1
|
Larosa A, Zhang TR, Wong AS, Fung CYH, Long XLYJ, Singh P, Fung BCM, Wong TP. Diminished Social Memory and Hippocampal Correlates of Social Interactions in Chronic Social Defeat Stress Susceptibility. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100455. [PMID: 40115743 PMCID: PMC11925529 DOI: 10.1016/j.bpsgos.2025.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/18/2025] [Indexed: 03/23/2025] Open
Abstract
Background Susceptibility to chronic stress has been associated with depression, a mood disorder that highly implicates the hippocampus. Hippocampal contribution to stress susceptibility has been supported by findings in mice following chronic social defeat stress (CSDS). However, little is known about the role of hippocampal activity in determining the development of stress susceptibility. Methods We used the UCLA Miniscope to longitudinally measure the activity of dorsal CA1 hippocampal neurons during CSDS. In addition to examining the representation of social information by these neurons, we compared social memory in mice that were either susceptible or resilient to CSDS. Results We observed more stable dorsal CA1 correlates of social interaction and social memory in CSDS-resilient mice. Such changes were absent in CSDS-susceptible mice and accompanied by greater social memory impairments. Conclusions CSDS susceptibility may be supported by hippocampal social cognitive processes, as reflected in diminished hippocampal representations of social information and greater impairment in social memory in suspectible compared with resilient mice.
Collapse
Affiliation(s)
- Amanda Larosa
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Neuroscience Division, Douglas Research Centre, Montreal, Quebec, Canada
| | - Tian Rui Zhang
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Neuroscience Division, Douglas Research Centre, Montreal, Quebec, Canada
| | - Alice S Wong
- Neuroscience Division, Douglas Research Centre, Montreal, Quebec, Canada
| | - Cyrus Y H Fung
- Neuroscience Division, Douglas Research Centre, Montreal, Quebec, Canada
| | | | - Prabhjeet Singh
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Neuroscience Division, Douglas Research Centre, Montreal, Quebec, Canada
| | - Benjamin C M Fung
- School of Information Studies, McGill University, Montreal, Quebec, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Balmer GL, Guha S, Poll S. Engrams across diseases: Different pathologies - unifying mechanisms? Neurobiol Learn Mem 2025; 219:108036. [PMID: 40023216 DOI: 10.1016/j.nlm.2025.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Memories are our reservoir of knowledge and thus, are crucial for guiding decisions and defining our self. The physical correlate of a memory in the brain is termed an engram and since decades helps researchers to elucidate the intricate nature of our imprinted experiences and knowledge. Given the importance that memories have for our lives, their impairment can present a tremendous burden. In this review we aim to discuss engram malfunctioning across diseases, covering dementia-associated pathologies, epilepsy, chronic pain and psychiatric disorders. Current neuroscientific tools allow to witness the emergence and fate of engram cells and enable their manipulation. We further suggest that specific mechanisms of mnemonic malfunction can be derived from engram cell readouts. While depicting the way diseases act on the mnemonic component - specifically, on the cellular engram - we emphasize a differentiation between forms of amnesia and hypermnesia. Finally, we highlight commonalities and distinctions of engram impairments on the cellular level across diseases independent of their pathogenic origins and discuss prospective therapeutic measures.
Collapse
Affiliation(s)
- Greta Leonore Balmer
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Shuvrangshu Guha
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Stefanie Poll
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.
| |
Collapse
|
3
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
4
|
Abstract
Memories are stored as ensembles of engram neurons and their successful recall involves the reactivation of these cellular networks. However, significant gaps remain in connecting these cell ensembles with the process of forgetting. Here, we utilized a mouse model of object memory and investigated the conditions in which a memory could be preserved, retrieved, or forgotten. Direct modulation of engram activity via optogenetic stimulation or inhibition either facilitated or prevented the recall of an object memory. In addition, through behavioral and pharmacological interventions, we successfully prevented or accelerated forgetting of an object memory. Finally, we showed that these results can be explained by a computational model in which engrams that are subjectively less relevant for adaptive behavior are more likely to be forgotten. Together, these findings suggest that forgetting may be an adaptive form of engram plasticity which allows engrams to switch from an accessible state to an inaccessible state.
Collapse
Affiliation(s)
- James D O'Leary
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Rasmus Bruckner
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Livia Autore
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of MelbourneMelbourneAustralia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR)TorontoCanada
| |
Collapse
|
5
|
Zhang M, Yang L, Jia J, Xu F, Gao S, Han F, Deng M, Wang J, Li V, Yu M, Sun Y, Yuan H, Zhou Y, Li N. Increased GHS-R1a expression in the hippocampus impairs memory encoding and contributes to AD-associated memory deficits. Commun Biol 2024; 7:1334. [PMID: 39415032 PMCID: PMC11484987 DOI: 10.1038/s42003-024-06914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a), also known as the ghrelin receptor, is an important nutrient sensor and metabolic regulator in both humans and rodents. Increased GHS-R1a expression is observed in the hippocampus of both Alzheimer's disease (AD) patients and AD model mice. However, the causal relationship between GHS-R1a elevation in the hippocampus and AD memory deficits remains uncertain. Here, we find that increasing GHS-R1a expression in dCA1 pyramidal neurons impairs hippocampus-dependent memory formation, which is abolished by local administration of the endogenous antagonist LEAP2. GHS-R1a elevation in dCA1 pyramidal neurons suppresses excitability and blocks memory allocation in these neurons. Chemogenetic activation of those high GHS-R1a neurons during training rescues GHS-R1a overexpression-induced memory impairment. Moreover, we demonstrate that increasing GHS-R1a expression in dCA1 pyramidal neurons hampers these neurons' ability to encode spatial memory and reduces engram size in the dCA1 region. Finally, we show that GHS-R1a deletion mitigates spatial memory deficits in APP/PS1 mice with increased GHS-R1a expression in the hippocampus. Our findings reveal a negative, causal relationship between hippocampal GHS-R1a expression and memory encoding, and suggest that blocking the abnormal increase in GHS-R1a activity/expression may be a promising approach to improve memory and treat cognitive decline in AD.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jiajia Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shanshan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fubing Han
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Jiwei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Vincent Li
- Beverly Hills High School, Beverly Hills, CA, 90212, USA
| | - Ming Yu
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
| |
Collapse
|
6
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
7
|
Tuñon-Ortiz A, Tränkner D, Brockway SN, Raines O, Mahnke A, Grega M, Zelikowsky M, Williams ME. Inhibitory neurons marked by a connectivity molecule regulate memory precision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602304. [PMID: 39005261 PMCID: PMC11245094 DOI: 10.1101/2024.07.05.602304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.
Collapse
Affiliation(s)
- Arnulfo Tuñon-Ortiz
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dimitri Tränkner
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Sarah N Brockway
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Olivia Raines
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Abbey Mahnke
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Matthew Grega
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
8
|
Onishi T, Hirose K, Sakaba T. Molecular tools to capture active neural circuits. Front Neural Circuits 2024; 18:1449459. [PMID: 39100199 PMCID: PMC11294111 DOI: 10.3389/fncir.2024.1449459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
To understand how neurons and neural circuits function during behaviors, it is essential to record neuronal activity in the brain in vivo. Among the various technologies developed for recording neuronal activity, molecular tools that induce gene expression in an activity-dependent manner have attracted particular attention for their ability to clarify the causal relationships between neuronal activity and behavior. In this review, we summarize recently developed activity-dependent gene expression tools and their potential contributions to the study of neural circuits.
Collapse
Affiliation(s)
- Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
9
|
Brosens N, Lesuis SL, Rao-Ruiz P, van den Oever MC, Krugers HJ. Shaping Memories Via Stress: A Synaptic Engram Perspective. Biol Psychiatry 2023:S0006-3223(23)01720-1. [PMID: 37977215 DOI: 10.1016/j.biopsych.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Cellular and Cognitive Neuroscience group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Berdugo‐Vega G, Dhingra S, Calegari F. Sharpening the blades of the dentate gyrus: how adult-born neurons differentially modulate diverse aspects of hippocampal learning and memory. EMBO J 2023; 42:e113524. [PMID: 37743770 PMCID: PMC11059975 DOI: 10.15252/embj.2023113524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.
Collapse
Affiliation(s)
- Gabriel Berdugo‐Vega
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
- Present address:
Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL)LausanneSwitzerland
| | - Shonali Dhingra
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Federico Calegari
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| |
Collapse
|
11
|
Autore L, O'Leary JD, Ortega-de San Luis C, Ryan TJ. Adaptive expression of engrams by retroactive interference. Cell Rep 2023; 42:112999. [PMID: 37590145 DOI: 10.1016/j.celrep.2023.112999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Long-term memories are stored as configurations of neuronal ensembles, termed engrams. Although investigation of engram cell properties and functionality in memory recall has been extensive, less is known about how engram cells are affected by forgetting. We describe a form of interference-based forgetting using an object memory behavioral paradigm. By using activity-dependent cell labeling, we show that although retroactive interference results in decreased engram cell reactivation during recall trials, optogenetic stimulation of the labeled engram cells is sufficient to induce memory retrieval. Forgotten engrams may be reinstated via the presentation of similar or related environmental information. Furthermore, we demonstrate that engram activity is necessary for interference to occur. Taken together, these findings indicate that retroactive interference modules engram expression in a manner that is both reversible and updatable. Inference may constitute a form of adaptive forgetting where, in everyday life, new perceptual and environmental inputs modulate the natural forgetting process.
Collapse
Affiliation(s)
- Livia Autore
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - James D O'Leary
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada.
| |
Collapse
|
12
|
Zichó K, Sos KE, Papp P, Barth AM, Misák E, Orosz Á, Mayer MI, Sebestény RZ, Nyiri G. Fear memory recall involves hippocampal somatostatin interneurons. PLoS Biol 2023; 21:e3002154. [PMID: 37289847 DOI: 10.1371/journal.pbio.3002154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Fear-related memory traces are encoded by sparse populations of hippocampal principal neurons that are recruited based on their inhibitory-excitatory balance during memory formation. Later, the reactivation of the same principal neurons can recall the memory. The details of this mechanism are still unclear. Here, we investigated whether disinhibition could play a major role in this process. Using optogenetic behavioral experiments, we found that when fear was associated with the inhibition of mouse hippocampal somatostatin positive interneurons, the re-inhibition of the same interneurons could recall fear memory. Pontine nucleus incertus neurons selectively inhibit hippocampal somatostatin cells. We also found that when fear was associated with the activity of these incertus neurons or fibers, the reactivation of the same incertus neurons or fibers could also recall fear memory. These incertus neurons showed correlated activity with hippocampal principal neurons during memory recall and were strongly innervated by memory-related neocortical centers, from which the inputs could also control hippocampal disinhibition in vivo. Nonselective inhibition of these mouse hippocampal somatostatin or incertus neurons impaired memory recall. Our data suggest a novel disinhibition-based memory mechanism in the hippocampus that is supported by local somatostatin interneurons and their pontine brainstem inputs.
Collapse
Affiliation(s)
- Krisztián Zichó
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Katalin E Sos
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Péter Papp
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Albert M Barth
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Erik Misák
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Réka Z Sebestény
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
13
|
Fernández-Blanco Á, Zamora-Moratalla A, Sabariego-Navarro M, Dierssen M. Defective engram allocation contributes to impaired fear memory performance in Down syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523460. [PMID: 36711850 PMCID: PMC9882045 DOI: 10.1101/2023.01.11.523460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability (ID). The cellular and molecular mechanisms contributing to ID in DS are not completely understood. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons, highly activated during learning, the engram cells. Intriguingly, mechanisms that are of paramount importance for engram formation are impaired in DS. Here we explored engram formation in a DS mouse model, the Ts65Dn and we found a reduced number of engram cells in the dentate gyrus (DG), suggesting reduced neuronal allocation to engrams. We also show that trisomic engram cells present reduced number of mature spines than WT engram cells and their excitability is not enhanced during memory recall. In fact, activation of engram cells using a chemogenetic approach does not recover memory deficits in Ts65Dn. Altogether, our findings suggest that perturbations in engram neurons may play a significant role in memory alterations in DS.
Collapse
|
14
|
Dai Z, Liu Y, Nie L, Chen W, Xu X, Li Y, Zhang J, Shen F, Sui N, Liang J. Locus coeruleus input-modulated reactivation of dentate gyrus opioid-withdrawal engrams promotes extinction. Neuropsychopharmacology 2023; 48:327-340. [PMID: 36302846 PMCID: PMC9751301 DOI: 10.1038/s41386-022-01477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/26/2022]
Abstract
Extinction training during the reconsolidation window following memory recall is an effective behavioral pattern for promoting the extinction of pathological memory. However, promoted extinction by recall-extinction procedure has not been universally replicated in different studies. One potential reason for this may relate to whether initially acquired memory is successfully activated. Thus, the methods for inducing the memory into an active or plastic condition may contribute to promoting its extinction. The aim of this study is to find and demonstrate a manipulatable neural circuit that engages in the memory recall process and where its activation improves the extinction process through recall-extinction procedure. Here, naloxone-precipitated conditioned place aversion (CPA) in morphine-dependent mice was mainly used as a pathological memory model. We found that the locus coeruleus (LC)-dentate gyrus (DG) circuit was necessary for CPA memory recall and that artificial activation of LC inputs to the DG just prior to initiating a recall-extinction procedure significantly promoted extinction learning. We also found that activating this circuit caused an increase in the ensemble size of DG engram cells activated during the extinction, which was confirmed by a cFos targeted strategy to label cells combined with immunohistochemical and in vivo calcium imaging techniques. Collectively, our data uncover that the recall experience is important for updating the memory during the reconsolidation window; they also suggest a promising neural circuit or target based on the recall-extinction procedure for weakening pathological aversion memory, such as opioid withdrawal memory and fear memory.
Collapse
Affiliation(s)
- Zhonghua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|