1
|
Nöbel S, Danchin E, Isabel G. Long-term social memory of mate copying in Drosophila melanogaster is localized in mushroom bodies. Sci Rep 2025; 15:5262. [PMID: 39939402 PMCID: PMC11822108 DOI: 10.1038/s41598-025-88535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
Long-term social memory (LTSM) is a key feature to elicit the cultural inheritance of behaviour independently of genetics. However, the neurobiological basis of LTSM remains largely unknown. We previously used the Drosophila animal model, which is known to perform mate copying through observational learning of the mate choice of conspecifics to show that the expression of the rutabaga gene, a calcium/calmodulin-dependent adenylyl cyclase (AC-Rut+) that acts as a coincidence detector enabling associative learning, is necessary and sufficient in the γ-Kenyon cells (KCs) of the mushroom bodies (MBs). Here, we show that the expression of AC-Rut+ in both the γ- and the α/β-KCs is required for LTSM involving de novo protein synthesis in a mate-copying context, whether using demonstrations involving real flies or involving pictures of copulating conspecifics. Thus, pathways of short- and long-term memory show considerable overlap in the MBs across social vs. asocial learning contexts.
Collapse
Affiliation(s)
- Sabine Nöbel
- Department of Zoology, Animal Ecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
- Université Toulouse 1 Capitole and Institute for Advanced Study in Toulouse (IAST), Toulouse, France.
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, 31062, Toulouse, France.
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, 31062, Toulouse, France
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Université de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|
2
|
Larnerd C, Nolazco M, Valdez A, Sanchez V, Wolf FW. Memory-like states created by the first ethanol experience are encoded into the Drosophila mushroom body learning and memory circuitry in an ethanol-specific manner. PLoS Genet 2025; 21:e1011582. [PMID: 39899623 PMCID: PMC11801723 DOI: 10.1371/journal.pgen.1011582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
A first ethanol exposure creates three memory-like states in Drosophila. Ethanol memory-like states appear genetically and behaviorally paralleled to the canonical learning and memory traces anesthesia-sensitive, anesthesia-resistant, and long-term memory ASM, ARM, and LTM. It is unknown if these ethanol memory-like states are also encoded by the canonical learning and memory circuitry that is centered on the mushroom bodies. We show that the three ethanol memory-like states, anesthesia-sensitive tolerance (AST) and anesthesia resistant tolerance (ART) created by ethanol sedation to a moderately high ethanol exposure, and chronic tolerance created by a longer low concentration ethanol exposure, each engage the mushroom body circuitry differently. Moreover, critical encoding steps for ethanol memory-like states reside outside the mushroom body circuitry, and within the mushroom body circuitry they are markedly distinct from classical memory traces. Thus, the first ethanol exposure creates distinct memory-like states in ethanol-specific circuits and impacts the function of learning and memory circuitry in ways that might influence the formation and retention of other memories.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Maria Nolazco
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Ashley Valdez
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Vanessa Sanchez
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
| |
Collapse
|
3
|
Das D, Ghosh G, Dutta A, Sherpa RD, Ghosh P, Hui SP, Ghosh S. Fruit ripening retardant Daminozide induces cognitive impairment, cell specific neurotoxicity, and genotoxicity in Drosophila melanogaster. Neurotoxicology 2024; 103:123-133. [PMID: 38851594 DOI: 10.1016/j.neuro.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND We explored neurotoxic and genotoxic effects of Daminozide, a fruit ripening retardant, on the brain of Drosophila melanogaster, based on our previous finding of DNA fragmentation in larval brain cell in the flies experimentally exposed to this chemicals. METHODS Adult flies were subjected to two distinct concentrations of daminozide (200 mg/L and 400 mg/L) mixed in culture medium, followed by an examination of specific behaviors such as courtship conditioning and aversive phototaxis, which serve as indicators of cognitive functions. We investigated brain histology and histochemistry to assess the overall toxicity of daminozide, focusing on neuron type-specific effects. Additionally, we conducted studies on gene expression specific to neuronal function. Statistical comparisons were then made between the exposed and control flies across all tested attributes. RESULTS The outcome of behavioral assays suggested deleterious effects of Daminozide on learning, short term and long term memory function. Histological examination of brain sections revealed cellular degeneration, within Kenyon cell neuropiles in Daminozide-exposed flies. Neurone specific Immuno-histochemistry study revealed significant reduction of dopaminergic and glutaminergic neurones with discernible reduction in cellular counts, alteration in cell and nuclear morphology among daminozide exposed flies. Gene expression analyses demonstrated upregulation of rutabaga (rut), hb9 and down regulation of PKa- C1, CrebB, Ace and nAchRbeta-1 in exposed flies which suggest dysregulation of gene functions involved in motor neuron activity, learning, and memory. CONCLUSION Taken together, our findings suggests that Daminozide induces multifaceted harmful impacts on the neural terrain of Drosophila melanogaster, posing a threat to its cognitive abilities.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Gaurab Ghosh
- Department of Biological Sciences, Indian Institute of Science Education & Research (IISER)- Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal, India
| | - Arthita Dutta
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Rinchen D Sherpa
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Papiya Ghosh
- Department of Zoology, Bijoykrishna Girls' College. Howrah. India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Sujay Ghosh
- Department of Zoology, University of Calcutta, Kolkata, India.
| |
Collapse
|
4
|
Dvořáček J, Kodrík D. Drug effect and addiction research with insects - From Drosophila to collective reward in honeybees. Neurosci Biobehav Rev 2022; 140:104816. [PMID: 35940307 DOI: 10.1016/j.neubiorev.2022.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Animals and humans share similar reactions to the effects of addictive substances, including those of their brain networks to drugs. Our review focuses on simple invertebrate models, particularly the honeybee (Apis mellifera), and on the effects of drugs on bee behaviour and brain functions. The drug effects in bees are very similar to those described in humans. Furthermore, the honeybee community is a superorganism in which many collective functions outperform the simple sum of individual functions. The distribution of reward functions in this superorganism is unique - although sublimated at the individual level, community reward functions are of higher quality. This phenomenon of collective reward may be extrapolated to other animal species living in close and strictly organised societies, i.e. humans. The relationship between sociality and reward, based on use of similar parts of the neural network (social decision-making network in mammals, mushroom body in bees), suggests a functional continuum of reward and sociality in animals.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| |
Collapse
|
5
|
Naganos S, Ueno K, Horiuchi J, Saitoe M. Dopamine activity in projection neurons regulates short-lasting olfactory approach memory in Drosophila. Eur J Neurosci 2022; 56:4558-4571. [PMID: 35815601 PMCID: PMC9540629 DOI: 10.1111/ejn.15766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Survival in many animals requires the ability to associate certain cues with danger and others with safety. In a Drosophila melanogaster aversive olfactory conditioning paradigm, flies are exposed to two odours, one presented coincidentally with electrical shocks, and a second presented 45 s after shock cessation. When flies are later given a choice between these two odours, they avoid the shock‐paired odour and prefer the unpaired odour. While many studies have examined how flies learn to avoid the shock‐paired odour through formation of odour‐fear associations, here we demonstrate that conditioning also causes flies to actively approach the second odour. In contrast to fear memories, which are longer lasting and requires activity of D1‐like dopamine receptors only in the mushroom bodies, approach memory is short‐lasting and requires activity of D1‐like dopamine receptors in projection neurons originating from the antennal lobes, primary olfactory centers. Further, while recall of fear memories requires activity of the mushroom bodies, recall of approach memories does not. Our data suggest that olfactory approach memory is formed using different mechanisms in different brain locations compared to aversive and appetitive olfactory memories.
Collapse
Affiliation(s)
| | - Kohei Ueno
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
6
|
Baltruschat L, Prisco L, Ranft P, Lauritzen JS, Fiala A, Bock DD, Tavosanis G. Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation. Cell Rep 2021; 34:108871. [PMID: 33730583 DOI: 10.1016/j.celrep.2021.108871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
The formation and consolidation of memories are complex phenomena involving synaptic plasticity, microcircuit reorganization, and the formation of multiple representations within distinct circuits. To gain insight into the structural aspects of memory consolidation, we focus on the calyx of the Drosophila mushroom body. In this essential center, essential for olfactory learning, second- and third-order neurons connect through large synaptic microglomeruli, which we dissect at the electron microscopy level. Focusing on microglomeruli that respond to a specific odor, we reveal that appetitive long-term memory results in increased numbers of precisely those functional microglomeruli responding to the conditioned odor. Hindering memory consolidation by non-coincident presentation of odor and reward, by blocking protein synthesis, or by including memory mutants suppress these structural changes, revealing their tight correlation with the process of memory consolidation. Thus, olfactory long-term memory is associated with input-specific structural modifications in a high-order center of the fly brain.
Collapse
Affiliation(s)
| | - Luigi Prisco
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Philipp Ranft
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - J Scott Lauritzen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - André Fiala
- Molecular Neurobiology of Behaviour, University of Göttingen, 37077 Göttingen, Germany
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany; LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
8
|
Endo K, Tsuchimoto Y, Kazama H. Synthesis of Conserved Odor Object Representations in a Random, Divergent-Convergent Network. Neuron 2020; 108:367-381.e5. [PMID: 32814018 DOI: 10.1016/j.neuron.2020.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/10/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
Animals are capable of recognizing mixtures and groups of odors as a unitary object. However, how odor object representations are generated in the brain remains elusive. Here, we investigate sensory transformation between the primary olfactory center and its downstream region, the mushroom body (MB), in Drosophila and show that clustered representations for mixtures and groups of odors emerge in the MB at the population and single-cell levels. Decoding analyses demonstrate that neurons selective for mixtures and groups enhance odor generalization. Responses of these neurons and those selective for individual odors all emerge in an experimentally well-constrained model implementing divergent-convergent, random connectivity between the primary center and the MB. Furthermore, we found that relative odor representations are conserved across animals despite this random connectivity. Our results show that the generation of distinct representations for individual odors and groups and mixtures of odors in the MB can be understood in a unified computational and mechanistic framework.
Collapse
Affiliation(s)
- Keita Endo
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiko Tsuchimoto
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
9
|
Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning. J Neurosci 2020; 40:4240-4250. [PMID: 32277043 DOI: 10.1523/jneurosci.1756-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022] Open
Abstract
Aminergic signaling modulates associative learning and memory. Substantial advance has been made in Drosophila on the dopamine receptors and circuits mediating olfactory learning; however, our knowledge of other aminergic modulation lags behind. To address this knowledge gap, we investigated the role of octopamine in olfactory conditioning. Here, we report that octopamine activity through the β-adrenergic-like receptor Octβ1R drives aversive and appetitive learning: Octβ1R in the mushroom body αβ neurons processes aversive learning, whereas Octβ1R in the projection neurons mediates appetitive learning. Our genetic interaction and imaging studies pinpoint cAMP signaling as a key downstream effector for Octβ1R function. The rutabaga-adenylyl cyclase synthesizes cAMP in a Ca2+/calmodulin-dependent manner, serving as a coincidence detector for associative learning and likely representing a downstream target for Octβ1R. Supporting this notion, the double heterozygous rutabaga/+;octβ1r/+ flies perform poorly in both aversive and appetitive conditioning, while individual heterozygous rutabaga/+ and octβ1r/+ flies behave like the wild-type control. Consistently, the mushroom body and projection neurons in the octβ1r brain exhibit blunted responses to octopamine when cAMP levels are monitored through the cAMP sensor. We previously demonstrated the pivotal functions of the D1 receptor dDA1 in aversive and appetitive learning, and the α1 adrenergic-like receptor OAMB in appetitive learning. As expected, octβ1r genetically interacts with dumb (dDA1 mutant) in aversive and appetitive learning, but it interacts with oamb only in appetitive learning. This study uncovers the indispensable contributions of dopamine and octopamine signaling to aversive and appetitive learning. All experiments were performed on mixed sex unless otherwise noted.SIGNIFICANCE STATEMENT Animals make flexible behavioral choices that are constantly shaped by experience. This plasticity is vital for animals to appropriately respond to the cues predicting benefit or harm. In Drosophila, dopamine is known to mediate both reward-based and punishment-based learning while octopamine function is important only for reward. Here, we demonstrate that the octopamine-Octβ1R-cAMP pathway processes both aversive and appetitive learning in distinct neural sites of the olfactory circuit. Furthermore, we show that the octopamine-Octβ1R and dopamine-dDA1 signals together drive both aversive and appetitive learning, whereas the octopamine-Octβ1R and octopamine-OAMB pathways jointly facilitate appetitive, but not aversive, learning. This study identifies the cognate actions of octopamine and dopamine signaling as a key neural mechanism for associative learning.
Collapse
|
10
|
Brünner B, Saumweber J, Samur M, Weber D, Schumann I, Mahishi D, Rohwedder A, Thum AS. Food restriction reconfigures naïve and learned choice behavior in Drosophila larvae. J Neurogenet 2020; 34:123-132. [PMID: 31975653 DOI: 10.1080/01677063.2020.1714612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In many animals, the establishment and expression of food-related memory is limited by the presence of food and promoted by its absence, implying that this behavior is driven by motivation. In the past, this has already been demonstrated in various insects including honeybees and adult Drosophila. For Drosophila larvae, which are characterized by an immense growth and the resulting need for constant food intake, however, knowledge is rather limited. Accordingly, we have analyzed whether starvation modulates larval memory formation or expression after appetitive classical olfactory conditioning, in which an odor is associated with a sugar reward. We show that odor-sugar memory of starved larvae lasts longer than in fed larvae, although the initial performance is comparable. 80 minutes after odor fructose conditioning, only starved but not fed larvae show a reliable odor-fructose memory. This is likely due to a specific increase in the stability of anesthesia-resistant memory (ARM). Furthermore, we observe that starved larvae, in contrast to fed ones, prefer sugars that offer a nutritional benefit in addition to their sweetness. Taken together our work shows that Drosophila larvae adjust the expression of learned and naïve choice behaviors in the absence of food. These effects are only short-lasting probably due to their lifestyle and their higher internal motivation to feed. In the future, the extensive use of established genetic tools will allow us to identify development-specific differences arising at the neuronal and molecular level.
Collapse
Affiliation(s)
- Benita Brünner
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Merve Samur
- Department of Genetics, University of Leipzig, Leipzig, Germany.,Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Denise Weber
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Deepthi Mahishi
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Andreas S Thum
- Department of Genetics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Goodwin PR, Meng A, Moore J, Hobin M, Fulga TA, Van Vactor D, Griffith LC. MicroRNAs Regulate Sleep and Sleep Homeostasis in Drosophila. Cell Rep 2019; 23:3776-3786. [PMID: 29949763 PMCID: PMC6091868 DOI: 10.1016/j.celrep.2018.05.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022] Open
Abstract
To discover microRNAs that regulate sleep, we performed a genetic screen using a library of miRNA sponge-expressing flies. We identified 25 miRNAs that regulate baseline sleep; 17 were sleep-promoting and 8 promoted wake. We identified one miRNA that is required for recovery sleep after deprivation and 8 miRNAs that limit the extent of recovery sleep. 65% of the hits belong to human-conserved families. Interestingly, the majority (75%), but not all, of the baseline sleep-regulating miRNAs are required in neurons. Sponges that target miRNAs in the same family, including the miR-92a/92b/310 family and the miR-263a/263b family, have similar effects. Finally, mutation of one of the screen's strongest hits, let-7, using CRISPR/Cas-9, phenocopies sponge-mediated let-7 inhibition. Cell-type-specific and temporally restricted let-7 sponge expression experiments suggest that let-7 is required in the mushroom body both during development and in adulthood. This screen sets the stage for understanding the role of miRNAs in sleep.
Collapse
Affiliation(s)
- Patricia R Goodwin
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Alice Meng
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Jessie Moore
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Michael Hobin
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA
| | - Tudor A Fulga
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
12
|
Onodera Y, Ichikawa R, Terao K, Tanimoto H, Yamagata N. Courtship behavior induced by appetitive olfactory memory. J Neurogenet 2019; 33:143-151. [PMID: 30955396 DOI: 10.1080/01677063.2019.1593978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reinforcement signals such as food reward and noxious punishment can change diverse behaviors. This holds true in fruit flies, Drosophila melanogaster, which can be conditioned by an odor and sugar reward or electric shock punishment. Despite a wide variety of behavior modulated by learning, conditioned responses have been traditionally measured by altered odor preference in a choice, and other memory-guided behaviors have been only scarcely investigated. Here, we analyzed detailed conditioned odor responses of flies after sugar associative learning by employing a video recording and semi-automated processing pipeline. Trajectory analyses revealed that multiple behavioral components were altered along with conditioned approach to the rewarded odor. Notably, we found that lateral wing extension, a hallmark of courtship behavior of D. melanogaster, was robustly increased specifically in the presence of the rewarded odor. Strikingly, genetic disruption of the mushroom body output did not impair conditioned courtship increase, while markedly weakening conditioned odor approach. Our results highlight the complexity of conditioned responses and their distinct regulatory mechanisms that may underlie coordinated yet complex memory-guided behaviors in flies.
Collapse
Affiliation(s)
- Yuya Onodera
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Rino Ichikawa
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Kanta Terao
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Hiromu Tanimoto
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| | - Nobuhiro Yamagata
- a Graduate School of Life Sciences , Tohoku University , Sendai 980-8577 , Japan
| |
Collapse
|
13
|
Suppression of GABAergic neurons through D2-like receptor secures efficient conditioning in Drosophila aversive olfactory learning. Proc Natl Acad Sci U S A 2019; 116:5118-5125. [PMID: 30796183 DOI: 10.1073/pnas.1812342116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The GABAergic system serves as a vital negative modulator in cognitive functions, such as learning and memory, while the mechanisms governing this inhibitory system remain to be elucidated. In Drosophila, the GABAergic anterior paired lateral (APL) neurons mediate a negative feedback essential for odor discrimination; however, their activity is suppressed by learning via unknown mechanisms. In aversive olfactory learning, a group of dopaminergic (DA) neurons is activated on electric shock (ES) and modulates the Kenyon cells (KCs) in the mushroom body, the center of olfactory learning. Here we find that the same group of DA neurons also form functional synaptic connections with the APL neurons, thereby emitting a suppressive signal to the latter through Drosophila dopamine 2-like receptor (DD2R). Knockdown of either DD2R or its downstream molecules in the APL neurons results in impaired olfactory learning at the behavioral level. Results obtained from in vivo functional imaging experiments indicate that this DD2R-dependent DA-to-APL suppression occurs during odor-ES conditioning and discharges the GABAergic inhibition on the KCs specific to the conditioned odor. Moreover, the decrease in odor response of the APL neurons persists to the postconditioning phase, and this change is also absent in DD2R knockdown flies. Taken together, our findings show that DA-to-GABA suppression is essential for restraining the GABAergic inhibition during conditioning, as well as for inducing synaptic modification in this learning circuit. Such circuit mechanisms may play conserved roles in associative learning across species.
Collapse
|
14
|
Sehdev A, Mohammed YG, Tafrali C, Szyszka P. Social foraging extends associative odor-food memory expression in an automated learning assay for Drosophila. J Exp Biol 2019; 222:jeb.207241. [DOI: 10.1242/jeb.207241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/11/2019] [Indexed: 01/29/2023]
Abstract
Animals socially interact during foraging and share information about the quality and location of food sources. The mechanisms of social information transfer during foraging have been mostly studied at the behavioral level, and its underlying neural mechanisms are largely unknown. Fruit flies have become a model for studying the neural bases of social information transfer, because they provide a large genetic toolbox to monitor and manipulate neuronal activity, and they show a rich repertoire of social behaviors. Fruit flies aggregate, they use social information for choosing a suitable mating partner and oviposition site, and they show better aversive learning when in groups. However, the effects of social interactions on associative odor-food learning have not yet been investigated. Here we present an automated learning and memory assay for walking flies that allows studying the effect of group size on social interactions and on the formation and expression of associative odor-food memories. We found that both inter-fly attraction and the duration of odor-food memory expression increase with group size. We discuss possible behavioral and neural mechanisms of this social effect on odor-food memory expression. This study opens up opportunities to investigate how social interactions during foraging are relayed in the neural circuitry of learning and memory expression.
Collapse
Affiliation(s)
- Aarti Sehdev
- University of Konstanz, Department of Biology, Neurobiology, Konstanz 78457, Germany
| | - Yunusa G. Mohammed
- University of Konstanz, Department of Biology, Neurobiology, Konstanz 78457, Germany
| | - Cansu Tafrali
- University of Konstanz, Department of Biology, Neurobiology, Konstanz 78457, Germany
| | - Paul Szyszka
- University of Konstanz, Department of Biology, Neurobiology, Konstanz 78457, Germany
- University of Otago, Department of Zoology, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
Widmer YF, Fritsch C, Jungo MM, Almeida S, Egger B, Sprecher SG. Multiple neurons encode CrebB dependent appetitive long-term memory in the mushroom body circuit. eLife 2018; 7:39196. [PMID: 30346271 PMCID: PMC6234028 DOI: 10.7554/elife.39196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/19/2018] [Indexed: 11/28/2022] Open
Abstract
Lasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM. We edited the CrebB locus to create a GFP-tagged CrebB conditional knockout allele, allowing us to generate mutant, post-mitotic neurons with high spatial and temporal precision. Investigating CrebB-dependence within the mushroom body (MB) circuit we show that MB α/β and α’/β’ neurons as well as MBON α3, but not in dopaminergic neurons require CrebB for LTM. Thus, transcriptional memory traces occur in different neurons within the same neural circuit. Our brains can store different types of memories. You may have forgotten what you had for lunch yesterday, but still be able to remember a song from your childhood. Short-term memories and long-term memories form via different mechanisms. To establish long-term memories, the brain must produce new proteins, many of which are common to all members of the animal kingdom. By studying these proteins in organisms such as fruit flies, we can learn more about their role in our own memories. Widmer et al. used this approach to explore how a protein called CrebB helps fruit flies to remember for several days that a specific odor is associated with a sugary reward. These odor-reward memories form in a brain region called the mushroom body, which has three lobes. Input neurons supply information about the odor and the reward to the region, while output neurons pass on information to other parts of the fly brain. CrebB regulates the production of new proteins required to form these long-term odor-reward memories: but where exactly does CrebB act during this process? Using a gene editing technique called CRISPR, Widmer et al. generated mutant flies. In these insects CrebB could be easily deactivated ‘at will’ in either the entire brain, the whole mushroom body, each of the three lobes or in specific output neurons. The flies were then trained on the odor-reward task, and their memory tested 24 hours later. The results revealed that for the memories to form, CrebB is only required in two of the three lobes of the mushroom body, and in certain output neurons. Future studies can now focus on the cells shown to need CrebB to create long-term memories, and identify the other proteins involved in this process. In humans, defects in CrebB are associated with intellectual disability, addiction and depression. The mutant fly created by Widmer et al. could be a useful model in which to investigate how the protein may play a role in these conditions.
Collapse
Affiliation(s)
- Yves F Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Magali M Jungo
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Silvia Almeida
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Al-Anzi B, Zinn K. Identification and characterization of mushroom body neurons that regulate fat storage in Drosophila. Neural Dev 2018; 13:18. [PMID: 30103787 PMCID: PMC6090720 DOI: 10.1186/s13064-018-0116-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 12/02/2022] Open
Abstract
Background In an earlier study, we identified two neuronal populations, c673a and Fru-GAL4, that regulate fat storage in fruit flies. Both populations partially overlap with a structure in the insect brain known as the mushroom body (MB), which plays a critical role in memory formation. This overlap prompted us to examine whether the MB is also involved in fat storage homeostasis. Methods Using a variety of transgenic agents, we selectively manipulated the neural activity of different portions of the MB and associated neurons to decipher their roles in fat storage regulation. Results Our data show that silencing of MB neurons that project into the α’β’ lobes decreases de novo fatty acid synthesis and causes leanness, while sustained hyperactivation of the same neurons causes overfeeding and produces obesity. The α’β’ neurons oppose and dominate the fat regulating functions of the c673a and Fru-GAL4 neurons. We also show that MB neurons that project into the γ lobe also regulate fat storage, probably because they are a subset of the Fru neurons. We were able to identify input and output neurons whose activity affects fat storage, feeding, and metabolism. The activity of cholinergic output neurons that innervating the β’2 compartment (MBON-β’2mp and MBON-γ5β’2a) regulates food consumption, while glutamatergic output neurons innervating α’ compartments (MBON-γ2α’1 and MBON-α’2) control fat metabolism. Conclusions We identified a new fat storage regulating center, the α’β’ lobes of the MB. We also delineated the neuronal circuits involved in the actions of the α’β’ lobes, and showed that food intake and fat metabolism are controlled by separate sets of postsynaptic neurons that are segregated into different output pathways. Electronic supplementary material The online version of this article (10.1186/s13064-018-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bader Al-Anzi
- Food & Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Kuwait City, Kuwait.
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
17
|
Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front Physiol 2018; 9:327. [PMID: 29740329 PMCID: PMC5928757 DOI: 10.3389/fphys.2018.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shir Zer-Krispil
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
18
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
19
|
Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning. Proc Natl Acad Sci U S A 2017; 115:E448-E457. [PMID: 29284750 DOI: 10.1073/pnas.1709037115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Learning and memory rely on dopamine and downstream cAMP-dependent plasticity across diverse organisms. Despite the central role of cAMP signaling, it is not known how cAMP-dependent plasticity drives coherent changes in neuronal physiology that encode the memory trace, or engram. In Drosophila, the mushroom body (MB) is critically involved in olfactory classical conditioning, and cAMP signaling molecules are necessary and sufficient for normal memory in intrinsic MB neurons. To evaluate the role of cAMP-dependent plasticity in learning, we examined how cAMP manipulations and olfactory classical conditioning modulate olfactory responses in the MB with in vivo imaging. Elevating cAMP pharmacologically or optogenetically produced plasticity in MB neurons, altering their responses to odorants. Odor-evoked Ca2+ responses showed net facilitation across anatomical regions. At the single-cell level, neurons exhibited heterogeneous responses to cAMP elevation, suggesting that cAMP drives plasticity to discrete subsets of MB neurons. Olfactory appetitive conditioning enhanced MB odor responses, mimicking the cAMP-dependent plasticity in directionality and magnitude. Elevating cAMP to equivalent levels as appetitive conditioning also produced plasticity, suggesting that the cAMP generated during conditioning affects odor-evoked responses in the MB. Finally, we found that this plasticity was dependent on the Rutabaga type I adenylyl cyclase, linking cAMP-dependent plasticity to behavioral modification. Overall, these data demonstrate that learning produces robust cAMP-dependent plasticity in intrinsic MB neurons, which is biased toward naturalistic reward learning. This suggests that cAMP signaling may serve to modulate intrinsic MB responses toward salient stimuli.
Collapse
|
20
|
Aranda GP, Hinojos SJ, Sabandal PR, Evans PD, Han KA. Behavioral Sensitization to the Disinhibition Effect of Ethanol Requires the Dopamine/Ecdysone Receptor in Drosophila. Front Syst Neurosci 2017; 11:56. [PMID: 28824387 PMCID: PMC5539124 DOI: 10.3389/fnsys.2017.00056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022] Open
Abstract
Male flies under the influence of ethanol display disinhibited courtship, which is augmented with repeated ethanol exposures. We have previously shown that dopamine is important for this type of ethanol-induced behavioral sensitization but the underlying mechanism is unknown. Here we report that DopEcR, an insect G-protein coupled receptor that binds to dopamine and steroid hormone ecdysone, is a major receptor mediating courtship sensitization. Upon daily ethanol administration, dumb and damb mutant males defective in D1 (dDA1/DopR1) and D5 (DAMB/DopR2) dopamine receptors, respectively, showed normal courtship sensitization; however, the DopEcR-deficient der males exhibited greatly diminished sensitization. der mutant males nevertheless developed normal tolerance to the sedative effect of ethanol, indicating a selective function of DopEcR in chronic ethanol-associated behavioral plasticity. DopEcR plays a physiological role in behavioral sensitization since courtship sensitization in der males was reinstated when DopEcR expression was induced during adulthood but not during development. When examined for the DopEcR’s functional site, the der mutant’s sensitization phenotype was fully rescued by restored DopEcR expression in the mushroom body (MB) αβ and γ neurons. Consistently, we observed DopEcR immunoreactivity in the MB calyx and lobes in the wild-type Canton-S brain, which was barely detectable in the der brain. Behavioral sensitization to the locomotor-stimulant effect has been serving as a model for ethanol abuse and addiction. This is the first report elucidating the mechanism underlying behavioral sensitization to another stimulant effect of ethanol.
Collapse
Affiliation(s)
- Gissel P Aranda
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | - Samantha J Hinojos
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | - Paul R Sabandal
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| | - Peter D Evans
- The Inositide Laboratory, The Babraham InstituteCambridge, United Kingdom
| | - Kyung-An Han
- Neuromodulation Disorders Cluster at Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El PasoEl Paso, TX, United States
| |
Collapse
|
21
|
Feng G, Pang J, Yi X, Song Q, Zhang J, Li C, He G, Ping Y. Down-Regulation of K V4 Channel in Drosophila Mushroom Body Neurons Contributes to Aβ42-Induced Courtship Memory Deficits. Neuroscience 2017. [PMID: 28627422 DOI: 10.1016/j.neuroscience.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accumulation of amyloid-β (Aβ) is widely believed to be an early event in the pathogenesis of Alzheimer's disease (AD). Kv4 is an A-type K+ channel, and our previous report shows the degradation of Kv4, induced by the Aβ42 accumulation, may be a critical contributor to the hyperexcitability of neurons in a Drosophila AD model. Here, we used well-established courtship memory assay to investigate the contribution of the Kv4 channel to short-term memory (STM) deficits in the Aβ42-expressing AD model. We found that Aβ42 over-expression in Drosophila leads to age-dependent courtship STM loss, which can be also induced by driving acute Aβ42 expression post-developmentally. Interestingly, mutants with eliminated Kv4-mediated A-type K+ currents (IA) by transgenically expressing dominant-negative subunit (DNKv4) phenocopied Aβ42 flies in defective courtship STM. Kv4 channels in mushroom body (MB) and projection neurons (PNs) were found to be required for courtship STM. Furthermore, the STM phenotypes can be rescued, at least partially, by restoration of Kv4 expression in Aβ42 flies, indicating the STM deficits could be partially caused by Kv4 degradation. In addition, IA is significantly decreased in MB neurons (MBNs) but not in PNs, suggesting Kv4 degradation in MBNs, in particular, plays a critical role in courtship STM loss in Aβ42 flies. These data highlight causal relationship between region-specific Kv4 degradation and age-dependent learning decline in the AD model, and provide a mechanism for the disturbed cognitive function in AD.
Collapse
Affiliation(s)
- Ge Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Pang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Yi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Can Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
22
|
Schultzhaus JN, Saleem S, Iftikhar H, Carney GE. The role of the Drosophila lateral horn in olfactory information processing and behavioral response. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:29-37. [PMID: 27871975 DOI: 10.1016/j.jinsphys.2016.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Animals must rapidly and accurately process environmental information to produce the correct behavioral responses. Reactions to previously encountered as well as to novel but biologically important stimuli are equally important, and one understudied region in the insect brain plays a role in processing both types of stimuli. The lateral horn is a higher order processing center that mainly processes olfactory information and is linked via olfactory projection neurons to another higher order learning center, the mushroom body. This review focuses on the lateral horn of Drosophila where most functional studies have been performed. We discuss connectivity between the primary olfactory center, the antennal lobe, and the lateral horn and mushroom body. We also present evidence for the lateral horn playing roles in innate behavioral responses by encoding biological valence to novel odor cues and in learned responses to previously encountered odors by modulating neural activity within the mushroom body. We describe how these processes contribute to acceptance or avoidance of appropriate or inappropriate mates and food, as well as the identification of predators. The lateral horn is a sexually dimorphic and plastic region of the brain that modulates other regions of the brain to ensure that insects produce rapid and effective behavioral responses to both novel and learned stimuli, yet multiple gaps exist in our knowledge of this important center. We anticipate that future studies on olfactory processing, learning, and innate behavioral responses will include the lateral horn in their examinations, leading to a more comprehensive understanding of olfactory information relay and resulting behaviors.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Sehresh Saleem
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Hina Iftikhar
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Ginger E Carney
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|
23
|
Decoding of Context-Dependent Olfactory Behavior in Drosophila. Neuron 2016; 91:155-67. [PMID: 27321924 DOI: 10.1016/j.neuron.2016.05.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022]
Abstract
Odor information is encoded in the activity of a population of glomeruli in the primary olfactory center. However, how this information is decoded in the brain remains elusive. Here, we address this question in Drosophila by combining neuronal imaging and tracking of innate behavioral responses. We find that the behavior is accurately predicted by a model summing normalized glomerular responses, in which each glomerulus contributes a specific, small amount to odor preference. This model is further supported by targeted manipulations of glomerular input, which biased the behavior. Additionally, we observe that relative odor preference changes and can even switch depending on the context, an effect correctly predicted by our normalization model. Our results indicate that olfactory information is decoded from the pooled activity of a glomerular repertoire and demonstrate the ability of the olfactory system to adapt to the statistics of its environment.
Collapse
|
24
|
Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila. Nat Commun 2016; 7:10678. [PMID: 26893070 PMCID: PMC4762887 DOI: 10.1038/ncomms10678] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/11/2016] [Indexed: 11/08/2022] Open
Abstract
Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food.
Collapse
|
25
|
Yildizoglu T, Weislogel JM, Mohammad F, Chan ESY, Assam PN, Claridge-Chang A. Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics. PLoS Genet 2015; 11:e1005718. [PMID: 26647168 PMCID: PMC4672901 DOI: 10.1371/journal.pgen.1005718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called the mushroom body. The mainstream view is that each of the three lobes of the mushroom body play specialized roles in short-term aversive olfactory memory, but a number of studies have made divergent conclusions based on their varying experimental findings. Like many fields, neurogenetics uses null hypothesis significance testing for data analysis. Critics of significance testing claim that this method promotes discrepancies by using arbitrary thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective of the biological reality of quantitative phenotypes. We explored using estimation statistics, an alternative data analysis framework, to examine published fly short-term memory data. Systematic review was used to identify behavioral experiments examining the physiological basis of olfactory memory and meta-analytic approaches were applied to assess the role of lobular specialization. Multivariate meta-regression models revealed that short-term memory lobular specialization is not supported by the data; it identified the cellular extent of a transgenic driver as the major predictor of its effect on short-term memory. These findings demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms. Genetic analysis of learning in the black-bellied vinegar fly has revealed that a brain structure called the mushroom body is important to insect memory. The mushroom body contains three lobes with strikingly different shapes. A series of studies have concluded that the lobes have markedly different relevance to memory. For short-term memory, some studies have concluded that only a single lobe–the gamma lobe–is required. However, others have concluded that at least one of the other lobes is also involved. These studies used a data analysis method called ‘null hypothesis significance testing’ that may overemphasize differences between data. We examined whether estimation statistics, an alternative data analysis framework, could be used to verify or refute the lobular specialization hypothesis. Estimation statistics review methods were used to analyze published data on this topic. The estimation models indicate no evidence for lobular specialization, but instead show that neurons in all lobes contribute to short-term memory. These results verify a model in which learning is processed in a distributed manner across the mushroom body. These findings also demonstrate that estimation methods can be successfully harnessed for the analysis of complex experimental research data.
Collapse
Affiliation(s)
- Tugce Yildizoglu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Jan-Marek Weislogel
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Farhan Mohammad
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Edwin S.-Y. Chan
- Singapore Clinical Research Institute, Singapore
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Pryseley N. Assam
- Singapore Clinical Research Institute, Singapore
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Adam Claridge-Chang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
- Department of Physiology, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
26
|
Abstract
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences.
Collapse
|
27
|
Yuan Q, Harley CW. Learning modulation of odor representations: new findings from Arc-indexed networks. Front Cell Neurosci 2015; 8:423. [PMID: 25565958 PMCID: PMC4271698 DOI: 10.3389/fncel.2014.00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/23/2014] [Indexed: 11/13/2022] Open
Abstract
We first review our understanding of odor representations in rodent olfactory bulb (OB) and anterior piriform cortex (APC). We then consider learning-induced representation changes. Finally we describe the perspective on network representations gained from examining Arc-indexed odor networks of awake rats. Arc-indexed networks are sparse and distributed, consistent with current views. However Arc provides representations of repeated odors. Arc-indexed repeated odor representations are quite variable. Sparse representations are assumed to be compact and reliable memory codes. Arc suggests this is not necessarily the case. The variability seen is consistent with electrophysiology in awake animals and may reflect top-down cortical modulation of context. Arc-indexing shows that distinct odors share larger than predicted neuron pools. These may be low-threshold neuronal subsets. Learning’s effect on Arc-indexed representations is to increase the stable or overlapping component of rewarded odor representations. This component can decrease for similar odors when their discrimination is rewarded. The learning effects seen are supported by electrophysiology, but mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland St. John's, NL, Canada
| | - Carolyn W Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
28
|
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4:e03868. [PMID: 25564731 PMCID: PMC4305081 DOI: 10.7554/elife.03868] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
29
|
Abstract
New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive.
Collapse
|
30
|
Gerber B, Yarali A, Diegelmann S, Wotjak CT, Pauli P, Fendt M. Pain-relief learning in flies, rats, and man: basic research and applied perspectives. Learn Mem 2014; 21:232-52. [PMID: 24643725 PMCID: PMC3966540 DOI: 10.1101/lm.032995.113] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Memories relating to a painful, negative event are adaptive and can be stored for a lifetime to support preemptive avoidance, escape, or attack behavior. However, under unfavorable circumstances such memories can become overwhelmingly powerful. They may trigger excessively negative psychological states and uncontrollable avoidance of locations, objects, or social interactions. It is therefore obvious that any process to counteract such effects will be of value. In this context, we stress from a basic-research perspective that painful, negative events are "Janus-faced" in the sense that there are actually two aspects about them that are worth remembering: What made them happen and what made them cease. We review published findings from fruit flies, rats, and man showing that both aspects, respectively related to the onset and the offset of the negative event, induce distinct and oppositely valenced memories: Stimuli experienced before an electric shock acquire negative valence as they signal upcoming punishment, whereas stimuli experienced after an electric shock acquire positive valence because of their association with the relieving cessation of pain. We discuss how memories for such punishment- and relief-learning are organized, how this organization fits into the threat-imminence model of defensive behavior, and what perspectives these considerations offer for applied psychology in the context of trauma, panic, and nonsuicidal self-injury.
Collapse
Affiliation(s)
- Bertram Gerber
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, 39118 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat Neurosci 2014; 17:559-68. [PMID: 24561998 PMCID: PMC4000970 DOI: 10.1038/nn.3660] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/23/2014] [Indexed: 11/22/2022]
Abstract
Sparse coding may be a general strategy of neural systems to augment memory capacity. In Drosophila, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit show that Kenyon cells activate APL and APL inhibits Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreases the sparseness of Kenyon cell odor responses, increases inter-odor correlations, and prevents flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor-specificity of memories.
Collapse
|
32
|
Gillespie JM, Hodge JJL. CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning. Front Mol Neurosci 2013; 6:27. [PMID: 24062638 PMCID: PMC3769642 DOI: 10.3389/fnmol.2013.00027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022] Open
Abstract
Calcium (Ca2+)/calmodulin (CaM)-dependent kinase II (CaMKII) activity plays a fundamental role in learning and memory. A key feature of CaMKII in memory formation is its ability to be regulated by autophosphorylation, which switches its activity on and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium (Ca2+)/calmodulin (CaM) associated serine kinase) is also important for learning and memory, as mutations in CASK result in intellectual disability and neurological defects in humans. We show that in Drosophila larvae, CASK interacts with CaMKII to control neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27 domains of CASK (CASK β null) or expression of overactive CaMKII (T287D) produced similar effects on synaptic growth and Ca2+ signaling. CASK overexpression rescues the effects of CaMKII overactivity, consistent with the notion that CASK and CaMKII act in a common pathway that controls these neuronal processes. The reduction in Ca2+ signaling observed in the CASK β null mutant caused a decrease in vesicle trafficking at synapses. In addition, the decrease in Ca2+ signaling in CASK mutants was associated with an increase in Ether-à-go-go (EAG) potassium (K+) channel localization to synapses. Reducing EAG restored the decrease in Ca2+ signaling observed in CASK mutants to the level of wildtype, suggesting that CASK regulates Ca2+ signaling via EAG. CASK knockdown reduced both appetitive associative learning and odor evoked Ca2+ responses in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation.
Collapse
Affiliation(s)
- John M Gillespie
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | | |
Collapse
|
33
|
Durisko Z, Dukas R. Effects of Early-Life Experience on Learning Ability in Fruit Flies. Ethology 2013. [DOI: 10.1111/eth.12168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zachary Durisko
- Animal Behaviour Group; Department of Psychology, Neuroscience & Behaviour; McMaster University; Hamilton Ontario Canada
| | - Reuven Dukas
- Animal Behaviour Group; Department of Psychology, Neuroscience & Behaviour; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
34
|
Wilson DE, Velarde RA, Fahrbach SE, Mommaerts V, Smagghe G. Use of primary cultures of Kenyon cells from bumblebee brains to assess pesticide side effects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:43-56. [PMID: 23922293 DOI: 10.1002/arch.21112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bumblebees are important pollinators in natural and agricultural ecosystems. The latter results in the frequent exposure of bumblebees to pesticides. We report here on a new bioassay that uses primary cultures of neurons derived from adult bumblebee workers to evaluate possible side-effects of the neonicotinoid pesticide imidacloprid. Mushroom bodies (MBs) from the brains of bumblebee workers were dissected and dissociated to produce cultures of Kenyon cells (KCs). Cultured KCs typically extend branched, dendrite-like processes called neurites, with substantial growth evident 24-48 h after culture initiation. Exposure of cultured KCs obtained from newly eclosed adult workers to 2.5 parts per billion (ppb) imidacloprid, an environmentally relevant concentration of pesticide, did not have a detectable effect on neurite outgrowth. By contrast, in cultures prepared from newly eclosed adult bumblebees, inhibitory effects of imidacloprid were evident when the medium contained 25 ppb imidacloprid, and no growth was observed at 2,500 ppb. The KCs of older workers (13-day-old nurses and foragers) appeared to be more sensitive to imidacloprid than newly eclosed adults, as strong effects on KCs obtained from older nurses and foragers were also evident at 2.5 ppb imidacloprid. In conclusion, primary cultures using KCs of bumblebee worker brains offer a tool to assess sublethal effects of neurotoxic pesticides in vitro. Such studies also have the potential to contribute to the understanding of mechanisms of plasticity in the adult bumblebee brain.
Collapse
Affiliation(s)
- Daniel E Wilson
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
The brain represents sensory information in the coordinated activity of neuronal ensembles. Although the microcircuits underlying olfactory processing are well characterized in Drosophila, no studies to date have examined the encoding of odor identity by populations of neurons and related it to the odor specificity of olfactory behavior. Here we used two-photon Ca(2+) imaging to record odor-evoked responses from >100 neurons simultaneously in the Drosophila mushroom body (MB). For the first time, we demonstrate quantitatively that MB population responses contain substantial information on odor identity. Using a series of increasingly similar odor blends, we identified conditions in which odor discrimination is difficult behaviorally. We found that MB ensemble responses accounted well for olfactory acuity in this task. Kenyon cell ensembles with as few as 25 cells were sufficient to match behavioral discrimination accuracy. Using a generalization task, we demonstrated that the MB population code could predict the flies' responses to novel odors. The degree to which flies generalized a learned aversive association to unfamiliar test odors depended upon the relative similarity between the odors' evoked MB activity patterns. Discrimination and generalization place different demands on the animal, yet the flies' choices in these tasks were reliably predicted based on the amount of overlap between MB activity patterns. Therefore, these different behaviors can be understood in the context of a single physiological framework.
Collapse
|
36
|
Xie Z, Huang C, Ci B, Wang L, Zhong Y. Requirement of the combination of mushroom body lobe and / lobes for the retrieval of both aversive and appetitive early memories in Drosophila. Learn Mem 2013; 20:474-81. [DOI: 10.1101/lm.031823.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zhao J, Lu Y, Zhao X, Yao X, Shuai Y, Huang C, Wang L, Jeong SH, Zhong Y. Dissociation ofrugose-dependent short-term memory component from memory consolidation inDrosophila. GENES BRAIN AND BEHAVIOR 2013; 12:626-32. [DOI: 10.1111/gbb.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/22/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Affiliation(s)
- J. Zhao
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - Y. Lu
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - X. Zhao
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - X. Yao
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - Y. Shuai
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - C. Huang
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - L. Wang
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | - S. H. Jeong
- School of Life Sciences; Tsinghua University; Beijing; PR China
| | | |
Collapse
|
38
|
Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies. J Neurosci 2013; 33:5340-5. [PMID: 23516298 DOI: 10.1523/jneurosci.2287-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In insects, many complex behaviors, including olfactory memory, are controlled by a paired brain structure, the so-called mushroom bodies (MB). In Drosophila, the development, neuroanatomy, and function of intrinsic neurons of the MB, the Kenyon cells, have been well characterized. Until now, several potential neurotransmitters or neuromodulators of Kenyon cells have been anatomically identified. However, whether these neuroactive substances of the Kenyon cells are functional has not been clarified yet. Here we show that a neuropeptide precursor gene encoding four types of short neuropeptide F (sNPF) is required in the Kenyon cells for appetitive olfactory memory. We found that activation of Kenyon cells by expressing a thermosensitive cation channel (dTrpA1) leads to a decrease in sNPF immunoreactivity in the MB lobes. Targeted expression of RNA interference against the sNPF precursor in Kenyon cells results in a highly significant knockdown of sNPF levels. This knockdown of sNPF in the Kenyon cells impairs sugar-rewarded olfactory memory. This impairment is not due to a defect in the reflexive sugar preference or odor response. Consistently, knockdown of sNPF receptors outside the MB causes deficits in appetitive memory. Altogether, these results suggest that sNPF is a functional neuromodulator released by Kenyon cells.
Collapse
|
39
|
Gruber F, Knapek S, Fujita M, Matsuo K, Bräcker L, Shinzato N, Siwanowicz I, Tanimura T, Tanimoto H. Suppression of Conditioned Odor Approach by Feeding Is Independent of Taste and Nutritional Value in Drosophila. Curr Biol 2013; 23:507-14. [DOI: 10.1016/j.cub.2013.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
|
40
|
Drosophila rugose is a functional homolog of mammalian Neurobeachin and affects synaptic architecture, brain morphology, and associative learning. J Neurosci 2013; 32:15193-204. [PMID: 23100440 DOI: 10.1523/jneurosci.6424-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurobeachin (Nbea) is implicated in vesicle trafficking in the regulatory secretory pathway, but details on its molecular function are currently unknown. We have used Drosophila melanogaster mutants for rugose (rg), the Drosophila homolog of Nbea, to further elucidate the function of this multidomain protein. Rg is expressed in a granular pattern reminiscent of the Golgi network in neuronal cell bodies and colocalizes with transgenic Nbea, suggesting a function in secretory regulation. In contrast to Nbea(-/-) mice, rg null mutants are viable and fertile and exhibit aberrant associative odor learning, changes in gross brain morphology, and synaptic architecture as determined at the larval neuromuscular junction. At the same time, basal synaptic transmission is essentially unaffected, suggesting that structural and functional aspects are separable. Rg phenotypes can be rescued by a Drosophila rg+ transgene, whereas a mouse Nbea transgene rescues aversive odor learning and synaptic architecture; it fails to rescue brain morphology and appetitive odor learning. This dissociation between the functional redundancy of either the mouse or the fly transgene suggests that their complex composition of numerous functional and highly conserved domains support independent functions. We propose that the detailed compendium of phenotypes exhibited by the Drosophila rg null mutant provided here will serve as a test bed for dissecting the different functional domains of BEACH (for beige and human Chediak-Higashi syndrome) proteins, such as Rugose, mouse Nbea, or Nbea orthologs in other species, such as human.
Collapse
|
41
|
Locatelli FF, Fernandez PC, Villareal F, Muezzinoglu K, Huerta R, Galizia CG, Smith BH. Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing. Eur J Neurosci 2012; 37:63-79. [PMID: 23167675 DOI: 10.1111/ejn.12021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
Experience-related plasticity is an essential component of networks involved in early olfactory processing. However, the mechanisms and functions of plasticity in these neural networks are not well understood. We studied nonassociative plasticity by evaluating responses to two pure odors (A and X) and their binary mixture using calcium imaging of odor-elicited activity in output neurons of the honey bee antennal lobe. Unreinforced exposure to A or X produced no change in the neural response elicited by the pure odors. However, exposure to one odor (e.g. A) caused the response to the mixture to become more similar to that of the other component (X). We also show in behavioral analyses that unreinforced exposure to A caused the mixture to become perceptually more similar to X. These results suggest that nonassociative plasticity modifies neural networks in such a way that it affects local competitive interactions among mixture components. We used a computational model to evaluate the most likely targets for modification. Hebbian modification of synapses from inhibitory local interneurons to projection neurons most reliably produced the observed shift in response to the mixture. These results are consistent with a model in which the antennal lobe acts to filter olfactory information according to its relevance for performing a particular task.
Collapse
Affiliation(s)
- Fernando F Locatelli
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Reward seeking is a major motivator and organizer of behavior, and animals readily learn to modify their behavior to more easily obtain reward, or to respond to stimuli that are predictive of reward. Here, we compare what is known of reward processing mechanisms in insects with the well-studied vertebrate reward systems. In insects almost all of what is known of reward processing is derived from studies of reward learning. This is localized to the mushroom bodies and antennal lobes and organized by a network of hierarchically arranged modulatory circuits, especially those involving octopamine and dopamine. Neurogenetic studies with Drosophila have identified distinct circuit elements for reward learning, "wanting," and possibly "liking" in Drosophila, suggesting a modular structure to the insect reward processing system, which broadly parallels that of the mammals in terms of functional organization.
Collapse
Affiliation(s)
- Clint J Perry
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | | |
Collapse
|
43
|
Brown HLD, Kaun KR, Edgar BA. The small GTPase Rheb affects central brain neuronal morphology and memory formation in Drosophila. PLoS One 2012; 7:e44888. [PMID: 23028662 PMCID: PMC3446999 DOI: 10.1371/journal.pone.0044888] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/14/2012] [Indexed: 01/26/2023] Open
Abstract
Mutations in either of two tumor suppressor genes, TSC1 or TSC2, cause tuberous sclerosis complex (TSC), a syndrome resulting in benign hamartomatous tumors and neurological disorders. Cellular growth defects and neuronal disorganization associated with TSC are believed to be due to upregulated TOR signaling. We overexpressed Rheb, an upstream regulator of TOR, in two different subsets of D. melanogaster central brain neurons in order to upregulate the Tsc-Rheb-TOR pathway. Overexpression of Rheb in either the mushroom bodies or the insulin producing cells resulted in enlarged axon projections and cell bodies, which continued to increase in size with prolonged Rheb expression as the animals aged. Additionally, Rheb overexpression in the mushroom bodies resulted in deficiencies in 3 hr but not immediate appetitive memory. Thus, Rheb overexpression in the central brain neurons of flies causes not only morphological phenotypes, but behavioral and aging phenotypes that may mirror symptoms of TSC.
Collapse
Affiliation(s)
- Heather L. D. Brown
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Karla R. Kaun
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Bruce A. Edgar
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
44
|
Kandori I, Yamaki T. Reward and non-reward learning of flower colours in the butterfly Byasa alcinous (Lepidoptera: Papilionidae). Naturwissenschaften 2012; 99:705-13. [PMID: 22851335 DOI: 10.1007/s00114-012-0952-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 11/26/2022]
Abstract
Learning plays an important role in food acquisition for a wide range of insects. To increase their foraging efficiency, flower-visiting insects may learn to associate floral cues with the presence (so-called reward learning) or the absence (so-called non-reward learning) of a reward. Reward learning whilst foraging for flowers has been demonstrated in many insect taxa, whilst non-reward learning in flower-visiting insects has been demonstrated only in honeybees, bumblebees and hawkmoths. This study examined both reward and non-reward learning abilities in the butterfly Byasa alcinous whilst foraging among artificial flowers of different colours. This butterfly showed both types of learning, although butterflies of both sexes learned faster via reward learning. In addition, females learned via reward learning faster than males. To the best of our knowledge, these are the first empirical data on the learning speed of both reward and non-reward learning in insects. We discuss the adaptive significance of a lower learning speed for non-reward learning when foraging on flowers.
Collapse
Affiliation(s)
- Ikuo Kandori
- Laboratory of Entomology, Faculty of Agriculture, Kinki University, Naka-machi, Nara, 631-8505, Japan.
| | | |
Collapse
|
45
|
Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H. Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 2012; 8:e1002768. [PMID: 22807684 PMCID: PMC3395599 DOI: 10.1371/journal.pgen.1002768] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory.
Collapse
Affiliation(s)
- Yoshinori Aso
- Max Planck Institut für Neurobiologie, Martinsried, Germany
- * E-mail: (HT); (YA)
| | - Andrea Herb
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Würzburg, Germany
| | - Maite Ogueta
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Henrike Scholz
- Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Würzburg, Germany
- Universität zu Köln, Biozentrum Köln, Köln, Germany
| | - Hiromu Tanimoto
- Max Planck Institut für Neurobiologie, Martinsried, Germany
- * E-mail: (HT); (YA)
| |
Collapse
|
46
|
Thum AS, Leisibach B, Gendre N, Selcho M, Stocker RF. Diversity, variability, and suboesophageal connectivity of antennal lobe neurons in D. melanogaster larvae. J Comp Neurol 2012; 519:3415-32. [PMID: 21800296 DOI: 10.1002/cne.22713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Whereas the "vertical" elements of the insect olfactory pathway, the olfactory receptor neurons and the projection neurons, have been studied in great detail, local interneurons providing "horizontal" connections in the antennal lobe were ignored for a long time. Recent studies in adult Drosophila demonstrate diverse roles for these neurons in the integration of odor information, consistent with the identification of a large variety of anatomical and neurochemical subtypes. Here we focus on the larval olfactory circuit of Drosophila, which is much reduced in terms of cell numbers. We show that the horizontal connectivity in the larval antennal lobe differs largely from its adult counterpart. Only one of the five anatomical types of neurons we describe is restricted to the antennal lobe and therefore fits the definition of a local interneuron. Interestingly, the four remaining subtypes innervate both the antennal lobe and the suboesophageal ganglion. In the latter, they may overlap with primary gustatory terminals and with arborizations of hugin cells, which are involved in feeding control. This circuitry suggests special links between smell and taste, which may reflect the chemosensory constraints of a crawling and burrowing lifestyle. We also demonstrate that many of the neurons we describe exhibit highly variable trajectories and arborizations, especially in the suboesophageal ganglion. Together with reports from adult Drosophila, these data suggest that wiring variability may be another principle of insect brain organization, in parallel with stereotypy.
Collapse
Affiliation(s)
- A S Thum
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
47
|
Xu S, Chan T, Shah V, Zhang S, Pletcher SD, Roman G. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons. GENES BRAIN AND BEHAVIOR 2012; 11:727-39. [PMID: 22624869 DOI: 10.1111/j.1601-183x.2012.00810.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol activates reward systems through an unknown mechanism, in some cases leading to alcohol abuse and dependence. Herein, we utilized a two-choice Capillary Feeder assay to address the neural and molecular basis for ethanol self-administration in Drosophila melanogaster. Wild-type Drosophila shows a significant preference for food containing between 5% and 15% ethanol. Preferred ethanol self-administration does not appear to be due to caloric advantage, nor due to perceptual biases, suggesting a hedonic bias for ethanol exists in Drosophila. Interestingly, rutabaga adenylyl cyclase expression within intrinsic mushroom body neurons is necessary for robust ethanol self-administration. The expression of rutabaga in mushroom bodies is also required for both appetitive and aversive olfactory associative memories, suggesting that reinforced behavior has an important role in the ethanol self-administration in Drosophila. However, rutabaga expression is required more broadly within the mushroom bodies for the preference for ethanol-containing food than for olfactory memories reinforced by sugar reward. Together these data implicate cAMP signaling and behavioral reinforcement for preferred ethanol self-administration in D. melanogaster.
Collapse
Affiliation(s)
- S Xu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
48
|
Lin C, Strausfeld NJ. Visual inputs to the mushroom body calyces of the whirligig beetle Dineutus sublineatus: Modality switching in an insect. J Comp Neurol 2012. [DOI: 10.1002/cne.23092] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Roles of the Drosophila SK channel (dSK) in courtship memory. PLoS One 2012; 7:e34665. [PMID: 22509342 PMCID: PMC3324495 DOI: 10.1371/journal.pone.0034665] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/06/2012] [Indexed: 11/19/2022] Open
Abstract
A role for SK channels in synaptic plasticity has been very well-characterized. However, in the absence of simple genetic animal models, their role in behavioral memory remains elusive. Here, we take advantage of Drosophila melanogaster with its single SK gene (dSK) and well-established courtship memory assay to investigate the contribution of this channel to memory. Using two independent dSK alleles, a null mutation and a dominant negative subunit, we show that while dSK negatively regulates the acquisition of short-term memory 30 min after a short training session, it is required for normal long-term memory 24 h after extended training. These findings highlight important functions for dSK in courtship memory and suggest that SK channels can mediate multiple forms of behavioral plasticity.
Collapse
|
50
|
Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches. Neurobiol Learn Mem 2012; 97:30-6. [DOI: 10.1016/j.nlm.2011.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/05/2011] [Accepted: 08/19/2011] [Indexed: 11/22/2022]
|