1
|
Yu H, Wang J, Pang R, Chen P, Luo T, Zhang X, Liao Y, Hu C, Gu M, Luo B, Shi Z, Li M, Zhang Y, Wei Q, Yuan W, Xie H, Chen Z, Liu H, Ren S, Chen X, Zhou Y. Temporal Association Cortex Gates Sound-Evoked Arousal from NREM Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414271. [PMID: 39887927 PMCID: PMC11948000 DOI: 10.1002/advs.202414271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Indexed: 02/01/2025]
Abstract
Sound-evoked wakefulness from sleep is crucial in daily life, yet its neural mechanisms remain poorly understood. It is found that CaMKIIα+ neurons in the temporal association cortex (TeA) of mice are not essential for natural awakening from sleep. However, optogenetic activation of these neurons reliably induces wakefulness from non-rapid eye movement (NREM) sleep but not from rapid eye movement (REM) sleep. In vivo electrophysiological and calcium recordings further demonstrated that TeA neurons are monotonically tuned to sound intensity but not frequency. More importantly, it is found that the activity of CaMKIIα+ neurons in TeA can gate sound-evoked arousal from NREM sleep, which is further confirmed by optogenetic manipulations. Further investigation reveals that the baseline excitability of TeA CaMKIIα+ neurons and the delta oscillations in the electroencephalogram are particularly important in regulating the evoked activity of TeA neurons. Anatomical and functional screening of downstream targets of TeA reveals that excitatory projections from TeA glutamatergic neurons to glutamatergic neurons in the basolateral/lateral amygdala are critical for modulating sound-evoked arousal from NREM sleep. These findings uncover a top-down regulatory circuit that selectively governs sound-evoked arousal from NREM sleep, with the TeA functioning as a key connecting cortex to subcortical regions.
Collapse
Affiliation(s)
- Haipeng Yu
- Advanced Institute for Brain and IntelligenceSchool of Physical Science and TechnologyGuangxi UniversityNanning530004China
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Jincheng Wang
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Ruiqi Pang
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004China
| | - Penghui Chen
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Tiantian Luo
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Xuan Zhang
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Yatao Liao
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Chao Hu
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Miaoqing Gu
- Advanced Institute for Brain and IntelligenceSchool of Physical Science and TechnologyGuangxi UniversityNanning530004China
| | - Bingmin Luo
- Department of NeurosciencesCase Western Reserve University School of MedicineClevelandOH44106USA
| | - Zhiyue Shi
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Mengyao Li
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004China
| | - Yueting Zhang
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004China
| | - Qiaoqian Wei
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004China
| | - Wei Yuan
- Department of OtolaryngologyChongqing General HospitalChongqing UniversityChongqing400038China
| | - Hui Xie
- School of Architecture and Urban PlanningChongqing UniversityChongqing400044China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological ScienceSchool of PsychologyArmy Medical UniversityChongqing400038China
| | - Hongbang Liu
- Advanced Institute for Brain and IntelligenceSchool of Physical Science and TechnologyGuangxi UniversityNanning530004China
| | - Shuancheng Ren
- Department of PhysiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma and Chemical PoisoningCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Yi Zhou
- Department of NeurobiologyCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| |
Collapse
|
2
|
Conde KM, Wong H, Fang S, Li Y, Yu M, Deng Y, Liu Q, Fang X, Wang M, Shi Y, Ginnard OZ, Yang Y, Tu L, Liu H, Liu H, Yin N, Bean JC, Han J, Burt ME, Jossy SV, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. Serotonin neurons integrate GABA and dopamine inputs to regulate meal initiation. Metabolism 2025; 163:156099. [PMID: 39667432 PMCID: PMC11924950 DOI: 10.1016/j.metabol.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Obesity is a growing global health epidemic with limited orally administered therapeutics. Serotonin (5-HT) is one neurotransmitter which remains an excellent target for new weight-loss therapies, but a gap remains in understanding the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using an optogenetic feeding paradigm, we showed that the 5-HTDRN➔arcuate nucleus (ARH) circuit plays a role in meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the role of dopaminergic inputs via dopamine receptor D2 in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, for the initiation of a meal.
Collapse
Affiliation(s)
- Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - HueyZhong Wong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuzheng Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuhan Shi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan E Burt
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V Jossy
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Naganuma F, Khanday M, Bandaru SS, Hasan W, Hirano K, Yoshikawa T, Vetrivelan R. Regulation of wakefulness by neurotensin neurons in the lateral hypothalamus. Exp Neurol 2024; 383:115035. [PMID: 39481513 DOI: 10.1016/j.expneurol.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
The lateral hypothalamic region (LH) has been identified as a key region for arousal regulation, yet the specific cell types and underlying mechanisms are not fully understood. While neurons expressing orexins (OX) are considered the primary wake-promoting population in the LH, their loss does not reduce daily wake levels, suggesting the presence of additional wake-promoting populations. In this regard, we recently discovered that a non-OX cell group in the LH, marked by the expression of neurotensin (Nts), could powerfully drive wakefulness. Activation of these NtsLH neurons elicits rapid arousal from non-rapid eye movement (NREM) sleep and produces uninterrupted wakefulness for several hours in mice. However, it remains unknown if these neurons are necessary for spontaneous wakefulness and what their precise role is in the initiation and maintenance of this state. To address these questions, we first examined the activity dynamics of the NtsLH population across sleep-wake behavior using fiber photometry. We find that NtsLH neurons are more active during wakefulness, and their activity increases concurrently with, but does not precede, wake-onset. We then selectively destroyed the NtsLH neurons using a diphtheria-toxin-based conditional ablation method, which significantly reduced wake amounts and mean duration of wake bouts and increased the EEG delta power during wakefulness. These findings demonstrate a crucial role for NtsLH neurons in maintaining normal arousal levels, and their loss may be associated with chronic sleepiness in mice.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Mudasir Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Whidul Hasan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Kyosuke Hirano
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
4
|
Rahimi S, Joyce L, Fenzl T, Drexel M. Crosstalk between the subiculum and sleep-wake regulation: A review. J Sleep Res 2024; 33:e14134. [PMID: 38196146 DOI: 10.1111/jsr.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leesa Joyce
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Thomas Fenzl
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Wang D, Bao C, Wu H, Li J, Zhang X, Wang S, Zhou F, Li H, Dong H. A hypothalamus-lateral periaqueductal gray GABAergic neural projection facilitates arousal following sevoflurane anesthesia in mice. CNS Neurosci Ther 2024; 30:e70047. [PMID: 39317457 PMCID: PMC11421888 DOI: 10.1111/cns.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The lateral hypothalamus (LHA) is an evolutionarily conserved structure that regulates basic functions of an organism, particularly wakefulness. To clarify the function of LHAGABA neurons and their projections on regulating general anesthesia is crucial for understanding the excitatory and inhibitory effects of anesthetics on the brain. The aim of the present study is to investigate whether LHAGABA neurons play either an inhibitory or a facilitatory role in sevoflurane-induced anesthetic arousal regulation. METHODS We used fiber photometry and immunofluorescence staining to monitor changes in neuronal activity during sevoflurane anesthesia. Opto-/chemogenetic modulations were employed to study the effect of neurocircuit modulations during the anesthesia. Anterograde tracing was used to identify a GABAergic projection from the LHA to a periaqueductal gray (PAG) subregion. RESULTS c-Fos staining showed that LHAGABA activity was inhibited by induction of sevoflurane anesthesia. Anterograde tracing revealed that LHAGABA neurons project to multiple arousal-associated brain areas, with the lateral periaqueductal gray (LPAG) being one of the dense projection areas. Optogenetic experiments showed that activation of LHAGABA neurons and their downstream target LPAG reduced the burst suppression ratio (BSR) during continuous sevoflurane anesthesia. Chemogenetic experiments showed that activation of LHAGABA and its projection to LPAG neurons prolonged the anesthetic induction time and promoted wakefulness. CONCLUSIONS In summary, we show that an inhibitory projection from LHAGABA to LPAGGABA neurons promotes arousal from sevoflurane-induced loss of consciousness, suggesting a complex control of wakefulness through intimate interactions between long-range connections.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Chang Bao
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Huimin Wu
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Fang Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing HospitalThe Fourth Military Medical UniversityXi'anShaanxiChina
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'anChina
| |
Collapse
|
6
|
Henderson F, Dumas S, Gangarossa G, Bernard V, Pujol M, Poirel O, Pietrancosta N, El Mestikawy S, Daumas S, Fabre V. Regulation of stress-induced sleep perturbations by dorsal raphe VGLUT3 neurons in male mice. Cell Rep 2024; 43:114411. [PMID: 38944834 DOI: 10.1016/j.celrep.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Collapse
Affiliation(s)
- Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - Véronique Bernard
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Marine Pujol
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Odile Poirel
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Sorbonne Université, CNRS UMR 7203, Laboratoire des BioMolécules, 75005 Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC H4H 1R3, Canada
| | - Stéphanie Daumas
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
7
|
Gao Z, Guan J, Yin S, Liu F. The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner. Sleep Med 2024; 119:147-154. [PMID: 38678758 DOI: 10.1016/j.sleep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
ATP plays a crucial role as an energy currency in the body's various physiological functions, including the regulation of the sleep-wake cycle. Evidence from genetics and pharmacology demonstrates a strong association between ATP metabolism and sleep. With the advent of new technologies such as optogenetics, genetically encoded biosensors, and novel ATP detection methods, the dynamic changes in ATP levels between different sleep states have been further uncovered. The classic mechanism for regulating sleep by ATP involves its conversion to adenosine, which increases sleep pressure when accumulated extracellularly. However, emerging evidence suggests that ATP can directly bind to P2 receptors and influence sleep-wake regulation through both adenosine-dependent and independent pathways. The outcome depends on the brain region where ATP acts and the expression type of P2 receptors. This review summarizes the experimental evidence on the relationship between ATP levels and changes in sleep states and outlines the mechanisms by which ATP is involved in regulating the sleep-wake cycle through both adenosine-dependent and independent pathways. Hopefully, this review will provide a comprehensive understanding of the current research basis and progress in this field and promote further investigations into the specific mechanisms of ATP in regulating sleep.
Collapse
Affiliation(s)
- Zhenfei Gao
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
8
|
Conde KM, Wong H, Fang S, Li Y, Yu M, Deng Y, Liu Q, Fang X, Wang M, Shi Y, Ginnard OZ, Yang Y, Tu L, Liu H, Liu H, Yin N, Bean JC, Han J, Burt ME, Jossy SV, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. 5-HT Neurons Integrate GABA and Dopamine Inputs to Regulate Meal Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591360. [PMID: 38746314 PMCID: PMC11092489 DOI: 10.1101/2024.04.26.591360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Obesity is a growing global health epidemic with limited effective therapeutics. Serotonin (5-HT) is one major neurotransmitter which remains an excellent target for new weight-loss therapies, but there remains a gap in knowledge on the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using a closed-loop optogenetic feeding paradigm, we showed that the 5-HTDRN→arcuate nucleus (ARH) circuit plays an important role in regulating meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response to GABAergic inputs can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the instrumental role of dopaminergic inputs via dopamine receptor D2 in 5-HTDRN neurons in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, which allows for the initiation of a meal.
Collapse
Affiliation(s)
- Kristine M. Conde
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - HueyZhong Wong
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuzheng Fang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Meng Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuhan Shi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z. Ginnard
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C. Bean
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan E. Burt
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V. Jossy
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunmei Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Ren S, Zhang C, Yue F, Tang J, Zhang W, Zheng Y, Fang Y, Wang N, Song Z, Zhang Z, Zhang X, Qin H, Wang Y, Xia J, Jiang C, He C, Luo F, Hu Z. A midbrain GABAergic circuit constrains wakefulness in a mouse model of stress. Nat Commun 2024; 15:2722. [PMID: 38548744 PMCID: PMC10978901 DOI: 10.1038/s41467-024-46707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Enhancement of wakefulness is a prerequisite for adaptive behaviors to cope with acute stress, but hyperarousal is associated with impaired behavioral performance. Although the neural circuitries promoting wakefulness in acute stress conditions have been extensively identified, less is known about the circuit mechanisms constraining wakefulness to prevent hyperarousal. Here, we found that chemogenetic or optogenetic activation of GAD2-positive GABAergic neurons in the midbrain dorsal raphe nucleus (DRNGAD2) decreased wakefulness, while inhibition or ablation of these neurons produced an increase in wakefulness along with hyperactivity. Surprisingly, DRNGAD2 neurons were paradoxically wakefulness-active and were further activated by acute stress. Bidirectional manipulations revealed that DRNGAD2 neurons constrained the increase of wakefulness and arousal level in a mouse model of stress. Circuit-specific investigations demonstrated that DRNGAD2 neurons constrained wakefulness via inhibition of the wakefulness-promoting paraventricular thalamus. Therefore, the present study identified a wakefulness-constraining role DRNGAD2 neurons in acute stress conditions.
Collapse
Affiliation(s)
- Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- No. 953 Army Hospital, Shigatse, Tibet Autonomous Region, 857000, China.
| | - Cai Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Faguo Yue
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Jinxiang Tang
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yue Zheng
- Department of Anesthesiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Na Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Chenggang Jiang
- Psychology Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
10
|
Tossell K, Yu X, Giannos P, Anuncibay Soto B, Nollet M, Yustos R, Miracca G, Vicente M, Miao A, Hsieh B, Ma Y, Vyssotski AL, Constandinou T, Franks NP, Wisden W. Somatostatin neurons in prefrontal cortex initiate sleep-preparatory behavior and sleep via the preoptic and lateral hypothalamus. Nat Neurosci 2023; 26:1805-1819. [PMID: 37735497 PMCID: PMC10545541 DOI: 10.1038/s41593-023-01430-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.
Collapse
Affiliation(s)
- Kyoko Tossell
- Department of Life Sciences, Imperial College London, London, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Berta Anuncibay Soto
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, London, UK
| | - Mikal Vicente
- Department of Life Sciences, Imperial College London, London, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Bryan Hsieh
- Department of Life Sciences, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich-ETH Zürich, Zürich, Switzerland
| | - Tim Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
- Care Research and Technology Centre, UK Dementia Research Institute, London, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| |
Collapse
|
11
|
Pintwala SK, Fraigne JJ, Belsham DD, Peever JH. Immortal orexin cell transplants restore motor-arousal synchrony during cataplexy. Curr Biol 2023; 33:1550-1564.e5. [PMID: 37044089 DOI: 10.1016/j.cub.2023.03.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Waking behaviors such as sitting or standing require suitable levels of muscle tone. But it is unclear how arousal and motor circuits communicate with one another so that appropriate motor tone occurs during wakefulness. Cataplexy is a peculiar condition in which muscle tone is involuntarily lost during normal periods of wakefulness. Cataplexy therefore provides a unique opportunity for identifying the signaling mechanisms that synchronize motor and arousal behaviors. Cataplexy occurs when hypothalamic orexin neurons are lost in narcolepsy; however, it is unclear if motor-arousal decoupling in cataplexy is directly or indirectly caused by orexin cell loss. Here, we used genomic, proteomic, chemogenetic, electrophysiological, and behavioral assays to determine if grafting orexin cells into the brain of cataplectic (i.e., orexin-/-) mice restores normal motor-arousal behaviors by preventing cataplexy. First, we engineered immortalized orexin cells and found that they not only produce and release orexin but also exhibit a gene profile that mimics native orexin neurons. Second, we show that engineered orexin cells thrive and integrate into host tissue when transplanted into the brain of mice. Next, we found that grafting only 200-300 orexin cells into the dorsal raphe nucleus-a region densely innervated by native orexin neurons-reduces cataplexy. Last, we show that real-time chemogenetic activation of orexin cells restores motor-arousal synchrony by preventing cataplexy. We suggest that orexin signaling is critical for arousal-motor synchrony during wakefulness and that the dorsal raphe plays a pivotal role in coupling arousal and motor behaviors.
Collapse
Affiliation(s)
- Sara K Pintwala
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John H Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Liu Q, Yang X, Luo M, Su J, Zhong J, Li X, Chan RHM, Wang L. An iterative neural processing sequence orchestrates feeding. Neuron 2023; 111:1651-1665.e5. [PMID: 36924773 DOI: 10.1016/j.neuron.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Feeding requires sophisticated orchestration of neural processes to satiate appetite in natural, capricious settings. However, the complementary roles of discrete neural populations in orchestrating distinct behaviors and motivations throughout the feeding process are largely unknown. Here, we delineate the behavioral repertoire of mice by developing a machine-learning-assisted behavior tracking system and show that feeding is fragmented and divergent motivations for food consumption or environment exploration compete throughout the feeding process. An iterative activation sequence of agouti-related peptide (AgRP)-expressing neurons in arcuate (ARC) nucleus, GABAergic neurons in the lateral hypothalamus (LH), and in dorsal raphe (DR) orchestrate the preparation, initiation, and maintenance of feeding segments, respectively, via the resolution of motivational conflicts. The iterative neural processing sequence underlying the competition of divergent motivations further suggests a general rule for optimizing goal-directed behaviors.
Collapse
Affiliation(s)
- Qingqing Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Moxuan Luo
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China; University of Science and Technology of China, Hefei 230026, China
| | - Junying Su
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinling Zhong
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofen Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Science and Technology of China, Hefei 230026, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Sulaman BA, Wang S, Tyan J, Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci 2023; 26:196-212. [PMID: 36581730 DOI: 10.1038/s41593-022-01236-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Although considered an inactive state for centuries, sleep entails many active processes occurring at the cellular, circuit and organismal levels. Over the last decade, several key technological advances, including calcium imaging and optogenetic and chemogenetic manipulations, have facilitated a detailed understanding of the functions of different neuronal populations and circuits in sleep-wake regulation. Here, we present recent progress and summarize our current understanding of the circuitry underlying the initiation, maintenance and coordination of wakefulness, rapid eye movement sleep (REMS) and non-REMS (NREMS). We propose a de-arousal model for sleep initiation, in which the neuromodulatory milieu necessary for sleep initiation is achieved by engaging in repetitive pre-sleep behaviors that gradually reduce vigilance to the external environment and wake-promoting neuromodulatory tone. We also discuss how brain processes related to thermoregulation, hunger and fear intersect with sleep-wake circuits to control arousal. Lastly, we discuss controversies and lingering questions in the sleep field.
Collapse
Affiliation(s)
- Bibi A Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Su Wang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Tyan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
14
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Synaptic Inputs to the Olfactory Cortex. Int J Mol Sci 2023; 24:ijms24031950. [PMID: 36768274 PMCID: PMC9916768 DOI: 10.3390/ijms24031950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Serotonin (5-hydroxytriptamine, 5-HT) is an important monoaminergic neuromodulator involved in a variety of physiological and pathological functions. It has been implicated in the regulation of sensory functions at various stages of multiple modalities, but its mechanisms and functions in the olfactory system have remained elusive. Combining electrophysiology, optogenetics and pharmacology, here we show that afferent (feed-forward) pathway-evoked synaptic responses are boosted, whereas feedback responses are suppressed by presynaptic 5-HT1B receptors in the anterior piriform cortex (aPC) in vitro. Blocking 5-HT1B receptors also reduces the suppressive effects of serotonergic photostimulation of baseline firing in vivo. We suggest that by regulating the relative weights of synaptic inputs to aPC, 5-HT finely tunes sensory inputs in the olfactory cortex.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
- Department of Physiology, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
15
|
Cai P, Wang FD, Yao J, Wang WF, Hu YD, Liu RF, Li ZS, Zhu ZH, Cai YT, Lin ZH, Tang WT, Zhuang CW, Xiao WH, Zeng YH, Huang SN, Fu Z, Wang WX, Chen L. Regulation of wakefulness by GABAergic dorsal raphe nucleus-ventral tegmental area pathway. Sleep 2022; 45:6717880. [PMID: 36161495 DOI: 10.1093/sleep/zsac235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
The dorsal raphe nucleus (DRN) has previously been proved to be involved in the regulation of the sleep-wake behavior. DRN contains several neuron types, such as 5-HTergic and GABAergic neurons. GABAergic neurons, which are the second largest cell subtype in the DRN, participate in a variety of neurophysiological functions. However, their role in sleep-wake regulation and the underlying neural circuitry remains unclear. Herein, we used fiber photometry and synchronous electroencephalogram (EEG)/electromyography (EMG) recording to demonstrate that DRN GABAergic neurons exhibit high activities during wakefulness and low activities during NREM sleep. Short-term optogenetic activation of DRN GABAergic neurons reduced the latency of NREM-to-wake transition and increased the probability of wakefulness, while long-term optogenetic activation of these neurons significantly increased the amount of wakefulness. Chemogenetic activation of DRN GABAergic neurons increased wakefulness for almost 2 h and maintained long-lasting arousal. In addition, inhibition of DRN GABAergic neurons with chemogenetics caused a reduction in the amount of wakefulness. Finally, similar to the effects of activating the soma of DRN GABAergic neurons, optogenetic stimulation of their terminals in the ventral tegmental area (VTA) induced instant arousal and promoted wakefulness. Taken together, our results illustrated that DRN GABAergic neurons are vital to the induction and maintenance of wakefulness, which promote wakefulness through the GABAergic DRN-VTA pathway.
Collapse
Affiliation(s)
- Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Fu-Dan Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Jing Yao
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China.,Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Wen-Feng Wang
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Yu-Duan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Ren-Fu Liu
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Zhang-Shu Li
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Zhong-Hua Zhu
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Yu-Tong Cai
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Zhi-Hui Lin
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Wei-Tao Tang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Cong-Wen Zhuang
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Wen-Hao Xiao
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Yu-Hang Zeng
- School of Basic Medicine Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Sheng-Nan Huang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Zhifei Fu
- Public Technology Service Center, Fujian Medical University, Fuzhou 350108, Fujian, China.,Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Wen-Xiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| |
Collapse
|
16
|
Jiang H. Hypothalamic GABAergic neurocircuitry in the regulation of energy homeostasis and sleep/wake control. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:531-540. [PMID: 37724165 PMCID: PMC10388747 DOI: 10.1515/mr-2022-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 09/20/2023]
Abstract
Gamma-aminobutyric acid (GABAergic) neuron, as one of important cell types in synaptic transmission, has been widely involved in central nervous system (CNS) regulation of organismal physiologies including cognition, emotion, arousal and reward. However, upon their distribution in various brain regions, effects of GABAergic neurons in the brain are very diverse. In current report, we will present an overview of the role of GABAergic mediated inhibitory neurocircuitry in the hypothalamus, underlying mechanism of feeding and sleep homeostasis as well as the characteristics of latest transcriptome profile in order to call attention to the GABAergic system as potentially a promising pharmaceutical intervention or a deep brain stimulation target in eating and sleep disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
17
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Principal Neurons and Interneurons in the Anterior Piriform Cortex. Front Neuroanat 2022; 16:821695. [PMID: 35221934 PMCID: PMC8864633 DOI: 10.3389/fnana.2022.821695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2022] Open
Abstract
Originating from the brainstem raphe nuclei, serotonin is an important neuromodulator involved in a variety of physiological and pathological functions. Specific optogenetic stimulation of serotonergic neurons results in the divisive suppression of spontaneous, but not sensory evoked activity in the majority of neurons in the primary olfactory cortex and an increase in firing in a minority of neurons. To reveal the mechanisms involved in this dual serotonergic control of cortical activity we used a combination of in vitro electrophysiological recordings from identified neurons in the primary olfactory cortex, optogenetics and pharmacology and found that serotonin suppressed the activity of principal neurons, but excited local interneurons. The results have important implications in sensory information processing and other functions of the olfactory cortex and related brain areas.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
- Department of Physiology, University of Szeged, Szeged, Hungary
- “Momentum” Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Magor L. Lőrincz,
| |
Collapse
|
18
|
Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021; 44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The electrical activity of diverse brain cells is modulated across states of vigilance, namely wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Enhanced activity of neuronal circuits during NREM sleep impacts on subsequent awake behaviors, yet the significance of their activation, or lack thereof, during REM sleep remains unclear. This review focuses on feeding-promoting cells in the lateral hypothalamus (LH) that express the vesicular GABA and glycine transporter (vgat) as a model to further understand the impact of REM sleep on neural encoding of goal-directed behavior. It emphasizes both spatial and temporal aspects of hypothalamic cell dynamics across awake behaviors and REM sleep, and discusses a role for REM sleep in brain plasticity underlying energy homeostasis and behavioral optimization.
Collapse
Affiliation(s)
- Lukas T Oesch
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Sere P, Zsigri N, Raffai T, Furdan S, Győri F, Crunelli V, Lőrincz ML. Activity of the Lateral Hypothalamus during Genetically Determined Absence Seizures. Int J Mol Sci 2021; 22:ijms22179466. [PMID: 34502374 PMCID: PMC8431596 DOI: 10.3390/ijms22179466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Absence seizures (ASs) are sudden, transient lapses of consciousness associated with lack of voluntary movements and generalized 2.5–4 Hz spike-wave discharges (SWDs) in the EEG. In addition to the thalamocortical system, where these pathological oscillations are generated, multiple neuronal circuits have been involved in their modulation and associated comorbidities including the serotonergic system. Neuronal activity in one of the major synaptic input structures to the brainstem dorsal raphé nucleus (DRN), the lateral hypothalamus (LH), has not been characterized. (2) Methods: We used viral tract tracing and optogenetics combined with in vitro and in vivo electrophysiology to assess the involvement of the LH in absence epilepsy in a genetic rodent model. (3) Results: We found that a substantial fraction of LH neurons project to the DRN of which a minority is GABAergic. The LH to DRN projection can lead to monosynaptic iGluR mediated excitation in DRN 5-HT neurons. Neuronal activity in the LH is coupled to SWDs. (4) Conclusions: Our results indicate that a brain area involved in the regulation of autonomic functions and heavily innervating the RN is involved in ASs. The decreased activity of LH neurons during SWDs could lead to both a decreased excitation and disinhibition in the DRN. These results support a long-range subcortical regulation of serotonergic neuromodulation during ASs and further our understanding of the state-dependence of these seizures and some of their associated comorbidities.
Collapse
Affiliation(s)
- Péter Sere
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Nikolett Zsigri
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Timea Raffai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Szabina Furdan
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
| | - Fanni Győri
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
| | - Vincenzo Crunelli
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, 6726 Szeged, Hungary; (P.S.); (N.Z.); (T.R.); (S.F.); (F.G.)
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
- Correspondence:
| |
Collapse
|