1
|
Jiang T, Feng M, Hutsell A, Lüscher B. Sex-specific GABAergic microcircuits that switch vulnerability into resilience to stress and reverse the effects of chronic stress exposure. Mol Psychiatry 2025; 30:2297-2308. [PMID: 39550416 DOI: 10.1038/s41380-024-02835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Clinical and preclinical studies have identified somatostatin (SST)-positive interneurons as critical elements that regulate the vulnerability to stress-related psychiatric disorders. Conversely, disinhibition of SST neurons in mice results in resilience to the behavioral effects of chronic stress. Here, we established a low-dose chronic chemogenetic protocol to map these changes in positively and negatively motivated behaviors to specific brain regions. AAV-hM3Dq-mediated chronic activation of SST neurons in the prelimbic cortex (PLC) had antidepressant drug-like effects on anxiety- and anhedonia-like motivated behaviors in male but not female mice. Analogous manipulation of the ventral hippocampus (vHPC) had such effects in female but not male mice. Moreover, the activation of SST neurons in the PLC of male mice and the vHPC of female mice resulted in stress resilience. Activation of SST neurons in the PLC reversed prior chronic stress-induced defects in motivated behavior in males but was ineffective in females. Conversely, activation of SST neurons in the vHPC reversed chronic stress-induced behavioral alterations in females but not males. Quantitation of c-Fos+ and FosB+ neurons in chronic stress-exposed mice revealed that chronic activation of SST neurons leads to a paradoxical increase in pyramidal cell activity. Collectively, these data demonstrate that GABAergic microcircuits driven by dendrite targeting interneurons enable sex- and brain-region-specific neural plasticity that promotes stress resilience and reverses stress-induced anxiety- and anhedonia-like motivated behavior. The data provide a rationale for the lack of antidepressant efficacy of benzodiazepines and superior efficacy of dendrite-targeting, low-potency GABAA receptor agonists, independent of sex and despite striking sex differences in the relevant brain substrates.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Mengyang Feng
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Hutsell
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Center for Molecular Investigation of Neurological Disorders (CMIND), The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Feely S, Rios Rodriguez M, Shannon A, Young S, Rosales JP, Kaur G. A Dive Into Cerebellar Dysfunction, Motor Deficits and GABAergic Signaling in Down Syndrome. Cureus 2025; 17:e79623. [PMID: 40151699 PMCID: PMC11949090 DOI: 10.7759/cureus.79623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Down syndrome (DS) mouse models and DS human fetus studies clearly indicate severe neurogenesis impairment in the cerebellum. Clinical features of DS include motor dysfunction and cerebellar hypotrophy, with a particularly marked decrease in the number of granule cells (GCs). GCs are crucial for managing sensory communication within the cerebellum via mossy fibers and their interactions with Purkinje cells (PCs) and inhibitory interneurons. The current review discusses cerebellar alterations in DS and its impact on GABAergic transmission, bringing to light the impact on GABAergic signaling and its role in motor coordination dysfunction observed in individuals with DS. The findings highlight the significance of GABAergic transmission in the pathophysiology of DS and its potential as a target for therapeutic innervation. Moreover, understanding the disruptions in GABAergic signaling may provide insights into developing novel treatment strategies.
Collapse
Affiliation(s)
- Shannon Feely
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Misleydi Rios Rodriguez
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Alyssa Shannon
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Serena Young
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Justin Peter Rosales
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Gurjinder Kaur
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| |
Collapse
|
3
|
Stafstrom CE, Shao LR. Infantile Spasms in Pediatric Down Syndrome: Potential Mechanisms Driving Therapeutic Considerations. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1513. [PMID: 39767942 PMCID: PMC11674231 DOI: 10.3390/children11121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches. Ts65Dn mice have been the most widely used animal model of DS. In this model, there is evidence for both abnormal cerebral excitation and inhibition: infantile spasms-like clinical and electrographic activity can be elicited by the administration of gamma-aminobutyric acid (GABA)-B receptor agonist, gamma-butyrolactone (GBL), and depolarizing GABA-A responses persist beyond the age of their usual switch to hyperpolarized responses. But despite its widespread use, the Ts65Dn model may be suboptimal because of the absence of numerous genes that are triplicated in human DS and the presence of numerous genes that are not triplicated in human DS. Recently, a transchromosomic mouse artificial chromosome 21 (TcMAC21) mouse model has been developed, which carries a copy of human chromosome 21 and therefore has a genetic composition more similar to human DS. As in Ts65Dn mice, exposure of TcMAC21 mice to GBL results in epileptic spasms, and aberrant excitation has also been demonstrated. This review summarizes excitatory and inhibitory dysfunction in models of DS that may play a role in the generation of seizures and infantile spasms, providing a perspective on past studies and a prelude for future ones. Further elucidation will hopefully lead to rational therapeutic options for DS children with infantile spasms.
Collapse
Affiliation(s)
- Carl E. Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | | |
Collapse
|
4
|
Luscher B, Jiang T, Feng M, Hutsell A. Sex-specific GABAergic microcircuits that switch vulnerability into resilience to stress and reverse the effects of chronic stress exposure. RESEARCH SQUARE 2024:rs.3.rs-4408723. [PMID: 39041032 PMCID: PMC11261964 DOI: 10.21203/rs.3.rs-4408723/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Clinical and preclinical studies have identified somatostatin (SST)-positive interneurons as key elements that regulate the vulnerability to stress-related psychiatric disorders. Conversely, disinhibition of SST neurons in mice results in resilience to the behavioral effects of chronic stress. Here we established a low-dose chronic chemogenetic protocol to map these changes in positively and negatively motivated behaviors to specific brain regions. AAV-hM3Dq mediated chronic activation of SST neurons in the prelimbic cortex (PLC) had antidepressant drug-like effects on anxiety- and anhedonia-related motivated behaviors in male but not female mice. Analogous manipulation of the ventral hippocampus (vHPC) had such effects in female but not male mice. Moreover, activation of SST neurons in the PLC of male and the vHPC of female mice resulted in stress resilience. Activation of SST neurons in the PLC reversed prior chronic stress-induced defects in motivated behavior in males but was ineffective in females. Conversely, activation of SST neurons in the vHPC reversed chronic stress-induced behavioral alterations in females but not males. Quantitation of c-Fos+ and FosB+ neurons in chronic stress-exposed mice revealed that chronic activation of SST neurons leads to a paradoxical increase in pyramidal cell activity. Collectively, these data demonstrate that GABAergic microcircuits driven by dendrite targeting interneurons enable sex- and brain-region-specific neural plasticity that promotes stress resilience and reverses stress-induced anxiety- and anhedonia-like motivated behavior. Our studies provide a mechanistic rationale for antidepressant efficacy of dendrite-targeting, low-potency GABAA receptor agonists, independent of sex and despite striking sex differences in the relevant brain substrates.
Collapse
|
5
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
6
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
7
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
8
|
Nuwer JL, Povysheva N, Jacob TC. Long-term α5 GABA A receptor negative allosteric modulator treatment reduces NMDAR-mediated neuronal excitation and maintains basal neuronal inhibition. Neuropharmacology 2023; 237:109587. [PMID: 37270156 PMCID: PMC10527172 DOI: 10.1016/j.neuropharm.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
α5 subunit-containing GABA type-A receptors (α5 GABAARs) are enriched in the hippocampus and play critical roles in neurodevelopment, synaptic plasticity, and cognition. α5 GABAAR preferring negative allosteric modulators (α5 NAMs) show promise mitigating cognitive impairment in preclinical studies of conditions characterized by excess GABAergic inhibition, including Down syndrome and memory deficits post-anesthesia. However, previous studies have primarily focused on acute application or single-dose α5 NAM treatment. Here, we measured the effects of chronic (7-day) in vitro treatment with L-655,708 (L6), a highly selective α5 NAM, on glutamatergic and GABAergic synapses in rat hippocampal neurons. We previously showed that 2-day in vitro treatment with L6 enhanced synaptic levels of the glutamate NMDA receptor (NMDAR) GluN2A subunit without modifying surface α5 GABAAR expression, inhibitory synapse function, or L6 sensitivity. We hypothesized that chronic L6 treatment would further increase synaptic GluN2A subunit levels while maintaining GABAergic inhibition and L6 efficacy, thus increasing neuronal excitation and glutamate-evoked intracellular calcium responses. Immunofluorescence experiments revealed that 7-day L6 treatment slightly increased the synaptic levels of gephyrin and surface α5 GABAARs. Functional studies showed that chronic α5 NAM treatment did not alter inhibition or α5 NAM sensitivity. Surprisingly, chronic L6 exposure decreased surface levels of GluN2A and GluN2B subunits, concurrent with reduced NMDAR-mediated neuronal excitation as seen by faster synaptic decay rates and reduced glutamate-evoked calcium responses. Together, these results show that chronic in vitro treatment with an α5 NAM leads to subtle homeostatic changes in inhibitory and excitatory synapses that suggest an overall dampening of excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Luscher B, Maguire JL, Rudolph U, Sibille E. GABA A receptors as targets for treating affective and cognitive symptoms of depression. Trends Pharmacol Sci 2023; 44:586-600. [PMID: 37543478 PMCID: PMC10511219 DOI: 10.1016/j.tips.2023.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 08/07/2023]
Abstract
In the past 20 years, our understanding of the pathophysiology of depression has evolved from a focus on an imbalance of monoaminergic neurotransmitters to a multifactorial picture including an improved understanding of the role of glutamatergic excitatory and GABAergic inhibitory neurotransmission. FDA-approved treatments targeting the glutamatergic [esketamine for major depressive disorder (MDD)] and GABAergic (brexanolone for peripartum depression) systems have become available. This review focuses on the GABAA receptor (GABAAR) system as a target for novel antidepressants and discusses the mechanisms by which modulation of δ-containing GABAARs with neuroactive steroids (NASs) or of α5-containing GABAARs results in antidepressant or antidepressant-like actions and discusses clinical data on NASs. Moreover, a potential mechanism by which α5-GABAAR-positive allosteric modulators (PAMs) may improve cognitive deficits in depression is presented.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Psychiatry, Pennsylvania State University, University Park, PA 16802, USA; Penn State Neuroscience Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of the Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Shao LR, Gao F, Chinnasamy V, Kazuki Y, Oshimura M, Reeves RH, Stafstrom CE. Increased propensity for infantile spasms and altered neocortical excitation-inhibition balance in a mouse model of down syndrome carrying human chromosome 21. Neurobiol Dis 2023; 184:106198. [PMID: 37315904 DOI: 10.1016/j.nbd.2023.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023] Open
Abstract
Children with Down syndrome (DS, trisomy of chromosome 21) have an increased risk of infantile spasms (IS). As an epileptic encephalopathy, IS may further impair cognitive function and exacerbate neurodevelopmental delays already present in children with DS. To investigate the pathophysiology of IS in DS, we induced IS-like epileptic spasms in a genetic mouse model of DS that carries human chromosome 21q, TcMAC21, the animal model most closely representing gene dosage imbalance in DS. Repetitive extensor/flexor spasms were induced by the GABAB receptor agonist γ-butyrolactone (GBL) and occurred predominantly in young TcMAC21 mice (85%) but also in some euploid mice (25%). During GBL application, background electroencephalographic (EEG) amplitude was reduced, and rhythmic, sharp-and-slow wave activity or high-amplitude burst (epileptiform) events emerged in both TcMAC21 and euploid mice. Spasms occurred only during EEG bursts, but not every burst was accompanied by a spasm. Electrophysiological experiments revealed that basic membrane properties (resting membrane potential, input resistance, action-potential threshold and amplitude, rheobase, input-output relationship) of layer V pyramidal neurons were not different between TcMAC21 mice and euploid controls. However, excitatory postsynaptic currents (EPSCs) evoked at various intensities were significantly larger in TcMAC21 mice than euploid controls, while inhibitory postsynaptic currents (IPSCs) were similar between the two groups, resulting in an increased excitation-inhibition (E-I) ratio. These data show that behavioral spasms with epileptic EEG activity can be induced in young TcMAC21 DS mice, providing proof-of-concept evidence for increased IS susceptibility in these DS mice. Our findings also show that basic membrane properties are similar in TcMAC21 and euploid mice, while the neocortical E-I balance is altered to favor increased excitation in TcMAC21 mice, which may predispose to IS generation.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Feng Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Viveka Chinnasamy
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mistuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan; Trans Chromosomics, Inc., Tottori, Japan
| | - Roger H Reeves
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan; Department of Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Gao Y, Hong Y, Huang L, Zheng S, Zhang H, Wang S, Yao Y, Zhao Y, Zhu L, Xu Q, Chai X, Zeng Y, Zeng Y, Zheng L, Zhou Y, Luo H, Zhang X, Zhang H, Zhou Y, Fu G, Sun H, Huang TY, Zheng Q, Xu H, Wang X. β2-microglobulin functions as an endogenous NMDAR antagonist to impair synaptic function. Cell 2023; 186:1026-1038.e20. [PMID: 36868208 DOI: 10.1016/j.cell.2023.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 03/05/2023]
Abstract
Down syndrome (DS) is a neurological disorder with multiple immune-related symptoms; however, crosstalk between the CNS and peripheral immune system remains unexplored. Using parabiosis and plasma infusion, we found that blood-borne factors drive synaptic deficits in DS. Proteomic analysis revealed elevation of β2-microglobulin (B2M), a major histocompatibility complex class I (MHC-I) component, in human DS plasma. Systemic administration of B2M in wild-type mice led to synaptic and memory defects similar to those observed in DS mice. Moreover, genetic ablation of B2m or systemic administration of an anti-B2M antibody counteracts synaptic impairments in DS mice. Mechanistically, we demonstrate that B2M antagonizes NMDA receptor (NMDAR) function through interactions with the GluN1-S2 loop; blocking B2M-NMDAR interactions using competitive peptides restores NMDAR-dependent synaptic function. Our findings identify B2M as an endogenous NMDAR antagonist and reveal a pathophysiological role for circulating B2M in NMDAR dysfunction in DS and related cognitive disorders.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lihong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Haibin Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Shihua Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Yao
- Department of Functional Neurosurgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361003, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiang Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xuhui Chai
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuanyuan Zeng
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuzhe Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Liangkai Zheng
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361103, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen 361103, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China
| | - Huaxi Xu
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
12
|
Lorenzon N, Musoles-Lleó J, Turrisi F, Gomis-González M, De La Torre R, Dierssen M. State-of-the-art therapy for Down syndrome. Dev Med Child Neurol 2023. [PMID: 36692980 DOI: 10.1111/dmcn.15517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
In the last decade, an important effort was made in the field of Down syndrome to find new interventions that improve cognition. These therapies have added to the traditional symptomatic treatments and to the drugs for treating Alzheimer disease in the general population repurposed for Down syndrome. Defining next-generation therapeutics will involve biomarker-based therapeutic decision-making, and preventive and multimodal interventions. However, translation of specific findings into effective therapeutic strategies has been disappointingly slow and has failed in many cases at the clinical level, leading to reduced credibility of mouse studies. This is aggravated by a tendency to favour large-magnitude effects and highly significant findings, leading to high expectations but also to a biased view of the complex pathophysiology of Down syndrome. Here, we review some of the most recent and promising strategies for ameliorating the cognitive state of individuals with Down syndrome. We studied the landscape of preclinical and clinical studies and conducted a thorough literature search on PubMed and ClinicalTrials.gov for articles published between June 2012 and August 2022 on therapies for ameliorating cognitive function in individuals with Down syndrome. We critically assess current therapeutic approaches, why therapies fail in clinical trials in Down syndrome, and what could be the path forward. We discuss some intrinsic difficulties for translational research, and the need for a framework that improves the detection of drug efficacy to avoid discarding compounds too early from the companies' pipelines.
Collapse
Affiliation(s)
- Nicola Lorenzon
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Juanluis Musoles-Lleó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Federica Turrisi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rafael De La Torre
- Universitat Pompeu Fabra, Barcelona, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| |
Collapse
|
13
|
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex. J Neurosci 2023; 43:14-27. [PMID: 36384682 PMCID: PMC9838699 DOI: 10.1523/jneurosci.1661-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
In the neocortex, fast synaptic inhibition orchestrates both spontaneous and sensory-evoked activity. GABAergic interneurons (INs) inhibit pyramidal neurons (PNs) directly, modulating their output activity and thus contributing to balance cortical networks. Moreover, several IN subtypes also inhibit other INs, forming specific disinhibitory circuits, which play crucial roles in several cognitive functions. Here, we studied a subpopulation of somatostatin-positive INs, the Martinotti cells (MCs) in layer 2/3 of the mouse barrel cortex (both sexes). MCs inhibit the distal portion of PN apical dendrites, thus controlling dendrite electrogenesis and synaptic integration. Yet, it is poorly understood whether MCs inhibit other elements of the cortical circuits, and the connectivity properties with non-PN targets are unknown. We found that MCs have a strong preference for PN dendrites, but they also considerably connect with parvalbumin-positive, vasoactive intestinal peptide-expressing, and layer 1 (L1) INs. Remarkably, GABAergic synapses from MCs exhibited clear cell type-specific short-term plasticity. Moreover, whereas the biophysical properties of MC-PN synapses were consistent with distal dendritic inhibition, MC-IN synapses exhibited characteristics of fast perisomatic inhibition. Finally, MC-PN connections used α5-containing GABAA receptors (GABAARs), but this subunit was not expressed by the other INs targeted by MCs. We reveal a specialized connectivity blueprint of MCs within different elements of superficial cortical layers. In addition, our results identify α5-GABAARs as the molecular fingerprint of MC-PN dendritic inhibition. This is of critical importance, given the role of α5-GABAARs in cognitive performance and their involvement in several brain diseases.SIGNIFICANCE STATEMENT Martinotti cells (MCs) are a prominent, broad subclass of somatostatin-expressing GABAergic interneurons, specialized in controlling distal dendrites of pyramidal neurons (PNs) and taking part in several cognitive functions. Here we characterize the connectivity pattern of MCs with other interneurons in the superficial layers (L1 and L2/3) of the mouse barrel cortex. We found that the connectivity pattern of MCs with PNs as well as parvalbumin, vasoactive intestinal peptide, and L1 interneurons exhibit target-specific plasticity and biophysical properties. The specificity of α5-GABAARs at MC-PN synapses and the lack or functional expression of this subunit by other cell types define the molecular identity of MC-PN connections and the exclusive involvement of this inhibitory circuits in α5-dependent cognitive tasks.
Collapse
|
14
|
Seol S, Kwon J, Kang HJ. Cell type characterization of spatiotemporal gene co-expression modules in Down syndrome brain. iScience 2022; 26:105884. [PMID: 36647384 PMCID: PMC9840153 DOI: 10.1016/j.isci.2022.105884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability and increases the risk of other brain-related dysfunctions, like seizures, early-onset Alzheimer's disease, and autism. To reveal the molecular profiles of DS-associated brain phenotypes, we performed a meta-data analysis of the developmental DS brain transcriptome at cell type and co-expression module levels. In the DS brain, astrocyte-, microglia-, and endothelial cell-associated genes show upregulated patterns, whereas neuron- and oligodendrocyte-associated genes show downregulated patterns. Weighted gene co-expression network analysis identified cell type-enriched co-expressed gene modules. We present eight representative cell-type modules for neurons, astrocytes, oligodendrocytes, and microglia. We classified the neuron modules into glutamatergic and GABAergic neurons and associated them with detailed subtypes. Cell type modules were interpreted by analyzing spatiotemporal expression patterns, functional annotations, and co-expression networks of the modules. This study provides insight into the mechanisms underlying brain abnormalities in DS and related disorders.
Collapse
Affiliation(s)
- Sihwan Seol
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Joonhong Kwon
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea,Corresponding author
| |
Collapse
|
15
|
Wu MY, Zou WJ, Yu P, Yang Y, Li SJ, Liu Q, Xie J, Chen SQ, Lin WJ, Tang Y. Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function. Neural Regen Res 2022; 17:2253-2259. [PMID: 35259846 PMCID: PMC9083168 DOI: 10.4103/1673-5374.336875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Radiation therapy is a standard treatment for head and neck tumors. However, patients often exhibit cognitive impairments following radiation therapy. Previous studies have revealed that hippocampal dysfunction, specifically abnormal hippocampal neurogenesis or neuroinflammation, plays a key role in radiation-induced cognitive impairment. However, the long-term effects of radiation with respect to the electrophysiological adaptation of hippocampal neurons remain poorly characterized. We found that mice exhibited cognitive impairment 3 months after undergoing 10 minutes of cranial irradiation at a dose rate of 3 Gy/min. Furthermore, we observed a remarkable reduction in spike firing and excitatory synaptic input, as well as greatly enhanced inhibitory inputs, in hippocampal CA1 pyramidal neurons. Corresponding to the electrophysiological adaptation, we found reduced expression of synaptic plasticity marker VGLUT1 and increased expression of VGAT. Furthermore, in irradiated mice, long-term potentiation in the hippocampus was weakened and GluR1 expression was inhibited. These findings suggest that radiation can impair intrinsic excitability and synaptic plasticity in hippocampal CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Min-Yi Wu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wen-Jun Zou
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Pei Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuhua Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shao-Jian Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qiang Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si-Qi Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine; Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Bartesaghi R. Brain circuit pathology in Down syndrome: from neurons to neural networks. Rev Neurosci 2022; 34:365-423. [PMID: 36170842 DOI: 10.1515/revneuro-2022-0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022]
Abstract
Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
17
|
Manfredi-Lozano M, Leysen V, Adamo M, Paiva I, Rovera R, Pignat JM, Timzoura FE, Candlish M, Eddarkaoui S, Malone SA, Silva MSB, Trova S, Imbernon M, Decoster L, Cotellessa L, Tena-Sempere M, Claret M, Paoloni-Giacobino A, Plassard D, Paccou E, Vionnet N, Acierno J, Maceski AM, Lutti A, Pfrieger F, Rasika S, Santoni F, Boehm U, Ciofi P, Buée L, Haddjeri N, Boutillier AL, Kuhle J, Messina A, Draganski B, Giacobini P, Pitteloud N, Prevot V. GnRH replacement rescues cognition in Down syndrome. Science 2022; 377:eabq4515. [PMID: 36048943 PMCID: PMC7613827 DOI: 10.1126/science.abq4515] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.
Collapse
Affiliation(s)
- Maria Manfredi-Lozano
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Isabel Paiva
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Université de Strasbourg-CNRS, Strasbourg, France
| | - Renaud Rovera
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Jean-Michel Pignat
- Department of Clinical Neurosciences, Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland
| | - Fatima Ezzahra Timzoura
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
| | - Samuel A. Malone
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Mauro S. B. Silva
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Sara Trova
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Laurine Decoster
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Manuel Tena-Sempere
- Univ. Cordoba, IMIBC/HURS, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | - Ariane Paoloni-Giacobino
- Department of Genetic Medicine, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Emmanuelle Paccou
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nathalie Vionnet
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - James Acierno
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Aleksandra Maleska Maceski
- Neurologic Clinic and Polyclinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel; University Hospital Basel, University of Basel, Basel Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Frank Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - S. Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Federico Santoni
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Philippe Ciofi
- Univ. Bordeaux, Inserm, U1215, Neurocentre Magendie, Bordeaux, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
| | - Nasser Haddjeri
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Université de Strasbourg-CNRS, Strasbourg, France
| | - Jens Kuhle
- Neurologic Clinic and Polyclinic, MS Centre and Research Centre for Clinical Neuroimmunology and Neuroscience Basel; University Hospital Basel, University of Basel, Basel Switzerland
| | - Andrea Messina
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, LabexDistAlz, Lille, France
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 days for health, EGID, Lille, France
| |
Collapse
|
18
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Sparsification of AP firing in adult-born hippocampal granule cells via voltage-dependent α5-GABA A receptors. Cell Rep 2021; 37:109768. [PMID: 34610304 DOI: 10.1016/j.celrep.2021.109768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/07/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
GABA can depolarize immature neurons close to the action potential (AP) threshold in development and adult neurogenesis. Nevertheless, GABAergic synapses effectively inhibit AP firing in newborn granule cells of the adult hippocampus as early as two weeks post-mitosis. The underlying mechanisms are largely unclear. Here, we analyze GABAergic inputs in newborn hippocampal granule cells mediated by soma-targeting parvalbumin and dendrite-targeting somatostatin interneurons. Surprisingly, both interneuron subtypes activate α5-subunit-containing GABAA receptors (α5-GABAARs) in young neurons, showing a nonlinear voltage dependence with increasing conductance around the AP threshold. By contrast, in mature cells, parvalbumin interneurons mediate linear GABAergic synaptic currents lacking α5-subunits, while somatostatin interneurons continue to target nonlinear α5-GABAARs. Computational modeling shows that the voltage-dependent amplification of α5-GABAAR opening in young neurons is crucial for inhibition of AP firing to generate balanced and sparse firing activity, even with depolarized GABA reversal potential.
Collapse
|
20
|
Figueroa AG, Benkwitz C, Surges G, Kunz N, Homanics GE, Pearce RA. Hippocampal β2-GABA A receptors mediate LTP suppression by etomidate and contribute to long-lasting feedback but not feedforward inhibition of pyramidal neurons. J Neurophysiol 2021; 126:1090-1100. [PMID: 34406874 PMCID: PMC8560413 DOI: 10.1152/jn.00303.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The general anesthetic etomidate, which acts through γ-aminobutyric acid type A (GABAA) receptors, impairs the formation of new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) β2-N265M mutation, we tested the roles of receptors that incorporate GABAA receptor β2 versus β3 subunits to suppression of long-term potentiation (LTP), a cellular model of learning and memory. We found that brain slices from β2-N265M mice resisted etomidate suppression of LTP, indicating that the β2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hippocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, β2 subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line of β3-N265M mice, we also examined the contributions of β2- versus β3-GABAARs to GABAA,slow dendritic inhibition, because dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting suppression of population activity through feedforward and feedback inhibition. We found that both β2- and β3-GABAARs contribute to GABAA,slow inhibition and that both β2- and β3-GABAARs contribute to feedback inhibition, whereas only β3-GABAARs contribute to feedforward inhibition. We conclude that modulation of β2-GABAARs is essential to etomidate suppression of LTP. Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback inhibition.NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains unknown. Here, using a hippocampal brain slice model, we show that β2-GABAARs are essential to this effect. We also show that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neurons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how inhibitory circuits control learning and memory.
Collapse
Affiliation(s)
- Alexander G Figueroa
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Claudia Benkwitz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gabe Surges
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas Kunz
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
21
|
Nuwer JL, Brady ML, Povysheva NV, Coyne A, Jacob TC. Sustained treatment with an α5 GABA A receptor negative allosteric modulator delays excitatory circuit development while maintaining GABAergic neurotransmission. Neuropharmacology 2021; 197:108724. [PMID: 34284042 DOI: 10.1016/j.neuropharm.2021.108724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
α5 subunit GABA type A receptor (GABAAR) preferring negative allosteric modulators (NAMs) are cognitive enhancers with antidepressant-like effects. α5-NAM success in treating mouse models of neurodevelopmental disorders with excessive inhibition have led to Phase 2 clinical trials for Down syndrome. Despite in vivo efficacy, no study has examined the effects of continued α5-NAM treatment on inhibitory and excitatory synapse plasticity to identify mechanisms of action. Here we used L-655,708, an imidazobenzodiazepine that acts as a highly selective but weak α5-NAM, to investigate the impact of sustained treatment on hippocampal neuron synapse and dendrite development. We show that 2-day pharmacological reduction of α5-GABAAR signaling from DIV12-14, when GABAARs contribute to depolarization, delays dendritic spine maturation and the NMDA receptor (NMDAR) GluN2B/GluN2A developmental shift. In contrast, α5-NAM treatment from DIV19-21, when hyperpolarizing GABAAR signaling predominates, enhances surface synaptic GluN2A while decreasing GluN2B. Despite changes in NMDAR subtype surface levels and localization, total levels of key excitatory synapse proteins were largely unchanged, and mEPSCs were unaltered. Importantly, 2-day α5-NAM treatment does not alter the total surface levels or distribution of α5-GABAARs, reduce the gephyrin inhibitory synaptic scaffold, or impair phasic or tonic inhibition. Furthermore, α5-NAM inhibition of the GABAAR tonic current in mature neurons is maintained after 2-day α5-NAM treatment, suggesting reduced tolerance liability, in contrast to other clinically relevant GABAAR-targeting drugs such as benzodiazepines. Together, these results show that α5-GABAARs contribute to dendritic spine maturation and excitatory synapse development via a NMDAR dependent mechanism without perturbing overall neuronal excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya V Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Coyne
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Paraouty N, Mowery TM. Early Sensory Deprivation Leads to Differential Inhibitory Changes in the Striatum During Learning. Front Neural Circuits 2021; 15:670858. [PMID: 34122017 PMCID: PMC8194259 DOI: 10.3389/fncir.2021.670858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
The corticostriatal circuit has been identified as a vital pathway for associative learning. However, how learning is implemented when the sensory striatum is permanently impaired remains unclear. Using chemogenetic techniques to suppress layer five auditory cortex (AC) input to the auditory striatum, learning of a sound discrimination task was significantly impacted in freely moving Mongolian gerbils, in particular when this suppression occurs early on during learning. Whole-cell recordings sampled throughout learning revealed a transient reduction in postsynaptic (GABAA) inhibition in both striatal D1 and D2 cells in normal-hearing gerbils during task acquisition. In contrast, when the baseline striatal inhibitory strengths and firing rates were permanently reduced by a transient period of developmental sensory deprivation, learning was accompanied by augmented inhibition and increased firing rates. Direct manipulation of striatal inhibition in vivo and in vitro revealed a key role of the transient inhibitory changes in task acquisition. Together, these results reveal a flexible corticostriatal inhibitory synaptic plasticity mechanism that accompanies associative auditory learning.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Center for Neural Science, New York University, New York, NY, United States
| | - Todd M Mowery
- Department of Otolaryngology, Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.,Rutgers Brain Health Institute, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
23
|
Atypical electrophysiological and behavioral responses to diazepam in a leading mouse model of Down syndrome. Sci Rep 2021; 11:9521. [PMID: 33947925 PMCID: PMC8096846 DOI: 10.1038/s41598-021-89011-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
Mounting evidence implicates dysfunctional GABAAR-mediated neurotransmission as one of the underlying causes of learning and memory deficits observed in the Ts65Dn mouse model of Down syndrome (DS). The specific origin and nature of such dysfunction is still under investigation, which is an issue with practical consequences to preclinical and clinical research, as well as to the care of individuals with DS and anxiety disorder or those experiencing seizures in emergency room settings. Here, we investigated the effects of GABAAR positive allosteric modulation (PAM) by diazepam on brain activity, synaptic plasticity, and behavior in Ts65Dn mice. We found Ts65Dn mice to be less sensitive to diazepam, as assessed by electroencephalography, long-term potentiation, and elevated plus-maze. Still, diazepam pre-treatment displayed typical effectiveness in reducing susceptibility and severity to picrotoxin-induced seizures in Ts65Dn mice. These findings fill an important gap in the understanding of GABAergic function in a key model of DS.
Collapse
|
24
|
Cao JW, Guan W, Yu YC, Fu Y. Synaptic Transmission from Somatostatin-expressing Interneurons to Excitatory Neurons Mediated by α5-subunit-containing GABA A Receptors in the Developing Visual Cortex. Neuroscience 2020; 449:147-156. [PMID: 32926954 DOI: 10.1016/j.neuroscience.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Dendrite-targeting somatostatin-expressing interneurons (SST-INs) powerfully control signal integration and synaptic plasticity in pyramidal dendrites during cortical development. We previously showed that synaptic transmission from SST-INs to pyramidal cells (PCs) (SST-IN → PC) in the mouse visual cortex suddenly declined at around the second postnatal week. However, it is unclear what specific postsynaptic mechanisms underlie this developmental change. Using multiple whole-cell patch-clamp recordings, we found that application of an α5-GABAA receptor-selective inverse agonist, alpha5IA, significantly weakened SST-IN → PC unitary inhibitory postsynaptic currents (uIPSCs) in layer 2/3 of the mouse visual cortex, but had no effect on uIPSCs from SST-INs to other types of interneurons. The extent of alpha5IA-induced reduction of SST-IN → PC synaptic transmission was significantly larger at postnatal days 11-13 (P11-13) than P14-17. Moreover, α5-subunit-containing GABAA receptors (α5-GABAARs)-mediated uIPSCs had slow rise and decay kinetics. Apart from pharmacological test, we observed that SST-IN → PC synapses did indeed contain α5-GABAARs by immunogold labeling for electron microscopy. More importantly, coinciding with the weakening of SST-IN → PC synaptic transmission, the number of α5-GABAAR particles in SST-IN → PC synapses significantly decreased at around the second postnatal week. Together, these data indicate that α5-GABAARs are involved in synaptic transmission from SST-INs to PCs in the neocortex, and are significantly diminished around the second postnatal week.
Collapse
Affiliation(s)
- Jun-Wei Cao
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wuqiang Guan
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Chun Yu
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yinghui Fu
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
26
|
Zorrilla de San Martin J, Donato C, Peixoto J, Aguirre A, Choudhary V, De Stasi AM, Lourenço J, Potier MC, Bacci A. Alterations of specific cortical GABAergic circuits underlie abnormal network activity in a mouse model of Down syndrome. eLife 2020; 9:58731. [PMID: 32783810 PMCID: PMC7481006 DOI: 10.7554/elife.58731] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Down syndrome (DS) results in various degrees of cognitive deficits. In DS mouse models, recovery of behavioral and neurophysiological deficits using GABAAR antagonists led to hypothesize an excessive activity of inhibitory circuits in this condition. Nonetheless, whether over-inhibition is present in DS and whether this is due to specific alterations of distinct GABAergic circuits is unknown. In the prefrontal cortex of Ts65Dn mice (a well-established DS model), we found that the dendritic synaptic inhibitory loop formed by somatostatin-positive Martinotti cells (MCs) and pyramidal neurons (PNs) was strongly enhanced, with no alteration in their excitability. Conversely, perisomatic inhibition from parvalbumin-positive (PV) interneurons was unaltered, but PV cells of DS mice lost their classical fast-spiking phenotype and exhibited increased excitability. These microcircuit alterations resulted in reduced pyramidal-neuron firing and increased phase locking to cognitive-relevant network oscillations in vivo. These results define important synaptic and circuit mechanisms underlying cognitive dysfunctions in DS. Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21. Affected individuals show delayed growth, characteristic facial features, altered brain development; with mild to severe intellectual disability. The exact mechanisms underlying the intellectual disability in Down syndrome are unclear, although studies in mice have provided clues. Drugs that reduce the inhibitory activity in the brain improve cognition in a mouse model of Down syndrome. This suggests that excessive inhibitory activity may contribute to the cognitive impairments. Many different neural circuits generate inhibitory activity in the brain. These circuits contain cells called interneurons. Sub-types of interneurons act via different mechanisms to reduce the activity of neurons. Identifying the interneurons that are affected in Down syndrome would thus improve our understanding of the brain basis of the disorder. Zorrilla de San Martin et al. compared mice with Down syndrome to unaffected control mice. The results revealed an increased activity in two types of inhibitory brain circuits in Down syndrome. The first contains interneurons called Martinotti cells. These help the brain to combine inputs from different sources. The second contains interneurons called parvalbumin-positive basket cells. These help different areas of the brain to synchronize their activity, which in turn makes it easier for those areas to exchange information. By mapping the changes in inhibitory circuits in Down syndrome, Zorrilla de San Martin et al. have provided new insights into the biological basis of the disorder. Future studies should examine whether targeting specific circuits with pharmacological treatments could ultimately help reduce the associated impairments.
Collapse
Affiliation(s)
| | - Cristina Donato
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Jérémy Peixoto
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Andrea Aguirre
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Vikash Choudhary
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | | | - Joana Lourenço
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| | - Alberto Bacci
- Institut du Cerveau (ICM), CNRS UMR 7225 - Inserm U1127, Sorbonne Université, Paris, France
| |
Collapse
|
27
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
28
|
Tramutola A, Lanzillotta C, Di Domenico F, Head E, Butterfield DA, Perluigi M, Barone E. Brain insulin resistance triggers early onset Alzheimer disease in Down syndrome. Neurobiol Dis 2020; 137:104772. [PMID: 31987911 DOI: 10.1016/j.nbd.2020.104772] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/03/2020] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of insulin signaling pathway with reduced downstream neuronal survival and plasticity mechanisms is a fundamental abnormality observed in Alzheimer's disease (AD) brain. This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the uncoupling of insulin receptor (IR) from its direct substrate (IRS1). Considering that Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration, i.e., brain insulin resistance, in DS and whether it would contribute to early onset AD in DS population. Changes of levels and activation of main brain proteins belonging to the insulin signaling pathway (i.e., IR, IRS1, PTEN, GSK3β, PKCζ, AS160, GLUT4) were evaluated. Furthermore, we analyzed whether changes of these proteins were associated with alterations of: (i) proteins regulating brain energy metabolism; (ii) APP cleavage; and (ii) regulation of synaptic plasticity mechanisms in post-mortem brain samples collected from people with DS before and after the development of AD pathology (DSAD) compared with their age-matched controls. We found that DS cases were characterized by key markers of brain insulin resistance (reduced IR and increased IRS1 inhibition) early in life. Furthermore, downstream from IRS1, an overall uncoupling among the proteins of insulin signaling was observed. Dysregulated brain insulin signaling was associated with reduced hexokinase II (HKII) levels and proteins associated with mitochondrial complexes levels as well as with reduced levels of syntaxin in DS cases. Tellingly, these alterations precede the development of AD neuropathology and clinical presentations in DS. We propose that markers of brain insulin resistance rise earlier with age in DS compared with the general population and may contribute to the cognitive impairment associated with the early development of AD in DS.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - D Allan Butterfield
- Department of Chemistry, Markey Cancer Center, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
29
|
Duchon A, Gruart A, Albac C, Delatour B, Zorrilla de San Martin J, Delgado-García JM, Hérault Y, Potier MC. Long-lasting correction of in vivo LTP and cognitive deficits of mice modelling Down syndrome with an α5-selective GABA A inverse agonist. Br J Pharmacol 2020; 177:1106-1118. [PMID: 31652355 PMCID: PMC7042104 DOI: 10.1111/bph.14903] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Excessive GABAergic inhibition contributes to cognitive dysfunctions in Down syndrome (DS). Selective negative allosteric modulators (NAMs) of α5‐containing GABAA receptors such as the α5 inverse agonist (α5IA) restore learning and memory deficits in Ts65Dn mice, a model of DS. In this study we have assessed the long‐lasting effects of α5IA on in vivo LTP and behaviour in Ts65Dn mice. Experimental Approach We made in vivo LTP recordings for six consecutive days in freely moving Ts65Dn mice and their wild‐type littermates, treated with vehicle or α5IA. In parallel, Ts65Dn mice were assessed by various learning and memory tests (Y maze, Morris water maze, or the novel object recognition) for up to 7 days, following one single injection of α5IA or vehicle. Key Results LTP was not evoked in vivo in Ts65Dn mice at hippocampal CA3‐CA1 synapses. However, this deficit was sustainably reversed for at least six consecutive days following a single injection of α5IA. This long‐lasting effect of α5IA was also observed when assessing working and long‐term memory deficits in Ts65Dn mice. Conclusion and Implications We show for the first time in vivo LTP deficits in Ts65Dn mice. These deficits were restored for at least 6 days following acute treatment with α5IA and might be the substrate for the long‐lasting pharmacological effects of α5IA on spatial working and long‐term recognition and spatial memory tasks. Our results demonstrate the relevance of negative allosteric modulators of α5‐containing GABAA receptors to the treatment of cognitive deficits associated with DS.
Collapse
Affiliation(s)
- Arnaud Duchon
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Seville, Spain
| | - Christelle Albac
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Javier Zorrilla de San Martin
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Yann Hérault
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Neuropôle, Université de Strasbourg, Illkirch, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, Paris, France.,Centre National de la Recherche Scientifique, UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
30
|
Jacob TC. Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors. Front Mol Neurosci 2019; 12:179. [PMID: 31396049 PMCID: PMC6668551 DOI: 10.3389/fnmol.2019.00179] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023] Open
Abstract
α5 subunit containing GABA type A receptors (GABAARs) have long been an enigmatic receptor subtype of interest due to their specific brain distribution, unusual surface localization and key role in synaptic plasticity, cognition and memory. These receptors are uniquely positioned to sculpt both the developing and mature hippocampal circuitry due to high overall expression and a distinct peak within the critical synapse formation period during the second postnatal week. Unlike the majority of other GABAARs, they exhibit both receptor clustering at extrasynaptic sites via interactions with the radixin scaffold as well as synaptic sites via gephyrin, thus contributing respectively to tonic currents and synaptic GABAergic neurotransmission. α5 GABAAR signaling can be altered in neurodevelopmental disorders including autism and mental retardation and by inflammation in CNS injury and disease. Due to the unique physiology and pharmacology of α5 GABAARs, drugs targeting these receptors are being developed and tested as treatments for neurodevelopmental disorders, depression, schizophrenia, and mild cognitive impairment. This review article focuses on advances in understanding how the α5 subunit contributes to GABAAR neurobiology. In particular, I discuss both recent insights and remaining knowledge gaps for the functional role of these receptors, pathologies associated with α5 GABAAR dysfunction, and the effects and potential therapeutic uses of α5 receptor subtype targeted drugs.
Collapse
Affiliation(s)
- Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|