensland University of Technology and Australian Centre for Robotic Vision, Brisbane, QLD, 4000, Australia
| |
Collapse
|
23
|
The role of hippocampal spatial representations in contextualization and generalization of fear. Neuroimage 2019; 206:116308. [PMID: 31669410 DOI: 10.1016/j.neuroimage.2019.116308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Using contextual information to predict aversive events is a critical ability that protects from generalizing fear responses to safe contexts. Animal models have demonstrated the importance of spatial context representations within the hippocampal formation in contextualization of fear learning. The ventromedial prefrontal cortex (vmPFC) is known to play an important role in safety learning, possibly also through the incorporation of context information. However, if contextual representations are related to context-dependent expression of fear memory in humans remains unclear. Twenty-one healthy participants underwent functional MRI combined with a cue-context conditioning paradigm within a self-navigated virtual reality environment. The environment included two buildings (Threat and Safe context), which had distinct features outside but were identical inside. Within each context, participants saw two cues (CS+, CS-). The CS+ was consistently (100% reinforcement rate) paired with an electric shock in the Threat context, but never in the Safe context. The CS- was never paired with a shock. We found robust differential skin conductance responses (SCRs; CS+ > CS-) in the Threat context, but also within the Safe context, indicating fear generalization. Within the Safe context, vmPFC responses to the CS+ were larger than those in the Threat context. We furthermore found environment-specific representations for the two contexts in the training paradigm (i.e., before conditioning took place) in the hippocampus to be related to fear expression and generalization. Namely, participants with a weak context representation (z-score < 1.65) showed stronger fear generalization compared to participants with a strong context representation (z-score > 1.65). Thus, a weak neural representation strength of spatial context may explain overgeneralization of memory to safe contexts. In addition, our findings demonstrate that context-dependent regulation of fear expression engages ventromedial prefrontal pathways suggesting this involves a similar mechanism that is known to be involved in retrieval of extinction memory.
Collapse
|
24
|
Abstract
Mammals have evolved specialized brain systems to support efficient navigation within diverse habitats and over varied distances, but while navigational strategies and sensory mechanisms vary across species, core spatial components appear to be widely shared. This review presents common elements found in mammalian spatial mapping systems, focusing on the cells in the hippocampal formation representing orientational and locational spatial information, and 'core' mammalian hippocampal circuitry. Mammalian spatial mapping systems make use of both allothetic cues (space-defining cues in the external environment) and idiothetic cues (cues derived from self-motion). As examples of each cue type, we discuss: environmental boundaries, which control both orientational and locational neuronal activity and behaviour; and 'path integration', a process that allows the estimation of linear translation from velocity signals, thought to depend upon grid cells in the entorhinal cortex. Building cognitive maps entails sampling environments: we consider how the mapping system controls exploration to acquire spatial information, and how exploratory strategies may integrate idiothetic with allothetic information. We discuss how 'replay' may act to consolidate spatial maps, and simulate trajectories to aid navigational planning. Finally, we discuss grid cell models of vector navigation.
Collapse
Affiliation(s)
| | - Tom Hartley
- Department of Psychology, University of York, YO10 5DD, UK
| | - Colin Lever
- Psychology Department, Durham University, DH1 3LE, UK.
| |
Collapse
|
25
|
Kunz L, Maidenbaum S, Chen D, Wang L, Jacobs J, Axmacher N. Mesoscopic Neural Representations in Spatial Navigation. Trends Cogn Sci 2019; 23:615-630. [PMID: 31130396 PMCID: PMC6601347 DOI: 10.1016/j.tics.2019.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/21/2023]
Abstract
Recent evidence suggests that mesoscopic neural oscillations measured via intracranial electroencephalography exhibit spatial representations, which were previously only observed at the micro- and macroscopic level of brain organization. Specifically, theta (and gamma) oscillations correlate with movement, speed, distance, specific locations, and goal proximity to boundaries. In entorhinal cortex (EC), they exhibit hexadirectional modulation, which is putatively linked to grid cell activity. Understanding this mesoscopic neural code is crucial because information represented by oscillatory power and phase may complement the information content at other levels of brain organization. Mesoscopic neural oscillations help bridge the gap between single-neuron and macroscopic brain signals of spatial navigation and may provide a mechanistic basis for novel biomarkers and therapeutic targets to treat diseases causing spatial disorientation.
Collapse
Affiliation(s)
- Lukas Kunz
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Shachar Maidenbaum
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
26
|
Kim M, Maguire EA. Encoding of 3D head direction information in the human brain. Hippocampus 2019; 29:619-629. [PMID: 30561118 PMCID: PMC6618148 DOI: 10.1002/hipo.23060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Head direction cells are critical for navigation because they convey information about which direction an animal is facing within an environment. To date, most studies on head direction encoding have been conducted on a horizontal two-dimensional (2D) plane, and little is known about how three-dimensional (3D) direction information is encoded in the brain despite humans and other animals living in a 3D world. Here, we investigated head direction encoding in the human brain while participants moved within a virtual 3D "spaceship" environment. Movement was not constrained to planes and instead participants could move along all three axes in volumetric space as if in zero gravity. Using functional magnetic resonance imaging (fMRI) multivoxel pattern similarity analysis, we found evidence that the thalamus, particularly the anterior portion, and the subiculum encoded the horizontal component of 3D head direction (azimuth). In contrast, the retrosplenial cortex was significantly more sensitive to the vertical direction (pitch) than to the azimuth. Our results also indicated that vertical direction information in the retrosplenial cortex was significantly correlated with behavioral performance during a direction judgment task. Our findings represent the first evidence showing that the "classic" head direction system that has been identified on a horizontal 2D plane also seems to encode vertical and horizontal heading in 3D space in the human brain.
Collapse
Affiliation(s)
- Misun Kim
- Wellcome Centre for Human NeuroimagingQueen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Eleanor A. Maguire
- Wellcome Centre for Human NeuroimagingQueen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF. Navigating cognition: Spatial codes for human thinking. Science 2019; 362:362/6415/eaat6766. [PMID: 30409861 DOI: 10.1126/science.aat6766] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal formation has long been suggested to underlie both memory formation and spatial navigation. We discuss how neural mechanisms identified in spatial navigation research operate across information domains to support a wide spectrum of cognitive functions. In our framework, place and grid cell population codes provide a representational format to map variable dimensions of cognitive spaces. This highly dynamic mapping system enables rapid reorganization of codes through remapping between orthogonal representations across behavioral contexts, yielding a multitude of stable cognitive spaces at different resolutions and hierarchical levels. Action sequences result in trajectories through cognitive space, which can be simulated via sequential coding in the hippocampus. In this way, the spatial representational format of the hippocampal formation has the capacity to support flexible cognition and behavior.
Collapse
Affiliation(s)
- Jacob L S Bellmund
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Gärdenfors
- Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden.,Centre for Artificial Intelligence, University of Technology Sydney, Sydney, Australia
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
28
|
Rogge AK, Hötting K, Nagel V, Zech A, Hölig C, Röder B. Improved balance performance accompanied by structural plasticity in blind adults after training. Neuropsychologia 2019; 129:318-330. [PMID: 31004689 DOI: 10.1016/j.neuropsychologia.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/18/2019] [Accepted: 04/13/2019] [Indexed: 12/25/2022]
Abstract
Postural control requires the sensory integration of visual, vestibular, and proprioceptive signals. In the absence of vision, either by blindfolding or in blind individuals, balance performance is typically poorer than with sight. Previous research has suggested that despite showing compensatory vestibular and proprioceptive processing during upright standing, balance performance in blind individuals is overall lower than in sighted controls with eyes open. The present study tested whether balance training, which places demands on vestibular and proprioceptive self-motion perception, improves balance performance in blind adults, and whether we find similar structural correlates in cortical and subcortical brain areas as have been reported in sighted individuals. Fourteen congenitally or late blind adults were randomly assigned to either a balance or a relaxation group and exercised twice a week for 12 weeks. Assessments prior to and after training included balance tests and the acquisition of T1-weighted MRI images. The blind balance group significantly improved in dynamic, static, and functional balance performance compared to the blind relaxation group. The balance performance improvement did not differ from that of age- and gender matched sighted adults after balance training. Cortical thickness increased in the left parahippocampus and decreased in the inferior insula bilaterally in the blind balance group compared to the blind relaxation group. Thickness decreases in the insula were related to improved static and functional balance. Gray matter volume was reduced in the left hippocampus proper and increased in the right subiculum in the blind balance group. The present data suggest that impaired balance performance in blind adults can be significantly improved by a training inducing plasticity in brain regions associated with vestibular and proprioceptive self-motion processing.
Collapse
Affiliation(s)
- Ann-Kathrin Rogge
- Universität Hamburg, Biological Psychology and Neuropsychology, Von-Melle-Park 11, 20146, Hamburg, Germany.
| | - Kirsten Hötting
- Universität Hamburg, Biological Psychology and Neuropsychology, Von-Melle-Park 11, 20146, Hamburg, Germany.
| | - Volker Nagel
- Universität Hamburg, Sports Medicine, Turmweg 2, 20146, Hamburg, Germany.
| | - Astrid Zech
- Friedrich Schiller University, Human Movement Science, Seidelstraße 20, 07749, Jena, Germany.
| | - Cordula Hölig
- Friedrich Schiller University, Human Movement Science, Seidelstraße 20, 07749, Jena, Germany.
| | - Brigitte Röder
- Universität Hamburg, Biological Psychology and Neuropsychology, Von-Melle-Park 11, 20146, Hamburg, Germany.
| |
Collapse
|
29
|
Kim M, Maguire EA. Can we study 3D grid codes non-invasively in the human brain? Methodological considerations and fMRI findings. Neuroimage 2019; 186:667-678. [PMID: 30481593 PMCID: PMC6347569 DOI: 10.1016/j.neuroimage.2018.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022] Open
Abstract
Recent human functional magnetic resonance imaging (fMRI) and animal electrophysiology studies suggest that grid cells in entorhinal cortex are an efficient neural mechanism for encoding knowledge about the world, not only for spatial location but also for more abstract cognitive information. The world, be it physical or abstract, is often high-dimensional, but grid cells have been mainly studied on a simple two-dimensional (2D) plane. Recent theoretical studies have proposed how grid cells encode three-dimensional (3D) physical space, but it is unknown whether grid codes can be examined non-invasively in humans. Here, we investigated whether it was feasible to test different 3D grid models using fMRI based on the direction-modulated property of grid signals. In doing so, we developed interactive software to help researchers visualize 3D grid fields and predict grid activity in 3D as a function of movement directions. We found that a direction-modulated grid analysis was sensitive to one type of 3D grid model - a face-centred cubic (FCC) lattice model. As a proof of concept, we searched for 3D grid-like signals in human entorhinal cortex using a novel 3D virtual reality paradigm and a new fMRI analysis method. We found that signals in the left entorhinal cortex were explained by the FCC model. This is preliminary evidence for 3D grid codes in the human brain, notwithstanding the inherent methodological limitations of fMRI. We believe that our findings and software serve as a useful initial stepping-stone for studying grid cells in realistic 3D worlds and also, potentially, for interrogating abstract high-dimensional cognitive processes.
Collapse
Affiliation(s)
- Misun Kim
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
30
|
Abstract
It is widely agreed that patients with bilateral hippocampal damage are impaired at binding pairs of words together. Consequently, the verbal paired associates (VPA) task has become emblematic of hippocampal function. This VPA deficit is not well understood and is particularly difficult for hippocampal theories with a visuospatial bias to explain (e.g., cognitive map and scene construction theories). Resolving the tension among hippocampal theories concerning the VPA could be important for leveraging a fuller understanding of hippocampal function. Notably, VPA tasks typically use high imagery concrete words and so conflate imagery and binding. To determine why VPA engages the hippocampus, we devised an fMRI encoding task involving closely matched pairs of scene words, pairs of object words, and pairs of very low imagery abstract words. We found that the anterior hippocampus was engaged during processing of both scene and object word pairs in comparison to abstract word pairs, despite binding occurring in all conditions. This was also the case when just subsequently remembered stimuli were considered. Moreover, for object word pairs, fMRI activity patterns in anterior hippocampus were more similar to those for scene imagery than object imagery. This was especially evident in participants who were high imagery users and not in mid and low imagery users. Overall, our results show that hippocampal engagement during VPA, even when object word pairs are involved, seems to be evoked by scene imagery rather than binding. This may help to resolve the issue that visuospatial hippocampal theories have in accounting for verbal memory.
Collapse
|
31
|
Evidence against the Detectability of a Hippocampal Place Code Using Functional Magnetic Resonance Imaging. eNeuro 2018; 5:eN-NRS-0177-18. [PMID: 30225362 PMCID: PMC6140124 DOI: 10.1523/eneuro.0177-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/04/2022] Open
Abstract
Individual hippocampal neurons selectively increase their firing rates in specific spatial locations. As a population, these neurons provide a decodable representation of space that is robust against changes to sensory- and path-related cues. This neural code is sparse and distributed, theoretically rendering it undetectable with population recording methods such as functional magnetic resonance imaging (fMRI). Existing studies nonetheless report decoding spatial codes in the human hippocampus using such techniques. Here we present results from a virtual navigation experiment in humans in which we eliminated visual- and path-related confounds and statistical limitations present in existing studies, ensuring that any positive decoding results would represent a voxel-place code. Consistent with theoretical arguments derived from electrophysiological data and contrary to existing fMRI studies, our results show that although participants were fully oriented during the navigation task, there was no statistical evidence for a place code.
Collapse
|
32
|
Herweg NA, Kahana MJ. Spatial Representations in the Human Brain. Front Hum Neurosci 2018; 12:297. [PMID: 30104966 PMCID: PMC6078001 DOI: 10.3389/fnhum.2018.00297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
While extensive research on the neurophysiology of spatial memory has been carried out in rodents, memory research in humans had traditionally focused on more abstract, language-based tasks. Recent studies have begun to address this gap using virtual navigation tasks in combination with electrophysiological recordings in humans. These studies suggest that the human medial temporal lobe (MTL) is equipped with a population of place and grid cells similar to that previously observed in the rodent brain. Furthermore, theta oscillations have been linked to spatial navigation and, more specifically, to the encoding and retrieval of spatial information. While some studies suggest a single navigational theta rhythm which is of lower frequency in humans than rodents, other studies advocate for the existence of two functionally distinct delta-theta frequency bands involved in both spatial and episodic memory. Despite the general consensus between rodent and human electrophysiology, behavioral work in humans does not unequivocally support the use of a metric Euclidean map for navigation. Formal models of navigational behavior, which specifically consider the spatial scale of the environment and complementary learning mechanisms, may help to better understand different navigational strategies and their neurophysiological mechanisms. Finally, the functional overlap of spatial and declarative memory in the MTL calls for a unified theory of MTL function. Such a theory will critically rely upon linking task-related phenomena at multiple temporal and spatial scales. Understanding how single cell responses relate to ongoing theta oscillations during both the encoding and retrieval of spatial and non-spatial associations appears to be key toward developing a more mechanistic understanding of memory processes in the MTL.
Collapse
Affiliation(s)
- Nora A. Herweg
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J. Kahana
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Hinterecker T, Pretto P, de Winkel KN, Karnath HO, Bülthoff HH, Meilinger T. Body-relative horizontal-vertical anisotropy in human representations of traveled distances. Exp Brain Res 2018; 236:2811-2827. [PMID: 30030590 PMCID: PMC6153888 DOI: 10.1007/s00221-018-5337-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
Abstract
A growing number of studies investigated anisotropies in representations of horizontal and vertical spaces. In humans, compelling evidence for such anisotropies exists for representations of multi-floor buildings. In contrast, evidence regarding open spaces is indecisive. Our study aimed at further enhancing the understanding of horizontal and vertical spatial representations in open spaces utilizing a simple traveled distance estimation paradigm. Blindfolded participants were moved along various directions in the sagittal plane. Subsequently, participants passively reproduced the traveled distance from memory. Participants performed this task in an upright and in a 30° backward-pitch orientation. The accuracy of distance estimates in the upright orientation showed a horizontal–vertical anisotropy, with higher accuracy along the horizontal axis compared with the vertical axis. The backward-pitch orientation enabled us to investigate whether this anisotropy was body or earth-centered. The accuracy patterns of the upright condition were positively correlated with the body-relative (not the earth-relative) coordinate mapping of the backward-pitch condition, suggesting a body-centered anisotropy. Overall, this is consistent with findings on motion perception. It suggests that the distance estimation sub-process of path integration is subject to horizontal–vertical anisotropy. Based on the previous studies that showed isotropy in open spaces, we speculate that real physical self-movements or categorical versus isometric encoding are crucial factors for (an)isotropies in spatial representations.
Collapse
Affiliation(s)
- Thomas Hinterecker
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany. .,Graduate Training Centre of Neuroscience, Tübingen University, Tübingen, Germany.
| | - Paolo Pretto
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Ksander N de Winkel
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Tübingen University, Tübingen, Germany
| | - Heinrich H Bülthoff
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Tobias Meilinger
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| |
Collapse
|
34
|
Barry DN, Chadwick MJ, Maguire EA. Nonmonotonic recruitment of ventromedial prefrontal cortex during remote memory recall. PLoS Biol 2018; 16:e2005479. [PMID: 29965966 PMCID: PMC6044544 DOI: 10.1371/journal.pbio.2005479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/13/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
Systems-level consolidation refers to the time-dependent reorganisation of memory traces in the neocortex, a process in which the ventromedial prefrontal cortex (vmPFC) has been implicated. Capturing the precise temporal evolution of this crucial process in humans has long proved elusive. Here, we used multivariate methods and a longitudinal functional magnetic resonance imaging (fMRI) design to detect, with high granularity, the extent to which autobiographical memories of different ages were represented in vmPFC and how this changed over time. We observed an unexpected time course of vmPFC recruitment during retrieval, rising and falling around an initial peak of 8-12 months, before reengaging for older 2- and 5-year-old memories. This pattern was replicated in 2 independent sets of memories. Moreover, it was further replicated in a follow-up study 8 months later with the same participants and memories, for which the individual memory representations had undergone their hypothesised strengthening or weakening over time. We conclude that the temporal engagement of vmPFC in memory retrieval seems to be nonmonotonic, revealing a complex relationship between systems-level consolidation and prefrontal cortex recruitment that is unaccounted for by current theories.
Collapse
Affiliation(s)
- Daniel N. Barry
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Martin J. Chadwick
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Eleanor A. Maguire
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
35
|
Kamil RJ, Jacob A, Ratnanather JT, Resnick SM, Agrawal Y. Vestibular Function and Hippocampal Volume in the Baltimore Longitudinal Study of Aging (BLSA). Otol Neurotol 2018; 39:765-771. [PMID: 29889787 PMCID: PMC5999049 DOI: 10.1097/mao.0000000000001838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study evaluated whether reduced vestibular function in aging adults is associated with lower hippocampal volume. STUDY DESIGN Cross-sectional study. SETTING Baltimore Longitudinal Study of Aging, a long-running longitudinal cohort study of healthy aging. PATIENTS Eligible participants were aged ≥ 60 years and had both vestibular physiological testing and brain magnetic resonance imaging at the same visit. INTERVENTION Vestibular function testing consisted of the cervical vestibular-evoked myogenic potential (cVEMP) to assess saccular function, ocular VEMP to assess utricular function, and video head-impulse testing to assess the horizontal semicircular canal vestibulo-ocular reflex. MAIN OUTCOME MEASURE Hippocampal volume calculated using diffeomorphometry. RESULTS The study sample included 103 participants (range of 35-90 participants in subanalyses) with mean (±SD) age 77.2 years (±8.71). Multivariate linear models including age, intracranial volume, sex, and race showed that 1 μV amplitude increase of cVEMP was associated with an increase of 319.1 mm (p = 0.003) in mean hippocampal volume. We did not observe a significant relationship between ocular VEMP amplitude or vestibulo-ocular reflex gain and mean hippocampal volume. CONCLUSIONS Lower cVEMP amplitude (i.e., reduced saccular function) was significantly associated with lower mean hippocampal volume. This is in line with previous work demonstrating a link between saccular function and spatial cognition. Hippocampal atrophy may be a mechanism by which vestibular loss contributes to impaired spatial cognition in older adults. Future work using longitudinal data will be needed to evaluate the causal nature of the association between vestibular loss and hippocampal atrophy.
Collapse
Affiliation(s)
- Rebecca J. Kamil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD
| | - Athira Jacob
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | | | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore MD
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD
- Department of Otolaryngology-Head and Neck Surgery, Division of Otology, Neurotology, and Skull Base Surgery, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
36
|
Reggente N, Essoe JKY, Aghajan ZM, Tavakoli AV, McGuire JF, Suthana NA, Rissman J. Enhancing the Ecological Validity of fMRI Memory Research Using Virtual Reality. Front Neurosci 2018; 12:408. [PMID: 29962932 PMCID: PMC6013717 DOI: 10.3389/fnins.2018.00408] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful research tool to understand the neural underpinnings of human memory. However, as memory is known to be context-dependent, differences in contexts between naturalistic settings and the MRI scanner environment may potentially confound neuroimaging findings. Virtual reality (VR) provides a unique opportunity to mitigate this issue by allowing memories to be formed and/or retrieved within immersive, navigable, visuospatial contexts. This can enhance the ecological validity of task paradigms, while still ensuring that researchers maintain experimental control over critical aspects of the learning and testing experience. This mini-review surveys the growing body of fMRI studies that have incorporated VR to address critical questions about human memory. These studies have adopted a variety of approaches, including presenting research participants with VR experiences in the scanner, asking participants to retrieve information that they had previously acquired in a VR environment, or identifying neural correlates of behavioral metrics obtained through VR-based tasks performed outside the scanner. Although most such studies to date have focused on spatial or navigational memory, we also discuss the promise of VR in aiding other areas of memory research and facilitating research into clinical disorders.
Collapse
Affiliation(s)
- Nicco Reggente
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joey K-Y Essoe
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zahra M Aghajan
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amir V Tavakoli
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph F McGuire
- Division of Child and Adolescent Psychiatry, Johns Hopkins Children's Center, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Nanthia A Suthana
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse Rissman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
37
|
Yin A, Tseng PH, Rajangam S, Lebedev MA, Nicolelis MAL. Place Cell-Like Activity in the Primary Sensorimotor and Premotor Cortex During Monkey Whole-Body Navigation. Sci Rep 2018; 8:9184. [PMID: 29907789 PMCID: PMC6003955 DOI: 10.1038/s41598-018-27472-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/04/2018] [Indexed: 11/28/2022] Open
Abstract
Primary motor (M1), primary somatosensory (S1) and dorsal premotor (PMd) cortical areas of rhesus monkeys previously have been associated only with sensorimotor control of limb movements. Here we show that a significant number of neurons in these areas also represent body position and orientation in space. Two rhesus monkeys (K and M) used a wheelchair controlled by a brain-machine interface (BMI) to navigate in a room. During this whole-body navigation, the discharge rates of M1, S1, and PMd neurons correlated with the two-dimensional (2D) room position and the direction of the wheelchair and the monkey head. This place cell-like activity was observed in both monkeys, with 44.6% and 33.3% of neurons encoding room position in monkeys K and M, respectively, and the overlapping populations of 41.0% and 16.0% neurons encoding head direction. These observations suggest that primary sensorimotor and premotor cortical areas in primates are likely involved in allocentrically representing body position in space during whole-body navigation, which is an unexpected finding given the classical hierarchical model of cortical processing that attributes functional specialization for spatial processing to the hippocampal formation.
Collapse
Affiliation(s)
- A Yin
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - P H Tseng
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Rajangam
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - M A Lebedev
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - M A L Nicolelis
- Duke Center for Neuroengineering, Duke University, Durham, NC, 27710, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA. .,Edmond and Lily Safra International Institute of Neuroscience of Natal, Natal, 59066060, Brazil.
| |
Collapse
|
38
|
Kim M, Maguire EA. Hippocampus, Retrosplenial and Parahippocampal Cortices Encode Multicompartment 3D Space in a Hierarchical Manner. Cereb Cortex 2018; 28:1898-1909. [PMID: 29554231 PMCID: PMC5907342 DOI: 10.1093/cercor/bhy054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/09/2023] Open
Abstract
Humans commonly operate within 3D environments such as multifloor buildings and yet there is a surprising dearth of studies that have examined how these spaces are represented in the brain. Here, we had participants learn the locations of paintings within a virtual multilevel gallery building and then used behavioral tests and fMRI repetition suppression analyses to investigate how this 3D multicompartment space was represented, and whether there was a bias in encoding vertical and horizontal information. We found faster response times for within-room egocentric spatial judgments and behavioral priming effects of visiting the same room, providing evidence for a compartmentalized representation of space. At the neural level, we observed a hierarchical encoding of 3D spatial information, with left anterior hippocampus representing local information within a room, while retrosplenial cortex, parahippocampal cortex, and posterior hippocampus represented room information within the wider building. Of note, both our behavioral and neural findings showed that vertical and horizontal location information was similarly encoded, suggesting an isotropic representation of 3D space even in the context of a multicompartment environment. These findings provide much-needed information about how the human brain supports spatial memory and navigation in buildings with numerous levels and rooms.
Collapse
Affiliation(s)
- Misun Kim
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
39
|
Mitchell AS, Czajkowski R, Zhang N, Jeffery K, Nelson AJD. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci Adv 2018; 2:2398212818757098. [PMID: 30221204 PMCID: PMC6095108 DOI: 10.1177/2398212818757098] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Retrosplenial cortex is a region within the posterior neocortical system, heavily interconnected with an array of brain networks, both cortical and subcortical, that is, engaged by a myriad of cognitive tasks. Although there is no consensus as to its precise function, evidence from both human and animal studies clearly points to a role in spatial cognition. However, the spatial processing impairments that follow retrosplenial cortex damage are not straightforward to characterise, leading to difficulties in defining the exact nature of its role. In this article, we review this literature and classify the types of ideas that have been put forward into three broad, somewhat overlapping classes: (1) learning of landmark location, stability and permanence; (2) integration between spatial reference frames; and (3) consolidation and retrieval of spatial knowledge (schemas). We evaluate these models and suggest ways to test them, before briefly discussing whether the spatial function may be a subset of a more general function in episodic memory.
Collapse
Affiliation(s)
- Anna S. Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Rafal Czajkowski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ningyu Zhang
- Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London, London, UK
| | - Kate Jeffery
- Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London, London, UK
| | | |
Collapse
|